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RESUMEN

Sea C una curva projectiva, suave y geométricamente conexa definida sobre un
cuerpo finito F. Para cada punto cerrado Py, de C, sea R el anillo de funciones que
son regulares fuera de P, y sea K la completacion en P,, del cuerpo de funciones
de C. Con el objetivo de estudiar grupos de la forma GLo(R), Serre describe en
[Se80, Chapter II] el grafo cociente GLa(R)\t, donde t es el arbol de Bruhat-Tits
definido a partir de SLy(K). En particular, Serre demuestra que GLa(R)\t es la
union de un grafo finito con un numero finito de subgrafos con forma de rayo,
llamados cuspides. No es dificil ver que esta propiedad es heredada por subgrupos
de indice finito.

En este trabajo describimos el grafo cociente H\t asociado a la accién sobre t del

grupo H = {( . Z ) € GLa(R) : ¢ = 0(mod I)}, donde I es un ideal de R. Més

especificamente, damos una férmula explicita para el ntimero de cispides de H\t.
Luego, usando la teoria de Bass-Serre, describimos la estructura combinatorial de
H. Estos grupos juegan, en el contexto de cuerpos de funciones, el mismo rol que
los subgrupos de congruencia de Hecke de SLy(Z). Los grupos estudiados por Serre
corresponden al caso donde el ideal I coincide con el anillo R.

ABSTRACT

Let C be a smooth, projective and geometrically connected curve defined over a
finite field F. For each closed point P, of C, let R be the ring of functions that are
regular outside P, and let K be the completion at P, of the function field of C.
In order to study groups of the form GLs(R), Serre describes in [Se80, Chapter II]
the quotient graph GLa(R)\t, where t is the Bruhat-Tits tree defined from SLs(K).
In particular, Serre shows that GLz(R)\t is the union of a finite graph and a finite
number of ray shaped subgraphs, which are called cusps. It is not hard to see that
finite index subgroups inherit this property.

In this work we describe the associated quotient graph H\t for the action on t

of the group H = {( a Z ) € GLy(R) : ¢ =0 (mod I)}, where [ is an ideal of R.

More specifically, we give a explicit formula for the cusp number of H\t. Then,
by using Bass-Serre Theory, we describe the combinatorial structure of H. These
groups play, in the function field context, the same role as the Hecke congruence
subgroups of SLa(Z). The groups studied by Serre correspond to the case where
the ideal I coincides with the ring R.
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1. INTRODUCTION

Group actions on symmetric spaces and Bass-Serre theory. Classically,
we study discrete subgroups I' of a real Lie group G by their action on symmetric
spaces, that is homogeneous spaces of the form X = K\G, where K is a maximal
compact subgroup of G. When G = SLy(R), there exists a well-known theory
that describes the action of ' on the upper half-plane X = SO5(R)\G by Moebius
transformations.

A program initiated by Bruhat and Tits establishes an analogy with the pre-
ceding case in the context of p-adic Lie groups. In this sense, Bruhat and Tits
introduce certain simplicial complexes called buildings which play the role of sym-
metric spaces for p-adic groups. For G = SL,,(Q,) the building is a contractible
(n — 1)-dimensional complex, whose vertex set is parameterized by the quotient
SL,,(Z,)\G (cf. [ADBOS, §6.9]). When n = 2, this complex is in fact a tree, i.e. a
connected graph without cycles. In the literature, this graph is called the Bruhat-
Tits tree and it is extensively studied in Serre’s book [Se80]. In fact, it was Serre’s
observation that a discrete subgroup of SL2(Q),) is torsion-free if and only if it acts
freely on a tree. This observation gives another proof of a theorem due to Ihara,
which states that any discrete torsion-free subgroup of SL(Q,) is free (cf. [Th66,
Theorem 1]). This prompted Serre to develop a general theory of groups acting on
trees (cf. [Se80, Chapter I, §3)).

The goal of Bass-Serre theory (cf. [Se80, Chapter I, §5]) is to study the combina-
torial group theory with the tools and techniques of the theory of groups acting on
trees. In this sense, there exist two classical constructions in combinatorial group
theory that we can analyse from the point of view trees. One of these is the amalga-
mated product of two groups (cf. [Se8(0, Chapter I, §1.2]), and the other is the HNN
extension (cf. [Se80, Chapter I, §1.4]). Such tools arise in topology, for example, in
the description of the fundamental group of a 3-fold which splits along a connected
incompressible surface. Furthermore, in each of these two group-theoretical con-
structions there is a naturally defined tree t on which the group acts, so that the
quotient by the group action is respectively an edge or a loop. In the topological
setting, this simply imitates the action of the fundamental group on the universal
covering space.

By considering actions of more general groups on trees, one is naturally led to
the more complex notion of a graph of groups. By a graph of groups (f‘7 Y') we mean
a graph Y together with assignments of groups v — I, e — I, to the vertices and
edges of a graph Y subject to certain compatibility conditions stated in §9] In this
context Serre introduces the fundamental group 771(1:‘, Y') associated to a graph of
groups (f, Y). This group is an amalgamated product of the fundamental group
71(Y") with another group S(T') defined as the sum of the groups T',, amalgamated
along the groups I'.. In this sense, amalgams of two groups and HNN extensions
correspond to the fundamental group of an edge and a loop respectively. As such,
these are the fundamental blocks with which the fundamental group is described.

Let T be a group acting on a tree t and let Y = I'\t be the associated quotient
graph. Let T be a maximal tree in Y and let j : T — t be a lift. Then, we can define
a graph of groups by setting T, as the stabilizer of the vertex j (v), and defining

1



I, by means of the edges. The main result of Bass-Serre theory is that, in this
context, I' is isomorphic to the fundamental group 771(1:‘, Y’). This general theorem
gives a method to systematically study the structure of many groups acting on
trees. However, this requires characterizing the quotient graph Y associated to the
action of I' on t.

In [Se80, Chapter 2], Serre constructs the Bruhat-Tits tree t = t(K) associated
to the group SLs(K) for a complete field K. The action of SLy(K) on t can actually
be extended to an action of GLy(K). Later, Serre studies the group GLy(k), where
k is the function field of a smooth projective curve. He also studies its subgroup
GLy(R), where R is the coordinate ring of an affine open set of the curve with a
unique point Py at infinity. This closed point gives rise to a discrete valuation v on
k and hence we have an action of GLy(k) on the Bruhat-Tits tree associated to the
completion K of k at P,. In this situation, the author gives a reinterpretation of the
vertices of this tree as vector bundles of rank two over the curve which are trivial on
the affine part. Then, in order to study the structure of GL2(R), Serre abundantly
studies the structure of the quotient graph GLo(R)\t. As a consequence, Serre gets
an amalgamated free product structure on GLy(R). Moreover, by describing some
spectral sequences on homology, he gets some structural results on the homology
groups of GLa(R) and of its finite index subgroups.

There exists a very useful generalization of the Bass-Serre theory to the context
of buildings, due to Bridson and Haeflinger. This theory is written in terms of the
concept of small categories without loops (cf. [BH91, Chapter II1.C]). In analogy
with the Bass-Serre theory, we can apply Bridson and Haeflinger’s construction in
order to study presentations of groups acting on buildings.

Statement of Serre’s results and further developments. In this section we
summarize some classical results about the quotient structure of buildings by the
action of certain groups of “arithmetic nature”. Then we discuss the structural
consequences for the groups themselves.

Let C be a smooth, projective, geometrically connected curve over a field F. For
each closed point Py, of C, let R be the coordinate ring of the affine curve obtained
by removing P, from C. Let k be the function field of C. As we already recalled,
one of the first families of examples studied by describing their actions on trees has
been the family of arithmetic subgroups G(R) < G(k) for G = GL3. Indeed, in
order to study these arithmetic groups, Serre gave the following description of the
quotient graphs.

Theorem 1.1. [Se80, Chapter II, Theorem 9] Let t be the local Bruhat-Tits tree
defined by the group SLs at the completion K associated to the valuation induced
by Py (cf. §)). Then, the graph G(R)\t is combinatorially finite, i.e. is obtained
by attaching a finite number of infinite half lines, called cuspidal rays, to a certain
finite graph Y. The set of such cuspidal rays is indexed by the elements of the
Picard group Pic(R) = Pic(C)/{Px)-

Then, using Bass-Serre Theory, Serre concludes the following structural result

for the groups G(R) defined above.

Theorem 1.2. [Se80, Chapter II, Theorem 10] There exists a finitely generated
group H, and a family {(/,,Ps, Bs)}sepic(r) Where:
2



1. I, is an R-fractional ideal and P, = (F* x F*) x I,
2. B, is a group with canonical injections B, — H and B, — P,,

such that G(R) is isomorphic to the sum of P,, for o € Pic(R), and H, amalgamated
along their common subgroups B, according to the above injections.

Moreover, Serre describes the structure of G(R) as an amalgamated sum in
certain cases, by explicitly describing the corresponding quotient graphs. This work
considers, for example, the cases C = P, for deg(Py) € {1,2,3,4}, or when C is a
curve of genus 0 without rational points and deg(Py) = 2. The case C = P}, and
deg(Py) = 1 reduces to a classical result, now called Nagao’s Theorem (cf. [Nah9]).
In this context the corresponding quotient graph is a ray. Also, Arenas-Carmona in
[A16] extends the study of Serre’s and Nagao’s explicit examples, by determining
the quotient graphs when the closed point P,, has degree 5 or 6, and giving a
method for further computations. In general, we can apply Theorem [T.2] to show
that G(R) is never finitely generated.

In order to prove Theorem Serre makes an extensive use of the theory of
vector bundles of rank 2 over C. On the other hand, Mason in [Ma01] gives a more el-
ementary approach which involves substantially less algebraic geometry. This point
of view only requires the Riemann-Roch Theorem and some basic notions about
Dedekind rings. The price to pay for this simplicity is that one is not able to prove
the finiteness of the diameter of graph Y in Theorem However, Mason applies
this result on quotient graphs in order to study the lowest index non-congruence
subgroups of G(R).

In a more general context, let K be the completion of k at P, and let G be
an arbitrary reductive algebraic k-group. We can define a poly-simplicial complex
X(G, K) associated to the group G and the field K. This topological space is
called the building of G(K) and, as we said in the previous section, this notion
generalizes the definition of the Bruhat-Tits tree. When R = F[t] and G is split
over k, there exists a result that generalizes Nagao’s theorem, which describes the
structure of the quotient space X = G(F[t])\X associated to the action of G(F[t])
on X = X(G,F((t™1))). This result is due to Soulé and described in [So77, Theorem
1]. Soulé shows that X is isomorphic to a sector Qg = X, which is the analog of a
ray in the general building context. Then, in the same article, the author describes
G(F[¢]) as an amalgam. This structural result can be extended to the context where
G is an isotrivial k-group, i.e. a reductive k-group that splits in the composite field
¢ = Lk, for a finite extension LL of F. This problem has been developed by Margaux
in [Mar09]. Indeed, Margaux manages to prove the same result as Soulé, where
obviously he replaces the condition “split” by “isotrivial”.

In the particular case where F is a finite field, one of the strongest results about
the structure of quotient buildings that exists in the literature is due to Bux, K&hl
and Witzel in [BKW13|. This is written in terms of a certain thin subspace of X
that covers the quotient space.

Theorem 1.3. [BKWT3| Proposition 13.6] Assume that F is finite. Let G be an

isotropic and non-commutative algebraic k-group and let X = X(G, K) be the

building associated to G and K. Let S be a finite set of places of k containing P,

and denote by Ogs the ring of S-integers of k. Choose a particular realization Gyeal

of G as an algebraic set of some affine space. Given this realization, we define G as
3



the group of Og-points of Gyea;. Then, there exists a constant L and finitely many
sectors 1, -+, Qs such that

(1) The G-translates of the L-neighborhood of | J;_, Q; cover X.
(2) For i # j, the G-orbits of Q; and @Q; are disjoint.

The group G defined in the previous theorem is called an S-arithmetic subgroup
of G. Of course, the S-arithmetic group G depends on the chosen realization of
G. Indeed, for any two choices leading to S-arithmetic subgroups of G there is a
common subgroup of finite index in either. This phenomenon, in particular, implies
that the details of the conclusion in the previous result depend strongly on the
given realization. Fortunately, when G is split over k, there exists an intrinsic and
canonical way to define G which we can exploit in order to characterize the quotient
structures of buildings. In this case, the mathematical translation of Theorem [I.3]
to the language of quotients of buildings, and its applications to the structure of
arithmetic groups, is work in progress with B. Loisel. On the other hand, with
L. Arenas-Carmona, B. Loisel and G. Lucchini Arteche, we extend Theorem [L.1] in
[ABLI] to the context of special unitary groups of split rank one, which are the
smallest quasi-split non-split reductive groups. In the future, we hope to combine
techniques developed in the preceding two projects in order to describe the quotients
of buildings by general groups of R-points of quasi-split groups, where R is as above.
We also hope that this will allow us to understand the combinatorial structure of the
aforementioned groups, as well as their homology and cohomology groups. Finally,
at the moment of presenting this thesis, with A. Hébert, D. Izquierdo and B. Loisel,
we are working on extensions of some of the these results to higher-dimensional local
fields.

On the main problem of this thesis. In this section we present the main goal
of this thesis, and state our main results in this direction.

Widely speaking, the goal of this work is to study a certain family of congruence
subgroups of G(R), for G = GLy and F a finite field, through the analysis of the
associated group actions on trees. This objective is natural since this family is a
direct analog of the Hecke congruence subgroups of SLs(Z) in the function field
context.

In order to introduce the family of groups that concern us, we use the same
definitions and notations as in the previous section. In particular, we denote by C
a smooth, projective, geometrically connected F-curve and by k its function field.
Since in the sequel we use the spinor genera theory in some proofs, and this theory is
set in the context where the ground field F is finite, we assume this throughout and
we denote its cardinality by ¢. Recall that a C-order ® on the matrix algebra My (k)
is a locally free sheaf of O¢-algebras whose generic fiber is My (k). Analogously, an
R-order is a locally free R-algebra. As we explain in §5] any R-order can be extended
to a C-order by choosing an arbitrary local order at the point P, € C. We say that
a C-order is maximal if its completions are maximal at all places of C. By definition,
a split maximal order is an order GLy(k)-conjugate to the sheaf

_( Oc £P
QD = ( 27D Oc ) )
where D is an arbitrary divisor on C, and where £ is the invertible sheaf defined
in every open set U < C by



ePWU) = {f e k:div(f)|y + D|y = 0}.
In general, an Eichler C-order is a sheaf-theoretical intersection of two maximal
C-orders. We define a specific family of Eichler C-orders €p by taking

GD =33Dﬁ©0,

where D is an effective divisor. Let Uy be the open set in C defined as the com-
plement of {P.,,}. We define Hp as the group of invertible elements in €p(Up). In
other words

(1.1) Hp — {< “ ) € GLa(R) : ¢ = 0 (mod ID)},

where Ip is the R-ideal defined as Ip = £ (Uy). Then, the family of groups H =
{Hp : D effective divisor} plays the same role as the Hecke congruence subgroups
of SLa(Z) in the function field context. At this point we can be more precise.
The objective of this work is to characterize the quotient graph associated to the
action of Hp on the Bruhat-Tits tree t, to subsequently describe the combinatorial
structure of Hp.

Note that Hp naturally contains the kernel of G(R) — G(R/Ip). This implies,
as we prove in Corollary [3.§| (which follows from a lemma by Serre in [Se70]),
that the quotient graph Hp\t is combinatorially finite, and the number of cuspidal
rays of tp = Hp\t is equal to the number of Hp-orbits in P!(k). The previous
observation is useful in the context where D has small degree. In fact, an explicit
example can be written in the context where C = P, D is a closed point P and
deg(Py) = deg(P) = 1. Indeed, by using these hypotheses on C and D we can show
that {0,00} is a set of Hp-orbits in P!(k). Unfortunately, this set of Hp-orbits is
really hard to characterize in the general case. Another obstruction for a direct
computation of tp is that Hp is not a normal subgroup of G(R). In particular,
G(R)\t is not always a quotient of Hp\t.

In order to present our main result we introduce some additional notations. For
any divisor D on C, we denote by D its linear equivalence class. Also, we denote
by |a| the largest integer not exceeding a € R. Observe that, when D = 0, we
have Hp = GL2(R). In particular, the next theorem can be considered as a partial
generalization of Serre’s result on the structure of quotient graphs.

Theorem 1.4. Let D be an effective divisor, which we write as D = 22:1 n; P;,
where the points Py, ..., P., Py are all different. Then, the graph tp = Hp\t is
obtained by attaching a finite number of rays, called cuspidal rays, to a certain
finite graph Y < tp. The cardinality ¢p of the set of such cuspidal rays satisfies
(1.2)

2Pic(C) + (P 1 ex(P)|
tp < c(Hp) = 2]g(2)] ‘m(<]>3><>‘ (1 il (gt - 1)) 7
© i=1

where ¢(2) is the maximal exponent-2 subgroup of Pic(R). Moreover, equality holds
when ¢(2) is trivial and each n; is odd.

Note that g(2) is trivial in various cases: for example, when C = Pi and P,
has odd degree, or when C is an elliptic curve with no non-trivial 2-torsion rational
points.

Let us assume C = P}, and assume that P, is the point at infinity, which
corresponds to the valuation induced by v = —deg on k = F(¢). Let Dy =
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2;1 P; — rPy, where P, --- P, Py, are different degree-one points on C, so that
deg(Dy) = 0. In particular, we can assume that there exists a square free polyno-
mial N = [, (¢t — \;) € F[¢] that generates the principal divisor Dy. Note that
Hp, = Hp, where D = Y., P; as above. In this case, we can give a more explicit
description than Theorem [I.4] for the Hp-action on t. In fact, we can characterize a
fundamental region tp < t containing precisely one vertex from each Hp-orbit in t.
The description of the edge set of tp is however more involved, since we can have
loops in the quotient graph tp. See for more details. In order to present our
result, we introduce some definitions. Two rays in t are called equivalent if they
contain a common subray. Then, by an end of t, also called a visual limit, we mean
an equivalence class of rays. Since we are assuming that C = PL and Py, is the point
at infinity, the set of ends in t corresponds with P! (F((¢~!))). For any collection ¢
of ends of t there exists a minimal subtree t.  t containing a set of representatives
of ¢. Indeed, t. is defined as the union of a suitable set of representatives of «.

Theorem 1.5. Let N = (t—X\1) -+ (t—\,,) € F[t] be a square-free polynomial with
all of its roots in F and let D = div(N). Let s be the smallest subtree containing
the ends 0, o0 and 1/M, for every proper monic nonconstant divisor M of N. Then
the congruence subgroup

Hp = {( ‘C‘ Z ) € GLa(F[t])

has a fundamental region vp of the form s u § for a finite graph f.

¢ =0 (mod N)}

The previous results give a more precise description than [Se70l §3.3, Lemma §],
which in fact only says that the set of cuspidal rays is finite. Indeed, in Theorem
we have a control on the number of cusps, and, in the case where ¢(2) is trivial
and each n; is odd, we have an explicit expression to compute it. Moreover, by
using Theorem we can characterize a set of representatives for all but finitely
many vertex classes. In particular, we get a set of representatives for the action of
Hp on the ends of t. This is equivalent to describing the Hp-orbits in P!(k), which
can be difficult to compute directly when D has a large degree.

Now, by using Bass-Serre theory and Theorem [I.4] we can deduce the following
general result on the combinatorial structure of Hp. This can be considered as
a partial generalization of Theorem and as a more detailed description than
[SeT0), §3.3, Lemma 8].

Theorem 1.6. In the notation of Theorem assume that each n; is odd and
g(2) = {e}. Then, there exist a finitely generated group H, two sets of indices,
denoted by D and I, and a family {(I,,P,,B,) : 0 € D u I}, where

1. Card(D) = 27[2Pic(C) + (Py) : (Py)], and Card(I) = ¢(Hp) — Card(D),

2. I, is an R-ideal contained in Ip

3. P, = (F* x F*) x I;, for any ¢ € D, while P, = F* x I;, for any ¢ € I,

4. B, is a group with canonical injections B, — H and B, — P,, for any

ceDul,

such that Hp is isomorphic to the sum of P,, for c € D 1 I, and H, amalgameted
along their common subgroups B, according to the above injections.

In [Se70l Chapter II, §2.8] Serre gives a series of results that relate the homology
of congruence subgroups of G(R) with the structure of its quotient graphs. We can
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apply them to our context. In particular, the following result, which gives a more
precise description of the abelianization of Hp, is a consequence of Theorem |1.4

Theorem 1.7. With the same notation and hypotheses of Theorem there
exists an homomorphism ¢ : (Hp)ar = @, cp_1(Po)ab Whose kernel and cokernel
are finitely generated.



2. PRELIMINARIES ON THE BRUHAT-TITS TREE

2.1. Conventions and notations for graphs. We recall some basic definitions
on graphs and trees. We define a graph g as a pair of sets V = V(g) and E = E(g),
and three functions s,t : E — V and r : E — F satisfying the identities r(a) # a,
r(r(a)) = a and s(r(a)) = t(a), for every a € E. In all that follows V and E
are called vertex and edge set, respectively, and the functions s,t and r are called
respectively source, target and reverse. Our definition is chosen in a way that allows
the existence of multiple edges and loops. Two vertices v,w € V are neighbors if
there exists an edge e € E satisfying s(e) = v and ¢(e) = w. The valency of a vertex
v is the cardinality of its set of neighboring vertices. A simplicial map v: g — ¢
between graphs is a pair of functions vy : V(g) — V(g’) and vg : E(g) — E(g)
preserving the source, target and reverse functions. We say that a simplicial map
~:g— ¢ is an isomorphism if there exists another simplicial map 4’ : g’ — g such
that yv o vy, = idy(g), 1 © W = ldv(g), 78 ° v = idg(g) and vz 0 vp = idg(y)-
The group of automorphisms Aut(g) of a graph g is the set of isomorphism from g
to g, with the composition as a group law.

We say that a group I' acts on a graph g is there exists an homomorphism from
T to Aut(g). A group action of T on a graph g has no inversions if g - a # r(a),
for every edge a and every element g € I'. An action without inversions defines a
quotient graph in the usual sense. Indeed, if I' acts on g without inversions, then
the vertex set of I'\g corresponds to I'\V', and the edge set corresponds to I'\E.

Let g be a graph. A finite line in g, usually denoted by p, is a subgraph whose
vertex and edge sets are V(p) = {v;}7, and E(p) = {ei,r(e;)}, , where s(e;) = v;
and t(e;) = viy1, for all index 0 < ¢ < n — 1. The length of p is, by definition,
n = Card(V(p))—1 = Card(E(p))/2. We often emphasize the vertices v, the initial
vertex of p, and v,., the final vertex of p, by saying “p is a path connecting vy with
v.”. A graph g is connected if, given two vertices v,w € V(g), there exists finite
path p connecting them. We define a ray v in g by replacing n and n — 1 by oo in
the definition of finite line. A cycle in g is a finite line with an additional pair of
edges connecting v,, with vg. We define a tree as a connected graph without cycles.

A maximal path in g is a doubly infinite line, i.e. the union of two rays intersect-
ing only in one vertex. Let v; and ty be two rays whose vertex sets are respectively
denoted by Vi = {v; : i € Zso} and Vo = {v] : i € Z>o}. We say that v1 and vo are
equivalent if there exists ¢,i9 € Z>¢ such that v; = v§+t7 for all i > ig. In this case
we write t; ~ ta. We define the visual limit, also called the end set, d(g) of g
as the set of equivalence classes of rays v in g. We denote the class of t by dy(t).
By a cuspidal ray in a graph g, we mean a ray such that every non-initial vertex
has valency two in g. A cusp in g is an equivalence class of cuspidal rays in g. We
denote the cusp set of g by 0% (g). We say that a graph is combinatorially finite if
it is the union of a finite graph and a finite number of cuspidal rays. In particular,
when a graph is combinatorially finite its visual limit is also finite.

2.2. The Bruhat-Tits tree. Let k be the function field of a smooth, projective,
geometrically connected curve C defined over a field F. Let K be the completion of
k with respect to a discrete valuation v : k* — Z, and let O be its ring of integers.
Recall that a tree is a connected graph without cycles.
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An example of tree is the Bruhat-Tits building t = t(K) associated to the reduc-
tive group SLy and the field K. In order to introduce this tree, we have to fix some
definitions concerning lattices. Let m € O be a fixed uniformizing parameter of K.
A lattice in a K-vector space V is a finitely generated O-submodule of V', which
generates V as a vector space. Assume that V is a two-dimensional K-vector space.
Then, every lattice on V is free of rank 2. The group K* acts on the set of lattices
by homothetic transformations. The vertex set of t(K) can be defined as the set of
homothetic classes of lattices in V. We adopt this convention. Let A and A’ be two
lattices in V. By the Invariant Factor Theorem of Algebraic Number Theory, there
is an O-basis {ej,es} of A and integers a,b such that {r%;, ey} is an O-basis
for A’. The set {a,b} does not depend on the choice of basis for A, A’. Moreover,
if we replace A by zA, and A’ by yA’, where z,y € K*, then {a,b} changes into
{a+c,b+c}, where ¢ = v(y/z). So, the integer |a —b| is called the distance between
the classes [A] and [A’]. We define one pair of mutually reverse edges in t(K') for
each pair of lattice classes at distance one. This defines a graph, which can be
proved to be a tree (cf. [Se80, Chapter II, §1, Theorem 1]). The group GLy(K)
acts on t by g-[A] = [g(A)], for any O-lattice A = K? and any g € GLy(K). This
induces an action of PGL(V) = PGLy(K) on t.

An order in My (K)) is a lattice with a ring structure induced by the multiplication
of M (K'). We say that an order is maximal when it fails to be contained in any
other order. One can reinterpret the Bruhat-Tits tree for SLs in several ways. One
of these arises from the following remark. There exists a bijective map from the
vertex set of t(K) to the set of maximal orders in My(K). Indeed, this function
is defined by [A] — Endp(A), which is valid, since the endomorphism rings of A
and zA coincide for any 2 € K*. Moreover, under this identification, two maximal
orders © and D’ are neighbors if the pair {D,D'} is GLa(K)-conjugate to the pair

o o o rto
{(88)(m ")

Another reinterpretation of the Bruhat-Tits tree for SLy comes from the topo-
logical structure of K, which is very useful in order to have a concrete represen-
tation of its visual limit. We denote by ijl the closed ball in K whose center
is a and radius is |7"|. Then, we can define the function X between the set of

closed balls and the set of maximal orders in My(K) by Bl Endp(Ag), where
Ap = {(3),(3)). 1t follows from [KACIS. §4] that ¥ is bijective. Thus, this

induces a correspondence between the vertex set of t = t(K) and the set of closed
balls in K. Moreover, if we say that two balls are neighbors whenever one is a
proper maximal sub-ball of the other, then ¥ induces an isomorphism of graphs.
In other words, under the previous definition, we have that two balls B and B’ are
neighbors precisely when X (B) and X(B’) are neighbors. So, by using this reinter-
pretation of the Bruhat-Tits tree in terms of balls, it is straightforward that any

ray v in t satisfies either V(r) = {BLHM ‘neE Z;O}, for certain a € K and r € Z,

or V(r) = {B(‘)Tfn‘ in€ ZZO}, for certain r € Z. In the first case, the visual limit

of ¢t can be identified with a € K, and, in the second, we identify it with the point
at infinity co. This brief remark shows that the visual limit of the Bruhat-Tits tree
t = t(K) is in natural correspondence with the K-points of the projective line P.
In all that follows, the equivalence classes of rays in 0o (t) are called ends of t. This



set of ends is acted on naturally by the group GLo(K), via Moebius transforma-
tions with coefficients in K. In fact, this action is compatible with the previously
defined action of GLy(K') on lattices, or the subsequent action on balls induced by
the former (cf. [AACIS] §4]). It follows from the density of k in K, that for any
finite line p of t, there is a ray containing p whose end corresponds to a rational
element s € P1(k) c P1(K).

It is shown in [Se80, Chapter II, §1.3] that there exists a bipartition of the
vertex set of the Bruhat-Tits tree that is respected by every subgroup I' © GLy(K)
satisfying det(I') < O* K*2. This implies that such subgroups act on t without
inversions. In particular, we can define a quotient graph for these groups. This
applies to every finite index subgroup I' of GLy(R).
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3. ON COMBINATORIALLY FINITE QUOTIENTS OF THE BRUHAT-TITS TREE

We keep the notation from last section. Here we give a detailed description of
the quotient graphs of the Bruhat-Tits tree t by certain subgroups of GLy(k). In
order to do this, we introduce the following notion.

Definition 3.1. Let H be a subgroup of GLa(k). We say that H closes enough
umbrellas if there exists a finite family of rays Ry = {v;}]_; < t, each with a
vertex set {v,,(4)}2,,, where v, () and v, 11(7) are neighbors, satisfying each of the
following statements:

(a) The set of ends of all rays in Ry is a representative system of H\P!(k).

(b) H\t is obtained by attaching all the images ¥; € H\t to a certain finite
graph Yy.

(c) No t; contains a pair of vertices in the same H-orbit, and t; nt; = &, for
each 7 # j.

(d) For each index i and each n > 0, we have Stabg (v, (7)) € Stabg (v,+1(7)).

(e) Stabp (v, (i)) acts transitively on the set of neighboring vertices in t of vy, (i),
other than v, 41(7).

In particular, if H closes enough umbrellas, then H\t is combinatorially finite.
Moreover, for any ray t < t whose visual limits belongs to P!(k), there exists a
subray v/ < t satisfying conditions (d) and (e). Note that the notion of “closing
umbrellas” corresponds to these two statements, while (a), (b) and (c¢) convey the
idea of “closing enough umbrellas”, so as to have a good quotient graph.

We say that a subgroup H of GLy(k) is net when each element in H fails to
admit a root of unit different than one as an eigenvalue. It follows from [Se70),
Chapter II, §2.1- §2.3] that every net subgroup of GLy(k) closes enough umbrellas.
We say that two groups are commensurable if they have a common finite index
subgroup. The notion of “closing enough umbrellas” behaves well when we pass to
commensurable groups as is shown in the following results. This is probably known
to experts but, as far as we are aware, a precise reference does not exist.

Theorem 3.2. Let H be a discrete subgroup of GLa(k). Let H < GLa(k) be a
group that is commensurable with H. If H closes enough umbrellas, then H’ also
closes enough umbrellas.

In order to prove this theorem, we analyze separately in the following two propo-
sition the cases of subgroups of H and of groups containing H.

Proposition 3.3. Let H be a subgroup of GLo(k). Assume that H closes enough
umbrellas. Let H' < GLg(k) be a group containing H as a finite index normal
subgroup. Then, H’' also closes enough umbrellas.

In order to prove the proposition, we need the following lemma.

Lemma 3.4. Let g be a combinatorially finite graph, and let G be a finite group
acting without inversions on this graph. Then, each cuspidal ray v in g has a finite
number of vertices in the same G-orbit. In particular, v has a subray whose image
in G\g is a cuspidal ray, and hence G\g is a combinatorially finite graph.
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Proof. By definition we have that there exists a set of rays R = {¥;};_; all contained
in g, such that g is obtained by attaching all t; to a certain finite graph Y. Let ©
be a ray in fR. Since G acts simplicially on g, for each g € G, the graph ¢ -t is also
a ray in g. Then, since g is combinatorially finite, g - t has the same visual limit
as some ray in R. First assume that 0y (t) = 0o(g - ). Then, t°:=Tn (g-t)isa
ray. Since each non-initial vertex of t and g - t has valency two, we get t° = t or
t° = g - t. In other words, TS g-Tor t 2 ¢g-t. Assume that T € ¢ -, then

tcg-tc...cgh-tcghtt g forall ke Zso.

Since G is finite, we get that T = ¢g - t. By an analogous argument we also prove
that t = g - t, when t 2 g - t. We conclude that g fixes every vertex in this case.

Now, assume that the visual limit of g -t is not 0 (t). Then, tn (g-7) is a finite
graph. So, for each index 4, we define the ray t; as the unique unbounded connected
component of

heG
0o (¥)# 000 (h-T3)
By definition, and by the final statement in last paragraph, the ray ¥, does not
have two vertices in the same G-orbit. Since t; and ¥, differ by a finite graph, the
first assertion follows. In order to prove the last assertion, we say that ¥} and E;
are G-equivalent if 0y (t]) = 0x(g - }), for some g = g(i,j) € G. So, we define
t; S G\g as the intersection of the images by 7 : g — G\g of all rays t; in the
G-equivalence class of ¥;. We claim that t/ is a cuspidal ray in G\g. Indeed, any
element g € G sending 0 (¥}) to 0y (¥}) gives an injective simplicial correspondence
between the vertices in either ray, whose image contains a pre-image in g of t}.
This correspondence is independent on the choice of g, since a different choice g’
defines an element ¢’¢g~! fixing every vertex in ¥,. This proves the claim. Finally,
let us define Y as the union of 7(Y") with all n(t;) \ ¢, for all pairs (4, j) whose
corresponding rays t; and t; are G-equivalent. Thus, G\g is obtained by attaching
all t/ to the finite graph Y. a

Proof of Proposition[3.3 By hypothesis there exists a family of rays Ry = {t; };-Y=1
satisfying (a), (b), (c), (d) and (e) in Definition For all index j, we denote
by &; the visual limit of v;, and by {v,(;)}a_, the vertex set of v;. So, we have
Pl(k) = H - {&}] 1

Let {w;}_, be a set of representatives of H'\P!(k). Then, each w; can be written
as w; = h-&; for some suitable index j = j(i) and some suitable element h = h(7) €
H. Thus, we define ¥} as the intersection of h - v; with the unique ray in t joining

B(I)OI with w;. Let us write V(¥}) = {v,(w;)}¥_;, where v,(w;) and v,11(w;) are
neighbors. By definition, for each vertex v, (w;), there exists m = m(n) € Z~q such
that v, (w;) = h-vy,(&). Thus, we have Stabg (v, (w;)) = hStabg (v (&5))h™1,
where H € H'. Hence, condition (e) follows.

Let G be the finite group H’/H. Note that H'\P*(k) = G\(H\P!(k)). Moreover,
note that the quotient graph H'\t is the quotient of the combinatorially finite
graph H\t by the finite group G. Then, it follows from Lemma that H'\t is
combinatorially finite, and that for each ray T; in H\t there exists a subray ¢;° not
containing two vertices in the same G-orbit.
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Let v € t; < tbe alift of ¢;°. So, for each index 4, we define t] as the intersection
of ¥ with h(i) - t7. We write V(v}) = {vn(wi)};_y,, where N; > 0. Then, for each
n = N; + 1, the vertices v,_1(w;) and v,41(w;) are not in the same H’-orbit. So,
since, by condition (e), all other neighbors are in the same Stab g (v, (w;))-orbit as
vn—1(w;), we see that Stabg (v, (w;)) stabilizes v, +1(w;), i.e. condition (d) holds.

In order to check condition (c) on Ry := {t/}2_,, we just have to prove the
projections Z and ?2 to H'\t do not intersect when ¢ # [ in {1,--- ,d}. Indeed, it
follows from Lemma and the construction of the rays v}, that Z I8 ?2 # & if
and only if g = E, and also if and only if their visual limits coincide. By definition,
the last assertion does not hold if ¢ # [. Finally, condition (b) is an immediate
consequence of Lemma[3.4] and condition (a) is immediate by construction. O

Proposition 3.5. Let H be a discrete subgroup of GLo (k). Assume that H closes
enough umbrellas. Then, any finite index subgroup Hy of H closes enough umbrel-
las.

Proof. Since any finite index subgroup of H contains a normal subgroup, by Propo-
sition B-3] we may assume that Hy is normal in H. By hypothesis there exists a
family of rays Ry = {v;}]_; satisfying (a), (b), (c), (d) and (e) in Deﬁnition
For all index j, we denote by &; the visual limit of v;, and by {v,,(&;)}n_; the vertex
set of t;. So, we have P*(k) = H - {61

Let {ui}le be a set of representatives of Ho\P!(k). Then, each y; can be written
as p; = h-&; for some suitable index j = j(i) and some suitable element h = h(i) €
H. Thus, we define t; = h-t;, i.e. V(¥;) = {v,, (i) }:°_ 1, where v, (11;) = h - vn(&;).
So, we have

Stabyr, (v (1)) = Ho N hStabg (v, (€5))h .
In particular, condition (d) for Hy follows immediately.

Now, we check condition (c) for Hy. Indeed, assume that there exist vy € V (i),
wo € V(t;) and hg € Hy such that hg-vg = wo. Write vg = h(k)-v and wg = h(l) - w,
with v € V(tjp)) and w € V(tjq)). Then h-v = w with b = h(l)"*hoh(k) € H,
which contradicts condition (c¢) for H. So, condition (c) for Hy follows.

Let G be the finite group H/Hy. Let m : Stabg(v,(u;)) — G be the map
defined by composing the natural inclusion Staby (v, (1;)) — H with the projection
H — @G. Since, for each n € Z>1 we have ker(m) = Stabg, (v, (pt:)), we obtain from
condition (d) for H the chain of contentions

Stabgr(vy (1)) /Stabp, (v1 () S -+ - S Stabg (v, (1)) /Stab g, (vn (1)) S - -

Then, since G is a finite set, there exists tg = to(i) € Zx1 such that, for each n =t

(3.1)  Stabp (vn(pi))/Stab, (va(pi)) = Staba (vn11 (i) /Stabr, (vn1 (pi))-

Recall that, since K is locally compact, we have that Stabgr, k) (vn (1)) is com-
pact. Then, for each discrete subgroup D, for instance H or Hj, we get that
Stabp (v, (1)) is finite. Then, Equation (3.1) implies that, for each n > to

IStab i, (v (1)) /Stabm, (vn—1(1:))| = [Staba (vn(1:))/Stab (vn—1 (1))

In particular, the injective map

W+ Stabr, (vn () /Stab, (0n—1 (k) — Stab (vn (1)) /Stab (vn—1(44)),

induced by the inclusion ¢ : Stabg, (vn(p:)) — Stabp (v, (1)), is a bijection. It
follows from condition (e) for H and the orbit-stabilizer relation that the set
13



Stab g (v, (147))/Stabg (v,—1(p;)) parametrizes all the neighboring vertices in t of
vn () other than v,11(w;). So, since 9 is a bijection, we deduce that the set
Stab gz, (v (1:))/Stabgr, (vn—1(p)) also parametrizes the aforementioned set of ver-
tices. In other words, up to replacing t; by the ray t, defined by the vertex set
{vn (i) }§Zs,+1, condition (e) follows for Hy.

Now, note that the graph H\t is the quotient of the graph Hy\t by the finite
group G. In particular, the pre-image of the finite graph Yy by the projection
Hp\t — H\t is a finite graph. So, since T; \ ¢} is also a finite graph, we conclude
that condition (b) holds for Hy. Condition (a) for Hy follows from definition. Thus,
we conclude the proof. ([

Proof of Theorem[3.3. Let Hy be a common finite index subgroup containing in H
and H'. By replacing Hy by a smaller subgroup if needed, we can assume that
Hy is normal in H’. Then, it follows from Proposition that Hy closes enough
umbrellas. By applying Proposition to Hy and H’, we conclude that H' also
closes enough umbrellas. O

As in let k£ be the function field of a smooth, projective, geometrically
connected curve C defined over a field F. Let @ be a closed point in C, and set
U' = C~ {Q}. Denote by R’ the ring of regular functions on U’. Let vg be the
discrete valuation map defined from the closed point (). Let us denote by kg the
completion of k& with respect to vg. In the remaining of this section, we give a
detailed description of certain quotient of the Bruhat-Tits tree t = t(kg) defined
from SLy and kg. In order to do this, let us introduce the following definition:

Definition 3.6. A C-order of maximal rank R is a locally free sheaf of O¢-algebras
whose generic fiber is My(k). We say that a C-order © is maximal when it is
maximal with respect to inclusion. An Eichler C-order € is the sheaf-theoretical
intersection of two maximal C-orders.

Example 3.7. Let us denote by © the sheaf Dy = My(O¢). Then Dy is a maximal
C-order. Moreover Do(U’)* = GLy(R/).

Corollary 3.8. Let H c GLa(k) be a group commensurable with GLy(R’). Then
H closes enough umbrellas. In particular, for any Eichler C-order €, we have that
H = ¢U)* and I' = Stabgr,, ) (€(U)) close enough umbrellas.

Proof. First, it follows from [Se80, Chapter II, §2.1- §2.3] that GLo(R’) closes
enough umbrellas. Then, it follows from Theorem.that any group H < GLy(k)
commensurable with GLQ(R/ ) closes enough umbrellas.

Now, we claim that H and T’ are commensurable with GLy(R’). Indeed, let
D be a maximal C-order containing €. Let us fix Ty = Stabgr, k) (D(U’)). Note
that Ty and I are commensurable, since they contain the respective finite index
subgroups Hy = ®(U’)* and H, where H is a finite index subgroup of Hy (cf. [AT6}
Theorem 1.2]). Moreover, note that H, belongs to the same commensurability class

as GLa(R’), since © n Dy is a finite index Eichler C-order simultaneously contained
in ® and Dy. [l

Remark 3.9. Theorem [3.2] and Corollary can be easily extended to subgroups
of PGLy(k).
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4. PRELIMINARIES ON DIVISORS AND VECTOR BUNDLES

Let C be a smooth, projective, geometrically connected curve over a finite field F.
By definition, a divisor on C is a formal finite linear combination n; Py + - - - + n,. P,
of distinct closed points P, --- , P, € C with integer coefficients nq,--- ,n, € Z, for
some r € N. Obviously, the divisors on C form an abelian group under coefficient-
wise addition. We denote it by Div(C). A divisor D = n; P; + - -- + n,. P, as above
is called effective, and written D > 0, if each n; = 0. If Dy and D5 are two divisors
such that Dy — D, is effective, then we write Dy > D or Dy < Ds.

Each closed point P in C defines a discrete valuation vp on the global function
field k = F(C). Let kp be the completion of k at P, i.e. the completion of k
with respect to vp. Let Op be the ring of integers of kp, and fix a uniformizing
parameter mp € Op. Then, we define the degree of the point P as the degree of the
finite extension F(P) = Op/mpOp of F. More generally, the degree of a divisor D =
n1 Py +---+n, P, as above is the integer deg(D) := ny deg(Py) + - - - n, deg(P) € Z.
Thus defined, the degree is a group homomorphism deg : Div(C) — dZ, where d is
the ged of deg(Q) with Q € C. Its kernel is denoted by Div’(C). Moreover, every
element f € k* defines a divisor div(f) € Div®(C). We define the Picard group
Pic(C) as the quotient of Div(C) by the subgroup div(k*) = {div(f) : f € k*}.
Hence, one has the exact sequence:

(4.1) 0 — J(F) — Pic(C) — dZ — 0,

where J(F) = Div®(C)/div(k*), also denoted Pic’(C), corresponds to the set of F-
points of the Jacobian variety of C (cf. [Se80, Chapter II, §2.2]). Since F is finite,
the group J(F) is also finite (cf. [Se80, Chapter II, §2.2]).

Let A be the affine line considered as an algebraic variety. A vector bundle on
C is a variety which “locally looks like a direct product of C with a vector space”.
Formally, a vector bundle of rank s over C is an algebraic variety BB over F equipped
with a morphism 7 : B — C such that there exists a covering C = | J,.; U; by Zariski
open sets satisfying

el

(a) For each i € I there exists an isomorphism ¢; : 7= 1(U;) — U; x A® satisfying
that the composition 7o ¢;1 1 U; x A% — U is the projection onto the first
coordinate, and

(b) For each i,j € I there exists an (s x s)-matrix A;;, whose entries are regular
functions in U; n Uy, satisfying that the composition

Gij : 35 © 07 Hwinuy)xas : (Ui 0 Uj) x A® — (U 0 U;) x A%,

takes the form ¢;;(z,v) = (x, Ai;(x)v).

We call the tuple (U;, ¢;, ¢i;) a trivialization of the respective vector bundle. If
s = 1, we say that (B, n) is a line bundle. Let (B,7) be a vector bundle of rank
s with trivialization (U;, ¢;, ¢45). Define (B',7'), s" and (U], ¢;, ¢;;) analogously.
A morphism of vector bundles f : B — B’ is a C-morphism, i.e. such that the
following diagram commutes
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34>B’

N

and satisfying that, for any i € I and i’ € I, the algebraic morphism 7~ (U; nUy) —
7 (f(U; " U})) has the form id x f;;, for some linear map fi; : A% — A°.

For one-dimensional vector bundles, elements of the Picard group Pic(C) corre-
spond to isomorphism classes of line bundles over C.

For one-dimensional vector bundles, elements of the Picard group Pic(C) corre-
spond to isomorphism classes of line bundles over C. This bijection is induced by
the following map. Let D € Div(C) and let £ be the sheaf defined in every open
set U < C by

(4.2) eP(U) ={f ek:div(f)|y + D]y = 0}.

Then, we can show that £ is a locally free sheaf of rank one. Thus, it defines
a line bundle on C. If we define a group structure on the set of classes via tensor
products, then the previously defined map is actually a group isomorphism.

Naturally associated to a line bundle £° we can define the maximal C-order ® p
(cf. Definition [3.6)) as follows

@ Oc &P
(4.3) Dp = Endo, < S_CD> = ( oD O >

In this thesis we will study a special family of intersections of two maximal orders
as above. This family consists in objects of the form

(44) @D :Qof\@D.

More specifically, one of our main goals is to understand the quotient graph tp =

Hp\t(kp, ), where Hp = €p(C \ {Pyx}). See Theorems and for
more details.

4.1. An interpretation of the Riemann-Roch Theorem. Let D be a divisor
on C, and let U be a open affine set. The Rieman-Roch Theorem states that
dimp(£P(U)) is bounded by a constant depending on the degree of D and the genus
g of C (cf. [St93], §1, Theorem 1.5.17]). Indeed, we have the following statements:

o dimp(£P(U)) = deg(D) + 1 — g, and
e if deg(D) = 2g — 1, then dimp(L£P(U)) = deg(D) + 1 — g.

Let P, be a fixed closed point in C, and let R be the ring of functions that
are regular outside P. Then R is a Dedekind domain whose quotient field is k.
Let v : k — Z v {00} be the discrete valuation induced by P,. We recall some
elementary properties, which follow immediately from the product formula and the

hypothesis that C is geometrically connected (which implies that F is algebraically
closed in k):

o vy(z) <0, for all z € R~ {0},
e for any z € R, we have vy (x) = 0 if and only if z € F*, and
o R¥ — ¥
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Each closed point P € C other than P,, corresponds to a prime ideal I(P) =
{x € R :vp(x) = 1} of R, and conversely. Furthermore, every non-zero fractional
R-ideal J has a decomposition J = []p. p, L(P)"7, and an associated divisor
Dy =3p.p, npP. We define deg(J) := deg(Dy). For any m € N, we define

J[m] := £~ PrrmPe () = {x e J:v(z) = —m},

where Uy = Spec(R) = C \ {Py}. We denote by g the genus of C. Then, by the
Riemann-Roch Theorem, the set J[m] is a finite-dimensional vector space over F,
and when deg(—Dj + mPy) = 2g — 1 we have

dimp(J[m]) = deg(—Dy + mPy) + 1 —g.
It follows from a simple computation that
deg(—Dj + mPy) = —deg(J) + mdeg(Py),
whence we finally get,
(4.5) dimp(J[m]) = —deg(J) + mdeg(Py) + 1 — g,

when mdeg(Py,) = deg(J) + 2g — 1. In all that follows, by abuse of language, we
refer to Equation (4.5) as the Riemann-Roch Theorem.
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5. SPINOR CLASS FIELDS

In this section we introduce the basic definitions and results about completions,
spinor genera and spinor class fields of orders. See [A12)] for details.

We denote by |C| the set of closed points in the smooth projective geometrically
connected curve C, and we fix Py, € |C|. Let Uy be the affine open set C \ {P.}.
For every point P € |C|, we denote by kp the completion at P of the function field
k = k(C), and by Op the ring of integers of the former. For any open set U < C, we
define the adele ring Ay of U as the subring of || PelU| kp containing all elements
a = (ap)p for which all but a finite number of coordinates ap belong to Op. We
also define the idele group Iy as the group of invertible adeles Aj;,. We write A = A¢
and I = T¢.

A C-lattice or C-bundle in a finite dimensional k-vector space V is a locally free
subsheaf of the constant sheaf V. For any sheaf of groups A on C we denote by
A(U) its group of U-sections. In particular, this convention applies to C-lattices.
By definition, the completion at P of A, denoted Ap, is the topological closure of
A(U) in Vp := V ®, kp for an arbitrary affine open subset U containing P. Thus
defined, Ap is independent of the choice of U. Note that, for every affine open
subset U < C, the O¢(U)-module A(U) is an O¢(U)-lattice. The same property
holds for orders. As in the affine context, every C-lattice is determined by its local
completions Ap, where P runs over the set of closed points |C|, in the following
sense:

(a) For any two lattices A and A’ in V', we have Ap = A/, for almost all P,

(b) if Ap = A’ for all P, then A = A/, and

(c) every family {A”(P)}p of local lattices satisfying A”(P) = Ap for almost
all P is the family of completions of a global lattice A” in V.

In particular, the same results hold for orders. We define the adelization W} of a
finite dimensional vector space W over k as Wy = W ®;, A. This is a k-vector space
isomorphic to AY™+W In particular, this definition applies to W = End (V). We
also define the adelization of a lattice A by Ay = HPe\C| A p, which is an open and
compact subgroup of V. For every C-lattice A and every element

a e EndA(VA) = (Endk(V))A,

the adelic image L = aA is the unique C-lattice satisfying Ly = aAa. To each
C-lattice A in k%, we associate the C-order D5 = Endp, (A) in the matrix algebra
Mo (k), which is defined on every open set U < C by

DA(U) = {a € Mg(k)‘aA(U) c A(U)} .

This is a maximal C-order in My (k) (cf. Definition [3.6). Moreover, every maximal
C-order in the two-by-two matrix algebra equals D5, for some C-lattice A in k2. In
particular, if we fix a maximal C-order ©, then any other maximal C-order in My (k)
is equal to D’ = a®a!, for some a € GLy(A). In general, if we fix an C-order D of
maximal rank, then we can define the genus gen(®D) of ® as the set of all C-orders
a®a~1, for a € My(A)*. So, the previous statement is equivalent to the fact that
the set of maximal C-orders is a genus, which we denote by Q.
18



Let ® be a C-order of maximal rank, i.e. of rank 4. Let U be either an affine
open set of C or the full set C. We define the U-spinor class field of ® as the field
corresponding, via class field theory, to the subgroup k*H(D,U) € I = A*, where

(5.1) H(®,U) = {det(a)|a € My (A)*, a®(V)a~t = D(V), ¥V & U} .

The symbol C above denotes an open subset. This field depends only on the genus
O = gen(D) of ®, and we denote it by X(0Q,U). When U = C we simplify the
notation by using ¥ = ¥(0). Let I — Gal(X/k), t — [t,2/k] be the Artin map
on the idele group (cf. [Ne99, Chapter VI, §5, p. 387]). There exists a well-defined
distance map p : O x O — Gal(X/k), given by p(D,D’) = [det(a), ©/k], where
a € GLz(A) is any adelic element satisfying @’ = a®a~!. The distance map has a
multiplicative property, in the sense that, for any tuple (D,D’, D") € Q?, it satisfies
p(0,9") = p(D,9")p(D',D"). The kernel of p consists of the pairs (D,D’) such
that ©(U) and ©'(U) are GL2(O¢ (U))-conjugate for every affine open subset U < C.
In the case of maximal orders, the map defined above is po : O3 — Gal(Z(@o)/k‘),
and it can be characterized as follows: The image of pg for a pair (D,®’) of maximal
orders is given by the formula po(D,9’) = [[D(D,D’),%(0¢)/k]], where D —
[[D,3(0p)/k]] is the Artin map on divisors and the divisor D(D,®’) is defined in
Equation .
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6. EICHLER ORDERS AND GRIDS

Q

In this section notation is as in §5| In the local algebra My(kp), any two
Op-maximal orders are simultaneously GLa(kp)-conjugate to the orders Dp =

Op Op ro_ Op  7$0p ;
< or  on ) and © ( ri0p  Op for some d € Z=o, where mp is a local

uniformizing parameter in kp. So, we define the local distance dp between max-
imal orders in My(kp) by taking d,(Dp,®’s) = d, where d is as above. As we
introduce in Definition [3.6] an Eichler C-order, or simply an Eichler order, is the
intersection of two maximal C-orders. This is a local definition in the sense that
Dp nDp = (D nD)p for every pair of orders. Moreover, locally, for any Eichler
order €p there exists a unique pair of maximal orders whose intersection is €p. The
level of a local Eichler order is, by definition, the distance between the maximal
orders defining it. Globally, there exists a well-defined distance map on the set of
maximal C-orders, whose image on a pair (D,®’) is the effective divisor

(6.1) D=D(®,9)= ) dp(Dp,Dp)P.
Pe|C|

In particular, there exists a global level A(€x o/) defined, on an Eichler C-order
Ean = Dp N Dy, as the distance D(Dp,Dps). A useful property of the level
function is that two local Eichler orders are GLq(kp)-conjugate if and only if their
local levels coincide. This property can be interpreted in terms of genera by saying
that two Eichler C-orders belong to the same genus precisely when they have the
same global level. So, for any effective divisor D, there exists a genus of Eichler
C-orders of level D, which is denoted by Op.

It follows, from the characterization of the Bruhat-Tits tree in terms of maximal
orders (cf. , that there exists a bijective map between the set of local Eichler
orders & of level x and the set of finite lines p of length  in the Bruhat-Tits tree.
Formally, a local Eichler order & corresponds to the finite line p = s(&) whose
vertices are the maximal orders containing €. Let € be an Eichler C-order of level
D =3}, apP. Let us denote by S(€) the product of finite lines S(€) = [[,s(€p),
where P runs over the set of places at which ap > 0. This is called the grid of
¢. Tt follows from Property (c) in §5| that the set of maximal C-orders containing
€ corresponds to the vertex set in S(€). Moreover, it is easy to see that this
correspondence is compatible with the action of PGLa(k) on Eichler C-orders by
conjugation. To compare different orders, we fix an effective divisor D = Y, apP,
and a finite set of places T' 2 Supp(D). Denote by Eich(D,T) the set of Eichler C-
orders of level D satisfying €g = M(Og) for Q ¢ T. Then, the grid corresponding
to an Eichler C-order in Eich(D,T) can be seen naturally as a subcomplex of the
product of Bruhat-Tits trees [[p.p t(kp). Any grid of the form S(€), for € e
Eich(D,T) is called a concrete D-grid. Note that the group Gp = GL2(O¢(C \T))
acts on the set of concrete D-grids by conjugation. Indeed, we can define this action
as the extension of the conjugacy action of Gp on the set of maximal C-orders to
D-grids, which is valid since G acts simplicially on each local tree. The orbits of
concrete D-grids by this action are called abstract D-grids. Any representative of
an abstract grid is called a concrete representative. Note that all these definitions
depend on the set T'. This is why it is important to consider the following result.
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Proposition 6.1. [ABp, Proposition 3.1] Let D be an effective divisor. Then,
there exists a finite set of places T' containing Supp(D) such that every PGLa(k)-
conjugacy class of Eichler C-orders contains a representative in Eich(D,T).

Let @ be a closed point of C, and write D = D’ + ag(@), where D’ is supported
away from . Then, a concrete D-grid S(€) is a paralellotope having two concrete
D'-grids as opposite faces. These opposite faces are called the Q-faces of the D-grid
S(€). We say that two concrete D’-grids S and S’ are Q-neighbors if there exists
a concrete D-grid S, with D = D’ + Q and Q ¢ Supp(D’), such that S and S’ are
the Q-faces of S. Let ® be a maximal C-order corresponding to a vertex v in S.
Then, there exists one and only one @-neighbor v' among the vertices of S’. We
call it the Q-neighbor of v in S.

As an intermediate step to prove Theorem [I.4] we characterize a quotient graph
of t other than tp = Hp\t. In order to introduce this quotient structure, fix D an
effective divisor, and let Op be the genus containing all Eichler C-orders of level
D. Let Q € |C| be a closed point not contained in Supp(D). Let Vj be the affine
open set C ~\ {Q}. Then, any order in Op is maximal at @, i.e. its completion
at @ is maximal. For any € € Op, we define the C-graph Cq(€) = I'\t, where
t = t(kg), and T' is the stabilizer of (V) in PGLg(k). Note that, it follows
from Corollary @ that Cg(®) is combinatorially finite. Two Eichler C-orders &
and ¢ such that p(€, ¢) belongs to the group generated by [[Q, X(0p)/k]] define
isomorphic quotient graphs. Indeed, it follows from [A12, §2] that, if p(&, &) €
{([Q,%2(0p)/k]]), then &(Up) and &' (Uy) are GLy(k)-conjugate. In this case we
write € ~ . We denote by Gp(0Op, Q) the quotient set of Op by the previous
equivalence relation. The classifying graph Cq(Op) is the disjoint union of the
finitely many C-graphs corresponding to all elements in Sp(Op, Q). In particular,
it is combinatorially finite.

All definitions and conventions introduced in §2|apply to Cq(Op) by adapting
them to the context of disjoint union of graphs. In particular, by the cusp set of
Co(Op) we mean the disjoint union of the cusp sets of all connected components
of Co(Op). In the following section we study the combinatorial structure of the
classifying graphs of Eichler orders. With this in mind, we make frequent use of
the next result:

Proposition 6.2. [ABp, Proposition 3.2] Let D be an effective divisor supported
away from the place (). The vertices of the classifying graph Co(Op) are in bijection
with the abstract D-grids, while its pairs of mutually reverse edges are in bijection
with the abstract (D + Q)-grids. The endpoints of an edge are the vertices of
Co(Op) corresponding to the Q)-faces of the grid corresponding to that edge.

We finish this section by recalling some results about the spinor class field asso-
ciated to the genus of Eichler C-orders of level D. As in {I]and §] let Uy = C\{Px}
be an affine open set. Let D be a divisor, which we write as D = Z:Zl n; P;, where
P; # P,. The spinor class field ¥p = X(0p) (resp. X(Op,Uy)), for Eichler C-
orders of level D, is the maximal subfield of £y = £(Qy) (resp. 3(0yp, Uy)) splitting
at every place P; for which n; is odd. See [AT3] Theorem 1.2] for more details.

Proposition 6.3. Let J = {i : n; is odd}. The Galois group Gal(Xp/k) is isomor-
phic to the abelian group Pic(C)/(2Pic(C) +(P; : j € J)). Using the same notation,
Gal(X(Op, Up)/k) is isomorphic to Pic(C)/(2Pic(C) + (Puyy + {P; : j € J)).
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Proof. Let L/F be a finite abelian extension (i.e. Galois with abelian Galois group)
of global fields. It follows from [Ne99, Chapter VI, §6, Theorem 6.1 and Corollary
6.6] that there exists an isomorphism from Gal(L/F') to Ip/F*H(L), where Iy is
the idele group of F', and H(L) := {Ny p(a) : a € Ip} is the kernel of the Artin
map, which satisfies the following properties:

(i) @ is unramified in L/F if and only if Of) € F*H(L).

(ii) @ splits completely in L/F' if and only if F5 € F*H(L).
Apply this when F is the global function field k¥ = F(C) and L is ¥p. Recall that
H(Xo) equals H(M3(O¢),C) as in Equation (5.1)). Then, since the localization of
M (Oc) at Q is Ma(Oq), it is easy to see that k5> O < H(%), for all closed points
Q € C. In particular, since Xp € ¥g, we obtain ké‘f(’)g < H(3p) € H(Xp). So,
if we write I o0 = HQEC (’)2‘2, then 121 o is contained in k*H(Xp). And, since
I /k*1). o = Pic(C), the Galois group of ¥ p/k is a quotient of Pic(C)/2Pic(C).

Let us write e(Q) for the idele whose coordinate at @) is mg and any other

coordinate equals one. Since Xp/k splits at P;, with j € J, we deduce from (ii)
that all e(P;), with j € J, belong to k*H(Xp). In particular, we obtain the inclusion

¥y, 0(e(P;) 1 j € J)y € k*H(Ep).

Furthermore, the maximality condition on ¥ p implies equality. We conclude that
N i R Pic(C)
T R (e(Py) s j€J) T 2Pic(C) + (P je )

Moreover, we can analogously prove that & = Gal(3(Op, Up)/k) is isomorphic
to Pic(C)/(2Pic(C) + (P, Pj : j € J)), by noting that to compute & we no longer
need a condition at the place Py, so the corresponding local stabilizer must be
replaced by the full local group GLa(kp,). O

Gal(Sp/k)

Moreover, it follows from [AI6l Proposition 6.1] that the corresponding distance
function pp on the genus of Eichler C-orders of level D is related to pg through
restriction, i.e.

(6.2) pp(€anr, €L,1r) = po(Da, QL)‘E(D)7

for any four C-lattices A, A’, L and L’ (cf. ).
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7. ON QUOTIENT GRAPHS OF EICHLER GROUPS

The objective of this section is to prove Theorem To do so, we extensively
use the following remark. As we said in every subgroup of GLa(kp, ) acts on
t via its image in PGLa(kp, ). In particular, the topological space tp equals the
quotient of t = t(kp, ) by the projective image PHp of

Hp = {( Z 2 > EGLQ(}{)ZC:O(II]O(].ID)}7
where Ip is the R-ideal defined as Ip = £~ 2 (Uy) = £7P(C ~ {Py}).

We start this section by presenting a proof of Theorem[I.4]assuming the following
result, which is implied by Proposition below.

Proposition 7.1. The number of cusps of any connected component of Cp, (Op)
is the same, and it equals

(7.1) ¢(D) = a(D)[2Pic(C) + (P, . P, Py : (o)),
where
1 n;
D) =14+ (qdegmm _ 1) 7
(D) po 11
and P,,,--- , P,, are the closed points in C whose coefficients in D = 22:1 n; P; are
odd.

7.1. A proof of Theorem As we just said, we can replace Hp by its image
PHp in PGLy(k) to compute the cusp number of tp. First, we prove inequality
(L.2). Set I' = Stabpgr, k) (€p(Us)). On one hand, it follows from Proposition
that the cusp number of I'\t is equal to ¢(D). On the other hand, it follows from
[AT6l Theorem 1.2] that

2"]g(2)]
[E(@Oa UO) : Z(@Dv UO)] ’
where ¢(2) is the maximal exponent-2 subgroup of Pic(R). So, we obtain from
Proposition [6.3}

(7.2) [[:PHp| =

[T : PHp] =

2"|g(2)]
[2PIc(C) + (Payy+ » By Py 2P1c(C) + (P
Recall now that, by Corollary the set of cups of tp (resp. T'\t) is parametrized by
P(k)/PHp (resp. P(k)/T). Then, the cusp number of tp cannot exceed c¢(Hp) =
¢(D)[I" : PHp] and inequality follows. Now, we assume that each n; is odd
and ¢(2) is trivial. Then, we have to prove that the cusp number of tp is exactly
¢(Hp). This is a consequence of the following lemma.

Lemma 7.2. Assume that each n; is odd and that ¢g(2) is trivial. Then, there are
exactly [T : PHp] cusps in tp with the same image in T'\t.

Proof. Let ©® = ©(n) be the set of cusps of tp whose image in '\t is the cusp 7.

Then, Card(©) is strictly less than [I' : PHp] precisely when there exists an element

g € I'/PHp stabilizing an element of ©. Since the set of cups of tp (resp. T'\t) is
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FIGURE 1. Figure (A) shows the Bruhat-Tits tree t(kp,), where
p; corresponds to the finite central line and where the middle edge
of p, is represented by a cursive edge. Figure (B) shows a concrete
(D + Py)-grid, or equivalently two P.,-neighboring D-grids.

parametrized by P!(k)/PHp (resp. P!(k)/T'), if we prove that, for any s € P(k),
we have

(7.3) Stabr(s) < PHp,

then, the result follows. Let g € I' and assume that g stabilizes some class of rays
corresponding to s € PY(k). By definition, g€p(Uy)g~* = €p(Up). So, as we saw
in g acts on the concrete D-grid Sp associated to €p as an automorphism. In
particular, we have
(1) g e Stab((Dg)g) for every Q # P1,--- , Pr, Py, and
(2) 9(Do)p,g7' = (De,p)p, With ¢; € {0,1} for any P; in the support of D, i.e.,
g can either pointwise fix the line in t(kp,) joining (Dg)p, with (Dp)p,, or
flip it.
If some ¢; = 1, then g acts on t; = t(kp,) without fixing any point of the finite path
pi = 5(€(Up) p,) whose length is odd. Let t¢ be the topological space obtained from
t; by removing the central edge of p;. Then, the action of g on t; exchanges the two
connected components of t¢. See Figure (A) We conclude that g fixes no visual
limit in t;, whence it fixes no element in P!(k), which contradicts the hypothesis on
g. On the other hand, if every ¢; = 0, we have

g € T'o = Stabpgr, (x) (Do(Vo)) N Stabpar, k) (D p (Vo)) = Stabpgr, k) (€p(Uo)).

We claim that T'o/PHp < ¢(2), and since g(2) is trivial, we get g € PHp, which
concludes the proof.

To prove the claim, we follow [A16] Theorem 1.2]. For E € {0, D} we denote
by Ag the Oc(Up)-lattice satisfying Dg(Us) = Endo,w,)(Ar). Let h € Ty be
an arbitrary element, and fix hg € GLa(k) a lift of h. Then, by definition, we
get ho € Stabgr,x)(Dr(U)), for £ € {0, D}. Then, there exists bg € Iy, such
that hoAg = bgAg (recall §§). By taking determinant in the preceding equality,
we deduce that v%0¢(Up) = det(hg)Oc(Up), whence we deduce b := by = bp,
since O¢(Up) is a Dedekind domain. Recall that Pic(A) is isomorphic to the ideal
class group Lu, /(k* [ [ g, O8)- Moreover, note that the class [b] of b = b(ho) in
Pic(A) only depends on the class h = [ho] € PGLy(k). Indeed, if we change the
representative hg of h by Ahg, then we obtain [b(Ahg)] = [b(ho) - div(A)] = [b(ho)].
In all that follows we denote by [b] the class of any b = b(hg), which only depends
on h. Let us define Z : T’y — Pic(A) as the function satisfying Z(h) = [b] € Pic(A).
On one hand, note that 2Z(h) = [b?] = [div(det(ho))] = 0. In particular, we have
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Im(Z) < g(2). On the other hand, if Z(h) = 0, then b = div(\), for some A € k*.
This implies that hoA™! € Aut(Ag) = Dg(Uo)*, for all E € {0,D}. Thus, we
get hoA™! € €p(Up)*, whence h € PHp. Hence, we conclude I'y/PHp injects into
9(2). 0

This concludes the proof of Theorem In the remainder of this section, we
prove Proposition which is a stronger version of Proposition In
we study vertices in the classification graph Cp, (Op). To do so, we present the
concept of semi-decomposition datum of D-grids. Then, in we analyze the
topological structure of the classification graph. Specifically, we define and charac-
terize a ramified covering Cp,_(Op) — Cp,(Qp) via the characterization of vertices
in Cp, (Op) obtained in Finally, we use what is known about the classifying
graph Cp, (Qy), which is summarized in the following result.

Theorem 7.3. [Al4] Theorem 1.2] The classifying graph Cp, (Qg) is combinato-
rially finite, and it has exactly Pic(R) =~ Pic(C)/{P) cuspidal rays. The vertices
corresponding to conjugacy classes of the form [®p], for some divisor D on C, are
located in the cuspidal rays of Cp, (Qp). Conversely, almost every vertex in a cus-
pidal ray ¢, of Cp,(Qp), with o € Pic(A), corresponds to a GLa(k)-conjugacy class
of the form [Dp4np, |, where B = B(o) depends only on o.

In Theorem and hereafter, by “almost every” we mean all but finitely many.

7.2. On the decomposition of grids. Here the main goal is to establish and
prove a “decomposition criterion” for grids, and subsequently for Eichler orders.

We fix the following notation for the rest of this section. Let D be an effective
divisor, and write D = 22:1 n; P; where the points Py, --- , P, Py are all different.
Denote by dp the degree of D. Using Proposition [6.1] we fix a finite set of places
T such that every every GLa(k)-conjugacy class of Eichler C-orders contains a
representative in Eich(D, T).

For any pair of divisors (B, B’) such that B + B’ is effective, consider the Eichler
C-order

—B/
eB.B]=( % 2% ).

whose level is B + B’. Any GLy(k)-conjugate of such an order is called split. We
denote an abstract grid by S, and we often choose a representative of this class by
writing S € S, or any verbal analog.

Definition 7.4. For any basis 3  k? we denote by A(f3) the matrix whose columns
are the vectors in 3. A maximal C-order @ is called 3-split if A(B)DA(B)~! = Dg,
for some divisor E. We say that a D-grid S is S-split if every vertex S is §-split as
an order. This is equivalent to

(7.4) A(B)SA(B)™! = S(€[B, B + DJ),

for some divisor B. A corner of a D-grid S is a vertex of S having a unique P-
neighbor, for each P in the support of D. Let D’ < D be an effective divisor. A
D’-corner of S is a D’-grid S’ < S containing a corner of S.

Definition 7.5. A semi-decomposition datum of S is a 3-tuple (5, B, D’), where:
(a) B is a basis of k2,
(b) B and D’ are two divisors on C satisfying 2D > 2D’ > D,
(c) there exists a corner of S of the form vy = A(8) 1D pA(B),
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(d) there is a S-split D’-corner IIgp < S whose set of vertices is
V(Isp) = {A(B)'DpA(B): BK E<B+ D'},

(e) no vertex outside Ilgp is B-split.

If D' = D, then (8, B,D’) is called a total decomposition datum. The basis S is
called the semi-decomposition basis of S. The subgrid Ilgp is called the decomposed
subgrid of S associated to the datum. The degree of a semi-decomposition datum
(8,B,D’) is the degree of B.

Example 7.6. Assume that D is multiplicity free. Then, condition (b) in Definition
[7F implies that any semi-decomposition datum of a concrete D-grid is a total
decomposition datum.

Note that the pair of divisors (B, D’) in the previous definition depends only on
the GLo(k)-conjugacy class of D-grids. Indeed, if (5, B, D’) is a semi-decomposition
datum of S, and S = GS'G™! with G € GLay(k), then (8,B,D’) is a semi-
decomposition datum of S’, where 8/ = G(8). Furthermore, we have A(8') =
GA(B). This allows us to extend the definition of semi-decomposition data to ab-
stract D-grids. However, in order to (partially) extend the notion of degree, we
need the following result.

Lemma 7.7. Let S be a concrete D-grid. Let (8, B, D’) and (BO,BO,DC”) be two
semi-decomposition data of S with positive degree. Then B and B° are linearly
equivalent.

Proof. Set A = A(fB), A° = A(f°), and let G be the base change matrix from 3
to B°. We start by showing that we can restrict our proof to the context where
D is multiplicity free. Indeed, A°S(A°)~! is the image of the concrete D-grid
ASA™! by the conjugation map induced by G. Let us write D = > n;P;,
and let {Py,,---, Py} be the set of such points with an odd coefficient n,;. Set
D.= P, +---+ Py_. Let A be the subcomplex of S whose vertex set is

V(A) = {A'®pA: By < E<By+D.},

where By = B + >/ ,|%|P;. Note that the intersection of the maximal C-orders
corresponding to the vertex set of A is an Eichler C-order of level D.. Equivalently,

we get that A is a concrete D -grid. Since PGLy(k) acts simplicially on each grid,
we get GAAATIG™! = A°A(A°)~!. Moreover, we have that

V(A) = {(A°)"'"DpA° : By < E < By + D.},

where B§ = B° + >,/ ;|%]P;. Thus, we conclude that the D.-grid A has two in-
duced positive degree total-decomposition data (3, Bg, D.) and (5°, Bj, D.). Note
that if By and Bg are linearly equivalent, then B and B° are also. Therefore, by
replacing S by A, we can assume that D is multiplicity free.

Now, assume that D is multiplicity free. In this case, every vertex in ASA™!
and A°S(A°)~! correspond to a split maximal C-order (cf. Example . Set
Dpr = GDG~!. Then one of the following holds:

(1) B” i,s, principal,
() £7'(C) - {0}, or
(3) £7(C) = {o}.
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If B” is principal, then ®p/(C) = My(F). On the other hand, since deg(B) > 0,
we obtain £75(C) = {0}. Thus, we conclude D5(C) = ( F: 2;,@ ), which is not
a simple algebra. So, the first case is impossible.

Now, assume the second case, i.e. £75(C) = £78"(C) = {0}. Then, it follows
from [A14] §4, Proposition 4.1] that one of the following conditions holds:

(a) G = ( 0 ! ) and B — B” = div(z~'2), or

(b) G = ( 2 o ) and B + B” = div(z~12).

In case (a), for any divisor 0 < E < D we have that
1 Ov —ys—la—B-E 3
(75) G©B+EG - ( CIZ_ylZS_B_E Oc + yz—‘lﬂ—B—E >a

for some invertible sheaf J, where the other coefficients are optimal. Since

_ _R_ _R_d; —1y\_ _R"_
legBEszdlv(xz)EZSB E7

and GD g, rG~! is a split maximal C-order, we deduce that GO, G~ ! = Dprip,
for any divisor 0 < E < D. This implies that B” = B°, and then B and B° are
linearly equivalent.

In case (b), for any divisor 0 < E < D we have that

—14,—B—FE
(7.6) CDppG ! = ( e T )

Then, it follows directly from the previous equation that GDp, G~ ' = Dpr_g,
for any divisor 0 < E < D. Therefore B” = B°+ D, whence B is linearly equivalent
to —B° — D. But, the last condition contradicts the hypotheses of positive degree
on B and B°. We conclude that only case (a) can hold.

Finally, if £8” = {0} we can replace B” by —B” in the preceding argument. [J

Definition 7.8. Let S be an abstract D-grid. A semi-decomposition datum of S
is a pair (B, D’), where (8, B, D’) is a semi-decomposition datum of some concrete
representative S € S. When D’ = D, we say that (B, D’) is a total decomposition
datum of S. When deg(B) > 0, the degree of this datum is by definition deg(B),
which is well-defined by Lemma

Let 8 = {e1,e2} be a basis of k2. We say that a two-dimensional vector bundle
£ on C is B-split if £ = £8e; @ £%¢5, where B and C are divisors on C. Then, a
maximal C-order ® splits in the base § if and only if at least one (and therefore
every) vector bundle in the class [A] is S-split. Moreover, either condition is equiv-

alent to ( (1) 8 ),( 8 (1) ) € Da(C). More generally, an Eichler C-order is split

precisely when it contains a non-trivial idempotent as a global section, or equiva-
lently, when the corresponding grid has a total-decomposition datum. In fact, we
have a more precise result that follows immediately from the current paragraph and
[ABp, Theorem 1.2]:

Proposition 7.9. Let & be an Eichler C-order of level D. Then the following
statements are equivalent:
(1) € is split,
(2) S = S(€) has a total-decomposition datum,
(3) The ring of global sections €(C) < M (k) contains a non trivial idempotent
matrix,
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(4) There exists a nontrivial idempotent matrix of My (k) contained in the ring
of global sections ©(C) for every maximal C-order ® corresponding to a
vertex of S.

Assume moreover that D is multiplicity free. Then, for almost all conjugacy classes
in Qp, the orders in this class are split.

Example 7.10. Assume that D = 0. Let @ be a closed point on C, and set

= O¢(C ~ {Q}). Then, each concrete D-grid consists in precisely one vertex,
which represents a maximal C-order. According to Theorem [7.3] almost all abstract
0-grids admit a total decomposition datum, and these 0-grids correspond to vertices
located in a finite union of rays in Co(Qp), which are parametrized by Pic(R') =
Pic(C)/{Q). Moreover, almost every vertex in a cuspidal ray t, of Cp, (Qp), with
o € Pic(A), corresponds to a GLz(k)-conjugacy class of the form [D pi,p, |, where
B = B(0) depends only on ¢. In particular, given a divisor Dy, almost all classes
of maximal C-orders have a representative of the form © g with deg(E) > deg(Dy).

The rest of this sub-section is exclusively devoted to proving the following propo-
sition, which generalizes the previous example.

Proposition 7.11. Let D be an effective divisor and dp = deg(D). Then, for
almost every abstract D-grid S there exists a semi-decomposition datum (B, D’) of
degree d for S with d > dp. Moreover, D’ is unique and the class of B in Pic(C) is
unique. In particular, d is unique.

In order to prove Proposition [7.11] we extensively work with some subgrids de-
fined by a certain stratification, which we formalize in Definition and Lemma
[ 1Ol

Definition 7.12. Let S be a concrete D-grid.

We define the Pj-axis S(P;) < S as the finite line in S whose vertex set is
{vj}iiy, where v is as in Definition and where v; is Pj-neighbor of v;41,
whenever 0 < j < n;_1.

Write D = Dy 4+ n@Q, with Dy supported away from @ and n > 0. Then, the
vertex set of S can be naturally written as the disjoint union of the vertex sets of
n + 1 different Dy-grids, denoted by Sp,---,S5,. We do this in a way such that
So is a Q-face of S, and S; is a @Q-neighbor of S;;1, for each i € {0,--- ,n — 1}.
These Dg-grids are called the Q-strata of S. See Figure B). The numbering of
the strata can be inverted if necessary.

The sequence of strata {Sp, - - - , Sy} defines a finite line in t(kg) of length n. The
following lemma characterizes, for almost every grid, the image of this line in the
classifying graph.

Lemma 7.13. Let us write D = Dy+n( as above. Then, for almost every abstract
D-grid S, there exists S € S such that the corresponding line ¢(S) in t(kq) is defined
by vertices zg, - , Zs, Cs+1, - - - Cn € t(kq) satisfying:

(i) vertices in each pair (z;, zi+1), ((i, Ci+1), OF (25, Cs+1) are neighbors,
(ii) s > [24],
(iii) zq,--- , 2s are pairwise non-I'-equivalent vertices,
(iv) 2o, ,2s are on the maximal path joining co with some € € k, and
(V) Coti and zs—; are I'-equivalent, for any i € {1,--- | s}.
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In particular, the image ¢(S) of ¢(S) in Co(Op,) is a line of length s contained in
a cuspidal ray.

Proof. Let S be an abstract D-grid, and let S € S be a concrete representative.
Let ¢ = ¢(S) be the finite line in t(kg) corresponding to S. The image ¢(S) of ¢ in
Co(Op,) is a line of length s < n, which only depends on S by Proposition

Now, as we noted in §6| (see the paragraphs before Proposition the graph
Cg(Op,) is combinatorially finite. Thus, there exist finitely many lines of length
at most n that are not contained in a cuspidal ray. Hence, we can assume that ¢(S)
is contained in a cuspidal ray v of Co(Qp,). Let X = I'\t(kg) be the connected
component in Cgo(Op,) containing v. Let T be a maximal subtree of X, let j :
T — t(kg) be a lift of T, and let 7 : t(kg) — X be the canonical projection. By
Corollary 3.8/ we may assume that the visual limit € = €(t) of j(r) belongs to P*(k),
and, up to changing the lift, we can assume e # c0. Moreover, there exists a subray
tg < j(r) such that:

o V(vg) = {w;},, where w; and w;11 are adjacent,

e Stabr(w;) < Stabp(w;+1), and

e Stabr(w;) acts transitively on the set of neighboring vertices of w; other
than Wi41-

Note that the last statement implies that all neighbors of w;, besides w;1, are in
the same T'-orbit. By induction on L > 1, we can show that, for any i > 0 and
for any vertex v at distance < L of w;, such that the line connecting v and w;, 1,
does not contain w;4 1,41, v is in the same Stabr(w;4 r)-orbit than w; € V(ty).

Define t, as the subray of tg with vertices are {w;}2 .. In particular, this last
statement applies to L < n and every vertex in tj. Since v\ m(v() is a finite line,
arguing as above, we may assume that 7(c) is contained in 7 (t;). This implies that
¢ is I-equivalent to a finite line that intersects t{, in a finite line of length s < n
(recall that t(kg) is a tree), so we may assume that this is the case for ¢. Let us
write V(c) = {w;},, where w; and w;; are adjacent, and V(cnt}) = {oz;}i1] T,
where ¢y is the vertex that is the closest to €. In particular, there exists k > n
such that, for each i € {t, -, s+t + 1}, the vertex w; equals w; . Since t < n and
wy and wq are both at distance ¢ from w; = wyyp, we see that wy is Stabr(wy)-
equivalent to wy. Then, up to replacing ¢ by a I'-equivalent line, we may assume
that t = 0.

We claim that we can assume that s +1 > [21|. Indeed, if s + 1 < || we
argue as follows. Since n —s — 1 < n and wosyo_ni+i and w, are both at distance
n—s—1 from ws11 = Wsy14k, We Note that wosro_pi is Stabr(wsi1)-equivalent
to @,. Equivalently, there exists v € I' such that v - {w;};" ., < t(, and we may
replace ¢ by v - ¢.

Write V(¢) = {20, - , 2s, (s+1, * - - Cn}, Which satisfies conditions (i), (ii) in Lemma
Condition (iii) follows from the fact that the image of 7(¢) = ¢(S) belongs
to a cuspidal ray. Condition (iv) is immediate since we can always extend a ray
to a maximal path reaching infinity. Finally, condition (v) follows by the same
argument used above. O

We prove the existence of semi-decomposition data by induction on r. In order
to be able to use the inductive hypothesis we need the following result.
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FIGURE 2. Figure (A) shows the finite line ¢(S) as in Lemma
while Figure (B) shows the strata of a concrete D-grid. In
the latter, vertical neighbors are P;-neighbors.

Lemma 7.14. Let D be an effective divisor, and write D = Dy 4+ n(Q, where Dy is
supported away from @ and n > 0. Let Sy be an abstract Dg-grid. Then the set of
abstract D-grids S such that there exist Sy € Sy and S € S with Sy < S, is finite.

Proof. Let ¢’ be the cardinality of the residue field of kg. First we claim that any
concrete Dy-grid is contained in finitely many concrete D-grids. In order to prove
the claim, let us fix an Eichler C-order &g of level Dy. Let € be an Eichler C-order
of level D contained in &;. Since, for each P # @, the P-coefficient of D and Dy
is the same, we have (€y)p = (€)p, for all P # Q. Moreover, we have that (€y)q
is a maximal order, while (&)q is a local Eichler order of level n. Denote by vy the
vertex in t(kg) corresponding to (€g)g. Then (€)g corresponds to the intersection
of all maximal orders in a finite line of length n in t(kg) containing vy. Moreover, it
follows from the local-global principles (b) and (c) in §5|that there exists a bijective
map between the set of Eichler C-orders & of level D contained in &y, and the set of
finite lines of length n in t(kg) containing vy. In particular, there are finitely many
Eichler C-orders € of level D contained in &;. Since there exists a bijective map
between the set of concrete D-grids containing Sy = S(€p), and the set of Eichler
C-orders € of level D contained in € (cf. §6), the claim follows.

Let us define W as the set of abstract D-grids S such that there exist Sy € Sy
and S € S with Sy € S. Fix a concrete representative S; € Sg. We define W as
the set of concrete D-grids containing S5. Then, it follows from the previous claim
that W is finite. Now, we claim that the map ¢ : W — W, defined by ¢(S) = [5],
is surjective. Indeed, let S € W. Then, by definition, there exist Sj € Sp and S’ € S
with S) < S’. Since S§ and S belong to Sy, there exists v € GLa(k) such that
S§ = 7 -5, Thus, the D-grid S = -5’ contains S§. This implies that S € W,
and, by definition, we have ¢(S) = [y-S5] = [S’] = S. So, the claim follows. In
particular, since ¢ is surjective, we conclude that W is finite, which completes the
proof. ([

We are now ready to prove Proposition [7.11]

Proof of Proposition[7.11 Recall that D = Y, n;P;. We prove the existence of

semi-decomposition data by induction on r € N. Note that, if » = 0, then D is

trivial, and, in such case, the result follows from Example Now we prove the

result for » > 0. We may assume that P; has minimal degree in the support of D.

Set U’ = C~{P;}. Then, we can write D = nyP; + Dy, where Dy is supported in U’.

Let S be an abstract D-grid, and fix a concrete representative S € S. Let Sg, - -+, Sn,
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be the Dy-grids in the Pj-strata of S. See Definition [7.12] and Figure 2(B). These
define a line ¢(S) in t(kp, ), and we may assume that it satisfies statements (i), (ii),
(iii), (iv) and (v) in Lemma [7.13] and that its image ¢(S) is contained in a cuspidal
ray of Cp, (Op,). Moreover, we can enumerate the strata of S in a way such that
S; corresponds to z; € V(t(kp,)), for each i € {0,---,s}. Now, by the inductive
hypothesis and Lemma[7.14] we may assume that there exists a semi-decomposition
datum (8, B, D})) of degree deg(B) > dp > dp, for Sy. We claim that (5, B, sP; +
Dj)) is a semi-decomposition datum for S. Let A = A(5) be the base change matrix,
as defined in Definition [7.5} Then, by definition of a semi-decomposition datum,
V(Sp) contains the vertex set V(II(Sg)) = {ADpA™': B< E < B+ Dj}. We
already know that the vertex my (z;) corresponding to the class S; of S; has valency
two in Cp,(Op,). Denote by S_; # S; the other Pj-neighbor of Sy. Then, we
can describe a decomposed subgrid of some concrete representatives of S; and S_;.
Indeed, we know that the Dj-grid II(Sp) is Pi-neighbor to the Dj-grids V_q, V7,
whose vertex sets are respectively

V(V_1)={A'"®pA: B- P, <E<B-P + D},

and
V(Vl) = {AilgEA B+ P <E<B+P + DE)}

Then, we can complete V_1,V; in order to obtain two Dy-grids, denoted re-
spectively by S_; and S;, which are Pj-neighbors to Sy. We claim that S; and
S_1 belong to different abstract Dg-grids. Indeed, if S7; and S_; define the same
abstract Dy-grid, then each concrete Dy-grid in the class has two positive degree
semi-decomposition data of the form (81, B — P1, Dj) and (82, B + P1, Dj). Note
that deg(B) > deg(P1) by hypothesis, whence deg(B+P;) > 0 and deg(B—P;) > 0.
Thus, by Lemmal[7.7] we deduce that B + P is linearly equivalent to B — P;, which
is impossible. So, the claim follows.

Now, we claim that S; € S; and S_;1 € S_;. In order to prove this, let &} and
¢’ , be the Eichler C-orders defined as the intersection of all the maximal orders
corresponding to vertices of the respective grids Sy and S_;. Since Sy and S_; are
Dy-grids, the level of € and ¢_; is Dy. In particular, these Eichler C-orders are
maximal at P;. By definition I1(Sp) € Sp and V_; € S_;. This implies that

!/

e [ A'DpA, and €, C N AT'DpA.
B<E<B+Dj B—-Pi<E<B—-P1+D|

Thus, if m is the coefficient of Py in B, then (€))p, € A~ (D,p,)p, A and (€))p, S
A7 D (m—1)p,) P, A. Moreover, since (€)p, and (¢’_)p, are maximal, we get that
(€0)p, = A (Dpp, ) A and (€1)p, = A~ (D(n_1)p, ) P, A. Since the vertex v_;
in t(kp,) corresponding to S_; is the projection of some (any) maximal C-order in
V(S_1) by localizing at Py, it coincides with A~*(D(,;,—1)p, ) p, A. This implies that
v_1 is the unique vertex in the maximal path joining the ends € and oo that is further
from e than zg. Thus, we deduce that S_; € S_;, whence we also obtain S; € S;.
We conclude from this that (8, B+ P;, Dj) is a semi-decomposition datum of degree
dp, of S1. So, by an inductive argument, we can show that, for each i € {0,--- ,n1},
we have that (8, B +iP1, D{) is a semi-decomposition datum of degree dp, for S;.
Therefore, (8, B, sP; + Dj) is a semi-decomposition datum for S.

We are only left to prove the condition deg(B) > dp. Let S be an abstract
D-grid as above, and set S € S. Let us denote by vs € V(Cp, (Op)) the vertex
corresponding to S. Then we know that almost every vertex vs belongs to a cuspidal
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FIGURE 3. A cuspidal ray v <€ Cp, (Op). Each vertex in V(t)
represents an abstract D-grid with a semi-decomposition datum of
the form (B + nPy, D).

ray t < Cp, (Op). In particular, almost every vertex vs has exactly two Py-
neighbors. Let vér be the neighbor of vg that is closest to the end of tv. Then,
the argument here above shows that, for almost every abstract D-grid S, with a
semi-decomposition datum (B, D’), the abstract grid corresponding to vg has the
semi-decomposition datum (B + Py, D’). See Figure 3| Recalling that there are
finitely many cuspidal rays in Cp,_(Op), we see that, up to increasing n € Z at the
divisor B 4+ nP,,, for almost every abstract grid, and any concrete representative,
there is a semi-decomposition datum of degree > dp.

We prove now the uniqueness of semi-decomposition data. Let S be an abstract
D-grid as above, and set S € S be a concrete representative. In particular, S has a
semi-decomposition datum (3, B, D’) of degree > dp. Write D’ = Y.'_, s, P;, where
$i < ["1THJ We can characterize the isomorphism class of non-3-split vertices
in V(S), i.e. the vertices in V(S) ~ V(IIgp). Indeed, condition (v) in Lemma
implies that any non-/-split maximal C-order in V(.S) is isomorphic to a split
maximal C-order in IIgp. Then, the vertex set {v; };“:'0 of the P;-axis of S satisfies
that v; =~ Dpijp, if j < s, and v; = Dpyo,,_jp,, if § = si. On the other
hand, by hypothesis we have deg(B) > dp > 0. Then, Lemma implies that
DB (25;—j)p, 18 not isomorphic to Dp;p,, for any j > s;. This implies that the
integers {s;}7_, are unique, and then D’ is unique. The uniqueness of the class of
B follows from Lemma [Z71 O

An immediate corollary of the end of the preceding proof is the following state-
ment, which we state here for further reference.

Corollary 7.15. Let S be an abstract D-grid corresponding to a vertex in a cus-
pidal ray in Cp,_(Op). Let (B, D’) be a semi-decomposition datum of S of degree
> dp. Let ST be the abstract D-grid corresponding to the unique neighbor in
Cp, (Op) that is closer to the end of the cuspidal ray. Then (B + Py, D’) is a
semi-decomposition datum of ST.

Remark 7.16. Any semi-decomposed grid with a sufficiently negative degree da-
tum is totally decomposed. Indeed, let S be a D-grid, and let (8, B,D’) be a
semi-decomposition datum for S. Replacing S by another representative in the
same class if needed, we can assume that § is the canonical basis, or equivalently
that A(8) = Id. Let us write D = >/ ,n;P; and D' = }/_, s;P;. For each
ie{l,---,r}, we denote by S(P;) < t(kp,) the P;-axis of S. Note that S(P;) is a
length-n; line. Moreover, if we write V(S(F;)) = {v;}}L,, then, for any 0 < j < s,
the vertex v; corresponds to the local maximal order (D p4,p,)p,. Thus, all vertices
in {v;}., are located on the maximal path f(0,0) joining the the visual limits 0
and o0 in 0o (t(kp,)) = P(kp,). Let € be the Eichler C-order corresponding to
S, i.e., assume that S = [S(€)]. Set U; = C \ {F;} and T' = Stabpqr, i) (€(U;)).
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Arguing as in the proof of Lemma [7.13 we can prove that, for each s; +1 < j < n;,
vj is T-equivalent to a vertex in §(0,00) not in {vl}l:O. Thus, we get that sZ = n,,
and hence any semi-decomposition datum (3, B, D’) of S is a total decomposition
datum.

Finally, note that, if J = ( (1) (1) ), then S is in the same class as JA(3)SA(B) !

whose total-decomposition datum (8y, D — B, D) has a positive degree.

7.3. On the combinatorial structure of the classifying graph. Here the main
goal is to compute the cusp number of the classifying graph Cp, (Op), which cor-
responds to Proposition Actually, we prove a more precise result stated in
Proposition [7.24] below. To do this, we use the existence and uniqueness of semi-
decomposition data of almost every abstract D-grid proved in the previous sec-
tion. More specifically, using Proposition we define a natural simplicial map
2:Cp, (0Op)\Y — Cp, (Qy), where Y is a finite subgraph, which is a regular cover
on the cuspidal rays of Cp_ (Qp). Then, we compute the number of pre-images of a
given cuspidal ray and we apply Theorem [7.3]in order to obtain the desired result.

Definition 7.17. Let S be a concrete D-grid with a semi-decompostion datum
(8, B, D) of positive degree. We denote by 4(S) the PGLy(k)-conjugacy class of
the maximal C-order ®g. Let S be an abstract D-grid. Assume that S has a semi-
decomposition datum (B, D’) with positive degree. We define the principal corner
of S as 0(S) := 4(S), where S € S.

It follows from Lemma [7.7] that, if S, S° € S have respective semi-decomposition
data (8, B, D) and (3°, B®, D'°) with positive degree, then ® g is GLa(k)-conjugate
to ® go. Hence the previous definition is valid.

Definition 7.18. Let S be an abstract D-grid with a semi-decomposition datum
(B,D'). Let us write D = >/ n;P; and D' = >/, s;P;. We define the semi-
decomposition vector associated to the previous datum as I = [(S) := (s1, -, $).
Note that (B, D’) is a total decomposition datum exactly when I = (ng,--- ,n,).

Now, it follows from Proposition that there exists a finite graph ¥ <
Cp, (Op) such that, for each vertex v € V(Cp, (Op) \Y), the corresponding ab-
stract D-grid S = S(v) has a representative with a semi-decomposition datum of
degree > deg(D). Then, d induces a well-defined function d : V(Cp, (Op) \Y) —
V(Cp,(Op)). Let S be an abstract D-grid with a semi-decomposition datum (B, D")
of degree > deg(D). Let ST be the abstract D-grid corresponding to the unique
neighbor vg of vg in Cp_ (Op) that is closer to the end of the cuspidal ray contain-
ing vs. By Corollary (B + Py, D’) is a semi-decomposition datum of S*. In
this case, we get 3(ST) = [Dp4p,]. See Figure [[(B). In particular, this implies
that the function d sends neighboring vertices into neighboring vertices. So, we can
extend d to a simplicial map from Cp, (Qp)\Y to C Py (Op), which we also denote
by 9. The following proposition describes the fibers of d.

Proposition 7.19. Let © = Dp be a split maximal C-order satisfying deg(B) >
deg(D). Assume that [®] # d(S) for S corresponding to a vertex in Y. Then,
9~ 1([®D]) contains
(1) Exactly one totally decomposed D-grid, and
(2) Exactly ﬁ [ L, %n, (qdee(P) —1)gdes(Pi)(ni=si=1) semi-decomposed D-grids
whose semi-decomposed vector is (s1,- -+, 8,.) # (n1,- -+ ,n;.).
33



In order to prove this proposition we have to use the following lemma.

Lemma 7.20. Let S and S° two D-grids with semi-decomposition data of degree
> deg(D) such that 9(S) = 0(S°) and I(S) = I(S°). Then there exists concrete
D-grids S € S and S° € S° such that their respective decomposed subgrids IIgp and
IIg, are equal.

Proof. Let S and S° be two abstract D-grids such that 9(S) = 0(S°). Set Sy € S and
S§ €S°, and let (8, B, D’) and (°, B°, D’) be their respective semi-decomposition
data. Let Ilsp < Sy and IIg, < S5 be the respective decomposed subgrids, and
write A = A(f) and A° = A(5°). By hypothesis 9(S) = 9(S°), whence we have
that §(Sp) = Dp is GLa(k)-conjugate to 6(S5) = Dpo. Moreover, by hypothesis,
deg(B),deg(B°) > deg(D) = 0. So, by [A14l §4, Proposition 4.1], there exists

f € k* such that B—B° = div(f). Set G = ( f0 ) € GLy(k) so that GD -G~ =

Dp. We claim that S := (GA)Sy(GA)~! € S and S° := (A°)S5(A°)~! € S° have
the same decomposed subgrids. Indeed, for any divisor E, satisfying 0 < F < D',
we have .

G@BO+EG71 _ ( Oc¢ fla=B°-E ) _ ©B+E.

f230+E Oc
In particular, we obtain that (GA)lsp(GA)™! = (A°)IgH(A°)7, ie. the decom-
posed subgrid of S and S° are equal. O

Proof of Proposition[7.19 Let S and S° be two abstract D-grids such that ?(S) =
2(S°) = [Dp], where deg(B) > deg(B). It follows from Lemma that there
exist S € S and S° € S° with the same decomposed subgrid Ilgp. So, if all s; = n;,
then S = S’, whence S = §°. On the other hand, we can always consider the totally
decomposed D-grid whose vertices are © g, g, where 0 < E' < D. Thus (1) follows.
More generally, S = S° if and only if there exists g € GLa(k) such that

(ID) glspg~" = Msp, and

(2D) g(S\TIsp)g~" = S° N\ Ilgp,
where we recall that no vertex in S\IIsp and S°~\Ilgp is split in the canonical basis.
As Igp is totally decomposed, by [A14l §4, Proposition 4.1], we have g = ( 0 ! >,

where div(z~'2) = 0, i.e. 712 € F*. Let m; be the multiplicity of P; in B. Then,
Condition (1D) is equivalent to the following statement: For every i€ {1,---,r},
the action of g € GLa(k) on the tree t; = t(kp,) point-wisely stabilizes the finite path
¢; whose vertex set is
& (%0, "o )ire ool

m, ' Op

2 Op,

where m; € Op, is a local uniformizing parameter. Moreover, this condition is
equivalent to vp,(y) = —m;. On the other hand, when s; # n;, the localizations
at P; of orders in S that are different from the localizations of vertices in Ilgp,
correspond to the vertices of a line p; of length (n; — s; — 1) in t(kp,), which does
not intersect the maximal path joining 0 and o0. See Figure PJ(A). Hence, vertices
in p; are in correspondence with the local rings of endomorphisms of the lattices

a ,n_;’mifsz‘*j
(ore (7o

where @ = a;m; ™ 4o aym ™% and where, for any k > 1, we have

ai € F(P;) = Op, /m;Op,, while a1 € F(P;)*. The same characterization holds for
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the localizations at P; of orders in S°, by replacmg a; by af € F(P;). Since vp, (y) =

—m;, Condition (2D) is equivalent to a; = a§(z~"'z), for each jed{l,---,n; — s}
Since two D-grids are equal if and only if all their P;-projections Commde, it follows
that Card(d~![Dp]) equals the number of F*-homothety classes in

[T @@)* xF@) 1),
S;F#N;

which is —Hg 7ﬁnl(qdeg( i) — 1)gdes(P)(ni—si=1), 0

Let us denote by «(D) the positive integer

o(D) =1+ % I1 (qdegm)t% _ 1) .

i=1

Lemma 7.21. Let B be a divisor, whose degree is greater than deg(D), and assume
that [Dp] # 0(S) for S corresponding to a vertex in Y. Then, 0~!([Dpg]) has a(D)
elements. In particular, there are (D) different cuspidal rays in Cp, (Op) whose
initial vertex corresponds to an abstract D-grid S satisfying that 9(S) = [D5].

Proof. It follows directly from Proposition that 0~ ([®p]) contains one and
only one split abstract D-grid, and, for each possible semi-decomposition vector [ =

(s1,-+,8r) # (n1,--- ,ny), there are precisely -— LT, (gdestP) —1)gdes(P)(nimsi—1)
non-split abstract D—grlds whose semi- decomposmon vector is [. By definition of
semi-decomposition data we know that I € T = {(s1,---,s,) : n; > s; > |2}
Then, 5_1([5‘33]) contains
1 n;
deg(P) deg(P;)(ni—si—1) _ deg(P)| 5] _
1+Z S]l 1)q 1+q 1H(q 2 1)

different abstract D-grids, where Y/ := T ~ {(n1,--- ,n,)}. Hence, the first claim

is proved. Now, recall that, by Corollary [7.15] if S and S° are two P.,-neighboring
D-grids satisfying 9(S) = [© 5] and 0(S°) = [D -], then (B, D’) and (B + Py, D’)
are respective semi-decomposition data of S and S°. So, it follows that S and S°
have the same semi-decomposition vectors. Thus, the second claim follows. O

Recall that, by definition, the number of cusps of a disjoint finite union of graphs
is the sum of the number of cusps in each of its connected components.

Proposition 7.22. The number of cusps of Cp_ (Op) equals Card(Pic(R))a(D).

Proof. It follows from Theorem that the vertices of Cp, (Qp) corresponding to
the GLy(k)-classes of split maximal C-orders Dp are located in a finite disjoint
union of infinite lines or half lines in Cp, (Qg). If we assume that a infinite line
is the union of two half lines, then the number of such half lines is equal to the
number of cusps of Cp, (Qp), which coincide with Pic(R).

Recall that we can remove a finite set of vertices in the classifying graphs in or-
der to simplify some arguments. Thus, we can consider only vertices associated to
abstract D-grids with a semi-decomposition datum of degree > deg(D) (cf. Propo-
sition [7.11)). Recall also that 0 is a simplicial map from the disjoint union of a set
of cuspidal rays in Cp, (Op), representing all classes of cuspidal rays, to an analog
set in Cp, (Op). In particular the image of a cuspidal ray of the former set under
? is also a cuspidal ray. So, d can be seen as a function between such cusps. In
particular, to compute the cusp number in Cp_ (Op) it suffices to compute the
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number of pre-images of each cusp in Cp, (Qp). Moreover, this can be reduced to
computing the number of pre-images of any vertex in a cuspidal ray of Cp,_(Qy).
Hence, the proposition follows from Lemma O

We say that a cusp n € 0°(Cp, (Op)) is split if it is represented by a cuspidal ray
formed only by vertices corresponding to totally decomposed D-grids. In any other
case we say that the cusp is non-split. Note that the arguments given in the proof
above imply that 9 induces a natural function 3° : 8 (Cp, (Op)) — 0% (Cp, (Qy))
between the respective cusp sets of Cp, (Op) and Cp,, (Qp). Then, Lemmal[7.19](1)
and Lemma imply that for each n € 0*°(Cp, (Qy)) there exists a unique split
cusp in (3%)~!(n), and (D) — 1 non split cusps.

Remark 7.23. We can characterize the unique split cusp in (3%°)~'(5). Indeed,
let nlz € 0°(Cp,(0Op)) be the class of the cuspidal ray tg p < Cp, (Op), whose
vertices correspond to the PGLa(k)-classes of decomposable Eichler C-orders €p ),
(equiv. the totally-decomposable abstract D-grids S = [S(€p ,)]) defined by

(7.9) QEB,n = ( E—Bf(?z%goJrD

£B+npoc

o ), n = 0.
C

Then, the image by 3% of 75 is the class np € 0*(Cp,(Qy)) of the cuspidal ray
tp € Cp,(Qp), whose vertices correspond to {[Dpinp, ] : n = 0}. This is the
unique split cusp in (9%°)~'(n). Moreover, it follows from Theorem that, if
we fix a representative set Ar < Div(C) of Pic(R), then {ng : B € Ag} is a
representative set of 0°(Cp, (Qp)).

We are finally ready to prove Proposition [7.1] as an immediate consequence of
the following result, which concludes the proof of Theorem [1.4

Proposition 7.24. The number of cusps of any connected component of Cp, (Op)
is the same, and it equals

(7.10) e(D) = a(D)[2Pic(C) + (Pay -+ P, Py - (P,

where P,,, -, P,, are the closed points in Supp(D) < C whose coefficients are
odd. Moreover, there are ¢(D)/a(D) split cusps in any connected component of
Cp,(0Op).

Proof. We will use the bijection between the set of abstract D-grids and the set
of Eichler C-orders of level D (cf. Proposition . In particular, we will assign
to any Eichler C-order of level D a vertex in Cp, (Op). Let € and & be two split
Eichler C-orders associated to two vertices v, v’ in the same connected component of
Cp, (Op). We denote by S and S’ be the respective abstract D-grids corresponding
to € and ¢'. Assume that 9(S) = [Dg], (S') = [Dp], and deg(B),deg(B’) >
deg(D). Let Xp = X(Op) be the spinor class field of Eichler C-orders of level D. By
definition of Cp,_ (Op), the vertices v and v’ are in the same connected component
if and only if p(€, &) € {ids,,[[Px, Xp/k]]}. It follows from the Equation (6.2)
that p(€, &) = p(Dp,Dp) = [[B — B',Xp/k]]. Hence, by Proposition
and v’ are in the same connected component precisely when B — B’ € 2Pic(C) +
P P P

Moreover, since the cuspidal ray v € Cp, (Op) containing v consists of ver-
tices corresponding to [Dpinp, | (cf. Corollary , we see that B + (Py) de-
termines the image in Cp, (Qg) of v. This tells us that there are [2Pic(C) +
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(Pu,, +,Pu,,Poy : (Pyy] possible images via 9 for a cusp in a given connected
component of Cp,(Op). Since by Lemma there are o(D) non equivalent cus-
pidal rays in Cp, (Op) covering each cuspidal ray in Cp_(Qp), we get that there
are ¢(D) different cusps in any connected component of Cp_ (OQp). This proves the
first statement.

For the last statement, it follows from Lemmal[7.19](1) that there exists only one
split cuspidal ray in each fiber of 9. Thus, it suffices to count the number of cusps
in the image of 3 in any given connected component. As we proved above, this
number is precisely ¢(D)/a(D). O
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8. ON SOME EXPLICIT EXAMPLES

In the current section, the main goal is to prove Theorem[L.5] and to subsequently
present some explicit computations of quotient graphs tp associated to the action
of Eichler groups Hp, for small values of deg(D). We deduce from Theoremthat
the computation of the number of cusps gets more involved as deg(D), deg(Py),
or the genus of C increases. Naturally, we expect the same behavior from the
finite graphs Y < tp (cf. Theorem . For these reasons, in this section we
work in the most elementary non-trivial context possible. In other words, we set
C = PL and P, to be the point at infinity. In all that follows we denote by
P[i] the degree-one closed point corresponding to ¢ € F u {o0}. In particular,
we have that div(t — i) = P[i] — P[] and Py, = P[], whence R = F[t], and
K =kp, = F((t71)). In this context Op, = F[[t"!]] is the ring of integers of K,
v =vp, = —deg and m = 1/t is a uniformizing parameter. We also consistently fix
the absolute value z — |z| = |z|p, . In all that follows, we identify the Bruhat-Tits
tree for SLa(K) (cf. with the tree b = b(K), whose vertices are the closed balls
in K, and two of them are neighbors if one is a proper sub-ball of the other.

8.1. Conventions on fundamental regions. It follows from [Se80, §3 and §4]
that in order to define quotient graphs in full generality, i.e., in the context where a
group acts with some edge inversions, it is convenient to work with the barycentric
subdivision. Here, in order to define the fundamental domains associated to non-
simply connected quotient graphs, we adopt this convention. Then, in order to
define a fundamental domain in the Bruhat-Tits tree, we begin by performing a
finite number of “surgeries” on the quotient graph g to turn it into a tree. See
Figures (A) and (B). By a surgery we mean the process of replacing an edge by a
pair of half edges, provided that the resulting graph is still connected. After surgery,
we get a tree g, we fix a vertex v € V(q') that corresponds to a “real” vertex in g, and
then we choose a pre-image v in the Bruhat-Tits tree. Successively, we consistently
lift the path from v to any vertex or non-vertex, where a non-vertex is the lift
in a half edge in q’. The union of the images of such liftings is the fundamental
domain under consideration. See Figure Ié-_ll(C) Note that any structural result on
a quotient graph can be translated into a result on its corresponding fundamental
region. Moreover, this correspondence is perfect, in the sense that the quotient
graph can be recovered from the fundamental domain and the pairs of corresponding
non-vertices. Indeed, this is done by gluing the latter in an obvious manner. In
particular, any combinatorial or topological result on the fundamental region can
be also interpreted in terms of the corresponding quotient graph. We can define
the ends of a fundamental region as the visual limit of its rays. This point of view
allows us to explicitly describe the ends of the fundamental regions or quotient
graphs in terms of representatives of the Hp-orbits in P! (k).

8.2. A Proof of Theorem Let N = (t — Xy)---(t — A\p). We can write

div(t — \;) = P[\;] — P[], where P[j] is a degree-one closed point on PL. Let

D = %, P[\;] be the corresponding multiplicity free divisor on C. Then, since

ny = -+ =n, = 1 and deg(P[w]) = deg(P[A1]) = -+ = deg(P[\;]) = 1, it

follows from Theorem [I.4] that the quotient graph tp as exactly 2™ cusps. Thus, in
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FIGURE 4. In the Figure, (A) represents a quotient graph, (B)
shows the tree obtained from the previous graph by the process of
surgery, and finally (C) represents the corresponding choice of a
fundamental domain.

order to prove Theorem [I.5] it suffices to prove that the restriction of the canonical
projection 7 : t(K) =~ b(K) — tp to the tree s is an injection. Consequently, the
result follows from next lemma, which we prove following the techniques in [Ma01]:

Lemma 8.1. The vertices in s are in different Hp-orbits.

Proof. Note that, when N = 1, the lemma reduces to Nagao’s Theorem (cf. [Na59]).

So, we assume throughout that n > 1. As in §2| we write B for the ball of radius
||t centered at x € K, where 7 = 7p, is a uniformizing parameter. This ball

corresponds to the local maximal order Endp,, (Ap), where Ap = <((1‘), (Tg)> In

particular, By := B(l)O| corresponds to the local maximal order Ma(Op, ).

Let B; = BL’?' and By = Bg‘f;‘ be two vertices in tp, where each center is
either 0 or the multiplicative inverse of a proper monic nonconstant divisor of
N = [],(t — X;). Assume that there exists a matrix g = ( a b ) € Hp

Nc d
satisfying g - By = Bs. We must prove that By = By. Set hy = ( "”11 ”;1 )
and hy = ( 2z m ) so that we have both B, = hy - By and By = hsy - Bo.

Since K*GLy(Op,) is the stabilizer of By in GLy(K), we must have hy'gh; €
AGL2(Op, ), for some A € K*. By taking determinants, we get 2v(\) = r4 — 7o,
where v is the valuation corresponding to P,,. Hence, r; —r5 is an even integer and
77 hylghy € GLy(Op,). After a simple computation we have 72 ~hy 'ghs
equals

(8.1) 72 (d+ Nexy) 27" Ne
’ T (axy — dxo + b — Ncxyza) T (a — Ncxo) -

1 =79 Ty —T]

We conclude that 7=~ (a — Ncag), 72 (d+ Necxy) € Op,. . On the other hand,
the polynomials a— Ncxs and d+ Ncx; either vanish or have non-positive valuations.
This leaves us three alternatives:

(i) 7:=7r1 =719, and v(a — Ncxo) = v(d + Nexy) =0,
(ii) @ = Ncxg or
(i) d = —Nexy.
The last two alternatives imply det(g) ¢ F*, so (i) must hold. The result follows if
Z1 = xg, as this implies B; = By. The same holds if r < 0 since v(z1),v(x2) > 0
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and hence B; = B(I)T‘ = Bsy. We assume in the sequel that xy # x5 and r > 0. In
particular, one of the z, x5 is not zero. From Equation and (i) we deduce
the following facts:

(a) a— Ncxg =: ag € F*,

(b) d+ Necxy =: dy € F*,

(¢) Nce n7"Op,, or equivalently deg(Nc) < r, and

(d) apry —doxa + b+ Ncxyze = axq —daxe +b— Nexyza € 7Op,, .
Firstly assume that either v(Nczix2) > 0 or 129 = 0, then the dominant term on
the left hand side of identity (d) is b € F[t], unless it vanishes. As r > 0 we must

a 0 : : *
Ne ), in particular a,d € F*. Then,

it follows from (a) and (b) that Ncxo, Ncxy € F, and then ¢ = 0, as at least one
element in {x1,x2} is the inverse of a nonconstant proper monic divisor of N. From
the preceding considerations, we get the identity BLTQ‘ =By =g -B; = Barl!l Jd- This
implies that dzo — axy € 7"Op, . Note that if v(z1) > r, then 0 € By, whence we
can assume that 7 = 0. This implies that dzg € 77Op,, i.c. v(z2) = r. Thus, we

conclude the latter. It follows that g = (

conclude By = B(‘)T‘ = By. In any other case v(z1),v(z2) < v(N) < r, whence we
deduce v(z1) = v(z2) and a = d. We conclude z1 —z3 € 7"Op, , hence By = Bs.

Finally, assume that both z1,29 # 0 and v(Nczizz) < 0. We can assume
r > max {v(z1),v(x2)} since other case we could redefine x; or x2 as 0 and return
to the preceding case. Let

(8.2) €=b+ Ncxyz9 € —apz1 + doza + 7 Op, € 70p, .

By a simple computation, we get det(g) = apdy — & € F*, where £ = Ne(agr; —
doxa +€) e F. If £ = 0, we have that ¢ =0 or

(8.3) Ne+britay! = e(@m2) ™! = dozyt — agwy .
If ¢ = 0, then b € 7Op, by (8.2), so that b = 0 and we argue as in the previous
paragraph. Otherwise, Equation (8.3) and conditions (a) and (b) imply that z;*
divides x5 L and conversely, as each divides N, whence B; = Bs.

Assume now that £ # 0, so by applying, in the given order, (c¢), the definition of
&, the definition of €, and (d), we prove the following chain of inequalities:

r = —v(Nc¢) = v(agry — doxg + €) = v(agry — doxa + b+ Nexyze) =1,
whence v(agr1 — doxa + €) = —v(Nc¢) = r. In this case we have
r =v(agx; — doze + €) = v(z122) + l/(a()x2_1 — doml_l + e(xlxg)_l) < v(ziz2),

as the second term is a polynomial. On the other hand, the hypothesis v(Nczias2) <
0 implies v(z122) = v(Nexia2) — v(Ne) < r. Thus, r = v(z122) and
0= agzy —dory' + e(x12) "t = apry ' — doxy' + b(z1za) " + Ne,

is a nonzero constant polynomial. But o is divisible by gcd(ml_l, Ty 1), and therefore
ged(zyt, a5t) = 1. If € # 0 we conclude that b(z129)~' + Nec is a multiple of
(r122)~!. By the strong triangular inequality, v(o) = 0 implies

v(agryt — doxy ') = v(b(z129) ™! + Nc) < v((z120)7Y).
By conditions (a) and (b), the preceding inequality is impossible by a degree argu-
ment. To finish the proof we consider € = 0, in which case v(agz]* — dozy ') = 0.
As the polynomials 1/x; and 1/x2 are monic, this is only possible when ag = do.

Then condition (d) implies v(z1 — x2) = r. We conclude that B; = Bs. O
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FIGURE 5. In (A) continuous line represents the double ray po o,
which is a fundamental region for the action of Hp on b(K), when
D = PJ[0]|y,- On the other hand, Figure (B) shows a fundamental
region for the action of Hp on b(K), when D = (P[0] + P[1])|u,-

8.3. Small Examples. Here we compute some examples of fundamental regions
(or equivalently, quotient graphs) in the context where C = P, P, = P[] and
deg(D) is small.

Example 8.2. Assume that N = ¢, or equivalently assume that D = div(t)|y, =
P[0]|u,- We denote by p,p < b(K) the double ray joining two different elements
a,b € P*(k). Then, Theorem implies that the union of pg o with a finite graph
is a fundamental region for the action of Hp on b(K). More precisely, we claim
that po,,o alone is a fundamental region in this case. See Figure A). In order to
prove this claim, we introduce the following algorithm. For each f € R, let us write:

1 - 0 1 10
mr=(o ) I=(0 ¢ ) amd op=( 4 V)=Im L
Note that 7¢,07 € Hp, for any f € R. Let s € k be a finite rational element, and

let B = BLT‘ be any vertex in the double infinity ray pso. We claim that B is in
the Hp-orbit of some vertex of pg o. So, first note that, if v(s) = r or s = 0, then

B = B[‘)Tl, whence the claim holds immediately. Thus, assume that s # 0 and that
v(s) < r. In all that follows we extensively use the fact that for any p € Z and any
pair x, s € k we have that

- BP =B, 1B =By, and 1-BF = BP0 itog¢ B

Fix the uniformizing parameter 1/t € Op, . Assume that v(s) < 0. Then, we can
write s = fo + €9, where fy € R = F[¢] and v(ep) = 1. Let us define ¢y as the
unique finite path in b(K) joining B‘S”(S)Jrll with Blsu(e")l, when €y # 0, and define
it as the ray joining B’ ™! with the end s, in the remaining case. Note that,
since v(s) < v(e), the path ¢ is non-trivial in any case. Moreover, note that
Tfo - Blsp| = Blﬁ‘ belongs to vert(po,o) if and only if v(ep) = p. In particular, we
obtain 7y, - ¢g < Po,w0, i.€., €ach vertex in ¢q is in the Hp-orbit of a vertex in pg o. If
B ¢ vert(co), we have not proven that B € Hp -pg o, but we have proven that there
exist vertices satisfying this condition in the path joining BY*! to B. Since
Tfo *Ps,00 = Peo,00, Where v(eg) = 1, in the latter case we replace B by 74, - B = Bgl,
which leads us to the last case.
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Now, assume that v(s) = 1. Then, 1/s = tfy + €y, where fp € R and v(e) = 1.
So, in analogy with the previous case, let ¢ be the unique finite path in b(K)
joining B with B0l when ¢y # 0, and define it as the ray joining
BLV(S)H‘ with s, in the remaining case. Assuming p > v(s), we get

O fo BJ@p‘ = (I *Tifo - I) : BLlep‘ = (I . tho) : B|11;8*2V(8)\ =1I- BLI;_ZV(S)l'

So, since I - Po,.c = Po,.0, We conclude that oy, - BLpI € vert(po,) precisely when
BP0 ¢ vert(po,), or equivalently, when v(eg) + 2v(s) = p. Thus, we get that
Oy - €5 C Po,oo. Again, if B ¢ vert(cy), we have not yet proven that B € Hp - pg 0.
But, as in the first case, we have proven that there exist vertices in the path joining
BLWS)H\ to B, which satisfy this condition. This shows that o - B is closer to
Po,.o than B. In particular, we can keep applying either case until B belongs to
90,00, and we are done, i.e., we have shown that the each Hp-orbit of vertices has a
representative in vert(pg o). Moreover, Theorem shows that po o does not have
vertices in the same Hp-orbit. Since Hp acts without inversions, we conclude that
tp is isomorphic to pg o, whence it is a fundamental region for the corresponding
group action.

Remark 8.3. A similar method allows us to give another proof of Nagao’s Theorem

(cf. [Na59)).
Remark 8.4. We define a continued fraction with coefficient sets S < K and
T < K* as a sequence (s,,)%_,, satisfying
by
S = o+
" fi+ b2
fno1+ %

where each f,, € S, b, € T. When this sequence converges in K we say that its limit
has an expression as an infinite continued fraction. In [Pau02] Paulin interprets the
existence of continued fractions with coefficient in S = F[t] and T = {1}, in terms
of the action of Hy = Gla(F[¢]) on the tree t(K). These continued fractions express
any element in K. Moreover, it is well-known that the elements s, in the sequence
are the best rational Diophantine approximations of elements in K. In our setting,
we can use a generalization of the previously introduced algorithm in order to
extend Paulin’s results. More specifically, with Arenas-Carmona we have shown
(unpublished) the existence of continued fractions approximating all elements in
K, associated to the action of certain arithmetical subgroups of GL2(K) whose
action in t(K) has a small fundamental region. In particular, this applies to the
case where the arithmetical subgroup is Hp with D = P[0]|y,.

Example 8.5. Here we exhibit a fundamental region for the action of Hp, when
D = div(t(t — 1))|ly, = (P[0] + P[1])|u, and F = F5. In order to achieve this,
we introduce a different method from the one introduced in the previous example.
Indeed, the key step in this example is compute the valency of the image in tp of
some vertices in b(K).

Fix a vertex x € vert(s), where s c t(K) is the smallest subtree containing all
ends in {00,0,1/t,1/(t — 1)}, as in Theorem We denote by v!(z) the star of z,
i.e, the full subgraph of t(K) whose vertices are precisely « and its neighbors. In
order to prove that s is a fundamental region, we just need to show that every edge
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in bl(x) is in the same Hp-orbit as some edge in 5. Fix s € {0,1/t,1/(t — 1)}, and
assume r = x,, for some n € Z, where x; = BlsZI € Ps, 0. Furthermore, assume that
n > v(s) when s # 0, and make no assumption on n when s = 0. Note that every
vertex in s is accounted for in this way. Let r, be the edge connecting z,, to x,+1.

We begin our analysis by assuming that s = 0 and —n = m > 0. In this
case we claim that the image of = has valency two in tp. First recall that 7 =
( . Z ) € Hp precisely when a,b,d € F[t], ¢ € t(t — 1)F[t] and ad — bc € F*.
On the other hand, 7 stabilizes x if and only if v(a),v(d) = 0, v(c) = m and
v(b) = —m. Since the valuation of a non-constant polynomial is strictly negative,

the two previous conditions imply that 7 € Staby, (z,) precisely when a,d € T,
c¢=0and b€ F[t]y, := {f € F[t] : deg(f) < m}. In other words

Stabi,, = (7 Fglm);:{(g Z):a,deF*,beIF[t]m}.

So, the set of unipotent elements in Staby,, (z,) equals

Um:=((1) F[tl]"‘ );:{((1) i’):beIF[t]m}.

For each i € Zx, let us introduce the group

Ai={<é i):zew_i(’)poo}.

It follows from [ABp), §5.1] that A,, acts transitively on the set of edges in v'(z)
other than r,. Moreover, A,,_1 acts trivially on this set. Note that U,, covers
A /A1, since 77™0p, /7t~ ™Op, =~ F(Py) = F. Therefore, U,, acts transi-
tively on the set of edges in v!(z) other than r,, whence the claim follows.

Now, assume that either s = 0 and n > 0 or s # 0 and n > v(s) = 1. In this
case, we extend the previous arguments in order to show that the image of z in tp
has valency two, except when s =0 and n =1, or s € {1/t,1/(t — 1)} and n = 2.
Indeed, let us fix

=15 )

Then, we obtain x = g5 - y,, where y; := Btl)_zl. Thus, to prove the preceding state-
ment, we just need to show that the set of unipotent elements in g *Staby,, (z) gs
covers A, /A, _1. We compute these stabilizer subgroups next.

Indeed, note that 7 € g;'Staby,, (x) gs precisely when 7 € g;'Hpgs and 7 €

Stabgr, (k) (Yn). Let us write 7 = g:ggs, where g = ( . Z ) € Hp. Then

7€ g5 'Hpgs if and only if
d+cs c
T= ( (a — d)s+7 cs’+b a—ecs ) € StabGL?(K) (yn) '

Equivalently, we have that v(d + ¢s),v(a —c¢s) = 0, v(c) = —n and v((a — d)s —
cs?+b) = n. If s = 0, then these previous conditions hold precisely when a,d € F*,
b=0and cet(t— 1)F[t],—2. So, we get

g5 *Stabg,, (v)gs = {( 0 ) ca,de F*, cet(t— 1)F[t]n,2} .
In particular, the set of unipotent elements in g;'Staby, (z)gs is exactly

Un(0) := {( bt )eett- 1)F[t]n_2} .
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Thus, the image of x = B(l)nl, n = 2 by the canonical projection has valency two in
tp, since t(t — 1)F[t],—_2 covers 7 "O/r! "0 = F(Py) = F

Now, assume s € {1/t,1/(t—1)} and n > 3. Note that cs € F[¢] in either case. So,
we have that ay = a — ¢s and dy = d + cs are two polynomials with non-negative
valuations, whence ag,dy € F. Moreover, we have that (ag — do)s + cs?2 +b =
(a — d)s — cs? +b e 0. Since v(s) = 1, we conclude that the polynomial
(ag — do)s~! + ¢ + bs™2 belongs 7" 20, whence it is zero. So, we can write (ag —
do) + cs +bs™t = 0. Thus, since F = Fy, we have ag = dy = 1, whence we conclude
c=0bs"2et(t—1)F[t]. We deduce that:

gs *Staby, () gs = {( o = Dsf ) :fe F[t]n,g,}.
In particular, any element g5 *Staby,, (7,) gs is unipotent, whence it covers A,,/A,,_1,
since t(t — 1)s~'F[t],,_3 covers 7 "O/m1 "0 =~ F(Py) = F.

It now follows from Theorem [L.5] that s is contained in a fundamental region for

the action of Hp on t(K). Moreover, the previous analysis shows that s contains a
fundamental region, since the valency of B(‘)l‘ and B|12/|t
F = F5. We conclude that s is a fundamental region.

Remark 8.6. In Example [8:5] we can check that when F # Fy, the group
1
{(b W=7 ) s e Fltlas ),

is also contained in g;'Staby, (7)gs. In particular  has valency two again. Thus,
the only part where the property F = Fs is actually used is in the final paragraph,

are both exactly three, since

where the equality allows us to prove that there are no edges coming out from B(‘)”

or B|12/It that are not contained in s.

We can refine the above method to explicitly compute more complex quotient
graphs up to certain degree. To do so, the key step is to properly use the Riemann-
Roch equality . There exist several published computations employing this
technique for D = 0. See [A14] and [Ma01] for more details.

Remark 8.7. Note that Examples [8.2] and show simply connected quotient
graphs. In [MS13, §6], Mason and Schweizer proposed the question:

When is the quotient graph GL2(R)\t(K) a tree ¢

They indicated that the theory of Drinfeld modular curves provides a complete
answer when F is finite (cf. [MS03]). An interesting question is if the same theory
can be properly used in order to extend these results to the Hecke congruence
subgroups Hp. This can be eventually studied in order to give some complementary

results to Theorem and
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9. STABILIZERS AND AMALGAMS

In this section we analyze the structure of Hp as an amalgam. More specifically,
the main goal of this section is to prove Theorems and For this reason, in
all that follows we assume that g(2) is trivial and that each n; is an odd positive
integer. We also assume that Supp(D) # (J, since any other case can be reduced
to Serre’s result. In order to prove the aforementioned results we extensively use
Bass-Serre theory (cf. [Se80, Chapter I, §5]).

Let C be a set indexing all the cusps in tp. It follows from Theorem [I.4] that tp
is the union of a finite graph Y with a finite number of cuspidal rays, namely t(c),
for o € C. Moreover, the same results implies the following identity:

2Pic(C) + (Px) Lot 1—[ ( gles(POLE ] _ 1) ,
(Py) q—1 i=1

Now, we choose a maximal tree T of tp and a lift j : T — t = t(K). Note that
each cuspidal ray v(o) of tp is contained in T, whence j(t(o)) is a ray of t. More
explicitly, we can fix a tree T' by taking the union of the cuspidal rays t(o) with a
maximal tree in the finite graph Y < tp.

Card(C) = ¢(Hp) = 2"[g(2)| ’

9.1. Review of Bass-Serre Theory. Let us recall some definitions from Let
(s,t,7) and (,,7) be the triplets indicating source, target and reverse maps for
the graphs t or tp respectively. An orientation on tp is a subset O of E(tp) such
that E(tp) is the disjoint union of O and 7(0O). In order to simplify some of the
subsequent definitions, let us fix an orientation O for tp, and set o(y) = 0, if y € O,
while o(y) = 1,if y ¢ O, i.e., if #(y) € O.

We extend j to a function j : E(tp) — E(t) satisfying the relation

(9-1) 37 (y)) = (),

as follows: For each y € O ~\ E(T), we choose j(y) so that s(j(y)) € V(j(T)).
For the remaining edges we define j(y) by the relation . Note that we have
s(j(y)) = j(5(y)), for all y € O. In general, however, the corresponding relation for
the target does not hold. Next, for each y € O \ E(T) we choose g, € Hp satisfying
t(j(y)) = gy - j(t(y)). This is always possible since t(j(y)) and j(£(y)) have the
same image t(y) in the quotient set V(tp). Now, we extend the map y — g, to
all edges in tp by setting g, = id, for all y € E(T'), and for all remaining edges
Ir(y) = 9y L. Note that the latter relation holds for each pair of reverse edges.

Therefore, for each edge y in the quotient graph, we get s(j(y)) = ggjo(y)j(é(y))
and #(j(y)) = 95" 5 (E(y)).

For each vertex T € V(tp), we define Staby, (U) as the stabilizer in Hp of the
lift j(v). An analogous convention applies to an edge y. Thus, for each pair (7, y)
where ¥ = #(y), we have a morphism f, : Stabpu, (y) — Stabu, () defined by

qg— g;(y)_lgg;_o(y). This function is well defined since

g;(y)flstabHD (](y))géio(y) o= StabHD (] (f(y))) *

Thus, the data presented above allow us to define the graph of groups (hp,tp) =
(bp,T,tp) associated to the action of Hp on t (cf. [Se80, Chapter I, §4.4]).
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Now, we can define the fundamental group associated to this graph of groups.
Indeed, let F'(hp,tp) be the group generated by all Staby,, (¥), where v € V(tp),
and elements a,, for each y € E(tp), subject to the relations

Ai(y) = a;l, and ayfy(b)a;1 = fa) (b), Yy e E(tp), Vb e Staby, (y).

The fundamental group 71(hp) = m(hp,tp) is, by definition, the quotient of
F(hp,tp) by the normal subgroup generated by the elements a, for y € E(T).
In other words, if we denote by h, the image of a, in 7 (hp,tp), then the group
m1(hp,tp) is generated by all Staby, (7), where ¥ € V(tp), and the elements h,,
for y € E(tp), subject to the relations

h;(y) = h;l, hyfy(b)h;I = f;(y)(b)7 and h, = id,

for all (z,y) € E(T) x E(tp) and for all b € Staby, (y). It can be proven that the
group 71 is independent, up to isomorphism, of the choice of the graph of groups
hp, and in particular of the tree T' c tp.

As mentioned in Bass-Serre Theory implies that all subgroups of GLo(K)
can be described from their actions on t(K) (cf. [Se80, Chapter I, §5.4]). More
specifically, they are isomorphic to their corresponding fundamental groups, as
defined above (cf. [Se80, Chapter I, §5, Theorem 13]). In our case, Hp isomorphic
to the fundamental group 71 (hp) = m1(hp,tp).

Let t(o) be a cuspidal ray in tp. We denote by P, the fundamental group
T1(hple(e)) of the restriction of hp to v(c). Analogously, we define H = 71 (hply),
for Y as in Theorem For each o as above, let B, be the vertex stabilizer in
Hp of the unique vertex in Y n t(o). We have canonical injections B, — P, and
B, — H. Now, as Serre points out in [Se80, Chapter II, §2.5, Theorem 10], if
we have a graph of groups b, which is obtained by “gluing” two graphs of groups
b1 and b by a tree of groups hio, then there exist two injections ¢1 : hi2 — by
and ¢3 : h12 — B2, such that 71 (h) is isomorphic to the sum of 71 (hy) and 7 (bh2),
amalgamated along 7 (h12) according to ¢; and 3. In our context, we conclude
that Hp is isomorphic to the sum of P,, for all o, and H, amalgamated along their
common subgroups B, according to the above injections. Since t(c) € T, each P,
coincides with the direct limit of the vertex stabilizers defined by all v € V(t(0)).
In all that follows, we exploit this property of the groups P,, in order to describe
them in more detail.

We start with some comments on the previous choice that simplify our work.
Note that, in our context, each vertex stabilizer is finite, since it is the intersection
of a compact set with a discrete subgroup of GL2 (k). So, replacing t(c) by another
equivalent cuspidal ray has no effect in the statements in Theorem Hence, to
prove the aforementioned theorem, we only need to describe the groups P, for a
suitable set of cusp rays. We describe a convenient choice in what follows.

9.2. On vertex stabilizers. For any closed point ) in C, any s € k and any n € Z,
let ®(s,n, Q) be the Og-maximal order defined by

/1 0 1 0 \7!
(92) @(S,H,Q) - ( s 7‘—5 >M2(OQ)< s Ty ) '

Q

We denote by O the ring of local integers at Py, and we fix a uniformizing parameter

m € O. We define v, (s) € V(t) as the vertex corresponding to the O-maximal order

D(s,n, Py). For any s € P}(k), we define the R-ideal Q, by Q, = Rns 'Rns 2R,

when s € k*, and by Q, = R, when s € {0,00}. Let us write R(n) = {a € R :
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v(a) = —n}. Recall that Ip denotes the R-ideal £~ (Uy), where Uy = C ~ {Py}
(cf. Equation (1.1])). So, the next lemma follows immediately from [Ma0ll Lemma
3.2] and [Ma01l Lemma 3.4].

Lemma 9.1. Assume first that s = 0 and n < 0. Then

(9.3) Stabyr,, (v, (0)) = {( 55 )rafeF andce R(—n)} :
On the other hand, if s = 0 and n > 1, then
(9.4) Stabiy, (vn(0)) = {( 9 )ia,feF* and ce R(n) ID} .

Finally, if s € k\TF and ndeg(Py) > deg(Qs), then the element g € GL2(k) belongs
to Stabp, (v, (s)) if and only if it has the form
(9.5)

o-sano= (2 )= (82 (55 )
where

(a) o, B €F* and

(b) ce R(n) nIp n Rs™' n ((B—a)s™! + Rs™2).

In all cases, the stabilizer group Staby,, (v, (s)) contains triangularizable matrices
only. Moreover, in (9.4) and (9.5, the matrix group

Sbs(n) := {A(a,a,¢) : € F* ce Ip n R(n) n Qs},
which is always isomorphic to F* x (R(n) n Qs nIp), is contained in Staby, (vn(s)).

Let C be a set indexing all the cusps in tp. For each o € C, let t(o) be a
cuspidal ray in tp representing the corresponding cusp, and let j(t(o)) be its lift
to t. We can assume that its visual limit ¢ = &, is in P*(k) by Corollary [3.8]
and we assume moreover that one of them is co. It follows from the previous
lemma that there exists a ray t/(o), equivalent to t(o), with a vertex set {v; :
i = 1,---,00}, where any pair of neighboring vertices (75, 7;71) has the property
Stabu, (j(77)) < Stabu, (j(Ti41)). Then, up to changing the representing cuspidal
ray for each class, we can assume that the previous inclusion holds for each t(o)
in tp. In particular, in this case, the direct limit P, coincides with the increasing
union U?O=1 Staby,, (v;). Thus, in order to describe P,, we only need to study the
stabilizers of some unbounded subset {v,(;)}i2=; S V(j(t(0))). So, let t(0) < tp
be the cuspidal ray at infinity, i.e., the projection on tp of a ray whose vertex set
is {v_n(0) : » = Np}, for certain suitable integer Ny. Then, Lemma directly
shows that Py, is isomorphic to (F* x F*) x R.

When t(0) is different from t(o0) we have to work with other tools. We do this
in what follows. Let us fix a cuspidal ray t(c) different from t(c0). Then, the vertex
set of j(t(0)) equals {v,(§) : n = Ny}, where £ and Ny depend on o. It follows
from Lemma that the maximal unipotent subgroup of each Staby, (v,(£)) is
isomorphic to the intersection of R(n) with the R-ideal Q¢ n Ip. Therefore, since
U~ N, F(n) = R, it follows that the maximal unipotent subgroup of P, is isomor-
phic to the R-ideal Q¢ n Ip. Thus, by Equation , in order to describe P,, we
only need to characterize the eigenvalues of some elements in Staby, (v,,(£)).

We start by recalling some relevant definitions from §6| As before, I' € PGLy(k)
denotes the stabilizer of €p(Uy), where €p is the Eichler C-order defined in (4.4).
So, for each v € V(t), its image T € V(I'\t) represents one and only one C-Eichler
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order of level D, or equivalently one abstract D-grid. Next, we make explicit this
correspondence for any vertex v = v,(£). It follows from condition (c¢) in §5| that,
given the family of local orders {€(P) : P € |C|} defined by

(E1) €(P;) =9(0,0,P;) nD(0,n;, P;), for any i € {1,--- ,n},

(E2) €(Py) =2(&,n, Py), and

(Es) ¢(Q) =9(0,0,Q), for any Q # Py, , Py, Py,
there exists an Eichler C-order ¢ = €E[v] such that €p = E(P), for all P € |C|.
Then, the abstract D-grid corresponding to v is S(v) = [S(€[v])]. Observe that
the level of € is equal to D = Y1 | n; P;.

Now, by definition, g € Staby, (v,(§)) if and only if g € Hp = €p(Up)* and
g € Stabgr, (k) (vn(§)). Observe that g € €p(Up)* is equivalent to g € €p(Up) and
det(g) € R* = F*. The following result describes the normalizer of local maximal
orders. See [A106] §3] for details.

Lemma 9.2. For any closed point @, the normalizer in GLy(kq) of a local maximal
order D(s,n, Q) is kg@(s, n,Q)*.

Proof. Since any Og-maximal order is the ring of endomorphisms of an Og-lattice,
we can write D(s,n, Q) = Endp, (A), for some lattice A = A(s,n, Q) of kg x kq.
Then g € GL2(kg) normalizes ®(s,n, Q) if and only if Endo,, (A) = Endo, (9(A)).
So, since two lattices have the same endomorphism rings precisely when they belong
to the same homothety class, we have that Endp,(A) = Endp, (g(A)) precisely
when g(A) = AA, for some A € k’é?, ie. \Tlge Endo, (A)* = D(s,n,Q)*. O

We deduce from the preceding lemma that g € €p(Up)* if and only if the fol-
lowing conditions hold:
e det(g) € F*,
e ¢ normalizes ©(0,m, P;), for each P; € Supp(D) and m € {0,--- ,n;}, and
e ¢ normalizes ©(0,0,Q), for every Q # Py, -+, P, Py.
Thus, we conclude that g belongs to Staby,, (v, (§)) precisely when it satisfies con-
ditions (A1) — (A4) below:
(Ay) det(g) € F*,
(A2) g normalizes ©(0,m, P;), for each P; € Supp(D) and m € {0,--- ,n;},
(A3) ¢ normalizes ©(0,0,Q), for every Q # Py, , Py, Py, and
(A4) g normalizes D (&, n, Py).
Recall that we only have to describe the vertex stabilizers for an arbitrary un-
bounded set of vertex of j(t(c)). Then, by changing v, (§) to vh41(§) if needed,
we can assume without loss of generality that the type of v, (§) coincides with the
type of vg(0). Thus, there exists hp, € SLa(kp, ) such that hp, - v, (&) = vo(0),
ie., hp,D(o,n, Py)hp! = D(0,0,Py). Now, it follow from Lemma [9.2] that the
GL2(kg)-normalizer of local maximal orders D¢ are open. So, by the Strong Ap-
proximation Theorem applied on the open set C . Supp(D), there exists h = h(v) €
SLy (k) satisfying h®(o,n, Px)h~! = D(0,0, Py) and normalizing each D(0,0, Q),
for @ # Py,---, P., Py,. For each P; € Supp(D), let s; be the finite line in t(kp,)
whose vertex set is {h~'®(0,m, P;)h : m e {0,--- ,n;}}. We define S = S(v) as the
concrete D-grid S = [, s;. Note that S = hS(E[v])h~! is another representa-
tive of S = S(v). Thus, we deduce from conditions (A;) — (A4) that, g belongs to
Staby,, (v, (€)) if and only if § = hgh™! € GLy(k) satisfies the following:
(B1) det(g) € F*,
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(B2) ¢ normalizes each maximal C-order in the vertex set of S, and
(B3) g normalizes each local maximal order ©(0,0, @), where Q # Py,--- , P,.

Let vp,42(§) be the vertex at distance two from v, (§) towards £. Since Cp, (Op)
is combinatorially finite, for n » 1, we have v,,(€) # vn12(€). Moreover, it follows
from Proposition and Corollary that there exists a suitable integer N,
such that for all n > N, the actual D-grid S = S(v,(0)) has a semi-decomposition
datum with positive degree.

First, assume that S has a total-decomposition datum (5, B, (n;)I_;). Let A =
A(B) be be the base change matrix from the canonical basis to 5, and let ¢ =
A~'€[B, B + D]A be the split Eichler C-order, defined as the intersection of all
maximal orders in the vertex set of S. Then, it follows from Proposition [7.9] that
there exists a global idempotent matrix ¢; € €(C). Since T := F*e; + F*(id — €1)
is contined in €(C)*, any matrix in 7 normalizes the Eichler C-order €. In other
words, any matrix g € 7 satisfies the properties (B1), (B2) and (Bs). Thus, for any
pair of elements a,b € F* there is a matrix g, € Staby, (v, (£)) whose eigenvalues
are a and b. Then, since the group generated by {g, s : a,b € F*} and the maximal
unipotent subgroup of Staby, (v, (§)) equals

{A(e, B,¢) : a, BeF*,c€ R(n) n Q¢ n Ip},

we conclude from Lemma [3.1] that

(9.6) Stabmu, (vn () = (F* x F*) x (R(n) n Qe N Ip).

Now, assume that S has a non total semi-decomposition datum (8, B, (s;)i_;), and
let A = A(B) as before. Then A™'GA normalizes each maximal C-order in the
vertex set of A~1SA. In particular, the matrix A~1GA fixes D g, with deg(B) > 0,
whence A71GA = ( 0 ! ) with 271z € F* (cf. [AT14] §4, Proposition 4.1]). So,
by taking S° = S in the proof of Proposition [7.19} we deduce that = z. Thus,
the eigenvalues of § are equal. The same holds for g. Therefore, we conclude from
Lemma [9.1] that Stabg,, (vn(£)) = Sbe(n) in this case. In particular, we have that

(9.7) Staby, (vn(€)) = F* x (R(n) n Qe N Ip).

9.3. End of proof of Theorem and Note that, it follows from Corol-
lary that we can assume that the semi-decomposition vectors of S(v,(§)) and
S(vn42(€)) are equal. Then, by the arguments presented above, we deduce that:
o Stabu, (vn42(§)) = (F* x F*) x (R(n+2) N Q¢), if S(v,42(€)) is split, and
o Stabu, (vn42(§)) = F* x (R(n + 2) n Q¢), if not.
An inductive argument shows that, for each t € Z, Stabp,, (v,42:(£)) is isomorphic
to

o (F* xF*) x (R(n+ 2t) n Q¢ n Ip), if S(vn42:(£)) is split, and

o F* x (R(n+ 2t) n Q¢ N Ip), if not.
Now, we say that v(o) is split when it only contains vertices corresponding to
split abstract grids. Since we can assume that S(v,,(§)) and S(v,++(§)) correspond
to vertices at distance ¢ > 0 in the same cuspidal ray of Cp, (Op), we get from
Corollary that they have the same semi-decomposition vectors. In particular,
if t(o) is not split, then every vertex in t(o) corresponds to a nonsplit abstract grid.
Thus, we conclude
(9.8) D~ { (F* x F*) x (Q¢ nIp) if t(0o) is split,

’ 7| F*x(QenlIp) if not.
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Since each n; is odd by hypothesis, it follows from Proposition [7.24] that there are
¢(D)/a(D) = [2Pic(C) + {P1,- - , Pr, P ) : (Pr)l,

split cusps in T'\t. Moreover, it follows from Lemma that there are exactly
[[' : PHp] cusps of tp with the same image in I'\t. Thus, we conclude from
Equation that there are 27 [2Pic(C) + (Py) : {Py)] elements o € C such that
t(o) is split. Then, T heoremfollows. Furthermore, Theoremis an immediate
application of [Se80, Chapter II, Proposition 14, Corollary 1] in this context.

Example 9.3. Let C = P}, R = F[t], and let D be the principal divisor of ¢, as
in Example B:2] In this case tp is isomorphic to the double ray in t whose vertex
set is {v,(0) : n € Z}. See Example for more details. Let F[t],, be the set of
polynomials whose degree is less or equal than n. Then, it follows from Lemma 9.1
that

%

o Stabs, (v, (0) = F[];];” ) ifn <0,
k

e Stabr,, (v,(0)) = ( o ) it n =0,

F* 0 .
e Staby, (v,(0)) = ], F* ) if n> 0.

We conclude that Hp is isomorphic to the sum of ( Fo* I]FF[E ) and ( tg;] ]FO* )

amalgamated along the diagonal group F* x F*

Example 9.4. Assume that C = PL, F = Fo, R = F[t], and let D be the principal
divisor of t(¢t+1), as in Example[8.5] So, it is not hard to see from the computations
in Example

F* TF[t]_,

e Stabp, (v,(0)) = ( 0 F >, ifn<0,

*
Staby, (vs(0)) = ( B0 ),ifn—o,l,

0 F*

F* 0 .
e Staby, (v,(0)) = ( t(t + DF[t], F* ), ifn>1,
o Stabp, (v2(1/t)) = {id}, and
e |
e Stabp, (v,(s)) = id + F[t]n—3 ( 8318,2 ,Sf _1 |, for each rational
s;ts —s;ts
(

se{l/t,1/(t+ 1)}, sc € {1/t,1/(t + 1)} ~ {s} and n > 2.

So, let us define:

pan (),
* Po= ( w0 +F:)F[t] - > and

. tt+1) —(t+1)
. Pl/t_ld+F[t](t2(t+1) CHt 4 1) >7and

. tt+1) —t
* Prsn = id+Fl] ( HE+1)2 —t(t+1) )
Then, since F* = {1}, we conclude that Hp is isomorphic to the free product of
groups P,, where o € {0,00,1/t,1/(t + 1)}.
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