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E P I D E M I O L O G Y

Low case numbers enable long-term stable pandemic 
control without lockdowns
Sebastian Contreras1,2†, Jonas Dehning1†, Sebastian B. Mohr1†, Simon Bauer1†,  
F. Paul Spitzner1†, Viola Priesemann1,3*†

The traditional long-term solutions for epidemic control involve eradication or population immunity. Here, we 
analytically derive the existence of a third viable solution: a stable equilibrium at low case numbers, where 
test-trace-and-isolate policies partially compensate for local spreading events and only moderate restrictions 
remain necessary. In this equilibrium, daily cases stabilize around ten or fewer new infections per million people. 
However, stability is endangered if restrictions are relaxed or case numbers grow too high. The latter destabilization 
marks a tipping point beyond which the spread self-accelerates. We show that a lockdown can reestablish control 
and that recurring lockdowns are not necessary given sustained, moderate contact reduction. We illustrate how 
this strategy profits from vaccination and helps mitigate variants of concern. This strategy reduces cumulative 
cases (and fatalities) four times more than strategies that only avoid hospital collapse. In the long term, immuni-
zation, large-scale testing, and international coordination will further facilitate control.

INTRODUCTION
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
is becoming endemic and knowledge about its spreading is 
accumulated, it becomes clear that neither global eradication nor 
population immunity will be achieved soon. Eradication is hindered 
by the worldwide prevalence and by asymptomatic spreading. 
Reaching population immunity without an effective vaccine or 
medication would take several years and cost countless deaths, 
especially among the elderly (1,  2). Moreover, evidence for long-
term effects (“long COVID”) is surfacing (3–6), advising against 
strategies aiming to progressively exposing people to the disease so 
that they acquire natural immunity. Hence, we need long-term, sus-
tainable strategies to contain the spread of SARS-CoV-2. The common 
goal, especially in countries with an aging population, should be to 
minimize the number of infections and, thereby, allow reliable 
planning for individuals and the economy, while not constraining 
individuals’ number of contacts too much (7). Intuitively, a regime 
with low case numbers not only would benefit public health and 
psychological well-being but also would profit the economy (8, 9).

However, control of SARS-CoV-2 is challenging. Many infec-
tions originate from asymptomatic or presymptomatic cases (10) or 
indirectly through aerosols (11), rendering mitigation measures 
difficult. Within test-trace-and-isolate (TTI) strategies, the contri-
bution of purely symptom-driven testing is limited, but together 
with contact tracing, it can uncover asymptomatic chains of infec-
tions. The rising availability of effective vaccines against SARS-CoV-2 
promises to relieve the social burden caused by nonpharmaceutical 
interventions (NPIs). However, it is unclear how fast the restric-
tions can be lifted without risking another wave (12–14) and how 
well vaccines will protect against more contagious or immune re-
sponse–escaping variants. Additional challenges are the potential 
influx of SARS-CoV-2 infections (brought in by travelers or 

commuting workers from abroad), imperfect quarantine, limited 
compliance, and TTI and case-reporting delays. Last, any country’s 
capacity to perform TTI is limited, so spreading dynamics change 
depending on the level of case numbers. Understanding these 
dynamics is crucial for informed policy decisions.

RESULTS
Analytical framework: Overview
We analytically show the existence of a stable regime at low case 
numbers, where control of SARS-CoV-2 is much easier to achieve 
and sustain. In addition, we investigate mitigation strategies and 
long-term control for corona virus disease 2019 (COVID-19), 
where we build on our past work to understand the effectiveness of 
NPIs, particularly TTI strategies (15–17). The strategy that we pro-
pose does not rely on the availability of a cure or vaccine, and it is 
applicable not only to further waves of COVID-19 but also to other 
emerging diseases with pandemic potential. Nonetheless, we also show 
how vaccination campaigns will further facilitate the success of the 
proposed strategy, assuming a vaccination rate as planned for coun-
tries in the European Union (13).

For quantitative assessments, we adapt a susceptible-exposed- 
infectious-recovered (SEIR)–type compartmental model (18) to 
explicitly include a realistic TTI system that considers the challenges 
above. In our framework, individuals can be tested (and subse-
quently quarantined if tested positive) by three different mechanisms. 
First, symptomatic infections with COVID-19–specific symptoms 
would self-report or be diligently identified by surveillance and get 
a preferential test. Second, random asymptomatic screening would 
be homogeneously deployed in the general population disregarding 
symptoms so that every individual could be tested alike. Third, all 
the close contacts of those individuals recently tested positive by the 
two mechanisms mentioned above would also be tested. Under-
standably, limited resources pose a complex challenge for resource 
allocation, where efficient TTI would only be possible at low case 
numbers. We also built an interactive platform where enthusiastic 
readers can simulate scenarios different from those presented here-
in http://covid19-metastability.ds.mpg.de/.
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A central parameter for our analysis is the level of contagious 
contacts kt (relative to pre–COVID-19). More precisely, kt refers to 
the fraction of infection risk–bearing encounters compared to 
pre–COVID-19 contact levels. We can then interpret kt in terms of 
the hidden reproduction number   R t  

H  , which accounts for the number 
of offspring infections generated by individuals unaware of being 
infectious, i.e., hidden infections in a naive and fully susceptible 
population (15). Thus, in terms of   R t  

H  , kt can be understood as the 
ratio between the offspring infections a hidden individual would 
generate in the presence and in the absence of NPIs, in other words, 
  R t  

H  =  k  t    R  0   . Apart from direct contact reduction, contributions that 
allow increasing kt without compromising the stability of the sys-
tem also come from improved hygiene, mandatory face mask 
policies, frequent ventilation of closed spaces, and avoiding indoor 
gatherings, among other precautionary measures. As the latter 
measures are relatively fixed, direct contact reduction remains the 
central free variable, which is also the one tuned during lockdowns. 
All other parameters (and their references) are listed in Table 1.

Equilibrium at low case numbers
We find a regime where the spread reaches an equilibrium at low 
daily case numbers between the scenarios of eradication of the 
disease or uncontrolled spreading. The main control parameter that 

determines whether the system can reach an equilibrium is the level 
of contagious contacts kt.

If the reduction in the contact level kt is mild, then case numbers 
grow exponentially, as measures could not counterbalance the basic 
reproduction number [R0 ≈ 3.3 for SARS-CoV-2 (19, 20)] (Fig. 1B). 
In contrast, if the reduction in kt is strong and (together with hygiene 
and TTI) outweighs the drive by the basic reproduction number, 
then case numbers decrease to a low equilibrium value (Fig. 1D).

If the reduction in kt is moderate (and just about balances the 
drive by the basic reproduction number), we find a metastable regime: 
The spread is stabilized if and only if the overall case numbers are 
sufficiently low to enable fast and efficient TTI (Fig. 1C). However, 
this control is lost if the limited TTI capacity is overwhelmed. 
Beyond that tipping point, the number of cases starts to grow 
exponentially as increasingly more infectious individuals remain 
undetected (15).

The capacity of TTI determines the minimal required contact 
reduction for controlling case numbers around an equilibrium. If 
case numbers are sufficiently below the TTI capacity limit, then the 
maximum allowed level of contacts to enable the (meta-)stable 
regime in our default scenario (cf. Table 1, with R0 = 3.3) is   
k t  

crit  = 61%  [95% confidence interval (CI): [47, 76]]. When the level 
of contacts kt is below the threshold, case numbers asymptotically 

Table 1. Model parameters. 

Parameter Meaning Value (default) Range Units Source

M Population size 1,000,000 People –

R0 Basic reproduction number 3.3 2.2–4.4 – (19, 20)

𝜈 Registered contacts (quarantined) 0.075 – Assumed

𝜖 Lost contacts (quarantined) 0.05 – Assumed

𝛾 Recovery/removal rate 0.10 0.08–0.12 Day−1 (64, 65)

𝜉 Asymptomatic ratio 0.32 0.15–0.43 – (51, 52, 54)

𝜆s Symptom-driven testing rate 0.25 0–1 Day−1 Assumed

    s  ′   
Symptom-driven testing rate 

(reduced capacity) 0.1 Day−1 Assumed

𝜆r Random testing rate 0.0 0.0–0.1 Day−1 Assumed

𝜂 Tracing efficiency 0.66 – Assumed

𝜏 Contact tracing delay 2 Days Assumed

  N max  test   Maximal tracing capacity 50 10–75 Cases day−1 Assumed

t External influx 1 Cases day−1 Assumed

𝜌 Exposed-to-infectious rate 0.25 Day−1 (10, 66)

DL Lockdown duration 4 0–8 Weeks (27)

Dramp
Phase-transition duration 

(lockdown) 1 Weeks (27)

𝜒
Fraction of contacts traced before 

becoming infectious 0.61 – Eq. 17

𝜒s,r

Fraction of contacts traced after 
becoming infectious, before being 
tested (symptomatic and random)

0.30 – Eq. 20

𝜒r

Fraction of contacts traced after 
becoming infectious, before being 

tested (random)
0.39 – Eq. 18
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approach to an equilibrium that shows the following features: (i) 
When the level of contacts kt is close to its critical value   k t  

crit  , small 
changes in kt generate large modifications of the equilibrium level 
(Fig.  1E). (ii) Larger influxes lead to larger equilibrium values, 
however not modifying the maximum allowed level of contacts 
(Fig. 1F). (iii) Behavioral changes and policies leading to a reduc-
tion in the transmission probability will also lower the equilibrium 
value because the maximum allowed level of contacts   k t  

crit   would be 
larger (Fig. 1G). However, if case numbers exceed the TTI capacity 
limit, then a considerably stronger reduction in contacts is required 
to reach the stable regime, so that   k t  

crit  = 42%  (95% CI: [38, 47]) 
(Fig. 2B, fig. S2B, and table S1).

Equilibrium depends on influx and contact reduction
If an equilibrium is reached, the precise value of daily new cases  
    ̂  N   ∞  obs   at which the system stabilizes depends on both the contact level 
(kt) and the external influx of new cases (t) (Fig. 2A). In general, 
for realistic low values of influx t, the equilibrium level     ̂  N   ∞  obs   is low. 
However,     ̂  N   ∞  obs   increases steeply (diverges) when the contact level kt 
approaches the tipping point to unstable dynamics (Fig. 2, A and B). 
Such a divergence near a critical point   k t  

crit   is a general feature of 
continuous transitions between stable and unstable dynamics 
(21, 22). As a rule of thumb, in an analytical mean-field approxima-
tion (22),     ̂  N   ∞  

obs
   would be proportional to t and diverge when kt ap-

proaches its critical value   k t  
crit   from below

     ̂  N   ∞  
obs

  ∝      t   ─ 
 k t  

crit  −  k  t  
    (1)

Robust control of the pandemic requires maintaining a suffi-
cient safety margin from the tipping point (and the subsequent 
transition to instability) for two reasons. First, small fluctuations in 
kt and t (or other model variables) could easily destabilize the system. 
Second, near the critical value   k t  

crit  , reductions in kt are especially 

effective: Already, small further reductions below   k t  
crit   lead to 

substantially lower stable case numbers (Fig. 2A). Already, with 
moderate reductions in kt (50 % < kt < 60%), the spread can be 
stabilized to a regime of case numbers clearly below 10 per million 
(fig. S1B, lower right region).

Limited TTI and self-acceleration
If mitigation measures are insufficient, then case numbers rise and 
eventually surpass the TTI capacity limit. Beyond it, health authori-
ties cannot efficiently trace contacts and uncover infection chains. 
Thus, the control of the spread becomes more difficult. We start our 
scenario with a slight increase in the case numbers over a few 
months, as seen in many European countries throughout summer 
2020 (figs. S4 and S5). A tipping point is then visible in the following 
observables (Fig. 2, C to F)

First, when case numbers surpass the TTI capacity, the increase in 
daily new observed cases     ̂  N     

obs
   becomes steeper, growing even faster 

than the previous exponential growth (Fig. 2C, full versus faint 
line). The spread self-accelerates because increasingly more contacts 
are missed, which, in turn, infect more people. In this scenario, the 
accelerated spread arises solely because of exceeding the TTI limit, 
without any underlying behavior change among the population.

Second, after case numbers surpass the TTI limit, the observed 
reproduction number     ̂  R   t  

obs  , which had been only slightly above the 
critical value of unity, increases substantially by about 20% (Fig. 2D). 
This reflects a gradual loss of control over the spread and explains 
the faster-than-exponential growth of case numbers. The initial dip 
in     ̂  R   t  

obs
   is a side effect of the limited testing: As increasingly many cases 

are missed, the observed reproduction number reduces transiently.
Third, compared to the infectious individuals who are quaran-

tined IQ, the number of infectious individuals who are hidden IH 
(i.e., those who are not isolated or in quarantine) increases dispro-
portionately (Fig. 2E), which is measured by the “underreporting 

Table 2. Model variables. 

Variable Meaning Units Explanation

S Susceptible pool People Noninfected people that may acquire the virus

EQ Exposed pool (quarantined) People Total quarantined exposed people

EH Exposed pool (hidden) People Total nontraced, nonquarantined exposed people

IH, s Infectious pool (hidden, symptomatic) People Nontraced, nonquarantined people who are symptomatic

IH Infectious pool (hidden) People Total nontraced, nonquarantined infectious people

IQ Infectious pool (quarantined) People Total quarantined infectious people

N New infections (total) Cases day−1 Given by:  N =   k  t    R  0    I   H  + ( + ϵ )  R  0    I   Q  +   S _ M     t   .
kt Contact reduction % Reduction of infectious contacts, related to pre–COVID-19 times

 
   ̂  N     

obs
 
 

Observed new infections (influx to traced pool) Cases day−1 Daily new cases, observed from the quarantined pool; delayed 
because of imperfect reporting and realistic contact tracing

    ̂  R   t  
obs

  Observed reproduction number The reproduction number that can be estimated only from the 
observed cases:     ̂  R   t  

obs
  =    ̂  N     

obs
 (t ) /    ̂  N     

obs
 (t − 4) 

Ntest Number of cases found through testing People Cases can be found either through symptomatic or random 
testing   N   test  =  N r  

test  +  N s  test  .

Ntraced Number of uncovered infections through tracing People This number is limited (depending on the reproduction 
number) by the maximal tracing capacity   N max  test   
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factor” (IH/IQ) (Fig. 2F). The hidden infectious individuals are the 
silent drivers of the spread, as they, unaware of being infectious, 
inadvertently transmit the virus. This implies a considerable risk, espe-
cially for vulnerable people. The TTI system can compensate for the 
hidden spread at low case numbers because it uncovers hidden cases 
through contact tracing. However, at high case numbers, the TTI be-
comes inefficient: If the TTI measures are “slower than the viral spread,” 
many contacts cannot be quarantined before they become spreaders.

Reestablishing control with lockdowns
Once the number of new infections has overwhelmed the TTI 
system, reestablishing control can be challenging. A recent sugges-
tion is the application of a circuit breaker (23–25), a short lockdown 
to substantially lower the number of daily new infections. Already, 
during the so-called first wave of COVID-19  in Europe (i.e., the 
time frame between March and June 2020), lockdowns have proven 
capable of lowering case numbers by a factor of 2 or more every 
week (corresponding to an observed reproduction number of  
    ̂  R   t  

obs  ≈ 0.7 ) (17, 26). With the knowledge that we now have ac-
quired about the spreading of SARS-CoV-2, more targeted restric-
tions may yield a similarly strong effect.

Inspired by the lockdowns installed in many countries (27), we 
assume a default lockdown of 4 weeks, starting 4 weeks after case 
numbers exceed the TTI capacity limit, and a strong reduction of 

contagious contacts during a lockdown, leading to kt = 25% (which 
corresponds to an     ̂  R   t  

obs  ≈ 0.85 ; see table S2). We further assume 
that during lockdown, the external influx of infections t is reduced 
by a factor of 10 and that after the lockdown, a moderate contact 
reduction (allowing knLD = 60%) is maintained. By varying the 
parameters of this default lockdown, we show in the following that 
the lockdown strength, duration, and starting time determine whether 
the lockdown succeeds or fails to reach equilibrium.

In our scenario, a lockdown duration of 4 weeks is sufficient to 
reach the stable regime (Fig. 3A). However, if lifted too early (before 
completing 4 weeks), case numbers will rise again shortly afterward. 
The shorter an insufficient lockdown, the faster case numbers will 
rise again. In addition, it is advantageous to remain in lockdown for 
a short time even after case numbers have fallen below the TTI limit, 
to establish a safety margin, as shown above. Overall, the major 
challenge is not to ease the lockdown too early; otherwise, the earlier 
success is soon squandered.

During a lockdown, it is necessary to severely reduce contagious 
contacts to decrease case numbers below the TTI capacity limit 
(Fig. 3B). In our scenario, the contact level has to be reduced to at 
least kLD = 25% to bring the system back to equilibrium. Otherwise, 
a lockdown that is slightly weaker would fail to reverse the increasing 
trend in cases. Furthermore, increasing the lockdown strength 
decreases both the required lockdown duration (Fig. 3, G and H) 
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Fig. 1. Spreading dynamics depend on the balance between destabilizing and stabilizing contributions and on the level of case numbers. (A) Among the factors 
that destabilize the spread, we find the basic reproduction number R0 and the external influx of infections (and, possibly, seasonality). On the other hand, increased 
hygiene, TTI strategies, contact reduction, and immunity contribute to stability. We specifically investigated how reductions in the contact level kt and limited TTI capacity 
determine the stabilization of case numbers. (B) At mild contact reduction (kt = 80% compared to pre–COVID-19 times), TTI is not sufficient; case numbers would grow 
even when TTI capacity is available. (C) At moderate contact reduction (kt = 60%), a metastable equilibrium emerges (gray dots) to which case numbers converge, if they 
were below the TTI capacity. However, destabilizing events (e.g., a sudden influx of infections) can push a previously stable system above the TTI capacity and lead to an 
uncontrolled spread (black line as an example). (D) Assuming strong contact reduction (kt = 40%), case numbers decrease even if the TTI capacity is exceeded. (E) Near to 
the critical level of contacts   k t  

crit  , small changes in the contact level will lead to a considerable increase in observed cases in equilibrium     ̂  N   ∞  
obs

  . (F) Reducing the influx of 
infections t (by closing borders or deploying extensive testing at arrival) reduces the number of infections. (G) Increasing the efficiency of manual contact tracing and 
additional measures such as increased hygiene and compulsory use of face masks will increase the maximum allowed level of contacts   k t  

crit  .
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and the total number of cases accumulated over 3 months (Fig. 3E). 
This shows that stricter lockdowns imply shorter-lasting social and 
economic restrictions.

The earlier a lockdown begins after exceeding the TTI capacity 
limit, the faster control can be reestablished, and constraints can be 
loosened again (Fig. 3C). If started right after crossing the thresh-
old, in principle, then only a few days of lockdown are necessary to 
bring back case numbers below the TTI capacity limit. On the other 
hand, if the lockdown is started weeks later, then its duration needs 
to increase (Fig. 3, C and D) and the total number of cases will be 
substantially larger (Fig. 3F). The parameter regime between these 
two options is relatively narrow; it is not likely that equilibrium 
can eventually be reached as a lockdown exceeds many weeks 
(cf. Fig. 3H). For practical policies, this means that if a lockdown does 
not start to show apparent effects after 2 or 3 weeks, then the strategy 
should be revised (this assessment time is necessary because of the 
delay of 1 to 2 weeks between contagion and case report).

Maintaining control without lockdowns
We show that repeated lockdowns are not required to maintain 
control over the COVID-19 spread if moderate contact reduction is 
maintained once case numbers are below the TTI capacity limit (an 
initial lockdown might still be necessary to establish control). A 
natural goal would be to keep case numbers below the hospital 
capacity. However, our model suggests that lowering them below 
TTI capacity requires fewer contact restrictions (in the long term), 
involves a shorter total lockdown duration, and costs fewer lives. In 
the following, we compare the long-term perspective of these two 
goals and their dependence on the necessary contact reduction.

In our scenario (Fig. 4), we start from the unstable regime, where 
the initial contact level (kt = 80% of the pre-COVID-19 level) is not 
sufficient to control the spread. We start a 2-week lockdown when 
crossing either the TTI or the hospital capacity. During the lockdown, 
contacts are reduced to kt = 25%. After the first and all subsequent 
lockdowns, contacts kt are reduced to 80, 60, or 40% relative to 
pre–COVID-19 levels, thus representing a mild, moderate, or strong 
reduction. When assuming mild contact reduction after lockdowns, 
case numbers rise after lifting the lockdown, independent of the 
chosen threshold (TTI or hospital capacity; Fig. 4A). Thus, repeated 
lockdowns are necessary.

However, maintaining a moderate contact reduction while not 
in  lockdown (i.e., a contact level of kt = 60%) is sufficient to stay 
within the metastable regime, if lockdowns are enacted such that 
case numbers remain below the TTI capacity (Fig. 4B, yellow line). 
This is a promising perspective for a long-term control strategy that 
avoids recurrent lockdowns. Otherwise, if case numbers are above 
TTI capacity limit but below hospital capacity, then control of the 
pandemic requires repeated lockdowns (Fig. 4B, red line). Alterna-
tively, lasting strong contact reductions even after the lockdown can 
be sufficient to drive down case numbers (Fig. 4C).

The advantage of the strategy to stay below the TTI capacity limit 
becomes very clear when considering the total cost of the required 
lockdowns: Independent of the degree of contact reduction, (i) the 
total number of cases (and consequently deaths and long COVID 
risk) is lower (Fig. 4D), (ii) the total duration spent in lockdown is 
shorter (Fig. 4E), and (iii) the frequency at which lockdowns have to 
reoccur—should the after-lockdown contact reduction not be 
enough to grant metastability—is lower (Fig. 4A). As case numbers 
and lockdown duration indicate economic costs, a strategy that 
respects the TTI limit offers a low economic toll, enables mid-term 
planning, and provides trust to people and society.

The scalability of random testing (screening) (28–30) and im-
munization programs play a critical role in long-term strategies; 
both will increase the maximum level of contacts allowed (  k t  

crit  ) to 
maintain control (Fig. 4, F and G). Early effects of immunity can be 
seen in our scenario of the system stabilized at hospital capacity: 
The need for lockdowns becomes less frequent over time (Fig.  4, 
A and B, red lines). However, acquiring natural immunity comes at 
the cost of a prolonged high level of case numbers, subsequent long 
COVID cases (4–6), and deceased people. Whereas the duration of 
the immunity is yet unknown (31), this phenomenon still shows 
that immunity effects play an increasing role as model predictions 
extend further into the future.

Vaccination greatly facilitates containment in  
the effective TTI regime
In the following, we show how growing immunity granted by vacci-
nation programs further facilitates both reaching low case numbers 
below TTI capacity and the stable control thereof. For quantitative 
assessments, we studied the effect of COVID-19 vaccination 
programs and how they affect the two control strategies discussed 
in the previous section.

Investigating explicit vaccination scenarios, we assume that 80% 
of people getting offered vaccination accept this offer. Since, as of 
now, none of the available vaccines has been approved for people 
younger than 16 years, this corresponds to a vaccine uptake of 
roughly 70% of the overall population (for European demographics). 
We model the delivery and administration of all doses to be 
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crit   represents the maximal contact level 
that is allowed to reach equilibrium and stabilize case numbers. If case numbers are 
below the TTI capacity limit, then higher values of   k t  

crit   are permitted for stabilization 
(blue) than if cases exceed TTI (gray). CIs originate from error propagation of the 
uncertainty of the underlying model parameters. (C to F) In the unstable dynamic 
regime (kt = 80%), a tipping point is visible when exceeding TTI capacity. We observe 
a self-accelerating increase of case numbers after crossing the TTI limit (C) and a 
subsequent increase of the reproduction number (D). Furthermore, the absolute 
number (E) and the fraction (F) of cases that remain unnoticed increase over time. D
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completed within 32 weeks (13), which is comparable to the 
increasing vaccination rate in the European Union. We investigate 
two scenarios: that the average vaccine efficacy against transmission 
is 80%, in line with reported values for current vaccines against the 
wild type and the widely dominant B.1.1.7 variant (32–34), or 40%, 
a possible scenario for partially immune-escaping variants.

Comparing the two different control strategies introduced in the 
preceding section, i.e., either aiming to keep case numbers below the 
TTI or below the hospital capacity limit, the progressing vaccina-
tion Fig. 5, A and B) will eventually lead to declining case numbers 
Fig. 5, C and D). However, this point will be reached several weeks 
earlier if case numbers are kept below TTI capacity. Until then, 
repeated lockdowns will remain necessary if contact reductions 
outside of lockdown are insufficient (see discussion in the preceding 
section). A decreasing number of infections will even be reached 
months earlier if TTI capacity is available than if it is overwhelmed.

Low case numbers are greatly beneficial even in light of pro-
gressing vaccination programs. In the high–case number regime, 
only in the most optimistic scenario can the spread of SARS-CoV-2 
be controlled without contact reductions after the vaccination 
program is finished (Fig. 5E, the full gray line reaches 100%). In all 
other scenarios, because of the dominance of more contagious (dotted 
lines) or immune escape variants lowering vaccine efficacy (lower 

row), an efficiently functioning TTI program is necessary to allow 
for a high level of contacts (Fig. 5, E and F, blue lines). Therefore, 
reaching low case numbers is complementary to the vaccination 
efforts and necessary to maximize the population’s freedom.

DISCUSSION
We demonstrated that between the two extremes of eradication and 
uncontrolled spread, a metastable regime of SARS-CoV-2 spreading 
exists. In such a regime, every person only has to reduce their 
contacts moderately. Simultaneously, case numbers can still be 
maintained robustly at low levels because the TTI system can 
operate efficiently. If this regime is within reach, then keeping case 
numbers below TTI capacity is a suitable strategy for the long-term 
control of COVID-19 (or other infectious diseases) that features 
low fatalities and a small societal burden. In addition, it maximizes 
the effect of large-scale pharmaceutical interventions (as vaccina-
tion programs).

Among countries worldwide, variability in governmental policies 
and the chosen strategy to face COVID-19 substantially affect the 
levels of observed COVID-19 case numbers (see also Fig. 6 and note 
S1.1). Sustained high levels of more than 100 daily new cases per 
million have been observed in several (but not exclusively) 
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American countries (Fig. 6A). This shows that high levels of daily 
new infections can be maintained. However, the stringency of in-
terventions is similar to other countries (35), without signs of 
reaching population immunity. On the other hand, very low case 
numbers and even local eradication have been achieved by several 
South and East Asian countries, Australia, and New Zealand. At the 
time of writing, these countries profit from the absorbing state at 
zero SARS-CoV-2 infections, but maintaining this state requires 
substantial international travel restrictions (Fig. 6C). An intermedi-
ate level of case numbers could predominantly be observed over 
summer 2020  in Europe. Case numbers for many countries were 
typically around 10 daily new cases per million (Fig. 6B), although 
contacts were only mildly restricted. These stable numbers demon-
strate that also, in practice, a regime below TTI capacity limits is 
maintainable. Nonetheless, in September, the spread substantially 
accelerated in several European countries, when case numbers 
began to exceed 20 to 50 daily new cases per million (fig. S5). 
Beyond these levels of case numbers, the TTI systems began to be 
overwhelmed, making control difficult, in line with our model’s 
results.

To focus our model on the general spreading dynamics, we 
made simplifying assumptions: We assumed that spreading hap-
pens homogeneously in the population, with neither regional nor 

age-related differences. In reality, heterogeneous spreading can lead 
to regionally differing case numbers, which illustrates the need for 
regional monitoring of the remaining TTI capacity to allow for early 
and targeted control measures. In our scenarios, we further 
assumed that the population’s behavior and subsequent contact 
reduction are constant over time (except during lockdown). Real 
situations are more dynamic, necessitating frequent reevaluations 
of the current restrictions and mitigation measures. We also assumed 
constant TTI effectiveness if below the capacity limit. However, if 
case numbers are very low, then all the available test and trace 
efforts could be concentrated on the remaining infection chains. 
This would further facilitate control at low case numbers. Overall, 
our analytical results describe the general behavior across countries 
well and identify the relevant factors for controlling the pandemic.

Quantitatively, our assumptions regarding the efficiency of TTI 
are in agreement with those of other modeling studies. Agent-based 
models with detailed contact structures (36, 37) and mean-field 
models (38–41) both agree that TTI measures are an essential 
contribution for the control of the pandemic but typically do not 
suffice alone. Their success strongly depends on their implementation: 
Fast testing, rigorous isolation, and a large proportion of traced 
contacts are essential. Given our informed assumptions about these 
parameters, our model shows that TTI can only compensate a basic 
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reproduction number R0 of 3.3, if contagious contacts are also 
reduced to at most 61% (95% CI: [47, 76]) compared to pre-
COVID-19. This is in agreement with the results of other studies 
(36, 37, 39, 42, 43).

The capacity limit of TTI plays a central role in the control of the 
spread but depends strongly on the local environment. The precise 
limit of TTI depends on several factors, including the number of 
available tests, personnel at the tracing units, potentially a tracing 
app (39), and the number of relevant contacts a person has on 
average. Already, the latter can easily differ by a factor of 10, 
depending on contact restrictions and cultural factors (44). We 
assumed that the capacity is reached at about 85 daily new cases per 
million for our scenarios, which is comparably high. Independent 
of the exact value, when this limit is approached, the risk of tipping 
over to uncontrolled spread strongly increases, and countermeasures 
should be taken without delay.

Given the large deviations of the capacity limit of TTI across 
regions, policy-makers should monitor local health authorities’ and 
tracing agencies’ capacity instead of relying on fixed limits. Health 
authorities can also assess whether a local outbreak is controlled or 
whether infection chains cannot be traced anymore, allowing an 
early and adaptive warning system. However, one can safely state 
that daily case numbers larger than 85 per million (corresponding 
to our modeled limit) are above the capacity limit of TTI programs 
in Europe, therefore requiring, in any case, further restrictions to 
reach controllable levels.

Even given the ongoing vaccination campaigns, a low level of 
case numbers below TTI capacity limits remains essential. We find 
that during and after the campaigns, TTI still greatly facilitates the 
containment of COVID-19. The vaccinations’ exact effect depends 
on several hard-to-model factors. It can change with newly emerging 
variants of the virus, which can be more contagious, more severe, or 
escape the immune response. In our analysis of the effect of vacci-
nation, we also neglected age and high-risk-group distributions and 
contact networks in the population, the exact design of national 

vaccination plans, or the differential efficacy of vaccines against 
infection and severe disease. Some of these factors were taken into 
account in other publications (12–14). However, the long-term 
success of vaccinations alone remains hard to predict. Thus, it is 
sensible to accompany mass vaccinations to achieve low case 
numbers in the vaccine rollout and the time beyond.

Our results show that a stable equilibrium at low case numbers 
can be maintained with a moderate contact reduction of about 40% 
less contagious contacts compared to pre–COVID-19. In terms of 
our parameters, this translates to a maximum, critical, level of 
contacts   k t  

crit   of 61% (95% CI: [47, 76]). This level of contacts can be 
achieved with preventive mitigation measures, as shown by 
studies analyzing the effectiveness of NPIs during the first wave 
(17, 26, 27, 45, 46). Restrictions on the maximum size of gatherings 
already lead to an effective reduction in the range of 10 to 40% 
(17, 26, 27, 46). Improved hygiene, frequent ventilation of rooms, 
and the compulsory use of masks can further reduce the number 
of infectious contacts [by a factor that is more difficult to estimate 
(47, 48)]. Overall, until mass vaccination plans have been deployed 
worldwide and available vaccines have been shown to be successful 
against emerging variants, the regime of low case numbers is very 
promising for a mid- and long-term management of the pandemic, 
as it poses the least burden on economy and society.

On the other hand, stabilizing the spread at higher levels of case 
numbers (e.g., at the hospital capacity limit) requires more stringent 
and more frequent NPIs because the TTI system cannot operate 
efficiently. Examples of more stringent measures are the closure of 
schools and public businesses, stay-at-home orders, and contact 
ban policies (17, 26, 45).

In conclusion, this paper recommends reaching and maintaining 
low case numbers that allow efficient TTI measures complementary 
to pharmaceutical interventions. To this end, it is mandatory to 
counteract local super-spreading events (or an acute influx of 
infections) as early as possible and to sustain a sufficient level of 
mitigation measures. If low case numbers are reached and maintained 
throughout Europe, it will be possible to lift restrictions moderately 
in the medium term, and we will be better prepared for the 
emergence of future variants of concerns.

METHODS
Model overview
We model the spreading dynamics of SARS-CoV-2 as the sum of 
contributions from two pools of infectious individuals, i.e., quarantined- 
isolated IQ and hidden nonisolated IH individuals, while also 
modeling the infectivity timeline through the incorporation of 
compartments for individuals exposed to the virus (EQ, EH), follow-
ing an SEIR-like formalism. The quarantined infectious pool (IQ) 
contains cases revealed through testing or by contact tracing and 
subsequently sent to quarantine/isolation to avoid further contacts 
as much as possible. In contrast, in the hidden infectious pool (IH), 
infections spread silently and only become detectable when individuals 
develop symptoms and get tested, via random testing in the population 
or as part ofthe chain of contacts of recently identified individuals. 
This second pool (IH) is called the hidden pool; individuals in this 
pool are assumed to exhibit the general population’s behavior, thus 
of everyone who is not aware of being infected. Healthy individuals 
that can be infected belong to the susceptible pool S. At the same 
time, we assume that, after they recover and for the relatively short 
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Fig. 7. Flowchart of the complete model. The solid blocks in the diagram represent 
different SEIR compartments for both hidden and quarantined individuals. Hidden 
compartments account for both symptomatic and asymptomatic carriers (as de-
scribed in Methods). Solid lines represent the natural progression of the infection 
(contagion, latent period, and recovery). On the other hand, dashed lines account 
for imperfect quarantine and limited compliance, external factors, and TTI policies.
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time frame here studied, they remain immunized in the R compart-
ment (for a graphical representation of the model, see Fig. 7). We 
model the mean-field interactions between compartments by 
transition rates, determining the time scales involved. These transi-
tion rates can implicitly incorporate both the disease’s time course 
and the delays inherent to the TTI process. Individuals exposed to 
the virus become infectious after the latent period, modeled by the 
transition rate . We distinguish between symptomatic and asymp-
tomatic carriers; this is central when exploring different testing 
strategies (as detailed below). We also include the effects of non-
compliance to TTI measures, modeled as a higher asymptomatic 
ratio, and imperfect contact tracing, including an explicit delay 
between testing and contact tracing of contacts. In the different 
scenarios analyzed, we include a nonzero influx t of new cases that 
acquired the virus from outside. Although this influx makes a 
complete eradication of SARS-CoV-2 impossible, different outcomes 
in the spreading dynamics might arise depending on both contact 
intensity (contact level kt) and TTI. We then investigate the system’s 
stability and dynamics, aiming to control the spread with a low total 
number of cases without necessitating a too large reduction of 
infectious contacts.

Spreading dynamics
Concretely, we use a modified SEIR-type model, where infected 
individuals can be either symptomatic or asymptomatic. They 
belong to hidden (EH, IH) or a quarantined (EQ, IQ) pools of infections, 
thus creating, in total, one compartment of susceptible (S), two 
compartments of exposed individuals (EH and EQ), four compart-
ments of infectious individuals (IH, s, IH, a, IQ, s, and IQ, a), and one 
compartment for recovered/removed individuals (R).

New infections are asymptomatic with a ratio ; the others are 
symptomatic. In all compartments, individuals are removed with a 
rate  because of recovery or death (see Table 1 for all parameters 
and Table 2 for all variables of the model).

In the hidden pools, the disease spreads according to the 
population’s contact patterns, which can be expressed as a level kt of 
the intensity they had before COVID-19–related contact restrictions. 
Defining R0 as the base reproduction number without contact 
restrictions, the reproduction number of the hidden pool IH is given 
by ktR0. This reproduction number reflects the disease spread in the 
general population without testing-induced isolation of individuals. 
In addition, the hidden pool receives a mobility-induced influx t 
of new infections. Cases are removed from the hidden pool (i) when 
detected by TTI and put into the quarantined pool IQ or (ii) due to 
recovery or death.

The quarantined exposed and infectious pools (EQ, IQ) contain 
those infected individuals who have been tested positive and their 
positively tested contacts. Infectious individuals in IQ are (imperfectly) 
isolated; we assume that their contacts have been reduced to a 
fraction ( + ϵ) of the ones they had in pre–COVID-19 times, of 
which only  are captured by the tracing efforts of the health authori-
ties. The subsequent infections remain quarantined, thus entering 
the EQ pool and, afterward, the IQ pool. The remaining fraction of 
produced infections, ϵ, are missed and act as an influx to the hidden 
pools (EH). Therefore, the overall reproduction number in the 
IQ pool is ( + ϵ)R0.

As our model is an expanded SEIR model, it assumes postinfec-
tion immunity, which is a realistic assumption given the limited time 
frame considered in our analysis. Our model can also reflect innate 

immunity; one has to rescale the population or the reproduction number. 
The qualitative behavior of the dynamics is not expected to change.

Parameter choices and scenarios
For any testing strategy, the fraction of infections that do not develop 
any symptoms across the whole infection timeline is an important 
parameter, and this also holds for testing strategies applied to the 
case of SARS-CoV-2. In our model, this parameter is called ap and 
includes, beside true asymptomatic infections , also the effect of 
individuals that avoid testing (49). The exact value of the fraction of 
asymptomatic infections , however, is still fraught with uncertainty, 
and it also depends on age (50). While early estimates were as high 
as 50% [for example, ranging from 26 to 63% (51)], these early 
estimates suffered from reporting bias and small sample sizes and 
sometimes included presymptomatic cases as well (52). Recent 
studies estimate the asymptomatic transmission to be more minor 
(53), estimates of the fraction of asymptomatic carriers range 
between 12% (52) and 33% (54).

Another crucial parameter for any TTI strategy is the reproduc-
tion number of the hidden infections. This parameter is, by defini-
tion, impossible to measure, but it is typically the main driver of the 
spreading dynamics. It depends mainly on the contact behavior of 
the population and ranges from R0 in the absence of contact restric-
tions to values below 1 during strict lockdown (17). Here, we decided 
to include instead contact level compared to the pre–COVID-19 
baseline cts to represent the reproduction number of hidden infections 
  R t  

H  =  k  t    R  0   . For the default parameters of our model, we evaluated 
different contact levels kt.

Testing and tracing strategies
We consider a testing and tracing strategy: symptom-driven testing 
and specific testing of traced contacts, with subsequent isolation 
(quarantine) of those who tested positive. Our model can also 
include random testing, but this case is only explored in Fig. 4 of 
this paper.

Symptom-driven testing is defined as applying tests to individuals 
presenting symptoms of COVID-19. In this context, note that 
noninfected individuals can have symptoms similar to those of 
COVID-19, as many symptoms are rather unspecific. Although 
symptom-driven testing suffers less from imperfect specificity, it 
can only uncover symptomatic cases that are willing to be tested 
(see below). Here, symptomatic, infectious individuals are transferred 
from the hidden to the traced pool at rate s.

We define s as the daily rate at which symptomatic individuals 
get tested among the subset who are willing to get tested because of 
surveillance programs or self-report. As default value, we use 
s = 0.25, which means that, on average, an individual willing to get 
tested that develops COVID-19–specific symptoms would get a test 
within 4 days from the end of the latency period. Testing and isola-
tion happen immediately in this model, but their report into the 
observed new daily cases     ̂  N     

obs
   is delayed and so is the tracing of 

their contacts.
Tracing contacts of positively tested infectious individuals 

presents a very specific test strategy and is expected to be effective 
in breaking the infection chains if contacts self-isolate sufficiently 
quickly (36, 55, 56). However, as every implementation of a TTI 
strategy is bound to be imperfect, we assume that only a fraction 
 < 1 of all contacts can be traced. These contacts, if tested positive, 
are then transferred from the hidden to the quarantined infectious 
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pools (IH → IQ) with an average delay of  = 2 days. The parameter 
 effectively represents the fraction of secondary and tertiary 
infections that are found through contact tracing. As this fraction 
decreases when the delay between testing and contact tracing in-
creases, we assumed a default value of  = 0.66, i.e., on average, only 
two-thirds of subsequent offspring infections are prevented. 
Contact tracing is mainly done manually by the health authorities 
in Germany. This limits the maximum number   N max  test    of new cases 
observed through testing Ntest, for which contact tracing is still 
functional.

Random testing is defined here as applying tests to individuals 
irrespective of their symptom status or whether they belonged to 
the contact chain of other infected individuals. In our model, 
random testing transfers infected individuals from the hidden to 
the quarantined infectious pools with a fixed rate r, irrespective of 
whether they are showing symptoms or not. In reality, random 
testing is often implemented as situation-based testing for a subgroup 
of the population, e.g., at a hotspot, for groups at risk, or for people 
returning from travel. These situation-based strategies would be 
more efficient than the random testing assumed in this model, 
which may be unfeasible at a country level because of testing 
limitations (15).

Lockdown modeling
To assess the effectiveness of lockdowns in the broad spectrum of 
contact-ban governmental interventions, we model how the reduc-
tion of contacts and the duration of such restrictive regimes help 
lower case numbers. We model contact reductions as reductions in 
the reproduction number of the hidden population, which, for 
these matters, is presented as percentages of the basic reproduction 
number R0, which sets the pre–COVID-19 baseline for the number 
of close contacts.

For the sake of simplicity, we assume that the lockdown scenarios 
have three stages: (i) an uncontrolled regime, where the TTI capacity 
is overwhelmed because of high case numbers and unsustainable 
contact levels, reflected by a high value of kt and a high influx of 
infections t. (ii) Lockdown is enacted, imposing a strong reduction 
of contacts, leading to lower values of kt, and borders closing, leading 
to a lower influx of t. (iii) Measures are relaxed, allowing higher 
levels of contacts kt and restoring international transit. All the 
changes between the different regimes i→ii→iii are modeled as 
linear ramps for both parameters, which take Dramp = 7 days to 
reach their set point. The duration of the lockdown, namely, the time 
frame between the start of the restrictive measures and the begin-
ning of their relaxation, is measured in weeks. Its default length, 
for analysis purposes, is DL = 4 weeks. These values have been 
chosen following the results of (27), where the first effects of an 
NPI were seen after 7 days and the maximum effect was seen 
after 4 weeks.

Model equations
The contributions of the spreading dynamics and the TTI strategies 
are summarized in the equations below. They govern the dynamics 
of case numbers between the different SEIR pools, both hidden 
(nonisolated) and quarantined. We assume a regime where most of 
the population is susceptible, and the time frame analyzed is short 
enough to assume postinfection immunity. Thus, the dynamics are 
completely determined by the spread [characterized by the reproduc-
tion numbers ktR0 and ( + ϵ)R0], the transition from exposed to 

infectious (at rate ), recovery (characterized by the recovery rate ), 
external influx t, and the impact of the TTI strategies

    dS ─ dt   = −      k  t    R  0     S ─ M    I   H  


   
hidden contagion

   −    ( + ϵ )  R  0     S ─ M    I   Q   


    
traced contagion

    −      S ─ M      t   
⏟

   
ext. influx

    (2)

     dE   Q  ─ dt   =      R  0     S ─ M    I   Q  


   
traced contagion

   +           N   traced  
⏟

   
contact tracing

   −      E   Q  
⏟

   
end of latency

    (3)

     dE   H  ─ dt   =      S ─ M   (    k  t    R  0    I   H  + ϵ  R  0    I   Q  )    


    

hidden contagion

    −           N   traced  
⏟

   
contact tracing

   −      E   H  
⏟

   
end of latency

    (4)

     dI   Q  ─ dt   =      E   Q  −   I   Q     
spreading dynamics

   +     N   test  
⏟

   
testing

   +   (   s,r  (1 −  ) +    r    )  N   traced       
contact tracing

     (5)

    dI   H  ─ dt   =      E   H  −   I   H     
spreading dynami

 −       N   test  
⏟

   
testing

   −    (   s,r  (1 −  ) +    r    )  N   traced       
contact tracing

    +      S ─ M      t   
⏟

   
ext.influx

    (6)

       dI   H,s  ─ dt    =   (1 −  )   E   H  −   I   H,s        
spreading dynamics

             −       N  s     test   
⏟

   
testing

   −  (1 −  )  
(

         s,r    N   traced      
contact tracing

   +      S ─ M      t    
⏟

   
ext.influx

   
)

     (7)

   I   H,a  =  I   H  −  I   H,s   (8)

    dR ─ dt   =    ( I   Q  +  I   H )     
recovered/removed individuals

    (9)

Initial conditions
Let x be the vector collecting the variables of all different pools

  x = [S,  E   Q ,  E   H ,  I   Q ,  I   H ,  I   H,s , R]  (10)

We assume a population size of M = 106 individuals, so that 
∑i ≠ 6xi = M, and a prevalence of I0 = 200 infections per million, so 
that IQ(0) = I0. Assuming that the hidden amount of infections is in 
the same order of magnitude I0, we would have IH(0) = I0, IH, s(0) = 
(1 − )I0. We would expect the exposed individuals to scale with 
ktR0I0, but we rather assume them to have the same size of the 
corresponding infectious pool. To calculate the initially susceptible 
individuals, we use S(0) = 1 − ∑i ≠ {1,6}xi.

Effect of delays and capacity limit on the effectiveness  
of TTI strategies
In this section, we discuss further details on the derivation of the 
different parameters and variables involved in Eqs. 2 to 9. First, as 
we assume contact tracing to be effective after a delay of  days, 
some of the individuals who acquired the infection from those 
recently tested might have also become infectious by the time of 
tracing. Moreover, a fraction of those who became infectious might also 
have been tested by the tracing time, should they have developed  
symptoms.

Furthermore, we give explicit forms for Ntest and Ntraced the 
number of cases identified by testing and contact tracing, respec-
tively. When surpassing TTI capacity, we assume that both testing 
and contact tracing change their dynamics simultaneously. This 
happens when the daily amount of cases identified by testing Ntest 
overpasses the TTI threshold   N max  test   . After being overwhelmed, the 
overhead testing would change its rate s → s′, as only patients with 
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a more specific set of symptoms would be tested. Nonetheless, 
the contact tracing efforts can only follow the contacts of those   
N max  test    observed cases, identifying a fraction  of the offspring infec-
tions that they produced in their infectious period spent in un-
awareness of their state. The possibility of random testing is analyzed 
in note S1.6.

Limited testing capacity leading to lower testing rates
In the first stages of an outbreak, individuals with any symptoms 
from the broad spectrum of COVID-19–related symptoms would 
be tested, disregarding how specific those symptoms are. At this 
stage, we assume that the rate at which symptomatic individuals are 
tested is s, such that the number of individuals identified through 
testing (which, for simplicity, is assumed to be solely symptom-driven, 
i.e., r = 0) is given by

   N   test  =  N s  
test  =    s    I   H,s   (11)

If, in addition, some random testing, independent of symptom-
atic status, is performed (r ≠ 0), then   N   test  ≠  N s  

test  . For this case see 
note S1.6.

When reaching the daily number   N max  test    of positive tests, the test-
ing capacity is reached. We then assume that further tests are only 
carried out for a more specific set of symptoms, leading to a smaller 
fraction of the tested population. We, therefore, implement the test-
ing capacity as a soft threshold. Assuming that after reaching   N max  test   , 
the testing rate for further cases would decrease to s′, the testing 
term Ntest would be given by

   N   test  =    s   min ( I   H,s ,  I max  H,s   ) +    s  ′  max (0,  I   H,s  −  I max  H,s  )  (12)

where   I max  H,s    represent the size of the infectious-symptomatic, 
hidden pool, i.e.,   I max  H,s   =   N max  test   _    s  

   .

Modeling the number of traced individuals
To calculate the number of traced individuals, we assume that a 
fraction  of the newly tested individuals’ contacts, and therefore 
their offspring infections, will be traced and subsequently quaran-
tined. However, in the presence of TTI, individuals stay, on average, 
a shorter amount of time in the infectious pool because they are 
quarantined before recovering. Therefore, the number of offspring 
infections has to be corrected by a factor, the average residence time 
in the infectious pool. For the case r = 0, the average residence time 
is    1 _  +    s  

  , as IH, s is emptied by  −   I   H,s  −  N s  
test  = − ( +    s   )  I   H,s  , i.e., with 

a rate  + s. The average residence time in the absence of TTI 
(natural progression of the disease) is   1 _    . Dividing these two times 
gives us the wanted correction factor. Thus, the number of traced 
persons Ntraced at time t is a fraction  from the offspring infections 
generated during the residence time, per each individual

   N   traced (t ) =   R  t−     
 ─ 

 +    s  
    N   test (t − )  (13)

where Rt −  represents the effective reproduction number

   R  t−   =  k  t−    R  0     S ─ M    (14)

In other words, the number of infectious individuals found by 
contact tracing at time t are a fraction  of the number of offspring 
infections generated by individual while they were untested   R  t−     

 _  +    s  
  , 

times the number of individuals tested  days ago Ntest(t − ). 
However, when the TTI capacity is overwhelmed, we assume that 
the number of traced individuals is limited, that only the contacts of 
  N max  test    individuals (already introduced in the previous section) can 
be traced

   N   traced (t ) =   R  t−     
 ─ 

 +    s  
    N max  test    (15)

Individuals becoming infectious or being tested  
by the time of tracing
The traced individuals are removed from either the exposed hidden 
pool EH or from the infectious hidden pool IH after a delay of  days 
after testing. As we assume a tracing delay  of only 2 days, a fraction 
of the traced individuals would still be in exposed compartments by 
the time of contact tracing. However, some might already become 
infectious by that time. To calculate the exact fraction of indi-
viduals remaining in the hidden exposed pool by the time of trac-
ing, we proceed as follows. Let s ∈ I = [0, ] be the time elapsed 
from the moment of testing. The emptying of the normalized ex-
posed compartment (denoted   ̃   E   H   ) due to progression to the infec-
tious stage follows first-order kinetics

    d  ̃   E   H   ─ ds   = −   ̃   E   H  ,   ̃   E   H  (0 ) = 1  (16)

The solution of Eq. 16 is given by   ̃   E   H (s)  = exp (− s) . Therefore, 
we define  as the fraction of the traced individuals remaining in 
the EH compartment at s = 

        = exp (− )  (17)

The remaining individuals are removed from the infectious 
compartment, which are then simply described by the fraction

     r   = 1 −        (18)

This, however, only holds for the asymptomatic hidden infec-
tious pool. For the symptomatic hidden pool IH, s, we do not want to 
remove the individuals who have already been tested, as they would 
be removed twice. For modeling the fraction of nontested indi-
viduals remaining in the normalized symptomatic infectious com-
partment (denoted   ̃   I   H,s   ), we couple two first-order kinetics

    d  ̃   I   H,s   ─ ds   = −    s     ̃   I   H,s   +   ̃   E   H  ,   ̃   I   H,s  (0 ) = 0  (19)

The solution of Eq. 19 depends on whether s =  or not. The 
solution at s = , which is the fraction of traced individuals removed 
from IH, s, is given by

      s,r   =  
{

   
 exp (− )

  
if    s   ≈ ,

        ─    s   −    (exp (−  ) − exp (−    s    ) )  else     (20)

For the case r ≠ 0, the reader is referred to note S1.6.

Including the effects of ongoing vaccination campaigns
To incorporate the effects of COVID-19 vaccination programs in 
our model, we made some simplifying assumptions. First, we assume 
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that vaccinated individuals have a probability  of not being infected 
even if they have a contact with somebody infectious and then not 
contributing to the spreading dynamics. We define this parameter 
as the “vaccine efficacy against infection,” which has been reported 
to be around 50 to 90% for available vaccines (32–34). Thus, they 
can be assumed to have developed perfect immunity and therefore 
can be removed from the susceptible (S) and put into the removed 
compartment (R). The assumption above also implies that these 
individuals would not take part in the TTI scheme, which would 
resemble the growing trend of “vaccination passports.” Second, we 
assume a logistically increasing daily vaccination rate v(t) consistent 
with the projections in the European Union and assume that 70% of 
the total population gets vaccinated (see Fig. 5, B and E). This 
would, e.g., in Germany, amount to roughly 80% of the adult popu-
lation (16+ years old) accepting the offer of vaccination, since as of 
now, none of the available vaccines is approved for children. We 
find that efficient TTI can substantially enhance the effect of the 
growing immunity.

To include gradually growing immunity due to an ongoing 
vaccination campaign, we modify Eq. 2 with an additional term − · 
v(t), as well as Eq. 9 with a + · v(t), with a daily vaccination rate

     v(t ) =   9.3 ×  10   3   ───────────────  1 + exp (− 0.025(t − 150 ) )   doses per million per day  (21)

centered at t = 0, which denotes the start of the vaccinations. This 
logistic increase in vaccination rates and parameters involved was 
adapted from (13) and roughly mirrors the projected vaccinations 
in the European Union (projections dated to the beginning of 
February 2021). The factor 9.3 × 103 is determined assuming that 
after tref = 220 days, 70% of the population would be vaccinated. 
Using as reference the age distribution of Germany, the above would 
amount to roughly 80% of the adult population (16+ years old) 
accepting the offer of vaccination. After that time, for simplicity, we 
assume that the vaccination stops [and therefore v(t) = 0, for t > 220].

This treatment of the vaccination is simplistic. In reality, most 
currently available vaccines imply receiving two doses in the span of 
a few weeks, where the first only gives partial protection. Further-
more, vaccinated individuals need some time to develop a proper 
immune response after receiving the vaccine (57), in which they can 
still get infected. We also do not incorporate the efficacy of vaccines 
against a severe course of the disease or death. Since vaccinated but 
yet infected individuals would have a lower chance of being admitted 
to the hospital, this would falsify our assumption that hospital 
capacity can be adequately measured by case numbers alone. As 
more and more of the daily new infections correspond to individuals 
already vaccinated, hospitals would only fill up at higher case 
numbers. To include this effect, the distribution of high-risk groups 
in the population and the prioritized vaccination programs would 
have to be taken into account. Including all this is beyond the scope 
of this work. We addressed those in a separate work, building on the 
results presented herein (13). However, this simplified implementation 
is sufficient for our qualitative assessments.

Central epidemiological parameters that can be observed
In the real world, the disease spread can only be observed through 
testing and contact tracing. While the true number of daily infec-
tions N is a sum of all new infections in the hidden and traced pools, 
the observed number of daily infections     ̂  N     obs   is the number of new 

infections discovered by testing, tracing, and surveillance of the 
contacts of those individuals in the quarantined infectious pool IQ, 
delayed by a variable reporting time. This includes internal contri-
butions and contributions from testing and tracing

  N =      k  t    R  0     S ─ M    I   H  


   
hidden contagion

   +   ( + ϵ )  R  0     S ─ M    I   Q   


    
traced contagion

    +      S ─ M      t   
⏟

   
ext. influx

    (22)

      ̂  N     
obs

  =  
[

        E   Q  
⏟

   
traced contagion

   +    N   test  + (   s,r  (1 −  ) +    r    )  N   traced    


    
TTI

     
]

   ⊛ K   (23)

where ⊛ denotes a convolution and  K  is an empirical probability 
mass function that models a variable reporting delay, inferred from 
German data (as the Robert Koch Institute reports the date the test 
is performed, the delay until the appearance in the database can be 
inferred): The total delay between testing and reporting a test cor-
responds to 1 day more than the expected time the laboratory takes 
for obtaining results, which is defined as follows: from testing, 50% 
of the samples would be reported the next day, 30% would be re-
ported the second day, 10% would be reported the third day, and 
further delays complete the remaining 10%, which, for simplicity, 
we will truncate at day 4. Considering the extra day needed for 
reporting, the probability mass function for days 0 to 5 would 
be given by  K = [0, 0, 0.5, 0.3, 0.1, 0.1] . The spreading dynam-
ics are usually characterized by the observed reproduction num-
ber     ̂  R   t  

obs
  , which is calculated from the observed number of new 

cases     ̂  N     obs (t) . We here use the definition underlying the estimates that 
Robert Koch Institute publishes, the official body responsible for ep-
idemiological control in Germany (58): The reproduction number 
is the relative change of daily new cases N separated by 4 days (the 
assumed serial interval of COVID-19)

     ̂  R   t  
obs

  =      ̂  N     
obs

 (t) ─ 
   ̂  N     

obs
 (t − 4)

    (24)

In contrast to the original definition of     ̂  R   t  
obs

   (58), we do not need 
to remove real-world noise effects by smoothing this ratio.

Numerical calculation of solutions and critical values
The numerical solution of the delay differential equations (DDEs) 
governing our model were obtained using a versatile solver that 
tracks discontinuities and integrates with the explicit Runge-Kutta 
(2,3) pair, @dde23 implemented in MATLAB (version 2020a), with 
default settings. This algorithm allows the solution of nonstiff 
systems of differential equations in the shape y′(t) = f(t, y(t), 
y(t − 1), …, y(t − k), for a set of discrete lags   {   i  } i=1  k   . Suitability and 
details on the algorithm are further discussed in (59).

To derive the tipping point between controlled and uncontrolled 
outbreaks (e.g., critical, minimal required contact reduction   k t  

crit   for 
both stability and metastability) and to plot the stability diagrams, 
we used the @fzero MATLAB function, and the linear approximation 
of the system of DDE (3)–(7) for the    S _ M  ≈ 1  limit. This function uses 
a combination of bisection, secant, and inverse quadratic interpola-
tion methods to find the roots of a function. For instance, fol-
lowing the discussion of note S1.2, the different critical values for 
the contact reduction   k t  

crit   were determined by systematically 
solving the nonlinear eigenvalues problem for stability (60), where 
the solution operation was approximated with a Chebyshev differen-
tiation matrix (61).
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We also study the effect of dividing the exposed compartment into 
three subcompartments, thereby reducing the variability of the latent 
period distribution (understood as the distribution of waiting times 
from being infected until becoming infectious). We explored this 
extended system’s linear stability in note S1.8 and confirmed that using a 
single compartment efficiently characterizes the tipping points.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abg2243
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