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Abstract—This paper studies distributed binary test of statis-
tical independence under communication (information bits) con-
straints. While testing independence is very relevant in various
applications, distributed independence test is particularly useful
for event detection in sensor networks where data correlation
often occurs among observations of devices in the presence of a
signal of interest. By focusing on the case of two devices because
of their tractability, we begin by investigating conditions on TYPE
I error probability restrictions under which the minimum TYPE
II error admits an exponential behavior with the sample size.
Then, we study the finite sample-size regime of this problem.
We derive new upper and lower bounds for the gap between the
minimum TYPE II error and its exponential approximation under
different setups, including restrictions imposed on the vanishing
TYPE I error probability. Our theoretical results shed light on
the sample-size regimes at which approximations of the TYPE
II error probability via error exponents became informative
enough in the sense of predicting well the actual error probability.
We finally discuss an application of our results where the
gap is evaluated numerically, and we show that exponential
approximations are not only tractable but also a valuable proxy
for the TYPE II probability of error in the finite-length regime.

Index Terms—Remote sensing, distributed detection, data-
fusion, performance analysis, concentration inequalities, infor-
mation bottleneck.

I. INTRODUCTION

Motivated by decision-making problems over networks,
researchers within the field of statistical signal processing
have been involved in a wide range of research initiatives
studying decision and inference problems in the presence
of quantization or measurement noise or data corruption by
various types of perturbations. In real-world applications, these
sources of degradation come from factors such as noise ob-
servations at the sensors, communication restrictions between
sensors and decision agents, or by the presence of external
sources of perturbations corrupting data [1]. The emerging
field of Internet of Things (IoT) brings new dimensions
and technical challenges to the classical problem as data is
no longer centrally available at the decision end. A related
emerging domain is known as signal processing in the context
of unlabeled or unordered data [2]–[8]. Another important
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domain, which is the general focus of this work, is distributed
detection under data-compression [9]–[11]. The derivation of
performance limits and characterization of statistical properties
of optimal detectors have been active research areas over the
past years.

Distributed detection, data fusion, and multisensor integra-
tion have a long history in statistics, signal, and information
processing at large. Fundamental works can be traced back
to [12], [13], and [14], among others. Applications of the
decentralized decision framework arise in communications
and sensor networks, for instance, in the context of Multiple
Access Channels (MAC) [15] and wireless sensor networks
[16]. These works do not only investigate practical solutions
but, importantly, they study theoretical guarantees and per-
formance bounds to understand the intrinsic complexity of
these problems. In [17], the authors derived performances
in the form of error exponents of the TYPE I and TYPE
II error probabilities over Fading MACs. However, explicit
communication restrictions between the sensors and the fusion
center still remain a challenging problem [15], [16], which im-
plies understanding how (detection) performances are affected
by the introduction of non-trivial communication restrictions.
Indeed, a crucial case of particular interest is when the fusion
center receives quantized descriptions of the measurements
taken by remote sensors [18], [19]. Some recent contributions
have explored the asymptotic performance limits based on
error exponents of distributed scenarios with multiple decision
centers and rate constraints between sensors and detectors [20],
[21], [22]. Communications constraints have also been studied
within the framework of Bayesian detection in [23] and [24].

This paper investigates the problem of distributed binary
Hypothesis Testing (HT) of statistical independence under
communication (information bits) constraints. In particular, we
focus on non-asymptotic performance bounds. More specif-
ically, we study the gap between the minimum TYPE II
error probability and its exponential approximation under
restrictions on the vanishing TYPE I error probability. To this
end, we revisit the distributed scenario with communication
constraints first introduced in [9]. This problem consists in
testing against independence where the observations (e.g.,
sensor measurements) come from two modalities (e.g., two
sensors), as shown in Fig. 1. One of the modalities is to be
transmitted to the decision-maker (or detector) using an error-
free communication channel that introduces a positive rate-
constraint (in bits per sample). [9] derives the characterization
of asymptotic performance bounds in terms of a closed-form
expression for the error exponent of TYPE II error probability
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given a fixed restriction on the TYPE I error probability
(ε > 0) [9, Ths. 2 and 3]. Notably, the results show the effect
of the communication constraints in asymptotic performance
(error exponent), which is shown to be independent of ε.
Later on, [10] derive an asymptotic lower bound for the error
exponent when TYPE I restriction (as a sequence) tends to
zero (with the sample size n) at an exponential rate given by
O(e−nr).

A. Summary of contributions

Our work advances state-of-the-art in very different ways.
1) We study a broader family of problems (see Fig. 1)

where the TYPE I error probability vanishes with the
sample size. The objective here is to assess the impact
of this stringer set of restrictions on the asymptotic limit
of TYPE II error probability given by the error exponent.
Building on concentration inequalities and results from
rate-distortion theory, our main result here (cf. Theorem
1) gives new conditions on the admissible converge rate
of the TYPE I error probability restriction under which
the error exponent of the TYPE II error probability ad-
mits a closed-form expression. Interestingly, for a family
of sub-exponential decreasing TYPE I error probability
restrictions, we show that the resulting error exponent
matches the expression in [9, Theorem 3] while being
consistent with the results obtained for the classical
communication-free problem [25].

2) Regarding the non-asymptotic regime of this problem,
Theorem 2 offers new upper and lower bounds for
the TYPE II error probabilities as a function of the
number of samples, the underlying distributions, and the
restriction on the TYPE I error probability. As an impor-
tant corollary, our bounds shed light on the velocity at
which the error exponent is achieved as the number of
samples tends to infinity, and consequently, how well
the performance limits represent the performances of
practical decision schemes operating based on a finite
number of samples.

3) Finally, we evaluate our bounds numerically and show
that these can be used to accurately describe the optimal
performance that can be achieved and, in particular,
to devise the regimes where the error exponent is an
accurate proxy for finite sample-size performances.

B. Related works

In terms of finite simple-size analysis within the central-
ized framework, [26] presented non-asymptotic results for the
optimal TYPE II error probability under a constant TYPE I
error restriction in the i.i.d case. Interestingly, the discrepancy
between optimal finite-length and asymptotic performance was
characterized, scaling as O(

√
n) with the sample size n.

In the same communication-free context, [27] borrows ideas
from moderate deviation analysis [28] to obtain an interesting
upper bound for the Bayesian error probability by bounding
the TYPE I-TYPE II errors in a way that both decay to
zero sub-exponentially with n. More recently, in [29], we
obtained non-asymptotic upper and lower bounds for the TYPE

II error probability for i.i.d samples draw according to two
arbitrary distributions. We showed that the error exponent is
a good approximation for the TYPE II error probability in
the finite sample regime. Importantly, the distributed setting
investigated in this work, with a non-trivial rate constraint in
one of the modalities, induces a mathematical problem that is
fundamentally different in terms of the requested tools.

Communication restrictions subject to zero-rate (in bits-per
sample) have been investigated in [11]. The error exponent and
non-asymptotic bounds have been characterized. Extensions to
interactive HT with zero-rate have been reported in [30]. A
preliminary version of this work was presented in [31] with
partial results and sketches of some of the arguments. In this
paper, we extend the results for a larger family of scenarios,
provide complete proofs of the results and more systematic
analysis of the practical implications of these results.

The outline of the paper is as follows. Section II introduces
the main definitions and reviews some seminal results for the
case of unconstrained communication. Sections III and IV
present our main theoretical results for the asymptotic and the
non-asymptotic regimes, respectively. Numerical analysis and
discussions are relegated to Section V. Section VI concludes
the paper. Finally, the proofs are relegated to Appendix.

II. PROBLEM SETTING AND PRELIMINARIES

Let us consider a finite alphabet product space Z = X×Y,
where P(Z) denotes the family of probabilities on Z. We have
a joint random vector (X,Y ) with values in Z and equipped
with a joint probability P ∈ P(Z) where PX ∈ P(X) and
PY ∈ P(Y) denote the marginal of X and Y , respectively.
Xn

1 = (X1, ..., Xn) and Y n1 = (Y1, ..., Yn) denote the finite
block vector with product (i.i.d.) distribution PXn1 Y n1 , Pn ∈
P(Xn×Yn). We consider two scenarios for the data generated
distribution of (Xn

1 , Y
n
1 ), i.e.,

H0 : (Xn
1 , Y

n
1 ) ∼ PnXY ,

H1 : (Xn
1 , Y

n
1 ) ∼ QnXY ,

(1)

where QXY = PX · PY denote the product probability
modeling the case where Xn

1 and Y n1 are independent. In order
to make the problem non-trivial, we assume that [32]:

D(PXY ‖QXY ) =
∑

(x,y)∈X×Y

PXY (x, y) log
PXY (x, y)

QXY (x, y)

= I(X;Y ) > 0. (2)

where D(·‖·) is the divergence between two probabilities and
I(X;Y ) is the mutual information between X and Y [32].

Without communication constraints, the fusion center needs
to decide about the true underlying hypothesis (H0 or H1)
based on an observation of the joint vector (Xn

1 , Y
n
1 ). Here

we introduce a decentralized version of this problem which is
illustrated in Fig. 1. In this distributed context, the decision
rule is composed by a pair of encoder and decoder (fn, φn)
of length n and rate R (in bits per sample), where:

fn : Xn → {1, . . . , 2nR}, (encoder)

φn : {1, . . . , 2nR} × Yn → Θ = {0, 1}, (decoder). (3)
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Encoder Fusion 
Center

(Xn
1 , Y n

1 )
<latexit sha1_base64="R/5i5ExDm1WIgyd/XZK33BF9n/o="></latexit>

Y n
1<latexit sha1_base64="17l9eLe+6trZq05OYHcQmBwsSzs="></latexit>

Xn
1<latexit sha1_base64="A+JJ0Ygp+B3pMME/O3kMu8bshTs="></latexit>

fn(Xn
1 )

<latexit sha1_base64="lu/ITyLmRUSFm+m0NzQ5zkjGBUM="></latexit>

R (bits/per sample)
<latexit sha1_base64="GOl65pcNzQ6WXRwi+0w4OemmAzA="></latexit>

�n(fn(Xn
1 , Y n

1 )) 2 {0, 1}
<latexit sha1_base64="Yvz6wAmSdwAHxnAB78y6tKwbI9I="></latexit>

Fig. 1: Illustration of the coding-decision problem with one-side communication constraint. fn is the encoder of Xn
1 (one of

the modalities) and φn is the detector acting on the one-side compressed measurements (fn(Xn
1 ), Y n1 ).

fn(·) models a fixed-rate lossy encoder (or quantizer) of Xn
1

and φn(·) represents the detector (or classifier) acting on the
one-sided compressed data (fn(Xn

1 ), Y n1 ) ∈ {1, ..., 2nR} ×
Yn. The encoder represents a remote agent that senses Xn

1

and transmit a finite description (using R bits per sample) of
Xn

1 to a fusion center (see Fig.1). The fusion center receives
the quantization of Xn

1 and at the same time senses locally
a second modality Y n1 to guess (using φn(·)) about the true
distribution of the joint vector (Xn

1 , Y
n
1 ). For any pair (fn, φn)

of length n and rate R, we introduce the corresponding TYPE
I and TYPE II error probabilities [33], [34]:

P0(fn, φn) , PnXY (Ac(fn, φn)) and (4)

P1(fn, φn) , QnXY (A(fn, φn)), (5)

where A(fn, φn) , {(xn1 , yn1 ) ∈ Xn×Yn : φn(fn(xn1 ), yn1 ) =
0}. Traditionally, for any ε > 0, we are interested in the family
of optimal encoder-decoder pairs satisfying:

βn(ε, R) , min
(fn,φn)

{P1(fn, φn) : P0(fn, φn) ≤ ε}, (6)

where the minimum is over all encoding-decoder pairs in (3).
We study the performance of the optimal scheme (6) by

focusing on the case where a sequence of restrictions (εn)n≥1

is required to tend to zero as the sample size grows. The
objective is to explore how this restriction is expressed in
the terms of (βn(εn, R))n with n in conjunction with other
properties of the problem (e.g., the distribution PXY and the
rate R). In this work, we are primarily interested in deriving
expressions to bound βn(εn, R) in the large sample regime
(non-asymptotic). To this end, it is essential to first charac-
terize the asymptotic nature of the sequence (βn(εn, R))n.
However, before presenting the main contributions of this
paper, we review some essential asymptotic results for the
classical communication-free (centralized) scenario.

A. Review of centralized HT results

For completeness, it is worth revisiting the centralized case
where fn : Xn → Xn is the identity and the solution of (6)
is then denoted by βn(εn). Furthermore, when εn = ε > 0
for all n, this is a classical HT setting where the celebrated
Stein’s Lemma implies the following result [32], [35]:

Lemma 1 (Stein’s Lemma). For any ε ∈ (0, 1),

lim
n→∞

− 1

n
log βn(ε) = D(P‖Q).

This result establishes the asymptotic decayment of the
TYPE II error subject to a fixed ε > 0 implying that
βn(ε) ∼ e−nD(P‖Q) as n tends to infinity (large sampling
regime). Interestingly, in [29], we provided upper and lower
bounds in the finite length regime showing that in practice
the number of samples required to approximate the TYPE II
error probability to (e−nD(P‖Q)) is not large. This observation
supports the claim that the exponential approximation is a
useful proxy for TYPE II error probability.

As a matter of fact, for the sub-exponential regime of (εn)n,
the following result is known.

Lemma 2. ( [25, Sect. IX]) if (1/εn) is o(ern) for any r > 0
then limn→∞− 1

n log βn(εn) = D(P‖Q).

Therefore, the error exponent obtained with a fixed ε > 0
in Lemma 1 is preserved for a family of stringer decision
problems in (6) as long as (εn)n tends to zero at a sub-
exponential rate.

B. Review of distributed HT results

Returning to the main decentralized task with communica-
tion constraints in Fig.1, [9] determined the following result1:

Lemma 3. [9, Theorem 3] For any ε > 0, it follows that2

ξ(R) , lim
n→∞

− 1

n
log βn(ε, R) = max

U :U−
−X−
−Y
I(U ;X)≤R |U|≤|X|+1

I(U ;Y ),

(7)
where U −
−X −
− Y denotes the fact that (U,X, Y ) forms a
Markov chain (i.e., (U, Y ) are independent condition to X).

The result presented in (7) is a trade-off between represen-
tation and regularisation, in the sense that we seek to learn the
best possible representation of X for predicting Y . As for the
more challenging scenario where (εn)n tends to zero with n, in
[38] the author provided a lower bound for the error exponent
of the TYPE II error probability in the case of exponentially
decreasing TYPE I error restrictions:

1This result can be interpreted as the counterpart of the Stein’s Lemma in
the decentralized setting of Fig.1.

2This result provides an interesting connection with the problem noisy lossy
source coding with log-loss fidelity [36]. The performance limits in the right
hand side (RHS) of (7) coincides precisely with the distortion-rate function
of the information bottleneck problem [37].
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Lemma 4. [10, Han and Kobayashi] Let us assume that
εn ≤ e−rn for some r > 0, then: lim inf

n→∞
− 1
n log βn(εn, R) ≥

max
w∈ρ(R,r)

min
P̃UXY

D(P̃UXY ‖PUXY )≤r
P̃U|X=PU|X=w
U−
−X−
−Y

[D(P̃X‖PX) + I(U ;Y )], (8)

ρ(R, r) , {w ∈ P(U|X)| max
P̃X :D(P̃X‖QX)≤r

P̃U|X=w

PUX=w·P̃X

I(U ;X) ≤ R},

P(U|X) denotes all test (quantizer) channels from X to U.

III. ASYMPTOTIC RESULT

Our first result complement the regime on (εn)n presented
in Lemma 4 to obtain an asymptotic characterization of
(βn(εn, R))n. In particular, we explore the important sub-
exponential regime for the restriction sequence (εn)n of TYPE
I error probability. The proof is relegated to Appendix A.

Theorem 1. Let us assume that (1/εn)n = o(ern) for any
r > 0. Then,

lim
n→∞

− 1

n
log(βn(εn, R)) = ξ(R), (9)

where ξ(R) is defined in (7).

This result establishes an extensive regime on the velocity
at which (εn)n tends to zero for which the error exponent of
the problem is invariant and matches the expression obtained
for the less restrictive and classical setting (εn = ε > 0)
presented in Lemma 3. This result is interesting because, as
it was pointed out in [10], there was no guarantee that the
asymptotic limit in (9) remains the same as the result in
Lemma 3 when moving to stringer regimes on the velocity
at which (εn)n vanishes with n. Besides this, the above result
can be considered as being the counterpart of what is observed
in the centralized setup when contrasting Lemmas 2 and 1.

The proof of Theorem 1, relegated to Appendix A, is divided
into two parts. The direct part (i.e., constructive argument) is
based on constructing an encoder-decision pair that guarantees
that the error exponent of the optimal TYPE II is greater than
ξ(R). The second part of the argument (i.e., the infeasibility
part) proves that no pair of encoder-decoder rule satisfying the
restriction of the TYPE I error has an error exponent greater
than ξ(R). The proof argument used in both the achievable and
infeasibility parts (see Appendix A) is based on a refined use
of concentration inequalities [39]. In particular, the achievable
part is divided into two steps. The first step consists of
reducing the problem to an i.i.d. structure over a block of Xn

1

induced by the encoder, which will concentrate (in probability)
to an error exponent that is different from ξ(R) in (9).
Importantly, the discrepancy between the concentration limit
obtained from our approach (i.e., finite-block strategy) and
ξ(R) can be resolved analytically by connecting our problem
with a noisy rate-distortion problem, where the discrepancy
between its fundamental limit and a finite length version of
this object is well understood [40]. The second step consists
of optimizing our approach by giving concrete conditions to

make the discrepancy between ξ(R) and − 1
n log(βn(εn, R))

vanishes with n.

IV. FINITE-LENGTH RESULT

Our main result is concerned with the practically relevant
task of offering a non-asymptotic characterization of the
sequence (βn(εn, R))n for different scenarios of (εn)n, given
the model PXY and the rate constraint R > 0. To address
this question, our methodology uses the asymptotic limit of
(βn(εn, R))n, stated in Theorem 1, and from this, analizes
the discrepancy between − 1

n log βn(εn, R) and ξ(R) as a
function of n. In concrete, our main result (stated below)
derives upper and lower bounds for − 1

n log βn(εn, R) in
different sub-exponential scenarios for the TYPE I restriction
sequence (εn)n. As a corollary, we determine the velocity at
which − 1

n log βn(εn, R) achieves its limit in (9). The proof is
relegated to Appendix B.

Theorem 2. Assume that R < H(X). Then,
i) If (εn)n = (1/log(n))n (logarithmic), it follows:

− 1

n
log(βn(εn, R))− ξ(R) ≥(
∂D(R)

6∂R
−
√

2 ln(log(n))C(PXY )

log(n)
− o (1)

)
log n

n1/3

(10)

− 1

n
log(βn(εn, R))− ξ(R)

≤
(

16C(PXY ) +
log(log(n))

√
log(n)

n

)
1√

log(n)
;

(11)

ii) If (εn)n = (1/np)n (polynomial) with 2 > p > 0, then

− 1

n
log(βn(εn, R))− ξ(R) ≥(

1

6

∂D(R)

∂R
−
√

2p ln(n)

log n
C(PXY )− o (1)

)
log n

n1/3

(12)

− 1

n
log(βn(εn, R))− ξ(R)

≤
(

16C(PXY ) +
p log(n)

n1−p/2

)
1

np/2
; (13)

iii) If (εn)n = (1/np)n (polynomial) with p ≥ 2, then

− 1

n
log(βn(εn, R))− ξ(R) ≥(

1

6

∂D(R)

∂R
−
√

2p ln(n)

log n
C(PXY )− o (1)

)
log n

n1/3

(14)

− 1

n
log(βn(εn, R))− ξ(R)

≤
(

8
√

2C(PXY )

√
n2−p + 1

log(n)
+ 2

)
log(n)

n
; (15)
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iv) If (εn)n = (1/en
p

)n (superpolynomial) with p ∈ (0, 1),

− 1

n
log(βn(εn, R))− ξ(R) ≥(

(1− p)
6

∂D(R)

∂R
−
√

2C(PXY )

log(n)
− o (1)

)
log n

n(1−p)/3

(16)

− 1

n
log(βn(εn, R))− ξ(R)

≤
(

8
√

2C(PXY )

√
e−npn2 + 1

log(n)
+ 2

)
log(n)

n
.

(17)

D(R) is the noisy distortion-rate function [32] and
C(PXY ) , sup

(x,y)∈X×Y

∣∣∣ log
(
PXY ({(x,y)})
QXY ({(x,y)})

) ∣∣∣ <∞.

A. Discussion of Theorem 2

(i) The results establish non-asymptotic bounds for the
TYPE II error when we impose concrete scenarios for the
monotonic behavior of (εn)n. We explore three main regimes
for (εn)n: logarithmic, polynomial, super-polynomial. Each of
these cases has its corresponding lower and upper bounds,
which depends specifically on the considered (εn)n.

(ii) The proof of Theorem 2 involves an optimization
problem of the upper and lower bounds presented in the proof
of Theorem 1, for which the arguments used to prove Theorem
1 were instrumental for this analysis. Specifically, we refine the
analysis introduced in (42), (44) and (54) by finding optimal
values for l and sn for a given εn. These choices of values
for l and sn give us non-asymptotic lower and upper bounds
for − 1

n log(βn(εn, R)), for each scenario.
(iii) Regarding the upper bound of − 1

n log(βn(εn, R)) ((11),
(13), (15) and (17)), obtained from the impossibility argument
(converse part), as (εn)n goes to zero faster (from case to
case), the velocity at which the bound tends to zero increases;
from the slower rate O

(
1/
√

log(n)
)

to the faster that is
O (log(n)/n). Therefore, by imposing a more restrictive (εn)n
there is an effect in the discrepancy between the fundamental
limit ξ(R) and the optimal TYPE II error − 1

n log βn(εn, R)
obtained from this upper bound analysis.

(iv) Regarding the lower bound of − 1
n log βn(εn, R) ((10),

(12), (14) and (16)), obtained from the direct argument
(achievability part), as (εn)n goes faster to zero (from case
to case), the derived bound -for the super-polynomial case-
decreases in the velocity at which the discrepancy in error
exponent (i.e., − 1

n log(βn(εn, R)) − ξ(R)) tends to zero.
For the other two cases (logarithmic and polynomial), the
velocity is not affected, but the constants change to slower
magnitudes. These trends are consistent with the observation
that by relaxing the velocity of (εn)n the decision problem
is less restrictive and then, the result favors the possibility
of obtaining a better TYPE II error (smaller) than the one
predicted by the asymptotic limit, which is e−nξ(R).

(v) Finally, it is worth noting that if we consider the relaxed
restriction εn = ε ∈ (0, 1) in Lemma 3, the achievability part

of our argument still works and for ξ(R)−
(
− 1
n log βn(ε, R)

)
it offers an upper bound that converges to zero as O

(
log(n)
n1/3

)
.

This last velocity of convergence is slower than the same
result known for the unconstrained (centralized) problem
presented in [26]. In fact, when Xn

1 is fully observed at
the detector (see Lemma 1), in [26] the author showed that
the discrepancy

∣∣D(P‖Q)−
(
− 1
n log βn(ε)

)∣∣ tends to zero as
O (1/

√
n).3. We conjecture that our slower rate can be at-

tributed to the non-trivial role of the communication constraint
in our problem, which breaks the i.i.d. structure of Xn

1 in a
way that it is not possible to use the tools adopted to derive
the unconstrained result in Lemma 7. It is a topic of further
research to uncover if the upper bound O

(
log(n)
n1/3

)
for the

discrepancy ξ(R)−
(
− 1
n log βn(ε, R)

)
can be improved, or if

it is possible to show (by a converse argument) that this rate
is indeed optimal provided that εn = ε > 0.

B. Interpretation of Theorem 2

In general, Theorem 2 can be presented as two bounds:

ξo − f(n) ≤ 1

n
log βn ≤ ξo + g(n), (18)

where βn is the optimal TYPE II error consistent with TYPE I
error restriction (εn in the statement of Theorem 2), ξo is the
performance limit (in Theorem 1), f(n) is a positive sequences
that goes to zero with n (o(1)) representing the penalization (in
error exponent) for the use of finite simple-size, and g(n) is a
positive sequence that goes to zero representing a discrepancy
with the limit but that can be seen as a gain in error exponent.
Then, we have a feasibility range for βn given by the interval:

[ exp[−n(ξo + g(n))], exp[−n(ξo − f(n))]].

This interval contains the nominal value e−nξo , which is
consistent with the error exponent limit in Theorem 1 but ex-
trapolated to a finite length regime. If we consider exp(−nξo)
as our reference, we can study two feasible regions: the pes-
simistic interval (exp(−nξo), exp(−n(ξo− f(n)))] where the
error probability is greater than the nominal value e−nξo , and
the optimistic interval [exp(−n(ξo+g(n))), exp(−nξo)] where
the appositive occurs. The length of the interval of the two
regions is an indicator of the precision of our result (the worse
case discrepancy with respect to e−nξo ). For the pessimistic
region, the length of that interval is e−nξo(enf(n) − 1). From
the fact that f(n) is o(1) (see the statement of Theorem 2),
the length of this interval tends to zero strictly faster than
O(e−n(ξo−ε)) for any ε > 0 and, consequently, the precision
has an exponential rate of convergence that is asymptotically
given by the nominal exponent ξo > 0. On the optimistic
region, the length of this interval is e−nξo(1−e−ng(n)), which
is O(e−nξo). Overall, the length of the pessimistic interval
dominates the analysis and, consequently, the precision of
the result (i.e., the worse case discrepancy with respect to
the nominal e−nξo ) tends to zero as O(e−n(ξo−f(n))). This
order is equivalent to the worse-case TYPE II error probability
(e−n(ξo−f(n))) predicted from Theorem 2.

3For completeness, this is presented in Lemma 7 in Appendix D
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In conclusion, the overall quality of the result is governed
by ξo and affected in a smaller degree by how fast f(n) goes
to zero. Note that g(n) plays no role from this perspective.
We discussed on the previous section that f(n) goes faster
to zero when we relax the problem (i.e., passing from a
scenario for (εn)n to a scenario where this sequence tends
to zero at a smaller velocity). Then, the precision of Theorem
2 improves when simplifying the problem from one restriction
(εn)n to a relaxed restriction (ε̃n)n for the TYPE I error. This
reinforces one of the points mentioned in Section IV-A, where
we discussed that the velocity at which (εn)n goes to zero does
not affect the limit ξo (Theorem 1) but it does affect our finite
length result through f(n).

V. APPLICATION EXAMPLES

In this section, we present some empirical evidences illus-
trating the possible implication of Theorem 2 to effectively
bound βn(εn, R) with finite-sample size n. Theorem 2 offers
an interval of feasibility for βn(εn, R) expressed by

UB(εn, R) = exp

[
−n
(
ξ(R) +

∂D(R)

∂R

log(l)

2l

−
√

2l ln(1/εn)

n
C(PXY )

)]
, (19)

LB(εn, R) = exp [−n (ξ(R) + 4C(PXY )·√
2 ln

(
1

1− εn − hn(s)

)
+

log(1/hn(s))

n

)]
, (20)

where βn(εn, R) ∈ [LB(εn, R),UB(εn, R)].4 The length of
[LB(εn, R),UB(εn, R)] indicates the precision of our approx-
imation and the interval itself can be used to evaluate how
representative is e−nξ(R) of βn(εn, R) for a finite n.

We first evaluate the length of [LB(εn, R),UB(εn, R)] by
considering four cases (εn)n ∈ {0.01, 1/log(n), n−0.01, n−0.1

} associated to a constant, a logarithmic and a polynomial
TYPE I error restriction, respectively. We use a discretized
version of a Gaussian pdf PXY of |X|×|Y| where the mutual
information between the two variables (X and Y ) is 7 and
1.5 nats, respectively. To compute the expressions in (19) and
(20), we need to evaluate ξ(R). Obtaining ξ(R) involves an
optimization problem with respect to the encoder fn and the
rate R [37]. To this end, we use the algorithm in [41] which
is a generalization of Blahut-Arimoto algorithm [42].5

Table I shows the lengths of [LB(εn, R),UB(εn, R)]. We
verify that UB(εn, R)−LB(εn, R) tends to zero exponentially
fast with the sample size as observed in Section IV-B. From
this exponential decay, the nominal value predicted by Theo-
rem 1, i.e., exp(−nξ(R)), is a very precise approximation of
βn(εn, R) provided that n is sufficiently large. This support the
idea that e−nξ(R) is an excellent proxy of βn(εn, R) if a criti-
cal number of samples is achieved. Table I also shows that the
precision of the result measured by (UB(εn, R)−LB(εn, R))
is affected by the velocity at which the TYPE I error sequence

4l and hn(s) are obtained according to the proof of Theorems 1 and 2 (see
Appendix A and B for details).

5Importantly, under some mild conditions given in [41], this optimization
(algorithm) converges to ξ(R).

Fig. 2: Critical Number of Samples (CNS) predicted by Theo-
rem 2 across different values of δ = 10−k. The values used are
ξ(R) = 3, I(X;Y ) = 7, R = 4 and CX(P,Q) = 2.47.

Fig. 3: CNS predicted by Th. 2 across different values of δ =
10−k. Low rate case with ξ(R) = 0.7, I(X;Y ) = 1.5, R = 2
and CX(P,Q) = 1.92. The dashed lines show an estimation of
the exact CNS obtained from βn(εn, R).

tends to zero, which is consistent with our previous analysis
in Section IV-B. In particular, we observe that for a faster
convergence rate of (εn)n, i.e, a stringer distributed decision
problem, the length of [LB(εn, R),UB(εn, R)] is bigger, which
means that our bounds are expected to be less informative on
βn(εn, R) when compared with a relaxed scenario.

The results presented in Table I support the claim that
exp(−nξ(R)) can be adopted as practical proxy to βn(εn, R).
To formalize this, we address the following question: for
a given arbitrary small δ > 0 of the form 10−k with
k ∈ {1, .., 5} and a joint model PXY , we seek to find the
lowest n such that βn(εn, R) ∈ (e−nξ(R)−δ, e−nξ(R)+δ). The
exponential decay of the length of [LB(εn, R),UB(εn, R)],
observed in Table I, suggests that this condition happens
eventually with n very quickly. Importantly, we can derive
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Number of observations n
εn 50 150 250 350 450 550 650 750

1/log(n) 1.2138e-12 2.7758e-37 3.3636e-62 3.0109e-87 2.2227e-112 1.4286e-137 8.2535e-163 4.3764e-188
1/n0.01 6.4432e-10 1.4348e-30 4.2359e-52 4.5381e-74 2.5069e-96 8.5307e-119 1.9894e-141 3.4117e-164
1/n0.1 0.0045 1.8737e-14 2.5598e-28 2.0497e-43 2.5977e-59 8.5949e-76 1.0006e-92 4.9903e-110

TABLE I: Magnitude of UB(εn)− LB(εn) function of εn and n for the case when I(X;Y ) = 1.

an upper bound for this Critical Number of Samples (CNS)
from the closed-form expressions we have for LB(εn, R) and
UB(εn, R).6 Figs. 2 and 3 present the predicted CNS vs.
δ = 10−k for different scenarios of PXY (in terms of the mag-
nitude of I(X;Y )) and (εn)n. We consider two scenarios for
PXY (I(X;Y ) = 7, R = 4 and I(X;Y ) = 1.5 with R = 2)
and we explore (εn)n ∈ {n−0.01, n−0.1, 1/log(n), 0.1}. Figs.
2 and 3 show that even for a very small precision δ = 10−5,
the point at which βn(εn, R) is well approximated by e−nξ(R)

happens with less than 22 samples for the high-rate restriction
case and in less than 80 samples for the low rate case for the
majority of (εn)n.7 The dependency of these values (predicted
CNS from Theorem 2) on the magnitude of I(X;Y ) and (εn)n
is clearly expressed, which is consistent with our previous
analyses in Section IV-B.

Finally, to evaluate the tightness of our theoretical bounds
for the CNS, we simulate data from the true model PXY
(i.i.d. samples) to have a practical lower bound for βn(εn).
In particular, given PXY , R and (εn)n, we obtained empirical
estimations of the two error probabilities from which we
estimate βn(εn, R). 2.5 · 106 realizations of PXY were used
to obtain good estimations of these probabilities.8 Using the
estimated values of βn(εn, R), we obtained for each δ > 0
the corresponding CNS where the condition βn(εn, R) ∈
(e−nξ(R) − δ, e−nξ(R) + δ) is meet directly (the empirical
estimations of the CNS). Fig. 3 contrasts our predictions
(theoretical upper bounds) with the empirical estimations (the
dashed lines) of the CNS. Consistent with the nature of
our result, the predicted CNS values are more conservative
than the CNS estimated from simulations. This discrepancy
is not significant overall, in particular for the regime when
εn exhibits a relatively small velocity of convergence to
zero. Overall, we can conclude that the derived bounds are
meaningful and can be adopted in cases where it is prohibitive
to estimate βn(εn, R) from data. Indeed, we face this issue in
this analysis, as it was not possible to estimate βn(εn, R) for
the higher rate cases.9

VI. SUMMARY AND CONCLUDING REMARKS

This paper explores the problem of testing against inde-
pendence with one-sided communication constraints. More

6The predicted CNS is the first n ≥ 1 such that max{UB(εn, R) −
e−nξ(R), e−nξ(R) − LB(εn, R)} ≤ δ, which is finite for any δ > 0 and
can be computed from our result.

7The observed variations can be attributed to the value of ∂D(R)
∂R

, which
tends to zero as long as R > H(X).

8To achieve this, we use an scalar quantization based on the Lloyd-max
algorithm [43] to obtain an induced quantized distribution Pf(Xn1 )Y .

9βn(εn, R) is of order O(e−nξ(R)) so when R is relatively high, the value
of ξ(R) tends to I(X;Y ) for which enI(X;Y ) simulations are needed. This
number becomes prohibitive, even for n of order of 30 when I(X;Y ) = 1.5.

specifically, the scenario of two memoryless sources is con-
sidered where one of the modalities is transmitted to the
decision-maker (fusion center) over a rate-limited channel. In
this context, we explored a general family of optimal tests
(in the sense of Neyman-Pearson) where restrictions on the
TYPE I error are imposed. We are interested in the velocity at
which the TYPE II error vanishes with the sample size. From
a theoretical perspective, we obtained the performance limits
for a rich family of problems with a decreasing sequence of
TYPE I error probabilities (Theorem 1). This result stipulates
that the error exponent of the TYPE II error probability tends
to an error exponent (fundamental limit) in the form of the
classical Stein’s Lemma. This error exponent is expressed in
a closed-form, which is a function of the operational rate (in
bits per sample) imposed on one of the information sources.
Interestingly, this result implies that for a large family of
TYPE I error restrictions (vanishing to zero with the sample
size), the error exponent coincides with the result obtained in
the (classical) scenario where the TYPE I error restriction is
constant with n (Lemma 3).

Concerning the finite-sample size analysis, our main result
(Theorem 2) provides bounds for the TYPE II error probability.
Using results from rate-distortion theory and concentration
inequalities, we obtained upper and lower bounds for this error
as a function of n (the number samples), the sequence (εn)n
that models the restriction for the TYPE I error probability
and the underlying distributions. We observed that the bounds
offer an interval of feasibility for the optimal TYPE II error
probability, which presents an accurate description. A closed-
form expression for the worse-case TYPE II error probability
was derived where a discrepancy in the error exponent (with
respect to the asymptotic exponent) was identified. This dis-
crepancy (overhead) can be attributed to using a finite number
of samples in the decision. Furthermore, this penalization van-
ishes at a velocity that is a function of (εn)n, and consequently,
we observed the effect of the TYPE I error restriction in this
non-asymptotic analysis.

Finally, we observed that the TYPE II error probability is
arbitrary close (with n) to the nominal value predicted by the
asymptotic result e−nξ(R), where ξ(R) is the limit in Theorem
1. Furthermore, the precision in Theorem 2, measured by the
length of the feasible interval, tends to zero exponentially fast.
Numerical analysis in some concrete scenarios confirms the
predicted quality of the non-asymptotic results in Theorem 2.

APPENDIX

A. Proof of Theorem 1:

The proof is divided in two parts: a lower and an upper
bound result. We begin with the following bound that extend
the result presented in [9, Theorem 3].



8

Theorem 3. Let us assume that εn > 0 for all n and
(1/εn)n = o(ern) for any r > 0, then

lim inf
n→∞

− 1

n
log(βn(εn, R)) ≥ ξ(R). (21)

Proof: For an arbitrary encoder fn : Xn 7→ {1, . . . , 2nR}
of rate R > 0, let us consider the corresponding optimal
decision regions -according to Neyman-Pearson’s Lemma- on
the one-sided quantized space {1, . . . , 2nR} × Yn expressed
by Bn,t(fn) ,{

(z, yn1 ) ∈ {1, . . . , 2nR} × Yn :
Pfn(Xn1 )Y n1

(z, yn1 )

Qfn(Xn1 )Y n1
(z, yn1 )

> ent

}
.

(22)
Bn,t(fn) is parametrized in terms of t, n and fn. Let us denote
by φn,t(·) : {1, . . . , 2nR} × Yn 7→ {0, 1} the induced test (or
decision rule) such that φ−1

n,t({0}) = Bn,t(fn). Then the TYPE
I error probability for the pair (fn, φn,t) is given by

P0(fn, φn,t) = Pfn(Xn1 )Y n1
(Bcn,t(fn)). (23)

By construction of the pair (fn, φn,t), an upper bound for the
TYPE II is obtained by

P1(fn, φn,t) = Qfn(Xn1 )Y n1
(Bn,t(fn)) ≤ e−nt. (24)

Then, for any finite n > 0 and εn > 0, finding an achievable
TYPE II error exponent from this construction (and the bound
in (24)) reduces to solve the following problem:

t∗n(εn) , sup
fn encoder of rate R

sup
t
{t : Pfn(Xn1 )Y n1

(Bcn,t(fn)) ≤ εn}.
(25)

Note that fn breaks the i.i.d. structure of the problem, then
determining t∗n(εn) is not a simple task. We will derive a lower
bound for t∗n(εn) using a finite block analysis approach. For
this, let us consider a fixed l ≥ 1 and let us consider f̃l an
encoder of length l, i.e. f̃l : Xl → {1, . . . , 2lR}. The idea is to
decompose Xn

1 in segments of finite length to use the induced
block i.i.d. structure when n tends to infinity. More precisely,
we construct an encoder that we denote by f̃n,l applying the
function f̃l k-times to every sub-block of length l, assuming
for the moment that n = kl, i.e.,

f̃n,l(x1, . . . , xl, xl+1, . . . , x2l, . . . , xl(k−1)+1, . . . , xkl) ,

(f̃l(x1, . . . , xl), f̃l(xl+1, . . . , x2l), . . . , f̃l(xl(k−1)+1, . . . , xkl)).
(26)

In the use of the set Bn,t(f̃n,l) in (22), it will be con-
venient to parametrize t relative to the reference value
1
lD(Pf̃l(Xl1)Y l1

‖Qf̃l(Xl1)Y l1
) that is a function of f̃l. More

precisely, let us define

tδ ,
1

l
D(Pf̃l(Xl1)Y l1

‖Qf̃l(Xl1)Y l1
)− δ,

for any δ > 0. Using the l-block structure of f̃n,l, the TYPE I
error in (23) of the pair (f̃n,l, φn,tδ) can be expressed by:

Pf̃n,l(Xn1 )Y n1

(
Bcn,tδ(f̃n,l)

)
, (27)

where Bcn,tδ(f̃n,l)) has the elements zk1 , y
n
1 ∈ {1, . . . , 2lR}k×

Yn satisfying that∣∣∣∣∣D̂(Pf̃l(Xl1)Y l1
‖Qf̃l(Xl1)Y l1

)−D(Pf̃l(Xl1)Y l1
‖Qf̃l(Xl1)Y l1

)

∣∣∣∣∣ ≥ lδ,
(28)

where D̂(Pf̃l(Xl1)Y l1
‖Qf̃l(Xl1)Y l1

) ,

1

k

k∑
i=1

log

(
Pf̃l(Xl1)Y l1

({zi, ykik(i−1)+1})
Qf̃l(Xl1)Y l1

({zi, ykik(i−1)+1})

)
denotes the empirical divergence. We will use a concentration
inequality to bound the probability of the deviation event
in (28). To this end, let us introduce the notation: ui =
(zi, yl(i−1)+1, . . . , yil) ∈ {1, . . . , 2lR} × Yl and

g(u1, . . . , ui, . . . , uk) ,
1

k

k∑
j=1

log

(
Pf̃l(Xl1)Y l1

({uj})
Qf̃l(Xl1)Y l1

({uj})

)
,

(29)
where it follows that for any k > 0 and ∀i ∈ {1, . . . , k}:

sup
u1,...,ui,ūi,...,uk
∈f̃l(Xl)×Yl

∣∣∣∣∣g(u1, . . . , ui, . . . , uk)− g(u1, . . . , ūi, . . . , uk)

∣∣∣∣∣
≤ 2

k
C(f̃l, PXY ), (30)

where C(f̃l, PXY ) , sup
z,yl1∈f̃l(Xl)×Yl

∣∣∣∣∣ log

(
P
f̃l(X

l
1)Y l1

({z,yl1})

Q
f̃l(X

l
1)Y l1

({z,yl1})

)∣∣∣∣∣.
From the bounded difference inequality [44, Theorem 2.2], we
have that

Pf̃n,l(Xn1 )Y n1

(
Bcn,tδ(f̃n,l)

)
≤ exp

( −k(lδ)2

2C2(f̃l, PXY )

)
. (31)

Finally, from (25), a lower bound for t∗n(εn) can be obtained
from (31) by making δ (that we denote by δ̃n,l(εn) in (32))
the solution of the following condition:

exp

(
−k(lδ̃n,l(εn))2

2C2(f̃l, PXY )

)
= εn. (32)

Consequently, we have that

t∗n(εn) ≥ 1

l
D(Pf̃l(Xl1)Y l1

‖Qf̃l(Xl1)Y l1
)− δ̃n,l(εn)︸ ︷︷ ︸

tδ̃n,l(εn)=

(33)

where from (32),

δ̃n,l(εn) =

√
2 ln(1/εn)

nl
· C(f̃l, PXY ). (34)

Finally, replacing the bound of t∗n(εn) in (33) at the exponen-
tial term in (24) and taking logarithm, we have that:

(35)
ξ(R)−

(
− 1

n
logP1(f̃n,l, φn,tδ̃n,l(εn)

)

)
≤
[
ξ(R)− 1

l
D(Pf̃l(Xl1)Y l1

‖Qf̃l(Xl1)Y l1
)

]
+ δ̃n,l(εn).
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Remark 1. Looking at (35) and using (2.6) and Theorem 3 in
[9], ∀γ > 0, we can find a sufficient large l∗ and f∗l (function
of γ) such that,

ξ(R)− γ <
D(Pf̃∗l (Xl

∗
1 )Y l

∗
1
‖Qf̃∗l (Xl

∗
1 )Y l

∗
1

)

l∗
< ξ(R). (36)

Returning to the proof, we have that ∀l > 0, ∀n > 0 and
any εn > 0

ξ(R)−
(
− 1

n
log(βn(εn, R))

)
≤ ξ(R)−

(
− 1

n
log(P1(f̃n,l, φn,tδ̃n,l(εn)

))

)
≤ ξ(R)− 1

l
D(Pf̃l(Xl1)Y l1

‖Qf̃l(Xl1)Y l1
) + δ̃n,l(εn)

=

 max
U :U−
−X−
−Y
I(U ;X)≤R
|U|≤|X|+1

I(U ;Y )− 1

l
I(f̃l(X

l
1);Y l1 )

+ δ̃n,l(εn).

(37)

The first inequality is from the fact that βn(εn, R)) ≤
P1(f̃n,l, φn,tδ̃n,l(εn)

), the second from (35), and the last equal-
ity from the definition of ξ(R) in Lemma 3, expressing the
divergence as a mutual information [32].

It is worth noting that the bound in (37) is valid for an
arbitrary l > 0. Considering that we know an expression for
δ̃n,l(εn) from (34), we can address the problem of finding the
best upper bound, i.e., the l that offers the best compromise
between the two terms in the RHS of (37). For that, we need
to focus on:

max
U :U−
−X−
−Y

I(U ;X)≤R |U|≤|X|+1

I(U ;Y )− max
f̃l:Xl→{1,...,2lR}

1

l
I(f̃l(X

l
1);Y l1 ),

(38)
which corresponds to the non-asymptotic analysis of the
information bottleneck problem [37]. This coding problem can
be viewed as a classical rate-distortion (fixed-rate) lossy source
coding problem with the log-loss as the distortion function
[45]. More precisely, (38) can be expressed by:

min
f̃l:Xl1→{1,...,2lR}

1

l
H(Y l1 |f̃l(X l

1))− min
U :U−
−X−
−Y

I(U ;X)≤R |U|≤|X|+1

H(Y |U).

(39)
The following Lemma connects the expression in (39) with

an instance of the classical rate distortion problem [46].

Lemma 5.
1

l
H(Y l1 |f̃l(X l

1) ≤ D(R)− ∂

∂R
D(R)

log(l)

2l
+ o

(
log l

l

)
,

(40)

where D(R) is the noisy distortion-rate function given by

D(R) = min
U :U−
−X−
−Y

I(U ;X)≤R |U|≤|X|+1

H(Y |U). (41)

The proof is presented in Appendix C. Consequently, from
(40) we have that the expression in (38) is upper bounded by

− ∂
∂RD(R) log(l)

2l + o
(

log(l)
l

)
. Applying this result to (37), it

follows that

ξ(R)−
(
− 1

n
log(βn(εn, R))

)
≤ − ∂

∂R
D(R)

log(l)

2l
+ δ̃n,l(εn) + o

(
log(l)

l

)
. (42)

To obtain a more explicit dependency of δ̃n,l(εn) on l we use
the following result:

Proposition 1. Let us consider two arbitrary probability
distributions µ, ρ ∈ P(X), an arbitrary encoder fn : X →
{1, . . . , n}. and its induced partition of X given by πn =
{Ai,n , f−1

n ({i}) : i ∈ {1, . . . , n}}, then

sup
A∈πn

µ(A)

ρ(A)
≤ sup

x∈X

µ({x})
ρ({x}) . (43)

The proof is presented in Appendix E.
From Proposition 1, we obtain that:

δ̃n,l(εn) =

√
2 ln(1/εn)

nl
· C(f̃l, PXY )

≤
√

2l ln(1/εn)

n
· C(PXY ). (44)

Using (44), the problem reduces to minimize the RHS of (42)
as long as (εn)n tends to zero at a sub-exponential rate, for
which the assumption that

(
1
εn

)
n

is o(ern) for any r > 0 is
central. In fact, it is sufficient to consider any sequence (ln)n

of integers such that (1/ln)n is o(1) and (ln)n is o
(

n
ln(1/εn)

)
,

from which we conclude that

lim
n→∞

inf − 1

n
log(βn(εn, R)) ≥ ξ(R). (45)

Conversely, we have the following result:

Theorem 4. Let us assume that εn > 0 for all n and that
(1/εn)n = o(ern) for any r > 0, then

lim
n→∞

sup− 1

n
log(βn(εn, R)) ≤ ξ(R). (46)

Proof: Let us consider a fixed-rate encoder fn : Xn →
{1, . . . , 2nR} of rate R. We begin by using [47, Lemma 4.1.2],
which states that for all t > 0 and ∀An ⊂ fn(Xn)× Yn

(47)Pfn(Xn1 )Y n1
(Acn) + entQfn(Xn1 )Y n1

(An)

≥ Pfn(Xn1 )Y n1

(
Bcn,t(fn)

)
,

where as before Bn,t(fn) ={
(z, yn1 ) ∈ fn(Xn)× Yn :

Pfn(Xn1 )Y n1
({z, yn1 })

Qfn(Xn1 )Y n1
({z, yn1 })

> ent

}
.

(47) is valid for any decision rule acting on (fn(Xn
1 ), Y n1 ).

The rest of the argument focuses on finding a lower bound to
the RHS of (47). The latter can be done by considering the
following function i(xn1 , y

n
1 ) = log

(
PY n1 |fn(Xn1 )(yn1 |fn(xn1 ))

PY n1
(yn1 )

)
and the fact that ∀q ≥ 1

E(Xn1 ,Y
n
1 )∼PnXY (i(Xn

1 , Y
n
1 )q) ≤ q! (4n2C(PXY )2)q. (48)
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Using Bn,t(fn), it is useful to write t =
I(fn(Xn1 );Y n1 )

n + s,
then Pfn(Xn1 )Y n1

(
Bcn,t(fn)

)
=

PnXY ({(xn1 , yn1 ) : i(xn1 , y
n
1 )− E(i(Xn

1 , Y
n
1 )) ≤ ns}) , (49)

where the expected values in (49) assumes that (Xn
1 , Y

n
1 ) ∼

PnXY . Using the bound on the variance of i(Xn
1 , Y

n
1 ), we can

use the moment concentration inequality [39, Theorem 2.1] to
obtain:

PnXY ({i(xn1 , yn1 )− E(i(Xn
1 , Y

n
1 )) ≤ ns}) (50)

≥ 1− e−s2/(32C(PXY )2).

Combining this with (47), it follows that for any s > 0 and
any set An ⊂ fn(Xn)× Yn

Pfn(Xn1 )Y n1
(Acn) + e

n
(
I(fn(Xn1 );Y n1 )

n +s
)
Qfn(Xn1 )Y n1

(An)

≥ 1− e−s2/(32C(PXY )2). (51)

At this point, we introduce the restriction on the TYPE I
error in the analysis. Let us consider an arbitrary An such
that Pfn(Xn1 )Y n1

(Acn) ≤ εn. Then we have that:

e
n
(
I(fn(Xn1 );Y n1 )

n +s
)
Qfn(Xn1 )Y n1

(An)

≥ 1− e−s2/(32C(PXY )2) − εn. (52)

Taking logarithm at both sides of (52) for any s satisfying the

admisible condition εn < 1− e−
s2

32C(PXY )2 , it follows that

I(fn(Xn
1 );Y n1 )

n
−
(
− 1

n
log(Qf(Xn1 )Y n1

(An))

)

≥ −s+

log

(
1− εn − e−

s2

32C(PXY )2

)
n

. (53)

Since both fn and the set An are arbitrary in (53), the bound
is valid for the pair (f∗n, φ

∗
n) such that Qf∗n(Xn1 )Y n1

(A∗n) =

βn(εn, R). In addition I(fn(Xn1 );Y n1 )
n ≤ ξ(R) by definition (see

(2.5) in [9]), then for all s > 4C(PXY )
√

2 ln(1/1− εn) it
follows that

ξ(R)+
1

n
log(βn(εn, R)) ≥

− s+

log

(
1− εn − e−

s2

32C(PXY )2

)
n

. (54)

At this point, we use the assumption that limn→∞ εn =
0, which implies that there is a sequence (sn)n that is
O(
√

log(n)/n) for which (54) evaluated at s = sn holds for
any n, which implies that

lim
n→∞

sup− 1

n
log(βn(εn, R)) ≤ ξ(R). (55)

B. Proof of Theorem 2

Proof: The proof can be divided in two independent parts
from the analysis obtained in Theorems 3 and 4. On the one
hand, we have an upper bound obtained by optimizing the RHS
of (42) with respect to the blocklength l. More precisely, we
have the following inequality:

ξ(R)−
(
− 1

n
log(βn(εn, R))

)
≤ − ∂

∂R
D(R)

log l

2l
+

√
2l ln(1/εn)

n
C(PXY ) + o

(
log l

l

)
,

(56)

where C(PXY ) , sup(x,y)∈X×Y

∣∣∣∣∣ log
(
PXY ({(x,y)})
QXY ({(x,y)})

)∣∣∣∣∣. This

expression depends on εn and it is valid for all l ≥ 1. Then
the tighest bound from (56), reduces to find l∗n solution of:

log l∗n
l∗n
≈
√
l∗n ln(1/εn)

n
. (57)

To address this problem, we consider ln = nα to look for
this optimal α (function of εn). This is the consequence of
assuming that the condition in (57) holds, which reduces to:

log nα

nα
≈
√
nα ln(1/εn)

n
. (58)

To solve (58), we move into the specific cases for (εn) stated
in Theorem 2. We have three different scenarios:
a) (εn)n = (1/np)n with p > 0: The condition (58) reduces
to

α log n

nα
≈
√
nαp ln(n)

n
, (59)

where (non considering the logarithmic term) the equilibrium
is obtained with α∗ = 1/3, which makes the upper bound in
(56) of the form:

ξ(R)−
(
− 1

n
log(βn(εn, R))

)
≤ −∂D(R)

∂R

log n

6n1/3
+

√
2p ln(n)

n2/3
C(PXY ) + o

(
log n

n1/3

)
=

[
−∂D(R)

∂R
· 1

6
+ o (1)

](
log n

n1/3

)
. (60)

b) (εn)n = (1/en
p

)n with p ∈ (0, 1): Following the
previous approach, we solve

α log n

nα
≈
√
nαnp

n
, (61)

resulting in α∗ = (1− p)/3. This choice offers the bound

ξ(R)−
(
− 1

n
log(βn(εn, R))

)
≤ −∂D(R)

∂R

(1− p) log n

6n(1−p)/3 +

√
2C(PXY )

n(1−p)/3 + o

(
log n

n(1−p)/3

)
=

[
−∂D(R)

∂R

(1− p)
6

+ o (1)

](
log n

n(1−p)/3

)
. (62)



11

c) (εn)n = (1/log(n))n: The matching condition reduces
to find α such that

α log n

nα
≈
√
nα ln(log(n))

n
. (63)

It is simple to show that, as in the polynomial regime, the
approximated solution is α∗ = 1/3, which offers the following
upper bound:

ξ(R)−
(
− 1

n
log(βn(εn, R))

)
≤ −∂D(R)

∂R

log n

6n1/3
+

√
2 ln(log(n))

n2/3
C(PXY ) + o

(
log n

n1/3

)
=

[
−∂D(R)

∂R
· 1

6
+ o (1)

](
log n

n1/3

)
. (64)

For the lower bound, we use the following inequality from
the proof of Theorem 4 (see (54)):

ξ(R)−
(
− 1

n
log(βn(εn, R))

)
≥

− s+

log

(
1− εn − e−

s2

32C(PXY )2

)
n

. (65)

This inequality is valid for any s ∈ R such that 1 −
εn − e

− s2

32C(PXY )2 > 0 or, equivalently, for all s such that
s > 4C(PXY )

√
2 ln(1/1− εn). At this point, it is convenient

to define hn(s) , 1 − εn − e
− s2

32C(PXY )2 in the domain
s > 4C(PXY )

√
2 ln(1/1− εn). Then (65) can be expressed

in terms of hn(s) by

ξ(R)−
(
− 1

n
log(βn(εn, R))

)
≥ −4C(PXY )

√
2 ln

(
1

1− εn − hn(s)

)
− log(1/hn(s))

n
,

(66)

where hn(s) > 0 if s > 4C(PXY )
√

2 ln(1/1− εn). We
notice that as (εn)n is o(1) (function of n) the first term on
the RHS of (66) tends to zero if, and only if, (hn(s))n is
o(1). On the other hand, (log(1/hn(s)))n needs to be o(n) to
make the second terms on the RHS of (66) vanishing to zero
with n. Then, there is a regime on the asymptotic behavior of
(hn(s))n where the bound in (66) is meaningful.

More precisely, for any finite n, we will address the problem
of finding s ∈ (4C(PXY )

√
2 ln(1/1− εn),∞), or equiva-

lently finding hn(s) ∈ (0, 1), that offers the best lower bound
from (66). On the specifics, as (εn)n and (hn(s))n go to zero

with n, for the first term −4C(PXY )

√
2 ln

(
1

1−εn−hn(s)

)
a

Taylor expansion around 1 is used to aproximate the function.
In particular, it follows that:

− 4
√

2C(PXY )

√
ln

(
1

1− εn − hn(s)

)
≥ −2

√
2C(PXY )

√
εn + hn(s)

√
4− 5(εn + hn(s))

1− εn − hn(s)

≥ −2
√

2C(PXY )
√
εn + hn(s)

√
4

1/2

= −8
√

2C(PXY )
√
εn + hn(s), (67)

where the last inequality is obtained eventually as (εn +
hn(s))n is o(1). Then, from (66) and (67), the optimal
lower bound reduces to find the optimal balance between
−8
√

2C(PXY )
√
εn + hn(s) and log(1/hn(s))

n . It is important
to note that −8

√
2C(PXY )

√
εn + hn(s) tends to zero at a

velocity that is proportional to how fast (hn(s))n tends to
zero, as long as, (hn(s))n is o(εn), otherwise, the velocity is
dominated by O(

√
εn), which is independent of (hn(s))n. On

the other hand, the second term (log(1/hn(s)))n tends to zero
at a rate that is inversely proportional to the velocity at which
(hn(s))n goes to zero. Therefore, the balance is function
of (εn)n. We recognize two regimes for this optimization
problem:

1- If for some K > 0 we have that
√

2εn ≥ K log(1/εn)
n ,

eventually in n, then the solution of the optimization
problem is achieved when (hn(s))n ≈ (εn)n (Regime
1);

2- Otherwise, if (
√

2εn)n is o
(

log(1/εn)
n

)
, then the solu-

tion of the optimization problem implies that (εn)n is
o(hn(s)) (Regime 2).

Finally, to obtain the upper bound, we need to evaluate (εn)n
in the different scenarios stated in Theorem 2.
• (εn)n = (1/log(n))n: Regime 1 is met, then we choose
hn(s) = εn. This implies that

ξ(R)−
(
− 1

n
log(βn(εn, R))

)
≥ −16C(PXY )√

log(n)
− log(log(n))

n

=

(
−16C(PXY )− log(log(n))

√
log(n)

n

)
1√

log(n)

= (−16C(PXY )− o(1))

(
1√

log(n)

)
. (68)

• (εn)n = (1/np)n with 2 > p > 0: Regime 1 is met, then
we choose hn(s) = εn. This implies that

ξ(R)−
(
− 1

n
log(βn(εn, R))

)
≥ −16C(PXY )

np/2
− p log(n)

n

=

(
−16C(PXY )− p log(n)

n1−p/2

)(
1

np/2

)
= (−16C(PXY )− o(1))

(
1

np/2

)
. (69)
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• (εn)n = (1/np)n with p ≥ 2: Regime 2 is met, then we
have to solve the following matching condition√

εn + hn(s) ≈ log(1/hn(s))

n
. (70)

Assuming hn(s) = 1/nα, α ∈ (0, 2], the equilibrium is
obtained with α∗ = 2. This implies that

ξ(R)−
(
− 1

n
log(βn(εn, R))

)
≥ −8

√
2C(PXY )

√
n−p + n−2 − 2 log(n)

n

=

(
−8
√

2C(PXY )

√
n2−p + 1

log(n)
− 2

)(
log(n)

n

)
= (−o(1)− 2)

(
log(n)

n

)
. (71)

• (εn)n = (1/en
p

)n with p ∈ (0, 1): Regime 2 is met, then
we follow the same condition in (70). The equilibrium is
obtained with α∗ = 2. This implies that

ξ(R)−
(
− 1

n
log(βn(εn, R))

)
≥ −8

√
2C(PXY )

√
e−np + n−2 − log(n)

n

=

(
−8
√

2C(PXY )

√
e−npn2 + 1

log(n)
− 2

)(
log(n)

n

)
= (−o(1)− 2)

(
log(n)

n

)
. (72)

C. Proof of Lemma 5

Proof: Let us consider a family of probability distribu-
tions Pλ ∈ P(Y) indexed with a parameter λ ∈ Λ, where Λ is
some parametric space. Given a vector of parameters λn1 ∈ Λn,
the product probability distribution in P(Yn) is defined as

Pλn({yn1 }) ,
n∏
i=1

Pλi({yi}). (73)

Let ρ(λn1 , Y
n
1 ) : Λn×Yn1 → R+ ∪{0} denote the logarithmic

loss distortion defined by:

ρ(λn1 , y
n
1 ) , − 1

n
logPλn1 ({yn1 }) =

n∑
i=1

− 1

n
logPλi({yi}).

By construction ρ(λn1 , y
n
1 ) is additive (ρ(λn1 , y

n
1 ) =∑n

i=1 ρ(λi, yi)) and then the following result holds:

Lemma 6. [45, Lemma 1] Let X l
1, Y

l
1 be a random vector

with known joint distribution. For any function f̃l : Xl →
{1, ..., 2lR} and function g : {1, ..., 2lR} → Λn such that
g(f̃l(X

l
1)) = λl1 it follows that

E[ρ(g(u), Y l1 )|f̃l(X l
1) = u] ≥ 1

l
H(Y l1 |f̃l(X l

1) = u). (74)

Taking expectation on the two sides of (74) with repect to X l
1,

we get that

E[ρ(g(f̃l(X
l
1)), Y l1 )] ≥ 1

l
H(Y l1 |f̃l(X l

1)). (75)

Remark 2. We observe that, if we identify the f̃l as an encoder
and g as the decoder, the term in the LHS of (75) corresponds
to the noisy rate distortion function under the logarithmic loss.
Then, for the purpose of the following result, it is convenient to
redefine the distortion function ρ̃(xl1, λ

l
1) : Xl1×Λl1 → R∪{0}

as
ρ̃(xl1, λ

l
1) , E[ρ(λl1, Y

l
1 )|X l

1 = xl1]. (76)

Denoting λi = gi(f̃l(x
l
1)) and gi is the ith component of g,

we observe that ρ̃(xl1, λ
l
1) =

∑l
i=1 ρ̃(xi, λi) is additive.

Finally, using the previous observation, we can use f̃l as the
encoder and gi as the decoder, to recover an instance of the
rate distortion problem [46]. Therefore, from [40, Theorem 3],
we obtain that
1

l
H(Y l1 |f̃l(X l

1)) ≤ EX∼P lX [ρ̃(X l
1, λ

l
1)]

≤ D(R)− ∂

∂R
D(R)

log(l)

2l
+ o

(
log(l)

l

)
,

which concludes the result.

D. Finite-length Result for the Unconstrained Case

Lemma 7. [26] Let us consider ε ∈ (0, 1), then eventually
in n it follows that − log(βn(ε))

n =

D(P‖Q) +

√
V (P‖Q)

n
Φ−1(ε) +

log n

2n
+O

(
1

n

)
,

where V (P‖Q) =
∑
x∈X

P ({x})
[
log
(
P ({x})
Q({x})

)
−D(P‖Q)

]2
.

A direct corollary of this result shows that∣∣D(P‖Q)−
(
− 1
n log(βn(ε))

)∣∣ is O
(

1√
n

)
.

E. Proof of Proposition 1

Proof: Given A ∈ πn, we note that

µ(A)

ρ(A)
=

|A|∑
j=1

µ({j : j ∈ A})

|A|∑
j=1

ρ({j : j ∈ A})
. (77)

Then, given a collection of positive numbers {ai : i ∈
{1, . . . , n}} and {bi : i ∈ {1, . . . , n}}, we use the following
basic inequality

n∑
i=1

ai ≤ max
i

{
ai
bi

} n∑
i=1

bi. (78)

Finally, since A is arbitrary in (77) and using the positiveness
of the probability, we conclude the desired result.
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