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a mis compañeros de colegio materias que les eran dif́ıciles y mi Profesora
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Notation

symbol means
C The set of complex numbers.

|G| Order of the group G.

[G : H] Index of the subgroup H in G.

H oK Semidirect product of H by K (H EH oK).

TrM The Trace of a square matrix M .

GL(n,C) The set of n× n invertible matrices with entries from C.

Sp Symmetric group of degree p .

Q[G] The rational group algebra of group G.

JXH Jacobian of the Riemann surface X/H (or J(X/H)) .

Mg Conformal equivalence class space of Riemann surfaces of a genus g.

Ag Moduli space for Abelian variety of genus g.

GCD(x, y) Greatest common divisor between x and y.
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Abstract

Let G be a finite group acting on a compact Riemann surface X. This ac-
tion induces the so called group algebra decomposition of the corresponding
Jacobian variety JX. Moreover, consider a subgroup H ≤ G of G and the
intermediate quotient X/H arising from this action restricted to H. The
group algebra decomposition of JX determines a decomposition of the Ja-
cobian variety J(X/H) of X/H.

In this work, we prove a condition under which two intermediate quo-
tients, X/H and X/K for H,K ≤ G, correspond to isogenous Jacobian
varieties. The condition is that they induce the same permutation charac-
ter, a concept that has been widely studied in the context of Representation
Theory, where it is said that H and K are linked subgroups in G.

For every (odd) prime p ≥ 3, we study a family of groups Gp
∼= (Z/p2Z×

Z/pZ) o (Z/pZ × Z/pZ) having two linked subgroups which are not conju-
gate. We describe their elements, irreducible complex (and rational) repre-
sentations, different signatures for their actions on Riemann surfaces, and the
corresponding impact on the group algebra decomposition of the associated
Jacobian varieties.
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Resumen

Sea G un grupo finito actuando en una superficie de Riemann compacta X.
Esta acción induce la llamada descomposición según el álgebra de grupo de
la variedad Jacobiana JX correspondiente a X. Más aún, considere H ≤
G subgrupo de G y la superficie cuociente (intermedia) X/H determinada
por la acción restringida a H. La descomposición de JX determina una
descomposición de la Jacobiana de X/H, J(X/H).

En este trabajo demostramos una condición bajo la cual las variedades
Jacobianas de dos cubrientes intermedios, X/H y X/K para H,K ≤ G, son
isógenas. Esta condición es que H y K inducen la misma representación
permutacional. Ello ha sido ampliamente estudiado en el contexto de Teoŕıa
de Representaciones, donde se dice que H y K son subgroups ligados en G.

Para todo primo (impar) p ≤ 3, estudiamos una familia de grupos Gp
∼=

(Z/p2Z×Z/pZ) o (Z/pZ×Z/pZ) que tienen dos subgrupos ligados no con-
jugados. Describimos sus elementos, caracteres irreducibles complejos (y
racionales), diferentes firmas y acciones, y las consecuencias en la descom-
posición de las variedades Jacobianas asociadas.
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Introduction

The classification of objects is essential in Mathematics. The question of
whether or not two objects are equivalent appears in every theory as soon as
the objects of study are defined. Frequently, there is more than one possible
definition of equivalence that depends on the properties we are interested in.

In Field Theory, we find the concept of arithmetically equivalent fields
and isomorphic fields. Isomorphic fields are arithmetically equivalent but
the reciprocal is not true. In fact, a field K that is isomorphic to every field
to which it is arithmetically equivalent is said to be arithmetically solitary.
In 1925, Gassmann [14, 31] discovered the first non-solitary fields: He proved
the existence of two fields K,K ′ of degree [K : Q] = [K ′ : Q] = 180 which
are arithmetically equivalent but not isomorphic.

Now, turning to the context of Riemannian Geometry, in 1985, a work
of Sunada [40] was published where he brought these ideas, that were used
in the context of number fields, to Riemannian manifolds. Specifically, he
sought to study the question of the existence of isospectral but not isometric
Riemannian manifolds. Roughly speaking, he replaced field extensions by
Riemannian coverings to use the parallel between Galois theory for covering
spaces and field extensions. We consider his work as a door to the idea of
using all these results living in the world of algebra to our field: Riemann
surfaces and Abelian varieties.

Let us now go to the area of Riemann surfaces. Because of the Torelli
Theorem, isomorphic Riemann surfaces have isomorphic polarized Jacobian
varieties. One question, of the same flavor as the ones discussed above and
that has interest in the context of Riemann surfaces and Abelian varieties, is
the existence of non-isomorphic Riemann surfaces with isomorphic Jacobian
varieties (not considering the polarization). In other words, the question
deals with the existence of non-isomorphic Riemann surfaces whose Jacobian
varieties are isomorphic as complex tori. This is the deep question that
motivates our work.

Ciliberto and Van der Geer [11] in 1994 constructed non-isomorphic Rie-
mann surfaces of genus 4 with isomorphic Jacobians, as non-polarized Abelian
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varieties.
Howe [21] in 1996 constructed non-isomorphic curves over finite fields with

isomorphic Jacobians. Later [22], in 2000, he moves to complex curves and
constructs n distinct plane quartics and one hyperelliptic curve all of whose
Jacobians are isomorphic to one another as complex tori (i.e. as Abelian
varieties without considering the polarization).

These works [11, 22] are intricately connected to the question of under-
standing Abelian varieties with several principal polarizations, treated for
instance in Lange’s work [27] from 1987. In these two papers examples are
provided where two non-isomorphic polarized Jacobians which are isomor-
phic only as complex tori correspond to two (different) principal polarizations
on the same Abelian variety.

Let us return to non-solitary fields. Perlis [31] in 1977 investigated the
phenomenon of non-solitary fields more closely. In fact, he established a con-
nection between group and field theory. He gave the definition of Gassmann
equivalence for subgroups of a group G, relating it with Dedekind zeta func-
tions of fields, and hence with arithmetically equivalent fields. He uses this
property to construct examples of pairs of non-isomorphic and arithmetically
equivalent number fields.

Two subgroups H,H ′ of a finite group G are called Gassmann equivalent if
every x ∈ G satisfies

∣∣xG ∩H∣∣ =
∣∣xG ∩H ′∣∣, where xG denotes the conjugacy

class of x in G. Notice that if H and H ′ are Gassmann equivalent, then
[G : H] = [G : H ′].

The relation that Perlis established between Gassmann equivalent sub-
groups and arithmetically equivalent fields is as follows:

Consider two number fields K,K ′ with common Galois extension N . Let
G be the Galois group of N over Q and H,H ′ subgroups of G such that
they correspond to the Galois group of K,K ′ over Q respectively. Then, K
and K ′ are arithmetically equivalent if and only if H and H ′ are Gassmann
equivalent as subgroups of G. In the case that H is not conjugate to H ′, the
fields K and K ′ are not isomorphic.

In 1980, Feit [13], in a work where he was studying consequences of the
classification of finite simple groups, found what he called “an apparently
unrelated result”. He proved that if two number fields K,K ′ are arithmeti-
cally equivalent non-isomorphic number fields of degree p (prime), then p
has certain restrictions. For this, he used that two arithmetically equivalent
number fields have the same Galois closure F (in some algebraic closure) and
the permutation representations of the Galois group G of F on the cosets of
the subgroups H,H ′ of G corresponding to the fields K,K ′, afford the same
character.

As a result, a relation among Gassmann equivalence (Group Theory),
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arithmetically equivalent (Field Theory) and equal characters (Representa-
tion Theory) came into play.

Guralnick [18] took this idea in 1983 and showed the equivalence between
Gassmann equivalence and the following property:

Two subgroups H,H ′ of a finite group G are Gassmann equivalent if
and only if H and H ′ induce the same permutational character of G (which
corresponds to the action of this group on the cosets).

Since conjugate subgroups have the same permutational character, Gu-
ralnick was interested in the case when H and H ′ are not conjugate. He
constructed explicit groups having such subgroups for indices p2 and p3, for
p prime.

In 1985, Guralnick and Wales [19] studied groups G with subgroups H,H ′

of index [G : H] = [G : H ′] = pq, with p, q different primes, with the same
permutational character and found conditions on the primes. Moreover, they
addressed the general situation on the index of the subgroups, and they
proved that for n ≤ 40 but n 6= 18 there are groups containing non-conjugate
subgroups H,H ′ of index n with the same permutational character if and only
if n = 1, 2, 3, 4, 5, 6, 9, 10, 17, 19, 23, 25, 29, 37, 38. As far as we know, it is still
unknown whether there are groups with such subgroups of index n = 18.

Years later, the property of H and H ′ being Gassmann equivalent in G
was captured and defined in terms of representations. Caranti et. al. [7] in
1994 gave the following definition:

If G is a finite group, two subgroups H,H ′ of G are linked in G if and only
if the character of IndGH (1H) is equal to the character of IndGH′ (1H′), where
IndGH (1H) stands for the induced representation of the trivial representation
of the subgroup H.

Subgroups that are conjugate are trivially linked, but there are linked
subgroups that are not even isomorphic [7].

In 1997, Gavioli [15] found necessary and sufficient conditions so that
given H and H ′ soluble finite groups, there exists a soluble finite group G
such that H and H ′ are linked in G.

Therefore, and as shown in the preceding discussion, in the context of
Group and Field Theory, as well as in Riemannian Geometry, finding non-
trivial linked subgroups (that is, linked subgroups that are not conjugate) is
of interest for their applications in studying questions about classification,
such as finding non-isomorphic arithmetically equivalent fields, as well as non-
isometric isospectral Riemannian manifolds. In this work, we propose to use
the theory of linked subgroups to construct non-isomorphic Riemann surfaces
with isomorphic (without polarization) Jacobian varieties. We proved the
following Theorem:
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Theorem (Theorem 3, Chapter 2) Let X be a compact Riemann surface
with the action of a finite group G. If H and H ′ are linked groups in G, then
the Jacobian varieties JXH and JXH′ corresponding to the intermediate
quotients X/H and X/H ′ are isogenous.

This is a first step in answering the general question of finding non-
isomorphic Riemann surfaces with isomorphic Jacobians, since an isogeny
between Abelian varieties is a surjective homomorphism with finite kernel.
Therefore, to ask for non-isomorphic Riemann surfaces with isogenous Jaco-
bian varieties is a weaker question.

For doing this, we use the theory of group actions on Abelian varieties
[28, 8, 33], and particularly on Jacobian varieties [35]. It is known that this
theory has been a fruitful ground for understanding aspects of the geometry
of moduli spaces of Abelian varieties. The same happens with using group
actions to study the moduli space of compact Riemann surfaces [1, 10]. A
further understanding of both topics is achieved when combining viewpoints
[26, 24, 29, 35].

We recall that when a group G acts on an Abelian variety A, it induces
a morphism

ρ : Q[G]→ EndQ(A)

from the rational group algebra Q[G] to the endomorphism algebra
EndQ(A) = End(A) ⊗Z Q of A. This morphism allows us to carry the
decompositions of Q[G] to A.

The decomposition of A corresponding to the decomposition of Q[G] into
a product of simple algebras is called the isotypical decomposition, and each
factor is called an isotypical factor.

Since each simple algebra is decomposed into a product of minimal (left)
ideals, there is a finer decomposition of Q[G] as a product of minimal ideals.
The corresponding decomposition of A induced by this one is called the group
algebra decomposition, and each factor is called a primitive factor.

In particular, when a group G acts on a (compact) Riemann surface
S, there is an action of G on the corresponding Jacobian variety JS of S.
Therefore, JS is decomposed in these two ways as a consequence. We point
out that the isotypical decomposition is unique, so the isotypical factors are
uniquely defined. But that is not the case of the group algebra decomposition,
where there are several sets of primitive factors decomposing the Abelian
variety. While the dimension of the factors will remain fixed regardless of
these choices, their induced polarization and the kernel of the isogeny can
change.

Notice that, the primitive factors can be simple or not, depending on A
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and on the action of G. Moreover, they are not, in general, principally polar-
ized. A secondary fact that we want to point out, although it is not related
to what we are presenting here, is that the group algebra decomposition does
not coincide, in general, with the Poincaré decomposition of the variety.

There are several tools [8, 28, 33, 35, 25] that can be used to study
the geometry of these decompositions (dimension of the factors, induced
polarizations, kernel, etc). We use here, in order to relate the knowledge that
exists about linked subgroups with these decompositions, the results in [8],
where this bridge between algebra and geometry is deepened by constructing
idempotents in the group algebra that describe the primitive factors that
decompose the Jacobian varieties corresponding to Riemann surfaces arising
from taking intermediate coverings. This is, Jacobians of Riemann surfaces
S/H where S is a Riemann surface with the action of a group G and H ≤ G.

As said, this thesis is a first step towards merging the geometric context
associated to decompositions of Jacobian varieties and the algebraic condition
of linked subgroups that is already quite developed in the context of Group
and Galois Theory. We expect that some questions in complex geometry
that are currently being studied, such as the already mentioned question
about several principal polarizations on Jacobian varieties or non-isomorphic
Riemann surfaces with isomorphic Jacobians (as tori), can be tackled by
combining the known results about Gassmann equivalence, linked subgroups,
their applications to Riemannian manifolds and Field Theory, as well as
group actions on varieties and the associated decompositions.

We work with a family of groups (depending on a prime p 6= 2) proposed
in [18], and also studied in [15]. Each group Gp in the family has linked
subgroups H and K, we prove that the minimal dimension of a family of
Riemann surfaces whose elements have Gp action is one (see Section 2.3,
Chapter 2). We study the group algebra decomposition of the corresponding
Jacobian varieties for one of these families. Moreover, we study new families
of larger dimension of this family by extending the signature in a suitable
way, and study the consequences.

One last remark, according to Singerman’s work [39], if a family of com-
pact Riemann surfaces with the action of a (finite) group G has dimension
greater than 4, then G is the full automorphism group of the general element
in the family. In our case, Gp is a p-group, therefore it has no involutions. A
direct consequence of this is that generically the elements in our families are
not hyperelliptic curves. We point out that some of these families could con-
tain a subfamily where the general element has more automorphisms, besides
from those in G, but this subfamily has to be lower dimensional.

Our framework has two parts.
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• Algebraic objects: For each prime p 6= 2, we present the group Gp, and
the subgroups H,K linked in Gp. We use:

Gp = AoH, where A = 〈a, b〉 ' Zp2 ×Zp with a of order p2, b of order
p, and H = 〈x, y〉 6 AutA, where the semidirect product is given by
ax = ab, bx = bap, ay = ap+1, and by = b.

Since p is odd, H ' Zp×Zp. Let K = 〈x, yap〉. According to [18], 1GH =
1GK , where 1GH stands for permutation representation on the cosets of
the subgroup H. Besides, both subgroups, H and K, are not conjugate.
This is, H,K are linked in Gp for all p 6= 2 a prime number.

• Geometric objects: We consider a collection of families of Riemann
surfaces that depend on four discrete parameters (t1, t2, t3, t4) ∈ N4

0 of
genus

(t1 + t2 + t3 + t4 + 1)p5 − (t3 + t4 + 1)p4 − p3(t1 + t2 + 1) + 1

which each admit the action of Gp with extended signature

(0; (p2)2t1+1, (p2)2t2+1, (p)2t3+1, (p)2t4+1),

and extended generating vector

[(a−1, a)t1 , a−1, (xyap+1b, (xyap+1b)−1)t2 , xyap+1b, (y−1, y)t3 , y−1, (x−1, x)t4 , x−1],

where (α, β)t means α, β, t. . ., α, β.

These are generating vectors corresponding to the obvious extension of
the generating vector

(
a−1, xyap+1b, y−1, x−1

)
,

which corresponds to the signature (0; p2, p2, p, p) determined by the tu-
ple (t1, t2, t3, t4) = (0, 0, 0, 0). This signature captures a one-dimensional
family of Riemann surfaces of genus

g = p5 − p4 − p3 + 1

admitting the action of Gp.

Notice that 4 is the smallest length that a generating vector for Gp can
have, since {a, x, y} is a minimal generating set of the group Gp.

The thesis is divided into the following chapters:
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1. Preliminaries: Here we present definitions and results related to de-
compositions of Abelian varieties.

2. A family of groups and linked groups: In this chapter we develop the
necessary algebraic aspects of Gp, such as complex irreducible represen-
tations, rational irreducible representations, and actions on Riemann
surfaces, in order to describe the consequences of its action on Riemann
surfaces, and on the corresponding Jacobian varieties.

3. Decomposition of Jacobian varieties associated with linked groups in
Gp: In this chapter we analyze the isotypical and group algebra decom-
positions of the Jacobian varieties with the action ofGp that comes from
its action on the previously described Riemann surfaces.

4. Jacobians of intermediate quotients by linked subgroups: In this chap-
ter we study decompositions of the Jacobians associated to quotients
by the linked subgroups H and K in Gp.

5. Action of the group G3 on Riemann surfaces and Jacobian varieties: In
this chapter we specialize the results obtained in Chapters 3 and 4 to
the case p = 3. Historically, this chapter was the starting point of this
research.



Chapter 1

Preliminary Results

This chapter introduces the content necessary for the presentation and de-
velopment of the results in this research work.

1.1 Abelian Variety

A complex torus T = V/L of dimension g is the quotient of a complex vector
space V of dimension g by a lattice L (a discrete subgroup of maximal rank
2g) in V . Thus T is a compact complex manifold (of dimension g) and a
commutative complex Lie group, and the natural quotient map p : V → T
is holomorphic. Conversely, any connected compact complex Lie group of
dimension g is a complex torus of dimension g.

We will be mainly interested in complex tori that are also projective
varieties; these correspond to complex tori that possess sufficiently many
meromorphic functions, the so-called abelian varieties.

A polarization (or a Riemann form) on a torus T = V/L is a non-
degenerate real alternating form E on V such that

E(ıu, ıv) = E(u, v),

for all u, v in V , and E(L× L) ⊆ Z; here ı denotes a complex number with
ı2 = −1. A polarized abelian variety A = (T,E) of dimension g is a pair
consisting of a complex torus T = V/L of dimension g and a polarization E
on T . An abelian variety is a complex torus that admits a polarization.

13
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1.2 Decomposition of an Abelian Variety with

group action

Let G be a finite group and let F be a field. A representation of G (or a
representation of G over F , or an F -representation of G) is a group homo-
morphism ρ : G → GL(V ) where V is a F−vector space. The degree of ρ
is the dimension dim (V ) of V . We also say that G acts linearly on V , and
that V is a G−vector space.

A matrix representation of G over F is a group homomorphism

R : G −→ GLn(F )

for a certain n ∈ N, called the degree of R.
A representation ρ : G→ GL(V ) gives rise to a left action of G on V :

· : G× V → V

(g, v) 7→ g · v = ρ(g) · v = ρ(g)(v),

such that for all g ∈ G, for all x, y ∈V and for all λ ∈ F :
(i) g · (x+ y) = g · x+ g · y;
(ii) g · (λx) = λ(g · x).
Conversely an action · : G× V → V satisfying (i) and (ii) gives rise to a

representation
ρ : G −→ GL(V )

g 7−→ ρ(g) : V → V
v 7→ p(g).

If V is a G−vector space with corresponding representation ρ, then

(a) V ′ 6 V is called a G−invariant subspace of V if and only if
g · V ′ := ρ(g) (V ′) ⊆ V ′ for all g ∈ G (in fact then ρ(g) (V ′) = V ′ since
ρ(g) is bijective).

(b) If there exists a G−invariant subspace 0 < V ′ < V , then ρ is called
reducible; else irreducible.

We denote by IrrF (G) the set of irreducible representations of G over F .
We identify the representation ρ : G→ GL(V ) with the underlying G−vector
space V , let V ∈ IrrC(G), KV = Q(χV (g), g ∈ G) is called the character field
of V and LV the field of definition of V . Then KV ⊆ LV and

mV := mQ(V ) = [LV : KV ]
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is the Schur index of the complex representation V .

If Gal(LV /Q),Gal(LV /KV ) and Gal(KV /Q) denote the respective Galois
groups, then for V ∈ IrrC(G) we define the set

G(V ) := {V σ : σ ∈ Gal(LV /Q)} ,

where each representation V σ is a conjugate of V by an element σ in Gal(LV /Q).
That is, if for g ∈ G, V (g) := [aij]ij is a matrix in a chosen basis of V , then
V σ(g) = [σ(aij)]ij. Let us observe that V σ is also defined over LV and both
V and V σ share the same character field.

Moreover, we obtain the rational irreducible representation W of G asso-
ciated to V by [[12, Thm 70.15]] with the following expression

W ⊗Q LV '
⊕

σ∈Gal(LV /Q)

V σ :=
⊕

σ∈Gal(KV /Q)

(mV V )σ . (1.1)

Any V is this sum it is called a complex irreducible representation asociated
to W and V σ is called a G Galois-conjugate to V , where G ∈ Gal(LV /Q).
In this way one finds the set of the rational irreducible representations of G
up to equivalence which we denote

IrrQ(G) = {W1, . . . ,Wr} .

Let A be an abelian variety over the field C of dimension g with a faithful
action by G. That is, there is a monomorphism from G to Aut(A). We say in
this case that A is a G-abelian variety. This action induces a homomorphism
of semisimple Q-algebras

ρ : Q[G]→ EndQ(A).

Each element α ∈ Q[G] defines an abelian subvariety

Aα := im(τα) ⊆ A,

where τ is some positive integer such that ρ(α) ∈ End(A) or equivalently
τα ∈ Z[G]. This definition is independent on the chosen integer τ , up to
isogeny.

Since Q[G] is a semisimple Q-algebra of finite dimension, it admits a unique
decomposition as a product of simple Q-algebras

Q[G] = Q1 × . . .×Qr .
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The factors Qi, with i ∈ {1, . . . , r}, are uniquely determined by central idem-
potents ei ∈ Q[G] such that 1 = e1 + e2 + . . .+ er and ei ∈ Qi ∀i ∈ {1, . . . , r}.
Furthermore, these are described by [12, Thm. 33.8]

ei =
dim Vi
|G|

∑
g∈G

trKVi/Q(χi(g
−1))g , (1.2)

where Vi is a complex irreducible representation of G associated to Wi and
KVi .
The idempotent ei defines an abelian subvarietyAWi

:= Aei . These are called
the isotypical components and they are uniquely determined by Wi. Hence
there is an isogeny

µ : AW1 × . . .×AWr → A , (1.3)

given by the addition. This is called the isotypical decomposition of A.

Furthermore, the isotypical components AWi decompose further. There are
sets of primitive idempotents {qi1, . . . , qini} in Qi ⊆ Q[G] such that

ei = qi1 + . . .+ qini ,

where ni =
dim Vi
mVi

. The idempotents qij define subvarieties of AWi
, which

are called primitive factors defined by Bij := Aqij . Therefore we have the
following isogenies for i = 1, . . . , r

νi : Bi1 × . . .×Bini → AWi
. (1.4)

From (1.3) and (1.4) we obtain the isogeny

ν :

n1∏
j=1

B1j × . . .×
nr∏
j=1

Brj → A, (1.5)

which is called the group algebra decomposition and its components are
called primitive factors. It is important to point out that this descomposition
is no longer unique, since it depends on the choice of qij for a fixed i.

Additionally, the abelian subvarieties Bij are mutually isogenous for a fixed
i and for all j = 1, . . . , ni. If BWi

denotes one of them, then it results in an
isogeny Bni

Wi
→ AWi

, so by replacing the factors we obtain

ν̂ : Bn1
W1
× . . .×Bnr

Wr
→ A. (1.6)

The isogeny (1.6) is the classic way of writing the group algebra decompo-
sition, which is equivalent to (1.5) but given the objectives to be developed
here, the first expression is more useful for the analysis of the isogenies.
More details may be found in for instance [25, 28, 33, 34, 35].
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1.3 Jacobians with group action.

A branched covering f : X → Y , between Riemann surfaces X and Y , is
by definition a surjective holomorphic map (in particular, nonconstant). We
say that the covering f is Galois if there exists a subgroup G of the group
of automorphisms of X such that Y = X/G := XG and such that f is the
canonical projection. For each g in G we denote by the same symbol g the
automorphism induced by g on JX, by < g > the subgroup of G generated
by g, and by JXN the set of fixed points of N in JX, for each subgroup N
of G.

Let V be a complex representation of G, and let H be a subgroup of G. Then
IndGH(1H) denote the representation ofG induced by the trivial representation
of H. It follows from Frobenius reciprocity Theorem (see [37], Ch. 7-Theo.
13) that

dim CV
H =

〈
IndGH(1H), V

〉
G
, (1.7)

where V H is the subspace of V fixed under H and 〈·, ·〉G denotes the usual
inner product between characters of the representations of G.

Each compact Riemann surface X of genus g, has associated with it a
principally polarized abelian variety JX, that is, a complex torus with a prin-
cipal polarization. This variety is called the Jacobian variety of X of complex
dimension g. If G acts on X, then it acts on JX and the corresponding group
algebra decomposition is given by

JX ∼ JXG ×Bn1
W2
× . . .×Bnr

Wr
, (1.8)

where Wi and ni are as in the (1.6). Without loss of generality, we assume
that W1 is the trivial representation, and JXG = J(X/G) is the isotypical
component associated to W1 and corresponds to the Jacobian variety of the
total quotient XG.

For the case of a G-action on the Jacobian variety JX, we get even more
information on intermediate geometric components. From [8] we get the
following results

Theorem 1. ([8, Thm. 4.4]) Let Wi be a rational irreducible representation
of a group G, and denote by ei the associated central idempotent in Q[G].
We denote by Vi a complex irreducible representations of G associated to Wi.
For any subgroup H of G, let

pH =
1

|H|
∑
h∈H

h (1.9)
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be the central idempotent in Q[H] corresponding to the trivial representation
of H. Then

f iH := pHei = eipH (1.10)

is an element of the simple algebra Q[G]ei satisfying the following conditions.

(1) f iH
2

= f iH ,

(2) hf iH = f iH = f iHh for every h ∈ H, and

(3) f iH = 0 if and only if dim V H
i = 0.

Furthermore, in the case f iH 6= 0, the left ideal Q[G]f iH generated by the
idempotent f iH is a left Q[G]-module affording the representation Wi with

multiplicity given by
dim V H

i

mVi

.

Theorem 2. ([8, Prop. 5.2]) Given a Galois cover X → XG, consider the
associated isotypical decomposition (1.8) of JX.
Let H be a subgroup of G and denote by πH : X → XH the corresponding
quotient map. Then the corresponding isotypical decomposition of JXH is
given as follows:

JXH ∼ JXG ×B
dimVH2
mV2

W2
× . . .×B

dimV Hr
mVr

Wr
. (1.11)

Furthermore, considering pH and f iH as in Theorem 1, we have

(1) If π∗H(JXH) is the pull-back of JXH by πH , then im(pH) = π∗H(JXH).

(2) If dim V H
i 6= 0 then im(f iH) = B

dimVi
H

mi
Wi

.

The previous propositions allow us to determine the decomposition of
the Jacobian varieties of intermediate coverings. Further information about
the decomposition, such as the dimension of each factor BWi

depends on the
geometry of the action.

1.3.1 Signature of actions

Let f : X → Y be a branched covering between Riemann surfaces X and
Y , a point in X is a branch point for f if f fails to be locally one-to-one in
there. The image of a branch point is a branch value of f . Let B be the set of
branch values of f . For q ∈ B consider its fiber f−1(q) = {p1, . . . , ps} ⊂ X.
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Then the cycle structure of f at q is the s-tuple (n1, . . . , ns) where nj is the
ramification index of f at pj. That is, f is nj-to-1 at pj, nj > 1.

Let X be compact Riemann surface with G a group of automorphisms
of G and {p1, . . . , pt} ⊂ X be a maximal collection of non-equivalent branch
points with respect to action of G (i.e. the pj are in different G-orbits). For
each j = 1, . . . , t, consider the stabilizer Gj of pj. The signature of G on
X (see [39]) for the cover πG : X → XG is the tuple (γ;m1, . . . ,mt), where γ
is the genus of XG and mj = |Gj| for each j.

On the other hand, let Gj be a (non-trivial) cyclic subgroup of G, a
branch value q ∈ XG is called of type Gj, if Gj is the stabilizer of at least one
point in the fiber of q. If there is a point p ∈ X with non-trivial stabilizer
Gp, then the points in its orbit have stabilizers running through the complete
conjugacy class of Gp. Hence we will call q ∈ XG of type Cj if the stabilizer
of the points in its fiber are the elements of the (complete) conjugacy class
Cj of Gj. For the computations developed in the following sections, it is
not critical to know all the conjugacy classes of cyclic subgroups of G. The
type of the branch values can be given by a cyclic subgroup Gj instead of
a conjugacy class. As above, let X be a compact Riemann surface and G a
group of automorphisms of X. Let {q1, . . . , qt} ⊂ XG be a maximal collection
of branch values for the covering πG : X → XG. We define the geometric
signature of G on X (see [35]) as the tuple (γ; [m1, C1] , . . . , [mt, Ct]), where
γ is the genus of XG, Cj is the type of the branch value qj and mj is the order
of any subgroup in Cj.

Let us consider G as before, following ([5], Def. 2.2), we call a (2γ + t)−
tuple

(a1, . . . , aγ, b1, . . . , bγ, c1, . . . , ct) ∈ G2γ+t

of elements of G a generating vector of type (γ;m1, . . . ,mt) if the following
conditions are satisfied:

(i) G is generated by the elements {a1, . . . , aγ, b1, . . . , bγ, c1, . . . , ct} ,

(ii) order (cj) = mj;

(iii)
∏γ

i=1 [ai, bi]
∏t

j=1 cj = 1, where [ai, bi] =
(
ai · bi · a−1

i · b−1
i

)
.

Broughton in [5] gives a precise modern treatment of Riemann’s Existence
Theorem which is a fundamental result which translates the problem of
constructing group actions on Riemann surfaces to a problem in finite group
theory. Later, in [35], this result is extended to include conditions for the
geometric signature. This is, to describe the action by giving the stabilizers
of the ramification points, not just the signature.
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Proposition 1. (see [35], Thm. 4.1) Given a finite group G, there is a
compact Riemann surface S of genus g on which G acts with geometric sig-
nature (γ; [m1, C1] , . . . , [mt, Ct]) if and only if the following three conditions
are met:

(i) (Riemann-Hurwitz)

g = |G|(γ − 1) + 1 +
|G|
2

t∑
j=1

(
1− 1

mj

)
. (1.12)

(ii) The group G has a generating vector (a1, b1, . . . , aγ, bγ, c1, . . . , ct) of type
(γ;m1, . . . ,mt).

(iii) The elements c1, . . . , ct of the generating vector are such that the sub-
group generated by cj is in the conjugacy class Cj, j = 1, . . . , t.

The Riemann existence theorem is also described in [38] in terms of Fuch-
sian groups: A Fuchsian group Γ is a finitely generated discrete subgroup of
PSL(2, R), the group of conformal homeomorphisms of the upper-half plane
H.
The most general presentation for Γ is

Generators: a1, b1, . . . , ag, bθ (Hyperbolic) .
x1, x2 . . . , xr (Elliptic).
p1, . . . , ps (Parabolic).
h1, . . . , ht (Hyperbolic boundary elements).

Relations:

xm1
1 = xm2

2 = . . . = xmrr =

g∏
i=1

[ai, bi]
r∏
j=1

xj

s∏
k=1

pk

t∏
l=1

hl = 1.

We then say Γ has signature

(g;m1,m2, . . . ,mr; s; t) (1.13)

The integers m1,m2, . . . ,mr are called the periods of Γ.

If the orbit surface H/Γ is compact of genus γ, then the algebraic structure
of Γ is determined by its signature; namely, the tuple σ = (γ;m1, ...,mr)
where the mj are the branch indices in the associated universal projection
H→ H/Γ. If r = 0, then it is said that Γ is a surface Fuchsian group. Define

M(Γ) = 2γ − 2 +
∑r

j=1

(
1− 1

mj

)
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Let Γ1 be a group of automorphisms of H. If Γ1 is a subgroup of Γ of
finite index then Γ1 is also Fuchsian.

Let n be a period of Γ1. Then n is the order of an elliptic element y ∈ Γ1,
and y will be a power of a conjugate of one the generators xj ∈ Γ of order
mj. We shall then say that n has been induced by mj. Then, we have the
following theorem:

Theorem 3. (see [38],Thm.1) Let Γ have signature (1.13). Then Γ contains
a subgroup Γ1 of index N with signature

(g′;n11, n12, . . . , n1ρ1 , . . . , nr1, nr2, . . . , nrpr ; s
′; t′)

if and only if

(a) There exists a finite transitive permutation group G on N points, and
an epimorphism θ : Γ→ G satisfying the following conditions:

(i) The permutation θ (xj) has precisely ρj cycles of lengths less than
mj, the lengths of these cycles being mj/nj1, . . . ,mj/njρj .

(ii) If we denote the number of cycles in the permutation θ(γ) by δ(γ)
then

s′ =
s∑

k=1

δ (pk) , t
′ =

t∑
1=1

δ (hl) .

(b) M (Γ1) /M(Γ) = N

Definition 1. (See [6]) We say that the finite group G acts on genus g if
G is (isomorphic to) a group of automorphisms of some compact Riemann
surface X of genus g. Further, we say that G acts as a full group on genus
g if G is the full automorphism group of some compact Riemann surface of
genus g.

Suppose G acts on genus g, and let X be a compact Riemann surface
for which G ⊆ Aut(X). Write G = Γ/Λ, where Γ and Λ are Fuchsian
groups such that Λ has signature (g;−) and is normal in Γ. If Γ has sig-
nature (γ;m1, . . . ,mr), then we say that G acts on genus g with signature
(γ;m1, . . . ,mr), and further, if G = Aut(X), then we say that G acts as a
full group on genus g with signature (γ;m1, . . . ,mr). Of course G may act
with different signatures on the same genus g.

With regards to this, Singerman in [39] says that if the group G can be
written as Γ/Λ, where the signature of Γ does not appear in Singerman’s
table, then, generically, G acts as a full group on the corresponding genus g.
Conversely, if the signature appears in Singerman’s table, it means that the
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action may extend.

TABLE 1. Non-maximal Fuchsian signatures (Singerman’s table)

Signature σ = σ(Γ) σ′ = σ (Γ′) |Γ′ : Γ|
(2;−) (0; 2, 2, 2, 2, 2, 2) 2
(1; t, t) (0; 2, 2, 2, 2, t) 2
(1; t) (0; 2, 2, 2, 2t) 2
(0; t, t, t, t), t ≥ 3 (0; 2, 2, 2, t) 4
(0; t, t, u, u), t+ u ≥ 5 (0; 2, 2, t, u) 2
(0; t, t, t), t ≥ 4 (0; 3, 3, t) 3
(0; t, t, t), t ≥ 4 (0; 2, 3, 2t) 6
(0; t, t, u), t ≥ 3, t+ u ≥ 7 (0; 2, t, 2u) 2

TABLE 1. (Continuation)

Signature σ = σ(Γ) σ′ = σ (Γ′) |Γ′ : Γ|
(0; 7, 7, 7) (0; 2, 3, 7) 24
(0; 2, 7, 7) (0; 2, 3, 7) 9
(0; 3, 3, 7) (0; 2, 3, 7) 8
(0; 4, 8, 8) (0; 2, 3, 8) 12
(0; 3, 8, 8) (0; 2, 3, 8) 10
(0; 9, 9, 9) (0; 2, 3, 9) 12
(0; 4, 4, 5) (0; 2, 4, 5) 6
(0;n, 4n, 4n), n ≥ 2 (0; 2, 3, 4n) 6
(0;n, 2n, 2n), n ≥ 3 (0; 2, 4, 2n) 4
(0; 3, n, 3n), n ≥ 3 (0; 2, 3, 3n) 4
(0; 2, n, 2n), n ≥ 4 (0; 2, 3, 2n) 3

The following theorem of Ries [36] describes conditions and how the ex-
tension of actions works.

Theorem 4. ([36], Thm. of Section 2) Let ψ : Γ→ G and i : Kg → Γ induce
the inclusion of G as a subgroup of Modg. Suppose one of the following is
true:

1. Γ has signature [2;−] and there is an automorphism α of G such
that, if d = a−1

1 b−1
1 a2b2, α (a1) = a−1

1 , α (b1) = b−1
1 , α (a2) =

da−1
2 d−1, α (b2) = db−1

2 d−1.

2. Γ has signature [1; k, k] and there is an α ∈ Aut(G) such that, if d =
a−1

1 b−1
1 c1, α (a1) = a−1

1 , α (b1) = b−1
1 , α (c1) = dc2d

−1, α (c2) =
dc1d

−1.
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3. Γ has signature [1; k] and there is an α ∈ Aut(G) such that α (a1) =
a−1

1 , α (b1) = b−1
1 , α (c1) = a−1

1 b−1
1 c1b1a1.

4. Γ has signature [0; k, l, k, l] for some k, l with 2 ≤ k and 3 ≤ l. If k 6= l,
there is an α ∈ Aut(G) such that

α (c1) = c3, α (c2) = c4, α (c3) = c1, α (c4) = c2.

If k = l, then α exists after replacing ψ by ψ ◦µ for some µ ∈ Aut+(Γ).

5. Γ has signature [0; k, k, k, k] for some k with 3 ≤ k and there are α, β ∈
Aut(G) such that

α (c1) = c3, α (c2) = c4, α (c3) = c1, α (c4) = c2

β (c1) = c2, β (c2) = c1, β (c3) = c−1
1 c4c1, β (c4) = c2c3c

−1
2

6. Γ has signature [0; l, l, k] for some k, l with 3 ≤ l, 2 ≤ k and at least
one of the inequalities is strict. If k 6= l, there is an α ∈ Aut(G) such
that

α (c1) = c2, α (c2) = c1, α (c3) = c2c3c
−1
2 .

If k = l, then α exists after replacing ψ by ψ ◦µ for some µ ∈ Aut+(Γ).

7. Γ has signature [0; k, k, k] for some k ≥ 4 and there is a β ∈ Aut(G)
such that

β (c1) = c2, β (c2) = c3, β (c3) = c1.

8. Γ has signature [0; k, k, k] for some k ≥ 4 and there are α, β ∈ Aut(G)
such that

α (c1) = c2, α (c2) = c1, α (c3) = c2c3c
−1
2

β (c1) = c2, β (c2) = c3, β (c3) = c1

If H is the corresponding group with presentation

(1,2,3,4,6.) H = 〈G, a| · · · , a2 = 1, aga = α(g), for g ∈ G〉,

5. . H = 〈G, a, b| · · · , a2 = b2 = 1, aga = α(g), bgb = β(g), for g ∈ G, abab = (c2c3)−1〉,
7. . H = 〈G, b| · · · , b3 = 1, bgb2 = β(g), for g ∈ G〉,

8. H = 〈G, a, b| · · · , a2 = b3 = 1, aga = α(g), bgb2 = β(g), for g ∈ G, abab = c−1
1

〉
,
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where the dots denote the relations of G, then there exist Γ0, an inclusion
j : Γ → Γ0, and an epimorphism ψ0 : Γ0 → H such that ψ = ψ0 ◦ j and
(j ◦ i, ψ0) induces the inclusion of H as a subgroup of Modg with the property

that G 6= H,G / H and M[G]
g =M[H]

g .
Conversely, any subgroup H of Modg with the above property arises in

this way.

Notice that the converse in Ries’ theorem mentions Modg. This means
that we have to be careful when considering generating vectors. This is,
to consider their equivalence classes. We write the following corollary to
describe the part of Ries’ theorem we need (item 4.), and translated to the
context of actions captured by generating vectors.

Corollary 1. Let G be a finite group acting on a Riemann surface X with
signature s = (0; k, l, k, l) and generating vector ν for s. Then, that action
extends if and only if there is an α ∈ Aut(G) such that

α (c1) = c3, α (c2) = c4, α (c3) = c1, α (c4) = c2

for some generating vector (c1, c2, c3, c4) equivalent to ν.

Therefore, if we prove that there is no such α for every generating vector
equivalent to ν, then that action does not extend generically.

Finally, concerning some of the geometry involved when having group
actions, we use the following results.

First, we need to say something about the dimension of the primitive
factors of the group algebra decomposition (1.8). A theorem of this kind was
obtained by Ksir in [26] for groups with rational irreducible representations
absolutely irreducible; i.e., irreducible over the complex field, and later it was
generalized in [35] to any group. We need this last one for our work here.

Proposition 2. (see [35], Prop. 5.12) Let G be a finite group acting on a
Riemann surface S with geometric signature (γ; [m1, C1], . . . , [mt, Ct]). Then
the dimension of any primitive factor Bi associated to a non trivial rational
irreducible representation Wi, in the G -equivariant isogeny decomposition of
the corresponding Jacobian variety JS, is given by

dim Bi = ki

(
dim Vi(γ − 1) +

1

2

t∑
k=1

(
dim Vi − dim V Gk

i

))
, (1.14)

where Gk is a representative of the conjugacy class Ck, dim Vi is the di-
mension of a complex irreducible representation Vi associated to Wi, KVi =
Q (χVi(g) : g ∈ G) , `i is the Schur index of Vi, and ki = `i. |Gal (KVi : Q) |.
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We also use here the following result about intermediate coverings.

Proposition 3. ([35, Prop.3.4],[26, Eq.(10)]) Let S be a Riemann Sur-
face with G–action of geometric signature (γ; [m1, C1], . . . , [mt, Ct]). Then
for each subgroup H 6 G the genus of S/H is given by

gS/H = [G : H](γ − 1) + 1 +
1

2

t∑
j=1

([G : H]− |H\G/Gj|) (1.15)

where H\G/Gj is the corresponding set of double cosets and Gk is a repre-
sentative of the conjugacy class Ck.



Chapter 2

A family of groups and linked
subgroups acting on Riemann
surfaces and Jacobian varieties

In this chapter we develop the necessary algebraic aspects of groups with an
interesting algebraic property. They are groups that have two nonconjugate
subgroups inducing the same permutation character. That is, their trivial
representation induces the same representation of the group. We study a
family of groups with this property.

2.1 Linked Finite Subgroups

Let us consider G a finite group and H a subgroup of G. Using the notation
of [18] and [7], we will denote by 1GH the character of the permutation repre-
sentation of G on the right (or left) cosets of H. If H 6 G and T is a right
(or left) transversal for H in G, then

1GH(x) = |{g ∈ T | xgH = gH}|
= |{g ∈ T | xg ∈ H}|

where xg = g−1xg. In [15] the following definition is introduced:

Definition 2. Let H,K be two subgroups of a finite group G. We will
say that H and K are linked in G if and only if they induce the same
permutational character. That is

1GH = 1GK . (2.1)

26
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Remark 1. Note that conjugate subgroups are trivially linked. However,
there are linked subgroups which are not conjugate.

Let G be a finite group, two subgroups H,H ′ of G are linked in G if and
only if IndGH (1H) is equivalent to IndGH′ (1H′), where IndGH (1H) stand for the
induced representation of the trivial representation of the subgroup H.

Proposition 4. Let G be a finite group and H,K 6 G. H and K are linked
in G if and only if

χIndGH(1H) = χIndGK(1K) , (2.2)

where χIndGH(1H) denotes the character of the induced representation IndGH(1H).
Analogous with K.

Proof. We have the following equalities

1GH(x) = |{g ∈ T | xgH = gH}|
=
∣∣{g ∈ T | (g−1xg)H = H

}∣∣
=
∣∣{g ∈ T | (g−1xg) ∈ H

}∣∣
=
∑
g∈T

1̇g−1xg

= χIndGH(1H)

where 1̇g−1xg :=

{
1 , x ∈ H
0 , x /∈ H .

Using the previous definition, we are able to conclude that H and K are
linked in G.

In this work, we understand linked subgroups to be the nontrivial case;
that is, nonconjugate. We bring these ideas to the context of group actions
on Riemann surfaces and establish the following theorem.

Theorem 5. Let X be a compact Riemann surface with the action of a finite
group G. If H and K are linked groups in G, then the Jacobian varieties
JXH and JXK corresponding to the intermediate quotients X/H and X/K
are isogenous.

Proof. If H and K are linked groups in G, then by definition and Frobenius
reciprocity theorem, we know that for every C−irreducible representation of
G the following statement are equivalent:

(i)
〈
IndGH(1H), V

〉
G

=
〈
IndGK(1K), V

〉
G

.
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(ii) dim CV
H = dim CV

K .

By Theorem 2 (Section 1.2), we are in a position to conclude that the isotypi-
cal components of isotypical decomposition are equal, therefore the Jacobians
JXH and JXK are isogenous.

Linked subgroups have been studied in the context of Group Theory.
Below we recall results from [18] that will be fundamental in the analysis of
this work, since they provide a family of groups whose action we shall study
here.

Theorem 6. ([18, Thm.A]) Suppose H,K 6 G and 1GH = 1GK with [G : H] = p2.
Then either H = Kg for some g ∈ G or pε = (qn − 1) /(q − 1) with
ε 6 2, n > 3, and q a prime power. Furthermore, for any such prime p,
there is a group G with 1GH = 1GK for nonconjugate subgroups H and K with
[G : H] = p2.

2.1.1 The Group Gp

Let p be a prime, p > 2. Consider Gp a group that generates a family of
groups satisfying the hypotheses of Theorem 5 given in [18, example 4.1]. If
A = 〈a, b〉 ' Zp2 × Zp and H = 〈x, y〉 6 AutA, then Gp = A o H and its
presentation is:〈
a, b, x, y | ap2 = bp = xp = yp = 1, x−1ax = ab, x−1bx = bap, y−1ay = ap+1, y−1by = b

〉
(2.3)

With the previous relations and K = 〈x, yap〉, it is concluded that 1GH =
1GK and H and K are not conjugate.

The interest to us of Gp comes from the following remark. If Gp acts on a
compact Riemann surface and subgroups H and K are linked groups in Gp,
then the Jacobian varieties JXH and JXK corresponding to the intermedi-
ate quotients X/H and X/H ′ are isogenous. Let us study some algebraic
properties of Gp.

Proposition 5. Let p be a prime, p 6= 2. The group Gp satisfies the following
statements:

(i) A minimal generator set for Gp is {a, x, y}.

(ii) The element xyap+1b has order p2.

(iii) ∀k, n ∈ N, the following equalities hold:



CHAPTER 2. GP AND ITS ACTIONS 29

(iii.1.) x−naxk = a1+
pn(n−1)

2 bnx−n+k.

(iii.2.) x−nbxk = anpbx−n+k.

(iii.3.) y−kx−naxnyk = apk+1+
pn(n−1)

2 bn.

(iii.4.) y−kx−nbxnyk = anpb.

Proof. (i) Notice that ap
2−1xp−1ax = b. From this we are in a position to

conclude that b ∈ 〈x, a〉, then 〈x, y, a, b〉 = 〈x, y, a〉.
On the other hand, the Frattini subgroup Φ(G) of a group G is the
intersection of all the maximal subgroups of G, it is also the set of non-
generators of G. By Burnside’s Basis Theorem, if G is a finite p-group,
then every maximal subgroup of G is normal and hence, G′ ⊆ Φ(G).
For the case of Gp, we obtain

Φ(Gp) = G′p = 〈ap, b〉 .
Then Gp/Φ(Gp) ∼= Zp3 , from which we conclude that every minimal
set of generators has three elements and the set {a, x, y} is a minimal
generating set of the Gp.

(ii) Consider the prime p = 3. Then we have the following equality with
respect to the order of the element xyap+1b ∈ G3:

(xyap+1b)3 = (xyap+1b)2(xyap+1b) = (x2y2a5)(xyap+1b) = x3y3a6 = a6.

From the above we deduce that

(xyap+1b)9 = ((xyap+1b)3)3 = (a6)3 = 1,

therefore the element xyap+1b has order 32. Now, let p be a prime
greater than 3. Then the order of the element xyap+1 in Gp satisfies
the following statements:

(1) For all n ∈ N, it follows that (xyap+1b)n = xnynaα(n)bβ(n), where
α : N → N and β : N → N are functions that depend on n and
α(n), β(n) are the exponent of a and b respectively in the n-th
power of the element xyap+1b.

We shall prove by induction, we have that (xyap+1b)2 = x2y2aα(2)bβ(2),
where α(2) = 4p+ 2 and β(2) = 3. Then by inductive hypothesis
(xyap+1b)n = xnynaα(n)bβ(n), we have that

(xyap+1b)n+1 = (xyap+1b)n(xyap+1b)

= (xnynaα(n)bβ(n))(xyap+1b)

= xn+1yn+1a(p+1)(α(n)+pβ(n)+1)bα(n)+β(n)+1

= xn+1yn+1aα(n+1)bβ(n+1).
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This proves the claim for all n ∈ N and p > 3 prime.

(2) The value of the exponents of a and b in (xyap+1b)n, which will be
denoted by α(n) and β(n) respectively, are defined by recurrence
by the following expressions:{

β(1) = 1,
β(n) = n+ β(n− 1), n ≥ 2

,

{
α(n) = 0, n = 1, 2
α(n) = n(np+ 1) + pγ(n), n ≥ 3

,

where {
γ(n) = 0, n = 1, 2
γ(n) = γ(n− 1) + β(n− 2), n ≥ 3 .

Based on the above, we will describe γ(n) as a function of the
sequence β(·) with the following expression:

γ(n) =
n−2∑
k=1

β(k), for all n ≥ 3. (2.4)

In fact, for n = 3 the equation (2.4) is satisfied. For any n ≥ 3
fixed, we study γ(n+ 1):

γ(n+ 1) = γ(n) + β(n− 1) =

(
n−2∑
k=1

β(k)

)
+ β(n− 1)

=
n−1∑
k=1

β(k).

An important property of the sequence β(·) is that β(n) = n(n+1)
2

,
for all n ≥ 1. Indeed, β(1) satisfies the condition. If we consider

a fixed n ≥ 1 such that β(n) = n(n+1)
2

, then we have to calculate
β(n+ 1):

β(n+ 1) = β(n) + (n+ 1) =
n(n+ 1)

2
+ (n+ 1) =

(n+ 1)(n+ 2)

2
.

In addition, we have that β(p− 2) ≡ 1(mod p) for all p ≥ 3 with
p prime. Indeed let be p ≥ 3 prime, then

β(p− 2) = (p−2)(p−1)
2

= p2−p−2p+2
2

,
β(p− 2) ≡ 1(mod p).
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On the other hand, the sequence γ(·) is γ(p−1) ≡ −1(mod p) for
all p ≥ 3 with p prime. We note that

γ(p− 1) =

p−3∑
k=1

β(k) =

p−3∑
k=1

k(k + 1)

2
=

p−3∑
k=1

k2

2
+
k

2

=
(p− 3)(p− 2)(2p− 5)

2 · 6
+

(p− 3)(p− 2)

4

≡ −30

2 · 6
+

6

4
(mod p)

≡ −1 (mod p).

Suppose that (xyap+1b)n = xnynaα(n)bβ(n), then now we calculate
(xyap+1b)n+1 using the identities involving x, y, a and b:

(xyap+1b)n+1 = (xnynaα(n)bβ(n))(xyap+1b)

= xnynaα(n)bβ(n)yxap+1b

= xnynaα(n)ybβ(n)xap+1b

= xnynaα(n)yxapβ(n)bβ(n)ap+1b

= xnynaα(n)yxapβ(n)+p+1bβ(n)+1

= xnynya(p+1)α(n)xapβ(n)+p+1bβ(n)+1

= xnyn+1xa(p+1)α(n)b(p+1)α(n)apβ(n)+p+1bβ(n)+1

= xn+1yn+1a(p+1)α(n)+pβ(n)+p+1b(p+1)α(n)+β(n)+1.

In order to get a simpler expression, we must analyze the expo-
nents of a and b. To determine the exponent of a we must consider
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that a has order p2, then

(p+ 1)α(n) + pβ(n) + p+ 1

=(p+ 1)[n(np+ 1) + pγ(n)] + pβ(n) + p+ 1

=p2n2 + pn+ pn2 + n+ p2γ(n) + pγ(n) + pβ(n) + p+ 1

=pn2 + pn+ n+ pγ(n) + pβ(n) + p+ 1

=pn2 + pn+ n+ pγ(n) + p(β(n− 1) + n) + p+ 1

=pn2 + pn+ n+ p[γ(n) + β(n− 1)] + pn+ p+ 1

=pn2 + pn+ n+ pγ(n+ 1) + pn+ p+ 1

=(n+ 1)[(n+ 1)p+ 1] + pγ(n+ 1)

=α(n+ 1).

On the other hand, to determine the exponent of b we must con-
sider that b has order p, then

(p+ 1)α(n) + β(n) + 1 = (p+ 1)[n(np+ 1) + pγ(n)] + β(n) + 1
= p2n2 + pn+ pn2 + n+ p2γ(n) + pγ(n) + β(n) + 1
= (n+ 1) + β(n)
= β(n+ 1).

From the above, we are in a position to conclude that xyap+1b
does not have order p, and furthermore, that ∀n ∈ N, n ≥ 3 :

(xyap+1b)n = xnyna
(n−2)(n−1)(2n−3)

12
+

(n−1)(n−2)
4 b

n(n+1)
2 , (2.5)

therefore the element xyap+1b has order p2.

(iii) Considering the relations defined in Gp we will prove the equalities
using the induction method.

(iii.1) Consider the relation defined in Gp: ax = xab, suppose that for

n the equality axn = xna1+
pn(n−1)

2 bn is satisfied, then we have the
following equivalences:

axn+1 = (axn)x

= (xna1+
pn(n−1)

2 bn)x

= xna1+
pn(n−1)

2 xapnbn

= xn+1a1+
p(n+1)n

2 bn+1.

In conclusion x−naxn = a1+
pn(n−1)

2 bn for all n ∈ N, from this the
requested equality is deduced.
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(iii.2) Second, consider the relation bx = xapb defined in Gp, suppose
that for n ∈ N the equality bxn = xnapnb is satisfied, then we have
the following equalities:

bxn+1 = (bxn)x

= (xnapnb)x

= xnapnxapb

= xn+1xap(n+1)b.

Therefore, the equality x−nbxn = apnb is satisfied for all n ∈ N,
from this the requested equality is deduced.

(iii.3) Third, let us consider the relations defined in Gp: by = yb and
ay = yap+1. Moreover, using the equality proved in (iii.1 ) for all
n ∈ N, we assume that the equality

x−naxnyk = (a1+
pn(n−1)

2 bn)yk = ykapk+1+
pn(n−1)

2 bn is satisfied for
k ∈ N, then, developing the induction on k we have the following
equalities:

x−naxnyk+1 = (x−naxnyk)y

= ykapk+1+
pn(n−1)

2 bny

= ykapk+1+
pn(n−1)

2 ybn

= yk+1(apk+1+
pn(n−1)

2 )p+1bn

= yk+1ap(k+1)+1+
pn(n−1)

2 bn.

The result follows.

(iii.4) Finally, let us consider the relations defined in Gp described in
the previous point and using the equality proved in (iii.2 ) for all
n ∈ N, we assume that the equality x−nbxnyk = (anpb)yk = ykanpb
is satisfied for k ∈ N. Then, developing the induction on k we have
the following equalities:

x−nbxnyk+1 = (x−nbxnyk)y

= (ykanpb)y

= ykanpyb

= yk+1anp(p+1)b

= yk+1anpb.

This concludes the equality of point (iii) of the proposition.
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2.2 Algebraic description of Gp.

In this section we develop the necessary algebraic aspects of Gp to describe
the consequences of its action on Riemann surfaces, and on the correspond-
ing Jacobian varieties. This is conjugacy classes and complex and rational
representations.

2.2.1 Complex Irreducible representations of Gp.

Gp is a semi-direct product of H and A (details given in the previous section).
We observe that A is a normal subgroup of G, therefore, we use the method
of Little Groups of Winger and Mackey ([37, Prop. 25, ch.8]), to find its
irreducible representations.

Let XA be the set of all complex irreducible representations of the group

A. Since it is abelian, all its representations are of degree 1. If w = e
2πi
p2 , for

each pair (t, s) ∈ Z/p2Z× Z/pZ, the 1-representations are defined by:

χ(t,s) : A→ C∗
aµ 7→ wtµ

bγ 7→ wpsγ

with 0 ≤ µ ≤ p2 − 1 and 0 ≤ γ ≤ p− 1.

The group H = 〈x, y〉 acts on XH
A as follows

· : H → XH
A

h 7→ h · χ(t,s)(g) = χ(t,s)(h
−1gh).

(2.6)

To describe the set of orbits determined by the action of H on XH
A , con-

sider the following proposition:

Proposition 6. Let x and y be the generating elements of H ≤ Gp and
t, s, n ∈ N. If χ(t,s) is a representation of A with (t, s) ∈ Z/p2Z×Z/pZ, then
for 0 ≤ n ≤ p− 1 the action satisfies the following statements

xn · χ(t,s) = χ((1+ζ)t+nsp , nt+s), where ζ =
n−1∑
j=1

jp,

yn · χ(t,s) = χ((np+1)t , s).

Proof. For all g ∈ A there exist k1 ∈ {0, 1, . . . , p2−1} and k2 ∈ {0, 1, . . . , p−
1} such that g = ak1bk2 , then
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x · χ(t,s)(a
k1) = χ(t,s)(x

−1ak1x)
= χ(t,s)((x

−1ax)k1)
= χ(t,s)((ab)

k1)
= χ(t,s)(a

k1)χ(t,s)(b
k1)

= wk1(t+ps).

x · χ(t,s)(b
k2) = χ(t,s)(x

−1bk2x)
= χ(t,s)((x

−1bx)k2)
= χ(t,s)((ba

p)k2)
= χ(t,s)(b

k2)χ(t,s)(a
pk2)

= wpk2(t+s).

We deduce the following:

x · χ(t,s)(a
k1bk2) = χ(t,s)(x

−1ak1bk2x)
= χ(t,s)

(
(x−1ak1x)(x−1bk2x)

)
= χ(t,s)(x

−1ak1x)χ(t,s)(x
−1bk2x)

=
(
x · χ(t,s)(a

k1)
)
·
(
x · χ(t,s)(b

k2)
)

= wk1(t+ps)wpk2(t+s)

= (wk1)(t+ps)(wk2)p(t+s)

= χ(t+ps,t+s)(a
k1bk2).

Analogously for y ∈ H we have:

y · χ(t,s)(a
k1) = χ(t,s)(y

−1ak1y)
= χ(t,s)((y

−1ay)k1)
= χ(t,s)(a

(p+1)k1)
= wk1(p+1)t.

y · χ(t,s)(b
k2) = χ(t,s)(y

−1bk2y)
= χ(t,s)((y

−1by)k2)
= χ(t,s)(b

k2)
= wk2ps.

We have that

y · χ(t,s)(a
k1bk2) = χ(t,s)(y

−1ak1bk2y)
= χ(t,s)

(
(y−1ak1y)(y−1bk2y)

)
= χ(t,s)(y

−1ak1y)χ(t,s)(y
−1bk2y)

=
(
y · χ(t,s)(a

k1)
)
·
(
y · χ(t,s)(b

k2)
)

= (wk1)(p+1)t(wk2)ps

= χ((p+1)t,s)(a
k1bk2).
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Since the elements are arbitrary, we claim that

x · χ(t,s) = χ(t+ps,t+s),
y · χ(t,s) = χ((p+1)t,s).

By proceeding inductively, if we assume that the proposition is true for
n− 1 then:

xn · χ(t,s) = x ·
(
xn−1 · χ(t,s)

)
= x · (χ( [1+

∑n−2
j=1 jp]t+(n−1)sp , (n−1)t+s))

= χ( [1+
∑n−2
j=1 jp]t+(n−1)sp+p(n−1)t+ps , t+(n−1)t+s)

= χ( [1+
∑n−1
j=1 jp]t+nsp , nt+s)

.

yn · χ(t,s) = y ·
(
yn−1 · χ(t,s)

)
= y ·

(
χ([(n−1)p+1]t , s)

)
= χ((n+1)[(n−1)p+1]t , s)

= χ((np+1)t , s).

The action described in Proposition 6 allows us to identify how many
orbits we have and how many elements they have. We use it in the following
proposition.

Proposition 7. Let us consider H ≤ Gp as before. The action of H on XA

determines 3p− 2 orbits of which there are:

(i) p orbits with one element each.

(ii) p− 1 orbits with p elements.

(iii) p− 1 orbits with p2 elements.

Proof. By group theory, we know that #OrbH(χ(t,s)) ∈ {1, p, p2, p3} for
(t, s) ∈ Zp2 × Zp.
If t = pk with k ∈ {0, . . . , p− 1}, then we identify two cases:
1) Let s = 0, using the previous proposition OrbH(χ(pk,0)) = {χ(pk,0)}, then
#OrbH(χ(pk,0)) = 1, therefore there are p orbits of one element.
2) Let s 6= 0. By using the previous proposition

OrbH(χ(pk,s)) = {χ(p(k+ns),s) : n ∈ Z ∧ 0 ≤ n ≤ p− 1}.

This implies that #OrbH(χ(pk,s)) = p, given that s ∈ {1, . . . , p − 1}, then
there are p− 1 orbits of p elements.
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On the other hand, if GCD(t, p) = 1, then for each fixed s and n ∈
{0, . . . , p− 1} we have y · χ(t,s) = χ((np+1)t,s). Thus

χ((np+1)t,s) ∈ OrbH(χ(t,s)).

Moreover, let us observe the following

x · χ((np+1)t,s) = χ((np+1)t+ps,t+s),

under the assumption that GCD(t, p) = 1. Then, this element is different
from those defined by p. Therefore, for this case #OrbH(χ(t,s)) > p and the
action is not transitive, so it is concluded that #OrbH(χ(t,s)) = p2.

Since the elements of the orbit are determined by s ∈ {1, . . . , p− 1} and
also by considering the total number of 1-representations and the number of
elements that are already known from the previous orbits: p3−(p+p(p−1)) =
p2(p − 1), it follows that there are p − 1 different classes of orbits with p2

elements.

Once the number of orbits and their number of elements are know, we look
for the representatives of each of them. For that, the following proposition
is presented.

Proposition 8. The representatives of the orbits determined by the action
of H on XA according to their number of elements as in Proposition 7, are

(i) χ(pk,0) for 0 ≤ k ≤ p−1 are representatives of the orbits with 1 element.

(ii) χ(0,s) for 1 ≤ s ≤ p−1 are representatives of the orbits with p elements.

(iii) χ(t,0) for 1 ≤ t ≤ p−1 are representatives of the orbits with p2 elements.

Proof. By the previous proposition, it is enough to prove that these elements
represent different orbits. By considering the results in Proposition 6, we say
the following:

Statement (i) is trivial, since OrbH(χ(pk,0)) = {χ(pk,0)}.
For statement (ii), we see that

OrbH(χ(0,s)) = {xnym · χ(0,s) : n,m ∈ Z ∧ 0 ≤ n,m ≤ p− 1}
= {χ(nps,s) : n ∈ Z ∧ 0 ≤ n ≤ p− 1}. (2.7)

Therefore, for ŝ ∈ {1, . . . , p− 1}, χ(0,ŝ) ∈ OrbH(χ(0,s)) if and only if s = ŝ.
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Finally, for statement (iii), we have

OrbH(χ(t,0)) = {xnym · χ(0,s) : n,m ∈ Z ∧ 0 ≤ n,m ≤ p− 1}
= {χ((1+p+...+(n−1)p)t+mpt , nt) : n,m ∈ Z ∧ 0 ≤ n,m ≤ p− 1}.

(2.8)
Then, for t̂ ∈ {1, . . . , p − 1}, χ(t̂,0) ∈ OrbH(χ(t,0)) if and only if there exist
n,m such that

np ≡ 0(mod p2) ∧ (1 + p+ . . .+ (n− 1)p)t+mpt ≡ t̂(mod p).

Then n = 0 and this implies that t(1 +mp) ≡ t̂(mod p2), therefore
t ≡ t̂(mod p), i.e. t = t̂.

Remark 2. We describe the set XH
A by

{OrbH(χ(pk,0))}0≤k≤p−1∪̇{OrbH(χ(0,s))}1≤s≤p−1∪̇{OrbH(χ(t,0))}1≤t≤p−1

The set I indexing the representations we chose as representatives is given
as the disjoint union of the set I1, Ip, Ip2 where

I1 := {(pk, 0) ∈ Z/p2Z × Z/pZ : 0 ≤ k ≤ p− 1},
Ip := {(0, s) ∈ Z/p2Z × Z/pZ : 1 ≤ s ≤ p− 1},
Ip2 := {(t, 0) ∈ Z/p2Z × Z/pZ : 1 ≤ t ≤ p− 1}.

Continuing with the Little Groups method, for each (i, j) ∈ I we define the
following subgroup of Gp

H(i,j) = {h ∈ H : h · χ(i,j) = χ(i,j)} := Stab(χ(i,j)).

Then, using equations (2.7) and (2.8), we obtain the following stabilizers
H(i,j)

(i) ∀(i, j) ∈ I1, H(i,j) = 〈x, y〉 = H ' Z/pZ× Z/pZ,

(ii) ∀(i, j) ∈ Ip, H(i,j) = 〈y〉 ' Z/pZ,

(iii) ∀(i, j) ∈ Ip2 , H(i,j) = {id}.

Then, define G(i,j) = AoH(i,j), and the representation χ(i,j) extends to G(i,j)

as
χ̂(i,j)(ah) = χ(i,j)(a), for a ∈ A and h ∈ H(i,j).

According to the Little Groups method, we take every ρ irreducible repre-
sentation of H(i,j), and compose it with the projection π : G(i,j) → H(i,j)
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obtaining in this way a representation ρ̃ of G(i,j). Finally, we take tensor

product χ̂(i,j) ⊗ ρ̃ to provide an induced representation of G(i,j). The cor-
responding induced representation of Gp is irreducible, and in this way all
the complex irreducible representations of Gp are obtained. We describe the
irreducible C−representations of H(i,j) with (i, j) ∈ I as follows. Notice that
we use a convenient notation.

(i) If (i, j) ∈ I1, then the representations of H(pk,0) are determined for each
α, β ∈ {0, . . . , p− 1} such that

ρ
(α,β)
H(pk,0)

: H(pk,0) → C∗

x 7→ wpα

y 7→ wpβ .

(ii) If (i, j) ∈ Ip, then the representations of H(0,s) are determined for each
β ∈ {0, . . . , p− 1} such that

ρ
(0,β)
H(0,s)

: H(0,s) → C∗

y 7→ wpβ.

(iii) If (i, j) ∈ Ip2 , then the representations of H(t,0) are determined for the

trivial representation, i.e. ρ
(0,0)
H(t,0)

= IdH(t,0)
.

As said if π : G(i,j) → H(i,j) is the canonical projection for (i, j) ∈ I, then
∀α, β ∈ {0, . . . , p − 1} the irreducible representation of G(i,j) is defined by

the function ρ̃
(α,β)
(i,j) := ρ

(α,β)
H(i,j)

◦ π. Note that this representation is of degree 1

as well.
Finally, if we take the tensor product χ̂(i,j) ⊗ ρ̃

(α,β)
(i,j) = χ̂(i,j) · ρ̃

(α,β)
(i,j) , we

obtain all the complex irreducible representations of Gp which correspond to
the following induced representations:

Ind
Gp
Gi

(χ̂(i,j) ⊗ ρ̃
(α,β)
(i,j) ). (2.9)

In the following section, we determine each complex irreducible represen-
tation of Gp, we present them organized by its degree.

2.2.1.1 Complex irreducible representations of Gp of degree 1.

Observe that for all (pk, 0) ∈ I1 and for all α, β ∈ {0, . . . , p − 1}, we have
that [Gp : G(pk,0)] = 1. Then,

deg
(

Ind
Gp
G(pk,0)

(χ̂(pk,0) ⊗ ρ̃
(α,β)
(pk,0))

)
= 1.



CHAPTER 2. GP AND ITS ACTIONS 40

Therefore, the following equalities are satisfied:

Ind
Gp
G(pk,0)

(
χ̂(pk,0) ⊗ ρ̃

(α,β)
(pk,0)

)
= χ̂(pk,0) ⊗ ρ̃

(α,β)
(pk,0) = χ̂(pk,0) · ρ̃

(α,β)
(pk,0) .

Therefore, we are in a position to conclude that Gp has p3 irreducible repre-
sentations of degree 1, which are:

Ind
Gp
G(pk,0)

(
χ̂(pk,0) ⊗ ρ̃

(α,β)
(pk,0)

)
: Gp → C∗

a 7→ wpk

b 7→ 1
x 7→ wpα

y 7→ wpβ.

Notation 1. From now on, for all k, α, β ∈ {0, 1, . . . , p− 1}, we will denote
these representations as:

V
(1)

(k,α,β) := Ind
Gp
G(pk,0)

(
χ̂(pk,0) ⊗ ρ̃

(α,β)
(pk,0)

)
. (2.10)

2.2.1.2 Complex irreducible representations of Gp of degree p

First, let us note that for all (0, s) in Ip, we have that [Gp : G(0,s)] = p. Then,

deg
(

Ind
Gp
G(0,s)

(
χ̂(0,s) ⊗ ρ̃

(0,β)
(0,s)

))
= p,

for every β ∈ {0, . . . , p− 1}, Then Gp has p(p− 1) complex irreducible rep-
resentations of degree p.

Since Gp/G(0,s) = Gp/(Ao 〈y〉) ' 〈x〉, then {1, x, x2, . . . , xp−1} is a (left)

transversal of G(0,s) in Gp. Moreover, using χ̂(0,s) ⊗ ρ̃
(0,β)
(0,s) = χ̂(0,s) · ρ̃

(0,β)
(0,s) , we

get

χ̂(0,s) ⊗ ρ̃
(0,β)
(0,s) : Ao 〈y〉 → C∗

a 7→ 1
b 7→ wps

y 7→ wpβ.

Using Proposition 5, item (iii) (Section 2.1.1) and the properties of group
representations, we describe these representations for each generator of Gp.
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(i) Let us denote by [aij]0≤i,j≤p−1 the coefficients of the matrix correspond-

ing to IndGG(0,s)
(χ̂(0,s)⊗ρ̃

(0,β)
(0,s) )(a) in the chosen basis of left cosets of G(0,s)

on Gp. Using Proposition 5, we have:

aii = χ̂(0,s) ⊗ ρ̃
(0,β)
(0,s) (x−iaxi)

= χ̂(0,s) ⊗ ρ̃
(0,β)
(0,s) (a1+

pi(i−1)
2 bi)

= wpsi.

Additionally, we have

x−iaxj = a1+
pi(i−1)

2 bix−i+j.

Therefore, x−iaxj ∈ G(0,s) if and only if i = j. From this statement
it follows that only the elements of the diagonal of the matrices are
non-zero. Using this information we obtain the representation induced
for a ∈ Gp:

Ind
Gp
G(0,s)

(
χ̂(0,s) ⊗ ρ̃

(0,β)
(0,s)

)
(a) =


1 0 0 . . . 0
0 wps 0 . . . 0
0 0 w2ps . . . 0
...

...
...

. . .
...

0 0 0 . . . w(p−1)ps

 ∈Mp(C).

Remark 3. We observe that for all k ∈ {0, . . . , p2−1} the character of

Ind
Gp
G(0,s)

(
χ̂(0,s) ⊗ ρ̃

(0,β)
(0,s)

)
evaluated in ak is given by the sum

p−1∑
j=0

(wkps)j.

We are in a position to conclude that for k 6= p, the sum is 0. On the
other hand, if k = p, the sum is p.

(ii) Let us denote by [bij]0≤i,j≤p−1 to the coefficients of the matrix corre-

sponding to Ind
Gp
G(0,s)

(
χ̂(0,s) ⊗ ρ̃

(0,β)
(0,s)

)
(b) in the chosen basis of left cosets

of G(0,s) on Gp. Using Proposition 5, we have:

bii = χ̂(0,s) ⊗ ρ̃
(0,β)
(0,s) (x−ibxi)

= χ̂(0,s) ⊗ ρ̃
(0,β)
(0,s) (aipb)

= wps.

Additionally, we have the equality

x−ibxj = aipbx−i+j,
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therefore x−ibxj ∈ G(0,s) if and only if i = j. From this statement it
follows that only the elements of the diagonal on the matrix are non-
zero. Using this information we obtain the representation of b ∈ Gp:

Ind
Gp
G(0,s)

(
χ̂(0,s) ⊗ ρ̃

(0,β)
(0,s)

)
(b) =


wps 0 0 . . . 0
0 wps 0 . . . 0
... 0 wps . . .

...
...

...
...

. . . 0
0 0 0 . . . wps

 ∈Mp(C).

Remark 4. We observe that for all k ∈ {0, . . . , p− 1} the character of

Ind
Gp
G(0,s)

(
χ̂(0,s) ⊗ ρ̃

(0,β)
(0,s)

)
evaluated in bk is

p−1∑
j=0

wpsk = pwkps.

(iii) Let us denote by [yij]0≤i,j≤p−1 the coefficients of the matrix correspond-

ing to IndGG(0,s)

(
χ̂(0,s) ⊗ ρ̃

(0,β)
(0,s)

)
(y) in the chosen basis of left cosets of

G(0,s) on Gp. Using Proposition 5, we have:

yii = χ̂(0,s) ⊗ ρ̃
(0,β)
(0,s) (x−iyxi)

= χ̂(0,s) ⊗ ρ̃
(0,β)
(0,s) (y)

= wpβ.

Additionally, sinceH is an abelian group, we have the equality x−iyxj = yx−i+j.
Therefore, x−iyxj ∈ G(0,s) if and only if i = j.

As before, it follows that only the elements of the diagonal of the matrix
are non-zero. Using this, we get for y ∈ Gp:

Ind
Gp
G(0,s)

(
χ̂(0,s) ⊗ ρ̃

(0,β)
(0,s)

)
(y) =


wpβ 0 0 . . . 0
0 wpβ 0 . . . 0
... 0 wpβ . . .

...
...

...
...

. . . 0
0 0 0 . . . wpβ

 ∈Mp(C).

Remark 5. We observe that for all k ∈ {0, . . . , p− 1} the character of

Ind
Gp
G(0,s)

(
χ̂(0,s) ⊗ ρ̃

(0,β)
(0,s)

)
evaluated in yk is

p−1∑
j=0

wpβk = pwpβk.

(iv) Let us denote by [xij]0≤i,j≤p−1 ∈ Mp(C) the coefficients of the matrix

corresponding to Ind
Gp
G(0,s)

(
χ̂(0,s) ⊗ ρ̃

(0,β)
(0,s)

)
(x) in the chosen basis of left



CHAPTER 2. GP AND ITS ACTIONS 43

cosets of G(0,s) on Gp. Using Proposition 5, we have x−ixxj = x−i+j+1.
Then the elements of the matrix for i, j ∈ Z and 0 ≤ i, j ≤ p − 1 are
defined by:

xij =

{
1 , if i− j ≡ 1(mod p),
0 , if i− j 6≡ 1(mod p).

If we define for n,m ∈ N, the element Om×n as the null matrix in
Mm×n (Z), and Idn as the identity matrix in Mn×n (Z), then, interpret-
ing the above information, we get the description of the representation
of Gp on x which is:

Ind
Gp
G(0,s)

(
χ̂(0,s) ⊗ ρ̃

(0,β)
(0,s)

)
(x) =

(
O p−1

2
× p+1

2
Id p−1

2

Id p+1
2

O p+1
2
× p−1

2

)
∈Mp(C).

Remark 6. The matrix Ind
Gp
G(0,s)

(
χ̂(0,s) ⊗ ρ̃

(0,β)
(0,s)

)
(x) is a permutation

matrix corresponding to the permutation σp = (a1 a2 . . . ap) ∈ Sp, where
the indices of ai for all i ∈ {1, 2, . . . , p} are given by:

ai =

{
b i+1

2
, if i is odd,

c i
2
, if i is even,

(2.11)

with the sequences {bj} and {cj} described by the following expressions:

bj = j,

cj =
p+ 3

2
+ (j − 1),

for 1 ≤ j ≤ p.

Note that this is a cyclic permutation of length p, therefore, for every

k ∈ {0, . . . , p−1} the character of Ind
Gp
G(0,s)

(
χ̂(0,s) ⊗ ρ̃

(0,β)
(0,s)

)
evaluated in

xk is 0. The fact that the permutation is described by a cycle implies
that it has order p (length of the cycle) and that powers smaller than
its order do not fix elements.

From now on, for all s ∈ {1, . . . , p− 1}, for all β ∈ {0, 1, . . . , p− 1}, we will
denote these representations by:

V
(p)

(s,β) := Ind
Gp
G(0,s)

(
χ̂(0,s) ⊗ ρ̃

(0,β)
(0,s)

)
. (2.12)
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2.2.1.3 Complex irreducible representations of Gp of degree p2

Finally, we will consider (t, 0) in Ip2 . We have that [Gp : G(t,0)] = p2, then,

deg
(

Ind
Gp
G(t,0)

(
χ̂(t,0) ⊗ ρ̃

(0,0)
(t,0)

))
= p2.

Additionally, we have the following equality:

Ind
Gp
G(t,0)

(
χ̂(t,0) ⊗ ρ̃

(0,0)
(t,0)

)
= Ind

Gp
G(t,0)

(
χ̂(t,0) ⊗ IdG(t,0)

)
,

this implies that Gp has p−1 complex irreducible representations of degree p2.

Given that Gp/G(t,0) = Gp/(Ao {1}) ' H, then {xiyj : 0 ≤ i, j ≤ p− 1}
is a set of left cosets representatives G(t,0) in Gp. Moreover, we have the

expression χ̂(t,0) ⊗ ρ̃
(0,0)
(t,0) = χ̂(t,0) · 1G(t,0)

, therefore

χ̂(t,0) ⊗ ρ̃
(0,0)
(t,0) : Ao {1} −→ C∗

a 7→ wt

b 7→ 1.

Considering the above result and using Proposition 5, item (iii) (Section
2.1.1), we describe the value of the representations for each generator of Gp

by means of the following expressions:

(i) Let us denote by [aij]0≤i,j≤p2−1 ∈Mp2(C) the coefficients of the matrix

corresponding to Ind
Gp
G(t,0)

(χ̂(t,0) ⊗ ρ̃
(0,0)
(t,0) )(a) in the chosen basis of left

cosets of G(t,0) on Gp. Using Proposition 5, we have

y−jx−iaxiyj = apj+1+
pi(i−1)

2 bi.

This implies the equality of the following sets:

{aii = ap(
i(i+1)

2 )+1bi : 0 ≤ i ≤ p2 − 1} = {apk+1bj : 0 ≤ j, k ≤ p− 1},

and the elements of the matrix are non-zero on the diagonal.

If σ
(column)
(i,j) denotes the permutation of columns i and j in a matrix,

and if σ
(row)
(i,j) denotes the permutation of rows i and j of a matrix, then

Ind
Gp
G(t,0)

(
χ̂(t,0) ⊗ ρ̃

(0,0)
(t,0)

)
(a) = σ

(column)

(1,p2) σ
(row)

(1,p2)

(
diag

[
A

(0)
t , . . . , A

(p−1)
t

])
,
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where ∀k ∈ {0, . . . , p− 1}, A(k)
t is defined by

A
(k)
t =


wt(pk+1) 0 . . . . . . 0

0
. . . 0

...
...

... 0 (p−times) 0
...

...
... 0

. . . 0
0 . . . . . . 0 wt(pk+1)

 ∈Mp(C),

= diag

wt(pk+1), wt(pk+1), . . . , wt(pk+1)︸ ︷︷ ︸
p−times

 .
Remark 7. We calculate the character of the previous representation
evaluated in a by:

χ
Ind

Gp
G(t,0)

(
χ̂(t,0)⊗ρ̃

(0,0)
(t,0)

)(a) =

p−1∑
k=0

pw(pk+1)t,

= pwt
p−1∑
k=0

(wpt)k,

= −pwt.

(ii) Let us denote by [bij]0≤i,j≤p2−1 ∈ Mp2(C) the coefficients of the ma-

trix corresponding to Ind
Gp
G(t,0)

(
χ̂(t,0) ⊗ ρ̃

(0,0)
(t,0)

)
(b), in the chosen basis of

left cosets of G(t,0) on Gp. Then, ∀i, j ∈ {0, . . . , p − 1}, we know the
expression y−jx−ibxiyj = aipb, this implies that

{bii = aipb : 0 ≤ i ≤ p2 − 1} = {ajpb : 0 ≤ j ≤ p− 1}

and the elements of the matrix are non-zero on the diagonal. Therefore,
the matrix is described as follows:

Ind
Gp
G(t,0)

(
χ̂(t,0) ⊗ ρ̃

(0,0)
(t,0)

)
(b) =


B 0 · · · · · · 0

0
. . . . . .

...
. . . p−times

. . .
...

. . . . . . 0
0 · · · · · · 0 B

 = diag

B,B, . . . , B︸ ︷︷ ︸
p−times

 ,
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where

B =



1 0 0 . . . . . . 0
0 wt 0 . . . . . . 0
... 0 wpt

. . .
...

...
. . . w2pt . . .

...

0
...

. . . . . . 0
0 0 . . . . . . 0 wp(p−1))t


= diag

[
1, wt, wpt, w2pt, . . . , wp(p−1)t

]
.

Remark 8. We calculate the character of the above representation
evaluated at b as:

χ
Ind

Gp
G(t,0)

(
χ̂(t,0)⊗ρ̃

(0,0)
(t,0)

)(b) = p

p−1∑
k=0

(wtp)k,

= −p.

(iii) Let us denote by [xij]0≤i,j≤p2−1 the coefficients of the matrix correspond-

ing to Ind
Gp
G(t,0)

(χ̂(t,0)⊗ ρ̃
(0,0)
(t,0) )(x) in the chosen basis of left cosets of G(t,0)

on Gp. Since H 6 Gp is abelian and x ∈ H, then using Proposition 5 we
have y−j1x−i1xxi2yj2 = x−i1+i2+1y−j1+j2 . This implies that the elements
xi,j are nonzero if and only if i1 − i2 ≡ 1(mod p) and j1 ≡ j2(mod p),
therefore

Ind
Gp
G(t,0)

(
χ̂(t,0) ⊗ ρ̃

(0,0)
(t,0)

)
(x) = diag

X,X, . . . , X︸ ︷︷ ︸
p−times

 ,
where the element X is described by

X =

(
O p+1

2
× p−1

2
Id p−1

2

Id p+1
2

O p−1
2
× p+1

2

)
∈Mp(Z).

Remark 9. We observe that the character of the previous representa-
tion in x is 0. Additionally, from the previous subsection, we know that

the matrixX is a permutation matrix, therefore, Ind
Gp
G(t,0)

(
χ̂(t,0) ⊗ ρ̃

(0,0)
(t,0)

)
(x)

is also a permutation matrix and represented by ζp2 as a product of p
disjoint permutations of order p described by the following expression:

ζp2 =

p−1∏
k=0

σpk , whereσpk = (a1+pk a2+pk . . . ap+pk),
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and the sequence {ai}1≤i≤p is described as shown in Remark 6 (see
Section 2.2.1.2). From this we are in a position to conclude that this
permutation matrix has order p and powers less than this number do
not fix any element.

(iv) Let us denote by [yij]0≤i,j≤p2−1 ∈Mp2(C) the coefficients of the matrix

corresponding to Ind
Gp
G(t,0)

(χ̂(t,0) ⊗ ρ̃
(0,0)
(t,0) )(y) in the chosen basis of left

cosets of G(t,0) on Gp.

Since H 6 Gp is abelian and y ∈ H, then ∀i, j ∈ {0, . . . , p− 1}, using
Proposition 5,we have y−j1x−i1yxi2yj2 = x−i1i2+1y−j1+j2+1. This implies
that the elements of the matrix yi,j are nonzero if and only if i1 ≡
i2(mod p) and j1 − j2 ≡ 1(mod p), therefore:

Ind
Gp
G(t,0)

(
χ̂(t,0) ⊗ ρ̃

(0,0)
(t,0)

)
(y) =



Op Op . . . . . . Op Ip
Ip Op . . . . . . . . . Op

Op Ip Op . . . . . . Op

Op Op Ip Op . . . Op
...

... . . .
. . .

...
Op . . . . . . . . . Ip Op


,

=

(
Op×p(p−1) Idp
Idp(p−1) Op(p−1)×p

)
∈Mp2(Z).

Remark 10. Analogously to the previous case, we describe the rep-
resentation by a permutational matrix given by the permutation εp2 ,
where

εp2 =

p−1∏
k=0

εpk where εpk = (k, d1 + pk, d2 + pk, . . . , dp−1 + pk),

and the sequence {dj} is described by the expression: dj = (p− j)p+ 1,
with 1 ≤ j ≤ p− 1.

From the above, we deduce that the character of the above representa-
tion for y is 0, since the permutation described is composed of disjoint
cycles of order p, and therefore, the permutation matrix of this repre-
sentation has order p and any lower power does not fix any element.
Moreover, the composition of the permutations ζ and ε satisfies these
characteristics, since it is also composed of disjoint cycles of order p.
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From now on, for all t ∈ {1, . . . , p− 1}, we denote these group represen-
tations by:

V
(p2)

(t) := Ind
Gp
G(t,0)

(
χ̂(t,0) ⊗ ρ̃

(0,0)
(t,0)

)
.

In summary, the complex irreducible representations of Gp are collected in
the following theorem.

Theorem 7. Let the notation be as in the previous results. The group Gp

has a total of p3 + p2 − 1 complex irreducible representations, which are as
follows:

(i) For k, α and β integers such that 0 ≤ k, α, β ≤ p − 1; V
(1)

(k,α,β) are the
representations of degree 1.

(ii) For s, β integers such that 1 ≤ s ≤ p− 1 and 0 ≤ β ≤ p− 1; V
(p)

(s,β) are
the representations of degree p.

(iii) For t integer such that 1 ≤ t ≤ p − 1; V
(p2)

(t) are the representations of

degree p2.

2.2.2 Rational irreducible representations of Gp .

Using the method of (1.1) (see [12, Thm 70.15]), one obtains the irreducible
rational representations of Gp by a direct sum, which depends on the Schur
index of the irreducible complex representations and their Galois conjugates.

First, we study the Schur index of each complex representations of Gp.

Proposition 9. Let V be a complex irreducible representation of the group
Gp, then its Schur index mV is 1.

Proof. We know that |Gp| = p5, then the proof follows directly from the
fact that the Schur index mV associated to an irreducible representation V ,
satisfies the equality mV = 1 unless p = 2 and

√
−1 /∈ F in which case

mV ≤ 2. See Roquette corollary [23, Coroll. 10.14] of Goldschmidt-Isaacs
Theorem [23, Thm. 10.12]

We obtain the rational irreducible representations by adding, in a direct
sum, the Galois conjugate [12, Thm. 70.15 and Ex. 70.2]. We collect that in
the following theorem.
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Theorem 8. Let the notation be as in Section 2.2.1. Then the rational
irreducible representations of Gp are follows:

(i) There is one rational irreducible representation of degree 1, this is de-
fined by W(0) := V(0,0,0) and it is the trivial representation.

(ii) There are p2 +p+ 1 rational irreducible representations of degree p−1,
which are:

W(0,0,1) :=
⊕

σ∈Gal(Q(wp)/Q)

(
V

(1)
(0,0,1)

)σ
,

W(0,1,k), :=
⊕

σ∈Gal(Q(wp)/Q)

(
V

(1)
(0,1,k)

)σ
, for k ∈ Z and 0 ≤ k ≤ p− 1,

W(1,m,n) :=
⊕

σ∈Gal(Q(wp)/Q)

(
V

(1)
(1,m,n)

)σ
, for m,n ∈ Z and 0 ≤ m,n ≤ p− 1.

(iii) There are p rational irreducible representations of degree p(p−1), which
are

W(1,u) :=
⊕

σ∈Gal(Q(wp)/Q)

(
V

(p)
(1,u)

)σ
, for u ∈ Z and 0 ≤ u ≤ p− 1,

(iv) There is one rational irreducible representation of degree p2(p − 1),
which is

W(1) :=
⊕

σ∈Gal(Q(wp)/Q)

(
V

(p2)
(1)

)σ
.

Proof. We recall the following notations: let KV be the field associated to the
representation V obtained by adjoining to Q the values of the character χV
and mV the Schur index of the complex representation V . From Proposition
9, we have mV = 1 for all complex irreducible representations of Gp. Thus
every field of definition LV correspond to the character field KV . We have
the following statements for the characters:

(i) First, the representation V
(1)

(0,0,0) is the trivial representation and we
denote

V
(1)

(0,0,0) =: W(0).
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(ii) Second, for 0 ≤ k, α, β ≤ p − 1 and (k, α, β) 6= 0, the representations

V
(1)

(k,α,β) have as character fields K
V

(1)
(k,α,β)

= Q(wp), then

Gal

(
K
V

(1)
(k,α,β)

/
Q
)

=
{
σi ∈ Aut (Q(wp)/Q) : σi(w

p) = wpi, 1 ≤ i ≤ p− 1
}
' (Z/pZ)× .

This implies{(
V

(1)
(k,α,β)

)σi}
σi∈Aut(Q(wp)/Q)

=
{
V

(1)
(ik,iα,iβ) : 1 ≤ i ≤ p− 1

}
.

Hence, there are p2 +p+1 rational irreducible representations of degree
p−1. If we condition the first element as null or not null, and then the
same with the second, we describe the representations by the following
expressions:



W(0,1,k) :=
⊕

σi∈Gal(Q(wp)/Q)

(
1 · V (1)

(0,1,k)

)σi
, for 0 ≤ k ≤ p− 1.

W(0,0,1) :=
⊕

σi∈Gal(Q(wp)/Q)

(
1 · V (1)

(0,0,1)

)σi
.

W(1,m,n) :=
⊕

σi∈Gal(Q(wp)/Q)

(
1 · V (1)

(1,m,n)

)σi
, for 0 ≤ m,n ≤ p2.

(iii) Third, for the case of complex irreducible representations of degree p;

V
(p)

(s,β) with 1 ≤ s ≤ p − 1 and 0 ≤ β ≤ p − 1, we have the fields

K
V

(1)
(s,β)

= Q(wp), then

Gal

(
K
V

(p)
(s,β)

/
Q
)

=
{
σi ∈ Aut(Q(wp)/Q) : σi(w

p) = wpi, 1 ≤ i ≤ p− 1
}
' (Z/pZ)× .

From the above we are in a position to conclude that{(
V

(p)
(s,β)

)σi}
σi∈Aut(Q(wp)/Q)

=
{
V

(p)
(is,iβ) : 1 ≤ i ≤ p− 1

}
,

which implies that there are p rational irreducible representations of
degree p(p− 1). These are described by:

W(1,u) :=
⊕

σi∈Gal(Q(wp)/Q)

(
1 · V (p)

(1,u)

)σi
=

⊕
σi∈Gal(Q(wp)/Q)

(
V

(p)
(1,u)

)σi
, for 0 ≤ u ≤ p−1.
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(iv) Finally, for the case of complex irreducible representations of degree p2;

V
(p2)

(t) with 1 ≤ t ≤ p− 1, we have fields K
V

(p2)
t

= Q(wp), then

Gal

(
K
V

(p2)
(t)

/
Q
)

=
{
σi ∈ Aut(Q(wp)/Q) : σi(w

p) = wpi, 1 ≤ i ≤ p− 1
}
' (Z/pZ)× .

This implies that{(
V

(p2)
(t)

)σi}
σi∈Aut(Q(wp)/Q)

=
{
V

(p2)
(it) : 1 ≤ i ≤ p− 1

}
.

Therefore, there is 1 rational irreducible representation of degree p2(p− 1).
This can be described by:

W(1) :=
⊕

σi∈Gal(Q(wp)/Q)

(
1 · V (p2)

(1)

)σi
=

⊕
σi∈Gal(Q(wp)/Q)

(
V

(p2)
(1)

)σi
.

This concludes the description of the rational irreducible representations of
the group Gp.

2.3 Action of Gp on Riemann surfaces

We recall the known fact that the dimension of a family of Riemann surfaces
with the action of a finite group G with signature (γ; a1, . . . , at) is

3γ − 3 + t.

According to Proposition 6, the groupGp does not act with signature (0; a, b, c),
since this happens if and only if the group can be generated by two elements,
which is not the case for Gp.

Since the minimal set of generators of Gp has 3 elements, the minimal
number of branch values for an action with total quotient of genus 0 is 4.
Such actions correspond to one dimensional families. Another way of getting
a one dimensional family is acting with one branch value and total quotient
of genus 1.

Considering that Gp has elements of orders 1, p and p2, only, the list
of possible signatures corresponding to one dimensional families is in the
following table.

We study whether there is a generating vector for each signature corre-
sponding to one dimensional families, in order to prove which actions actually
exist.
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We collect the information obtained computationally (using Sage) for
p = 3 in the same table, and give the answer for the general case in Remark
11.

Case. Signature Conclusion for p = 3

(i) (1; p) It exists
(ii) (1; p2) Does not exist.
(iii) (0; p, p, p, p) Does not exist.
(iv) (0; p, p, p, p2) Does not exist.
(v) (0; p, p, p2, p2) It exists and it is the starting point for the families we study here
(vi) (0; p, p2, p2, p2) No result with [3], computed by hand (see below)
(vii) (0; p2, p2, p2, p2) No result with [3], computed by hand (see below)

Remark 11. Although we could not find computationally (using the algo-
rithms in [3]) generating vectors for cases (vi) and (vii) for p = 3, we know
from the analysis of the general situation that they do exist. Besides, using
the algorithm in [30], code available in https://github.com/jenpaulhus/breuer-
modified, Prof. Paulhus told us that she found several for p = 3 for both
cases.

The general situation, meaning p ≥ 3 a prime, is as follows:

• Case (i) exists, take the generating vector (x, a; b−1), but we prefer to
focus our analysis on cases where the total quotient is of genus 0.

• Case (ii) does not exist since the order of the commutator subgroup G′p
is p2 and it is isomorphic to Zp×Zp. So it has no elements of order p2.

• Cases (iii) and (iv) do not exist. Since all elements of order p are in
the subgroup R = 〈ap, b, x, y〉, then if g is not in R, g = akbrxnym

with k, r, n,m ∈ N0, GCD(k, p) = 1, k > 1, has order p2. Therefore,
signatures are not realizable in Gp, since Gp cannot be generated only
by elements of order p and three elements of R do not generate an
element of order p2.

• Cases (v), (vi) and (vii) do exist.

We work out case (v) in detail, since the techniques involved in the
other two ((vi) and (vii)) are similar. We leave these cases, together
with signature (1; p) for future research.

For (vi) and (vii), it is enough to consider the elements ap−2, ax, ay of
order p2. It follows that ap−2(ax)(ay) has order p and 〈ap−2, ax, ay〉 =
Gp, then the generating vector [(ap−2(ax)(ay))−1, ap−2, ax, ay] realizes
the signature (0; p, p2, p2, p2).
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On the other hand, the element a(ax)(ay) ∈ Gp has order p2, we
can consider a2, so a2(ax)(ay) has order p2 because GCD(p, 2) =
1. Moreover, 〈a, ax, ay〉 = Gp, then it is sufficient to consider the
generating vector [(a(ax)(ay))−1, a, ax, ay] that realizes the signature
(0; p2, p2, p2, p2).

For (v) see Theorem 9.

Theorem 9. There exists a Riemann surface X of genus g = p5−p4−p3 +1,
on which Gp acts with signature s = (0; p2, p2, p, p) and Gp has a generating
s-vector described by [a−1, xyap+1b, y−1, x−1].

Proof. By Riemann’s Existence Theorem, since the Riemann-Hurwitz (1.12)
equation is satisfied, we need to prove the existence of a generating vector
to be able to conclude that the Riemann surface X exists. According to the
structure of Gp the following information about the orders composing the
generating vector is known:

(i) |a−1| = |a| = p2,

(ii) |xyap+1b| = p2 (proved in Proposition 5),

(iii) |x−1| = |x| = |y−1| = |y| = p.

Therefore, [a−1, xyap+1b, y−1, x−1] is an (0; p2, p2, p, p)-generating vector.

Proposition 10. Let X be a Riemann Surface with G–action of geometric
signature (0; [p2, 〈a−1〉], [p2, 〈xyap+1b〉], [p, 〈y−1〉], [p, 〈x−1〉]). Then for H and
K subgroups of Gp defined in Section 2.1.1, the genus of X/H and X/K is
p3 − 3

2
p2 − p+ 3

2
.

Proof. We define the subgroupsG1 := 〈a−1〉 , G2 := 〈xyap+1b〉 , G3 := 〈y−1〉 , G4 :=
〈x−1〉 . Then the orders of the set corresponding to the double cosets are

• |H \G/G1| =
∣∣{H1G1, HbG1, Hb

2G1, . . . , Hb
p−1G1

}∣∣ = p.

• |H \G/G2| =
∣∣{H1G2, HbG2, Hb

2G2, . . . , Hb
p−1G2

}∣∣ = p.

• |H \G/G3| =
∣∣{HaibjG3 : 0 ≤ i, j ≤ p− 1

}
∪
{
HaipbjG3 : 0 ≤ j ≤ p− 1, 1 ≤ i ≤ p− 1

}∣∣ ,
= 2p2 − p.

• |H \G/G4| =
∣∣∣{H1G4, HaG4, Ha

2G4, Ha
p2−1G4, HbG4, Hb

2G4, . . . , Hb
p−1G4

}∣∣∣
= p2 + p− 1.
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Finally, using [35, Prop.3.4], we are in a position to conclude that

gX/H = p3 − 3

2
p2 − p+

3

2
.

We proceed analogously to conclude for K.

Remark 12. We point out that using the algorithms of [3], we computed
that for p = 3 there are exactly 16 non-equivalent actions for the signature
(0; p, p, p2, p2) (see Section 2.4). It then follows that there are 16 equisym-
metric strata, see [24, 5] for definitions, in the singular locus of the moduli
space M136. This work starts with one of these actions and explores its
geometry, describing in this way one of these strata and the corresponding
family in A136. Moreover, we study the geometry of this action for any prime
p, describing in this way one stratum inMp5−p4−p3+1 and the corresponding
family in Ap5−p4−p3+1. The same work can be done for the other generating
vectors, for p = 3 as well as in the general case.

Finally, we expand the signature and this generating vector in a natural
way (see Section 3.2), and study the geometry of this new action. As before,
the same study could be done for every other generating vector.

Expanding the signature is an idea that interests us because it allows us
to extend the analysis of the decomposition of Jacobian varieties of curves in
our original one-dimensional family to Jacobians corresponding to curves of
higher genera and in higher dimensional families.

We say that we extend a signature, if we add pairs of branch points
repeating the orders in the original signature. Analogously, we describe an
extended version of a generating vector by adding appropriate elements of
the group (see sections 3.2 for details).

In the case of the signature and generating vector presented in Theorem
9, we consider a collection of families of Riemann surfaces with four discrete
parameters (t1, t2, t3, t4) ∈ N4

0 which admit the action of Gp with extended
signature

(0; (p2)2t1+1, (p2)2t2+1, (p)2t3+1, (p)2t4+1),

and extended generating vector

[(a−1, a)t1 , a−1, (xyap+1b, (xyap+1b)−1)t2 , xyap+1b, (y−1, y)t3 , y−1, (x−1, x)t4 , x−1],

where (α, β)t means α, β, t−times. . . , α, β.
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2.4 The signature (0; p2, p2, p, p) in actions of

Gp on Riemann surfaces for p = 3.

The existence of the equisymmetric stratification of the moduli spaceMg of
Riemann surfaces of genus g, consists of the fact that each stratum is formed
by the points in the moduli space corresponding to equisymmetric surfaces.

Two closed Riemann surfaces X and Y of genus g are said to be equisym-
metric if their automorphism groups determine finite conjugate subgroups in
the mapping class group of genus g; i.e., the actions of their automorphism
groups are topologically equivalent. The branch locus of the moduli space
consists of the strata corresponding to surfaces of genus g > 2 that admit
nontrivial automorphisms.

The actions σ1, σ2 of G on X are topologically equivalent if there exists
Φ ∈ Aut(G) and h in the group of orientation-preserving homeomorphisms
Homeo+(X) of X, such that the following diagram is commutative for all
g ∈ G.

X

h
��

σ1(Φ(g))// X

h
��

X
σ2(g)

// X

In other words, σ2(g) = hσ1(Φ(g))h−1, for all g ∈ G.
If h ∈ Aut(X), then we will say that σ1, σ2 are analytically (or confor-

mally) equivalent.

Remark 13. Actions that are analytically equivalent are topologically equi-
valent, but not conversely. We will not address this question in this work,
see [17, 9] for details.
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Using the algorithms found in [3], which run on Sagemath, we calculate
that for p = 3 there are exactly 16 topologically non-equivalent actions for
the signature (0; p2, p2, p, p), therefore there are 16 equisymmetric strata. The
description of the commands is displayed below:

F. 〈a, b, x, y〉 = FreeGroup(4)
G = F/[a∧9, b∧3, x∧3, y∧3, a ∗ b ∗ a∧ − 1 ∗ b∧ − 1, x ∗ y ∗ x∧ − 1 ∗ y∧ − 1,
a∧ − 1 ∗ x∧ − 1 ∗ a ∗ x ∗ b∧ − 1, b∧ − 1 ∗ x∧ − 1 ∗ b ∗ x ∗ a∧ − 3, y∧ − 1 ∗ a ∗ y ∗ a∧ − 4,
y∧ − 1 ∗ b ∗ y ∗ b∧ − 1]
Gs = G.as permutation group()
A = G.as permutation group().0
B = G.as permutation group().1
X = G.as permutation group().2
Y = G.as permutation group().3
gen = find generator representatives(Gs, [9, 9, 3, 3])
L2 = [[ as word (k,Gs, [A,B,X,Y]) for k in x] for x in gen ]

We get the description of the 16 non-equivalent actions for the signature
(0; p, p, p2, p2) with p = 3:

[a, a8x, y, x2y2]
[a, a8x, y2, yx2]
[a, a8x, by, b2x2y2]
[a, a8x, by2, b2x2y]
[a, a8x, yb2, bx2y2]
[a, a8x, y2b2, ybx2]
[a, a8x, yx, xy2]
[a, a8y, x, x2y2]
[a, a8y2, x, yx2]
[ax, a8x, y, x2b2x2y2]
[ax, a8x, y2.ybxb]
[ax, a8x, by, y2xb]
[ax, a8x, by2, yxb]
[ax, a8x, yx2, b2x2y2]
[ax, a8x2y, x, b2x2y2]
[ax, a8x2y2, x, b2x2y]

The generating vector of Theorem 9, which is the one studied in this
work, is equivalent to the second one of these 16 non-equivalent generating
vectors, listed above.
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On Extendability of the [a−1, xyap+1b, y−1, x−1]−action on compact
Riemann surfaces.

Among the 16 generating vectors already described for G3, there are some
of them that correspond to actions of G3 as the full group of automorphisms
of the general element in the family, and others for which the action extends
(see [6]). That is, there exists a super-group G̃ such that G3 < G̃ < Aut(X)
and the action of G̃ restricts to the original action of G. The question we
address here is to determine whether our action extends or not.

It follows from Singerman’s table (see [39]) that for the signature (0; p2, p2, p, p),
if the action extends it does to a group G̃ such that [G̃ : Gp] = 2. Moreover,
the signature of the action of G̃ on X has signature (0; 2, 2, p, p2). More-
over, in [36] a condition is given under which the action extends, as well as
a description of G̃.

Proposition 11. Let X be a compact Riemann surface. The group G3 acts
on X with signature (0; 9, 9, 3, 3) and generating vector [a−1, xya4b, y−1, x−1],
and G3 corresponds to the full automorphisms group of the general element;
that is, the action does not extend.

Proof. The existence of this action was proved in Theorem 9. In order to
prove that it does not extend, fix ν := [a−1, xya4b, y−1, x−1]. By Ries Theo-
rem statement 4 (see Corollary 1), there exists a group G̃ extending the action
of G3 determined by ν if and only if there exists α ∈ Aut(G3) commuting
with the elements of the same order for some generating vector equivalent to
ν.

Using Magma, Prof. Paulhus wrote a code which confirmed that there is
no such α for every generating vector equivalent to ν.

Unfortunately, to prove that our action does not extend for every p, is be-
yond our possibilities since it would require describing all generating vectors
equivalent to our ν. We leave this as an open question for future work.



Chapter 3

Decomposition of Jacobian
varieties with Gp action.

In this chapter we describe the group algebra decomposition (GAD) of Ja-
cobian varieties with the action of Gp induced by the action determined by
the generating vector described in Section 2.3. In particular, we compute the
dimensions of the primitive factors.

3.1 Group algebra descomposition

In Chapter 1 we recalled what the group algebra decomposition of an abelian
variety with a group action is, see equation (1.8). Since we have obtained
the irreducible reresentations of Gp, we are in conditions to describe how the
group algebra decomposition of an abelian variety with the action of Gp is in
general. Then, we specialize the action to the one we are interested in (see
Section 2.3).

Theorem 10. Let X be a Riemann surface with the action of Gp. Then,
the group algebra decomposition of the corresponding Jacobian variety decom-
poses generically as follows

JX ∼ JXGp ×
p2+p+1∏
i=1

B1
i ×

p∏
i=1

Cp
i ×Dp2 , (3.1)

where we use the following notation to classify each primitive factor:

(i) Bi is a primitive factor associated to the rational irreducible represen-
tations of degree p− 1 for all 1 ≤ i ≤ p2 + p+ 1.

58
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(ii) Ci is a primitive factor associated to the rational irreducible represen-
tations of degree p(p− 1) for all 1 ≤ i ≤ p.

(iii) D is the primitive factor associated to the unique rational irreducible
representation of degree p2(p− 1).

Proof. It is a direct application of the equation (1.5) to the group Gp ac-
cording to the irreducible complex and rational representations described in
Theorem 7 and Theorem 8, respectively (see Sections 2.2.1 and 2.2.2 for more
details).

Finally, the exponent of each one of these factors, as indicated in equation
(1.6), corresponds to the degree of the complex irreducible representation
associated to the rational irreducible representation corresponding to each
isotypical factor divided by the Schur index, which in each case, as shown in
Proposition 9, is 1.

Since we have a concrete action of Gp we are interested in understand-
ing it with signature (0; p2, p2, p, p) and its extended versions parameterized
by (t1, t2, t3, t4) ∈ N4

0 (see Section 2.3). We compute the dimensions of the
primitive factors using Proposition 2 [33], recalled in Chapter 1, in the de-
composition of the group algebra of the corresponding Jacobian variety, as
in the equation (1.8). In particular, many of them vanish for this action of
Gp.

Theorem 11. Let p be a prime number p > 2. Consider the group Gp acting
on a Riemann surface X with geometric signature

(0; [p2, 〈a−1〉], [p2, 〈xyap+1b〉], [p, 〈y−1〉], [p, 〈x−1〉]).

Then, the associated variety JX is described by the following decomposition:

JX ∼
4p−8∏
i=1

B1
(i, p−1

2
)
×
p2−3p+3∏
i=1

B1
(i,p−1)×

p−1∏
i=1

Cp

(i,
(p−1)(2p−3)

2
)
×Cp

(1,
(p−1)(p−3)

2
)
×Dp2

(1,p(p−1)2),

(3.2)
where the pair (i, j) as a subscript has to be read as follows: i refers to the
positional value in the product, and j is the dimension of the primitive factor
indexed by i.

Proof. To compute the dimensions of each factor we use Proposition 2. First,
we need to compute the dimension of each V Gk for each

Gk ∈ {
〈
a−1
〉
,
〈
xyap+1b

〉
,
〈
y−1
〉
,
〈
x−1
〉
}
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and V complex irreducible representation. We use the notation of Theorem 7,
denote FixGkV by V Gk , ResGH the restriction representation of the subgroup

H of G, and w the p2-th root of the unit e
2πi
p2 . Then,

∑p
j=1(wp)j = 0 and for

each complex irreducible representation, we have the following statements:

1) For the representation V(0,0,1), we calculate:

(i) dim Fix〈a−1〉V
(1)

(0,0,1) =
〈

1〈a−1〉, Res
G
〈a−1〉V

(1)
(0,0,1)

〉
〈a−1〉

=
1

p2

p2∑
j=1

(
1〈a−1〉(a

−j) ·ResG〈a−1〉V
(1)

(0,0,1)(a
j)
)

=
1

p2

p2∑
j=1

1

= 1.

(ii) dim Fix〈xyap+1b〉V
(1)

(0,0,1) =
〈

1〈xyap+1b〉, Res
G
〈xyap+1b〉V

(1)
(0,0,1)

〉
〈xyap+1b〉

=
1

p2

p2∑
j=1

(
1〈xyap+1b〉((xya

p+1b)j) ·ResG〈xyap+1b〉V
(1)

(0,0,1)((xya
p+1b)−j)

)

=
1

p2

p2∑
j=1

V
(1)

(0,0,1)

(
(xyap+1b)j

)
=

1

p2

p2∑
j=1

(
V

(1)
(0,0,1)(xya

p+1b)
)j

=
1

p2

p2∑
j=1

(
(V

(1)
(0,0,1)(x))j(V

(1)
(0,0,1)(y))j(V

(1)
(0,0,1)(a

p+1))j(V
(1)

(0,0,1)(b))
j
)

=
1

p2

p2∑
j=1

(wp)j

= 0.
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(iii) dim Fix〈x−1〉V
(1)

(0,0,1) =
〈

1〈x−1〉, Res
G
〈x−1〉V

(1)
(0,0,1)

〉
〈x−1〉

=
1

p

p∑
j=1

(
1〈x−1〉((x

−1)j) ·ResG〈x−1〉V
(1)

(0,0,1)

(
(x−1)−j

))
=

1

p

p∑
j=1

V
(1)

(0,0,1)

(
xj
)

=
1

p

p∑
j=1

1

= 1.

(iv) dim Fix〈y−1〉V
(1)

(0,0,1) =
〈

1〈y−1〉, Res
G
〈y−1〉V

(1)
(0,0,1)

〉
〈y−1〉

=
1

p

p∑
j=1

(
1〈y−1〉((y

−1)j) ·ResG〈y−1〉V
(1)

(0,0,1)

(
(y−1)−j

))
=

1

p

p∑
j=1

V
(1)

(0,0,1)

(
yj
)

=
1

p

p∑
j=1

(wp)j

= 0.

Then, from (i), (ii), (iii),(iv), and the calculation of the Galois group in
the proof of Th.8 and Prop. 9 (see Section 2.2.2), we are in a position
to conclude

dim B1
W(0,0,1)

= 0

2) For the representation V
(1)

(0,1,k), with 0 ≤ k ≤ p−1, we have the following
values:

(i) dim Fix〈a−1〉V
(1)

(0,1,k) =
〈

1〈a−1〉, Res
G
〈a−1〉V

(1)
(0,1,k)

〉
〈a−1〉

=
1

p2

p2∑
j=1

(
1〈a−1〉(a

−j) ·ResG〈a−1〉V
(1)

(0,1,k)(a
j)
)

=
1

p2

p2∑
j=1

1

= 1.
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(ii) dim Fix〈xyap+1b〉V
(1)

(0,1,k) =
〈

1〈xyap+1b〉, Res
G
〈xyap+1b〉V

(1)
(0,1,k)

〉
〈xyap+1b〉

=
1

p2

p2∑
j=1

(
1〈xyap+1b〉((xya

p+1b)j) ·ResG〈xyap+1b〉V
(1)

(0,1,k)((xya
p+1b)−j)

)

=
1

p2

p2∑
j=1

V
(1)

(0,1,k)

(
(xyap+1b)j

)
=

1

p2

p2∑
j=1

(
V

(1)
(0,1,k)(xya

p+1b)
)j

=
1

p2

p2∑
j=1

(
(V

(1)
(0,1,k)(x))j · (V (1)

(0,1,k)(y))j · (V (1)
(0,1,k)(a

p+1))j
)

=
1

p2

p2∑
j=1

(
wp(1+k)

)j
=

{
1 , k = p− 1,
0 , 0 ≤ k ≤ p− 2.

(iii) dim Fix〈x−1〉V
(1)

(0,1,k) =
〈

1〈x−1〉, Res
G
〈x−1〉V

(1)
(0,1,k)

〉
〈x−1〉

=
1

p

p∑
j=1

(
1〈x−1〉((x

−1)j) ·ResG〈x−1〉V
(1)

(0,1,k)

(
(x−1)−j

))
=

1

p

p∑
j=1

V
(1)

(0,1,k)

(
xj
)

=
1

p

p∑
j=1

(wp)j

= 0.
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(iv) dim Fix〈y−1〉V
(1)

(0,1,k) =
〈

1〈y−1〉, Res
G
〈y−1〉V

(1)
(0,1,k)

〉
〈y−1〉

=
1

p

p∑
j=1

(
1〈y−1〉((y

−1)j) ·ResG〈y−1〉V
(1)

(0,1,k)

(
(y−1)−j

))
=

1

p

p∑
j=1

V
(1)

(0,1,k)

(
yj
)

=
1

p

p∑
j=1

(
wpk
)j

=

{
1 , if k = 0,
0 , if 1 ≤ k ≤ p− 1.

Then, from (i), (ii), (iii),(iv), and the calculation of the Galois group
in the proof of Th.8 and Prop. 9 (see Section 2.2.2), we conclude

dim B1
W(0,1,k)

=

{
0 , if k = 0, p− 1,
p−1

2
, if 1 ≤ k ≤ p− 2.

3) Consider the representation V(1,m,n), then we calculate:

(i) dim Fix〈a−1〉V
(1)

(1,m,n) =
〈

1〈a−1〉, Res
G
〈a−1〉V

(1)
(1,m,n)

〉
〈a−1〉

=
1

p2

p2∑
j=1

(
1〈a−1〉(a

−j) ·ResG〈a−1〉V
(1)

(1,m,n)(a
j)
)

=
1

p2

p2∑
j=1

(wp)j

= 0.



CHAPTER 3. DECOMPOSITION OF JACOBIAN VARIETIES 64

(ii) dim Fix〈xyap+1b〉V
(1)

((1,m,n) =
〈

1〈xyap+1b〉, Res
G
〈xyap+1b〉V

(1)
(1,m,n)

〉
〈xyap+1b〉

=
1

p2

p2∑
j=1

(
1〈xyap+1b〉((xya

p+1b)j) ·ResG〈xyap+1b〉V
(1)

(1,m,n)((xya
p+1b)−j)

)

=
1

p2

p2∑
j=1

V
(1)

(1,m,n)

(
(xyap+1b)j

)
=

1

p2

p2∑
j=1

(
V

(1)
(1,m,n)(xya

p+1b)
)j

=
1

p2

p2∑
j=1

(
(V

(1)
(1,m,n)(x))j · (V (1)

(1,m,n)(y))j · (V (1)
(1,m,n)(a

p+1))j
)

=
1

p2

p2∑
j=1

(
wp(m+n+1)

)j
=

{
1 , if n = p−m− 1,
0 , if n 6= p−m− 1.

(iii) dim Fix〈x−1〉V
(1)

((1,m,n) =
〈

1〈x−1〉, Res
G
〈x−1〉V

(1)
((1,m,n)

〉
〈x−1〉

=
1

p

p∑
j=1

(
1〈x−1〉((x

−1)j) ·ResG〈x−1〉V
(1)

((1,m,n)

(
(x−1)−j

))
=

1

p

p∑
j=1

V
(1)

((1,m,n)

(
xj
)

=
1

p

p∑
j=1

(wpm)j

=

{
1 , if m = 0,
0 , if 1 ≤ m ≤ p− 1.
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(iv) dim Fix〈y−1〉V
(1)

((1,m,n) =
〈

1〈y−1〉, Res
G
〈y−1〉V

(1)
((1,m,n)

〉
〈y−1〉

=
1

p

p∑
j=1

(
1〈y−1〉((y

−1)j) ·ResG〈y−1〉V
(1)

((1,m,n)

(
(y−1)−j

))
=

1

p

p∑
j=1

V
(1)

((1,m,n)

(
yj
)

=
1

p

p∑
j=1

(wpn)j

=

{
1 , if n = 0,
0 , if 1 ≤ n ≤ p− 1.

Then, from (i), (ii), (iii),(iv), and the calculation of the Galois group
in the proof of Th.8 and Prop. 9 (see Section 2.2.2), we conclude

dim B1
W(1,m,n)

=


0 , if (m,n) ∈ {(0, 0), (0, p− 1), (p− 1, 0)},
p−1

2
, if (m,n) ∈ {(i, 0), (0, i), (i, p− i− 1) : 1 ≤ i ≤ p− 2},

p− 1 , if (m,n) ∈ {(i, j) : 1 ≤ i, j ≤ p− 1 ∧ j 6= p− i− 1}.

4) Consider the representation V
(p)

(1,u), u ∈ N0, 0 ≤ u ≤ p − 1, using the

information in Remarks 3, 4 and 5 (see Section 2.2.1.2), we obtain the
following equalities:

χ
V

(p)
(1,u)

(aj) =

p∑
i=1

(
wpj
)i

=

{
0 , if GCD(j, p) = 1,
p , if GCD(j, p) 6= 1.

χ
V

(p)
(1,u)

(xj) =

{
p , if GCD(j, p) 6= 1,
0 , if GCD(j, p) = 1.

χ
V

(p)
(1,u)

(yj) =

{
p , if u = 0,
0 , if u 6= 0.

For the element xyap+1b we need to analyze the character of the repre-
sentations. Let us look at the following equality:

χ
V

(p)
(1,u)

((xyap+1b)j) = Tr
(
V

(p)
(1,u)((xya

p+1b)j)
)
.
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As a consequence of the fact that the matrices V
(p)

(1,u)(y), V
(p)

(1,u)(a), V
(p)

(1,u)(y)

are of diagonal type, we know that they commute. Furthermore, V
(p)

(1,u)(y)
has an associated permutation matrix defined in Observation 6 as σp
(see Section 2.2.1.2). We see that

Tr
(
V

(p)
(1,u)((xya

p+1b)j)
)

= Tr

((
σpV

(p)
(1,u)(ya

p+1b)
)j)

,

where V
(p)

(1,u)(ya
p+1b) = diag(d1, d2, . . . , dp) with

di = wp · wpu · wp(i−1),

= wp(u+i), for 1 ≤ i ≤ p.

From this, we are able to conclude that the character we are searching
for is given by the expression:

χ
V

(p)
(1,u)

((xyap+1b)j) =

{
p , if GCD(j, p) 6= 1,
0 , if GCD(j, p) = 1.

Now, with this information, we calculate the dimention of the fixed
subespaces:

(i) dim Fix〈a−1〉V
(p)

(1,u) =
〈

1〈a−1〉, Res
G
〈a−1〉V

(p)
(1,u)

〉
〈a−1〉

=
1

p2

p2∑
j=1

(
1〈a−1〉(a

−j) ·ResG〈a−1〉V
(p)

(1,u)(a
j)
)

=
1

p2

p2∑
j=1

(
χ
V

(p)
(1,u)

(aj)

)
=

1

p2
(p+ p. . . +p)

= 1.

(ii) dim Fix〈xyap+1b〉V
(p)

(1,u) =
〈

1〈xyap+1b〉, Res
G
〈xyap+1b〉V

(p)
(1,u)

〉
〈xyap+1b〉

=
1

p2

p2∑
j=1

(
1〈xyap+1b〉((xya

p+1b)j) ·ResG〈xyap+1b〉V
(p)

(1,u)((xya
p+1b)−j)

)

=
1

p2

p2∑
j=1

χ
V

(p)
(1,u)

(
(xyap+1b)j

)
=

1

p2
(p+ p. . . +p)

= 1.
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(iii) dim Fix〈x−1〉V
(p)

(1,u) =
〈

1〈x−1〉, Res
G
〈x−1〉V

(p)
(1,u)

〉
〈x−1〉

=
1

p

p∑
j=1

(
1〈x−1〉((x

−1)j) ·ResG〈x−1〉V
(p)

(1,u)

(
(x−1)−j

))
=

1

p

p∑
j=1

χ
V

(p)
(1,u)

(
xj
)

=
1

p

(
p+ 0+ p−1. . . +0

)
= 1.

(iv) dim Fix〈y−1〉V
(p)

(1,u) =
〈

1〈y−1〉, Res
G
〈y−1〉V

(p)
(1,u)

〉
〈y−1〉

=
1

p

p∑
j=1

(
1〈y−1〉((y

−1)j) ·ResG〈y−1〉V
(p)

(1,u)

(
(y−1)−j

))
=

1

p

p∑
j=1

χ
V

(p)
(1,u)

(
yj
)

=

{1
p

(
p+ 0+ p−1. . . +0

)
= 1 , if u = 0,

1
p
(0+ p. . . +0) = 0 , if u 6= 0.

Then, from (i), (ii), (iii),(iv), and the calculation of the Galois group
in the proof of Th.8 and Prop. 9 (see Section 2.2.2), we conclude

dim Cp
W(1,u)

=


(p− 1)(p− 3)

2
, u = 0,

(p− 1)(2p− 3)

2
, 1 ≤ u ≤ p− 1.

5) Consider the representation V
(p2)

(1) , using Remarks 7, 8 (see Section

2.2.1.3) and the information of the permutations V
(p2)

(1) (x) := ζp2 and

V
(p2)

(1) (y) := εp2 in Remarks 9 and 10 (see Section 2.2.1.3), we get the



CHAPTER 3. DECOMPOSITION OF JACOBIAN VARIETIES 68

following results:

χ
V

(p2)
(1)

(aj) =

p2∑
j=1

wpj+1 =

p∑
j=1

pwpj+1 = pw

p∑
j=1

wpj = 0.

χ
V

(p2)
(1)

(xj) = Tr
(

(ζp2)
j
)

=

{
p2 , GCD(p, j) 6= 1,
0 , GCD(p, j) = 1.

χ
V

(p2)
(1)

(yj) = Tr
(

(εp2)
j
)

=

{
p2 , GCD(p, j) 6= 1,
0 , GCD(p, j) = 1.

χ
V

(p2)
(1)

((xyap+1b)j) = Tr
(

((ζp2εp2)Dab)
j
)

=

p
p∑
j=1

wpi = 0 , GCD(p, j) 6= 1,

0 , GCD(p, j) = 1.

Where Dab := diag[(a1 1b1 1), (a2 2b2 2), . . . , (ap2 p2bp2 p2)] with

V
(p2)

1 (a) := [aij]0≤i,j≤p2−1 and V
(p2)

1 (b) := [bij]0≤i,j≤p2−1.

With the above information, we determine the dimension of the fixed
subspaces as follows:

(i) dim Fix〈a−1〉V
(p2)

(1) =
〈

1〈a−1〉, Res
G
〈a−1〉V

(p2)
(1)

〉
〈a−1〉

=
1

p2

p2∑
j=1

(
1〈a−1〉(a

−j) ·ResG〈a−1〉V
(p2)

(1) (aj)
)

=
1

p2

p2∑
j=1

(
χ
V

(p2)
(1)

(aj)

)
= 0.

(ii) dim Fix〈xyap+1b〉V
(p2)

(1) =
〈

1〈xyap+1b〉, Res
G
〈xyap+1b〉V

(p2)
(1)

〉
〈xyap+1b〉

=
1

p2

p2∑
j=1

(
1〈b〉((xya

p+1b)j) ·ResG〈xyap+1b〉V
(p2)

(1) ((xyap+1b)−j)
)

=
1

p2

p2∑
j=1

χ
V

(p2)
(1)

(
(xyap+1b)j

)
= 0.
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(iii) dim Fix〈x−1〉V
(p2)

(1) =
〈

1〈x−1〉, Res
G
〈x−1〉V

(p2)
(1)

〉
〈x−1〉

=
1

p

p∑
j=1

(
1〈x−1〉((x

−1)j) ·ResG〈x−1〉V
(p2)

(1)

(
(x−1)−j

))
=

1

p

p∑
j=1

χ
V

(p2)
(1)

(
xj
)

=
1

p

(
p2 + 0+ p−1. . . +0

)
= p.

(iv) dim Fix〈y−1〉V
(p2)

(1) =
〈

1〈y−1〉, Res
G
〈y−1〉V

(p2)
(1)

〉
〈y−1〉

=
1

p

p∑
j=1

(
1〈y−1〉((y

−1)j) ·ResG〈y−1〉V
(p2)

(1)

(
(y−1)−j

))
=

1

p

p∑
j=1

χ
V

(p2)
(1)

(
yj
)

= p2 + 0+ p−1. . . +0

= p.

Then, from (i), (ii), (iii),(iv), and the calculation of the Galois group
in the proof of Th.8 and Prop. 9 (see Section 2.2.2), we conclude that

dim Dp2

W(1)
= p(p− 1)2 .

The above information is summarized in the following points:

• The union of the sets
{
B1
W(0,1,k)

: 1 ≤ k ≤ p− 2
}

and{
B1
W(1,m,n)

: (m,n) ∈ {(i, 0), (0, i), (i, p− i− 1)} ∧ 1 ≤ i ≤ p− 2
}

corresponds to the factors associated to the rational irreducible
representations of degree p−1 having dimension p−1

2
. Observe that

there are 4(p− 2) of these factors. Then from now on, we denote
these primitive components by B1

(i, p−1
2 )

with 1 ≤ i ≤ 4(p − 2).

This is the first factor presented in the decomposition (3.2).

• The set
{
B1
W(1,m,n)

: (m,n) ∈ {(i, j) : 1 ≤ i, j ≤ p− 1 ∧ j 6= p− i− 1}
}

corresponds to the factors associated to the rational irreducible
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representations of degree p − 1 having dimension p − 1. Observe
that there are (p − 1)2 − (p − 2) = p2 − 3p + 3 of these factors,
so from now on we denote these primitive components by B1

(i,p−1)

with 1 ≤ i ≤ p2 − 3p + 3. This is the second factor presented in
decomposition (3.2).

• The set
{
Cp
W(1,u)

: 1 ≤ u ≤ p− 1
}

corresponds to the factors asso-

ciated to the rational irreducible representations of degree p(p−1)

having dimension
(p− 1)(2p− 3)

2
. Observe that there are p − 1

of these factors, so from now on, we denote these primitive com-
ponents by Cp

(i, (p−1)(2p−3)
2 )

. This is the third factor presented in

decomposition (3.2).

• The factor Cp
W(1,0)

corresponds to the rational irreducible represen-

tation of degree p(p−1) having dimension (p−1)(p−3)
2

. So from now
on we denote this primitive component by Cp

(1,
(p−1)(p−3)

2 )
. This is

the fourth factor presented in decomposition 3.2.

• The factor Dp2

W(1)
corresponds to the rational irreducible represen-

tation of degree p2(p − 1) having dimension p(p − 1)2. So from

now on, we denote this primitive component by Dp2

(p(p−1)2). This
is the last factor presented in decomposition 3.2.

Using the redefinition of the factors indicated in the previous points,
we are in a position to conclude that the GAD of JX is described by
the following expression:

JX ∼
4p−8∏
i=1

B1
(i, p−1

2
)
×
p2−3p+3∏
i=1

B1
(i,p−1)×

p−1∏
i=1

Cp

(i,
(p−1)(2p−3)

2
)
×Cp

(1,
(p−1)(p−3)

2
)
×Dp2

(p(p−1)2).

This concludes the proof.

3.2 Decomposition of the Jacobian variety with

Gp acting with extended signature

In this section we study how the GAD of a Jacobian variety is with the action
of Gp on the corresponding Riemann Surface with an extended version of the
signature.



CHAPTER 3. DECOMPOSITION OF JACOBIAN VARIETIES 71

Definition 3. Let c1, c2, . . . , cr be elements of a group G. Let us note that if
[c1, c2, . . . , cr] is a (0;m1,m2, . . . ,mr)-generating vector then we can construct
an extended version of this vector by adding elements of the group and pre-
serving the characteristics that a generating vector possesses.

For example, given that |c−1
i | = |c−1

i | = mi for some i ∈ {1, 2, . . . , r}, then
[c1, c2, . . . , ci, c

−1
i , ci, . . . , cr] is a (0;m1,m2, . . . ,mi,mi,mi, . . . ,mr)-generating

vector and corresponds to an extension of the vector described above. We
will call these elements the extended signature and the extended generating
vector respectively.

For the purpose of describing extended signatures and vectors, we will
use the following notation:

Notation 2. We will write

[c1, c2, . . . , (ci, c
−1
i )t, ci, . . . , cr]

with t ∈ N to refer to the (0;m1,m2, . . . ,mi,mi, . . . ,mi︸ ︷︷ ︸
2t+1

, . . . ,mr)-generating

vector [c1, c2, . . . , ci, c
−1
i , . . . , ci, c

−1
i︸ ︷︷ ︸

t−times ci,c−1
i

, ci, . . . , cr].

In addition, we will use the notation (0;m1,m2, . . . , {mi}2t+1, . . . ,mr) for the
signature (0;m1,m2, . . . ,mi,mi, . . . ,mi︸ ︷︷ ︸

2t+1

, . . . ,mr).

The concept of extended signature interests us because it allows us to
expand the analysis of the decomposition of a Jacobian variety from our
original one dimensional family, to a higher dimensional one. This is con-
venient since the signature (0; p2, p2, p, p) we are considering for the action
of G on X, appears in Singerman’s work [39] as one of the signatures for
which the general member of the family may have a bigger group acting on
it. This means that Gp could actually be a subgroup of the (full) automor-
phisms group Aut(X) of X, see for instance [10, 24]. If this is the case for
the generating vector we are considering, it could happen that H and K
were conjugate in Aut(X), and so trivially linked there. This situation is not
interesting for us in the bigger picture of getting non-isomorphic Riemann
surfaces, namely X/H and X/K, with isogenous Jacobians (see Section 4.1).
There are tools to study whether or not our generating vector of length 4
admits an extension of the actual group acting on every member of the fam-
ily, see for instance [3], but we decided to leave this question for a future
work and instead increase the length of the signature by using these discrete
parameters t1, . . . , t4 (see Section 2.3). This ensures us that the group does
not grow (see [39]).
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From the above, if we consider for Gp the extended signature(
0; {p2}2t1+1, {p2}2t2+1, {p}2t3+1, {p}2t4+1

)
,

and the associated generating vector

[(a−1, a)t1 , a−1, (xyap+1b, (xyap+1b)−1)t2 , xyap+1b, (y−1, y)t3 , y−1, (x−1, x)t4 , x−1],

we obtain the results presented below.

Theorem 12. Let p > 2 prime and (t1, t2, t3, t4) ∈ N4
0. The group Gp acts

on a Riemann surface X of genus

(t1 + t2 + t3 + t4 + 1)p5 − (t3 + t4 + 1)p4 − p3(t1 + t2 + 1) + 1

with signature (0; {p2}2t1+1, {p2}2t2+1, {p}2t3+1, {p}2t4+1) and generating vec-
tor

[(a−1, a)t1 , a−1, (xyap+1b, (xyap+1b)−1)t2 , xyap+1b, (y−1, y)t3 , y−1, (x−1, x)t4 , x−1].

Under this action, the GAD of the Jacobian variety JX is given by the fol-
lowing expression

JX ∼B1
(1,(p−1)(t1+t2)) ×B1

(1,(p−1)(t1+t3)) ×B1
(1,(p−1)(t1+t4)) ×B1

(1,(p−1)(t2+t3)) ×B1
(1,(p−1)(t2+t4))

×B1
(1,(p−1)(t3+t4)) ×

p−2∏
i=1

B1

(i,
(p−1)(2(t1+t2+t3)+1)

2
)
×

p−2∏
i=1

B1

(i,
(p−1)(2(t1+t3+t4)+1)

2
)

×
p−2∏
i=1

B1

(i,
(p−1)(2(t1+t2+t4)+1)

2
)
×

p−2∏
i=1

B1

(i,
(p−1)(2(t1+t2+t3)+1)

2
)
×

p2−3p+3∏
i=1

B1
(i,(t1+t2+t3+t4+1)(p−1))

×Cp

(1, 1
2

(p−1)(p−3)+(p−1)2(t1+t2+t4))
×

p−1∏
i=1

Cp

(i, 1
2

(p−1)(2p−3)+(p−1)2(t1+t2+t4)+(p−1)pt3)

×Dp2

(1,p(p−1)2(1+t3+t4)+p2(p−1)(t1+t2)),

where the pair (i, j) as a subscript has to be read as follows: i refers to the
positional value in the product, and j is the dimension of the primitive factor
indexed by i.

Proof. First, according to the structure of Gp studied in Proposition 5, the
elements of the generating vector satisfy the indicated orders. Moreover, by
Riemann’s Existence Theorem, we are in a position to conclude that there
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exists a Riemann surface X on which Gp acts with the indicated signature.
By the Riemann-Hurwitz equation (1.12), the genus is the one indicated.

On the other hand, by the previous section we have that the given dimen-
sion of the fixed subspaces depends on exactly the same generators in the
extended generating vector. Then, it is now sufficient to calculate the dimen-
sion of each of the factors described in (3.1), which is done using Proposition
2 (see Chapter 1).

For the primitive factor varieties associated to the rational irreducible
representations of degree p, we calculate the following:

dim B1
W(0,0,1)

= (p− 1)(t2 + t3),

dim B1
W(0,1,k)

=



(p− 1)(t2 + t4) , if k = 0,

(p− 1)(1 + 2t2 + 2t3 + 2t4)

2
, if 1 ≤ k ≤ p− 2,

(p− 1)(t3 + t4) , if k = p− 1.

dim B1
W(1,m,n)

=



(p− 1)(t1 + t2) , if (m,n) = (0, 0),

(p− 1)(t1 + t3) , if (m,n) = (0, p− 1),

(p− 1)(t1 + t4) , if (m,n) = (p− 1, 0),

(p− 1)(1 + 2t1 + 2t2 + 2t4)

2
, if (m,n) = (i, 0) ∧ 1 ≤ i ≤ p− 2,

(p− 1)(1 + 2t1 + 2t2 + 2t3)

2
, if (m,n) = (0, i) ∧ 1 ≤ i ≤ p− 2,

(p− 1)(1 + 2t1 + 2t3 + 2t4)

2
, if (m,n) = (i, p− i− 1) ∧ 1 ≤ i ≤ p− 2,

(p− 1)(1 + t1 + t2 + t3 + t4) , if 1 ≤ m,n ≤ p− 1 ∧ n 6= p−m− 1.

Observe that there are (p− 1)2 − (p− 2) = p2 − 3p + 3 of these last factors
where it is satisfied that 1 ≤ m,n ≤ p−1 and n 6= p−m−1. This implies that
there are p2−3p+3 primitive factors of dimension (p−1)(1+t1 +t2 +t3 +t4).
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On the other hand, with respect to the primitive factor associated to the
rational irreducible representations of degree p(p− 1) we have the following:

dim Cp
W(1,0)

=
(p− 1)(p− 3)

2
+ (p− 1)2(t1 + t2 + t4),

dim Cp
W(1,u)

=
(p− 1)(2p− 3)

2
+ (p− 1)2(t1 + t2 + t4) + p(p− 1)t3,

if 1 ≤ u ≤ p− 1.

Finally, with respect to the primitive factor associated to the rational
irreducible representation of degree p2(p− 1) we have the following:

dim Dp
W(1)

= p(p− 1)2(1 + t3 + t4) + p2(p− 1)(t1 + t2).

Then, knowing the dimensions of the primitive factors, we redefine the factors
with the subscript (i, j), where i is the counter and j is the dimension of the
factor. From this we obtain the decomposition described in the statement of
the theorem.

Since we have the discrete parameters (t1, t2, t3, t4) ∈ N4
0 determining

several families of Riemann surfaces with Gp−action, hence several families
of Jacobians together with their GAD, it is natural to ask what the geometric
situation is when the discrete parametres are on the axes, so to speak. We
collect these results in the following corollaries.

Corollary 2. Let p > 2 be a prime, and t1 ∈ N0. The group Gp acts on
a Riemann surface of genus (t1 + 1)p5 − p4 − (t1 + 1)p3 + 1 with signature
(0; {p2}2t1+1, p2, p2, p, p) and generating vector

[(a−1, a)t1 , a−1, xyap+1b, y−1, x−1].

Under these conditions, the GAD of the Jacobian variety of the corresponding
Riemann surface X is given by the following expression

JX ∼
p−2∏
i=1

B1
(i, p−1

2
)
×

3∏
i=1

B1
(i,t1(p−1)) ×

3p−6∏
i=1

B1

(i,
(2t1+1)(p−1)

2
)
×

p2−3p+3∏
i=1

B1
(i,(t1+1)(p−1))

×
p−1∏
i=1

Cp

(i, 1
2

(p−1)(2p−3)+t1(p−1)2)
× Cp

(1, 1
2

(p−1)(p−3)+t1(p−1)2)
×Dp2

(1,p(p−1)2+t1p2(p−1)).
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Example 1. For p a prime p > 2 and t1 = 1, the group Gp acts on a Riemann
surface X of genus 2p5−p4−2p3 + 1 with signature (0; p2, p2, p2, p2, p, p) and
generating vector [a−1, a, a−1, xyap+1b, y−1, x−1]. Under these conditions, the
GAD of the Jacobian variety JX is given by the following expression:

p−2∏
i=1

B1
(i, p−1

2
)
×

3∏
i=1

B1
(i,p−1) ×

3p−6∏
i=1

B1

(i,
3(p−1)

2
)
×

p2−3p+3∏
i=1

B1
(i,2p−2) ×

p−1∏
i=1

Cp

(i,
(p−1)(4p−5)

2
)

× Cp

(1,
(p−1)(3p−5)

2
)
×Dp2

(1,p(2p−1)(p−1)) .

Corollary 3. Let p be a prime p > 2 and t2 ∈ N0. The group Gp acts on a
Riemann surface X of genus (t2 + 1)p5 − p4 − (t2 + 1)p3 + 1 with signature
(0; p2, {p2}2t2+1, p, p) and generating vector

[a−1, (xyap+1b, (xyap+1b)−1)t2 , xyap+1b, y−1, x−1].

With these conditions, the Jacobian variety of the associated surface is given
by the following expression:

JX ∼
p−2∏
i=1

B1
(i, p−1

2
)
×

3∏
i=1

B1
(i,t2(p−1)) ×

3p−6∏
i=1

B1

(i,
(2t2+1)(p−1)

2
)
×

p2−3p+3∏
i=1

B1
(i,(t2+1)(p−1))

×
p−1∏
i=1

Cp

(i, 1
2

(p−1)(2p−3)+t2(p−1)2)
× Cp

(1, 1
2

(p−1)(p−3)+t2(p−1)2)
×Dp2

(1,p(p−1)2+t2p2(p−1)).

Example 2. For p a prime p > 2 and t2 = 1, the group Gp acts on a Riemann
surface X of genus 2p5−p4−2p3 + 1 with signature (0; p2, p2, p2, p2, p, p) and
generating vector [a−1, xyap+1b, (xyap+1b)−1, xyap+1b, y−1, x−1]. Under these
conditions, the GAD of the Jacobian variety JX is given by the following
expression:

p−2∏
i=1

B1
(i, p−1

2
)
×

3∏
i=1

B1
(i,p−1) ×

3p−6∏
i=1

B1

(i,
3(p−1)

2
)
×

p2−3p+3∏
i=1

B1
(i,2p−2) ×

p−1∏
i=1

Cp

(i,
(p−1)(4p−5)

2
)

× Cp

(1,
(p−1)(3p−5)

2
)
×Dp2

(1,p(2p−1)(p−1)).

Corollary 4. Let p be a prime p > 2 and t3 ∈ N0. The group Gp acts on a
Riemann surface X of genus (t3 + 1)p5 − (t3 + 1)p4 − p3 + 1 with signature
(0; p2, p2, {p}2t3+1, p) and generating vector

[a−1, xyap+1b, (y−1, y)t3 , y−1, x−1].
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Under these conditions, the GAD of the Jacobian variety corresponding to
the Riemann surface is given by the following expression:

JX ∼
p−2∏
i=1

B1
(i, p−1

2
)
×

3∏
i=1

B1
(i,t3(p−1)) ×

3p−6∏
i=1

B1

(i,
(2t3+1)(p−1)

2
)
×

p2−3p+3∏
i=1

B1
(i,(t3+1)(p−1))

×
p−1∏
i=1

Cp

(i, 1
2

(p−1)(2p−3)+(p−1)pt3)
× Cp

(1, 1
2

(p−1)(p−3))
×Dp2

(1,(t3+1)p(p−1)2).

Example 3. For p prime p > 2 and t3 = 1, the group Gp acts on a Riemann
surface X of genus 2p5 − p4 − 2p3 + 1 with signature (0; p2, p2, p, p, p, p) and
generating vector [a−1, xyap+1b, y−1, y, y−1, x−1]. Under these conditions, the
GAD of the Jacobian variety JX is given by the following expression:

p−2∏
i=1

B1
(i, p−1

2
)
×

3∏
i=1

B1
(i,p−1) ×

3p−6∏
i=1

B1

(i,
3(p−1)

2
)
×

p2−3p+3∏
i=1

B1
(i,2p−2) ×

p−1∏
i=1

Cp

(i,
(p−1)(4p−3)

2
)

× Cp

(1,
(p−1)(p−3)

2
)
×Dp2

(1,2p(p−1)2).

Corollary 5. Let p > 2 be a prime and t4 ∈ N0. The group Gp acts on
a Riemann surface of genus (t4 + 1)p5 − (t4 + 1)p4 − p3 + 1 with signature
(0; p2, p2, p, {p}2t4+1) and generating vector [a−1, xyap+1b, y−1, (x−1, x)t4 , x−1].
Under these conditions, the GAD of Jacobian variety corresponding to the
Riemann surface X is given by the following expression:

JX ∼
p−2∏
i=1

B1
(i, p−1

2
)
×

3∏
i=1

B1
(i,t4(p−1)) ×

3p−6∏
i=1

B1

(i,
(2t4+1)(p−1)

2
)
×

p2−3p+3∏
i=1

B1
(i,(t4+1)(p−1))

×
p−1∏
i=1

Cp

(i, 1
2

(p−1)(2p−3)+(p−1)2t4)
× Cp

(1, 1
2

(p−1)(p−3)+(p−1)2t4)
×Dp2

(1,(t4+1)p(p−1)2).

Example 4. For p > 2 be a prime and t4 = 1. The group Gp acts on a Rie-
mann surface X of genus 2p5−p4−2p3 + 1 with signature (0; p2, p2, p, p, p, p)
and generating vector [a−1, xyap+1b, y−1, x−1, x, x−1]. Under these conditions,
the GAD of the Jacobian variety JX is given by the following expression:

p−2∏
i=1

B1
(i, p−1

2
)
×

3∏
i=1

B1
(i,p−1) ×

3p−6∏
i=1

B1

(i,
3(p−1)

2
)
×

p2−3p+3∏
i=1

B1
(i,2p−2) ×

p−1∏
i=1

Cp

(i,
(p−1)(4p−5)

2
)

× Cp

(1,
(p−1)(3p−5)

2
)
×Dp2

(1,2p(p−1)2) .
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In fact, Theorem 12 presented above allows us to describe the decompo-
sition of JX with any extension of the geometric signature

(0; [p2, 〈a−1〉], [p2, 〈xyap+1b〉], [p, 〈y−1〉], [p, 〈x−1〉]).

and any prime p greater than 2. We compute the case p = 3 in Chapter 5.

Remark 14. We have done all the heavy computations for describing Gp

(e.g. Proposition 5) and some associated objects; such as, representations
(e.g. Theorems 7 and 8), signatures and generating vectors for its actions
on Riemann surfaces (e.g. Theorem 9, Remark 11), decompositions of the
corresponding Jacobian varieties (e.g. Theorems 10, 11 and 12), etc. So
now we can pursue in the description the action of its linked subgroups on
Riemann surfaces and their impact on the corresponding Jacobian varieties.
We make some progress on this subject in Chapter 4 where we find the
induced decomposition for the Jacobian variety of the intermediate quotients
by the linked subgroups H and K of Gp. Nevertheless, we leave some open
questions for future work.

The main question that we leave open is to find out whether the inter-
mediate quotients X/H and X/K are isomorphic or not for the actions we
study here. If this is the case, we would have isogenous Jacobian varieties
from non-isomorphic Riemann surfaces, which is our long range goal.

In this direction, we know from Proposition 11 that Gp is the full group
of automorphisms of the general element in the one dimensional family from
Theorem 9 for p = 3. Then, for this family, there is no larger group acting
(generically) in such a way that H and K are conjugate in it. Hence the
intermediate quotients X/H and X/K are not isomorphic in an obvious
way. The same happens with the general element in the families arising from
extending the signature (see Section 3.2).

Other open questions we leave are:

• Identify (if possible) the Jacobian varieties associated to the linked
subgroups H or K of Gp as factors (up to isogeny) decomposing JX.

• Describe primitive factors as Jacobians or Prym varieties of intermedi-
ate coverings.

• Describe (degree, kernel, etc) the isogeny between the Jacobian J(X/H)
and J(X/K). We have some progress on this in Theorem 14.



Chapter 4

Jacobians of intermediate
quotiens by linked subgroups
and primitive idempotents

4.1 Intermediate Jacobians by H and K

For this chapter we assume p > 2 prime and (t1, t2, t3, t4) ∈ N4
0.

From the previous chapter we know that the intermediate Jacobians associ-
ated to the linked subgroups H and K of Gp are isogenous. If we consider the
action determined by the generating vector from section 2.3, then we obtain
the following theorems about JXK and JXH .

Theorem 13. Let H,K be the linked subgroup given in Gp. Consider the
action of Gp on a Riemann surface X with signature
(0; {p2}2t1+1, {p2}2t2+1, {p}2t3+1, {p}2t4+1) and generating vector

[(a−1, a)t1 , a−1, (xyap+1b, (xyap+1b)−1)t2 , xyap+1b, (y−1, y)t3 , y−1, (x−1, x)t4 , x−1],

as in Theorem 12. Then, the GAD of Jacobians JXK and JXH associated
to the intermediate coverings generated by taking quotients by H and K is
given by the following expression:

B1
(1,(p−1)(t1+t2)) × C1

(1, 1
2

(p−1)(p−3)+(p−1)2(t1+t2+t4))
×D1

(1,(t1+t2)p2(p−1)+(1+t3+t4)p(p−1)2) ,

and the genus of the Riemann surfaces X/H (and X/K) is

p3(t1 + t2 + t3 + t4 + 1)− p2

(
2t3 + t4 −

3

2

)
− p(t1 + t2− t3 + t4 + 1) + t4 +

3

2
.

78
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Proof. Considering Theorem 2 (See Chapter 1) and the information about
GAD of the JX in Theorem 12. Then, the primitive factors appearing in
the decomposition of JXH are determined by calculating dim V H for each
complex representation V , which coincides with dim V H as shown above.

Calculating the fixed spaces by H and K, it is concluded that the only
ones with non zero dimension are described below:

dim (V 1
(1,0,0))

H = dim (V 1
(1,0,0))

K = 1,

dim (V p
(1,0))

H = dim (V p
(1,0))

K = 1,

dim (V p2

(1))
H = dim (V p2

(1))
K = 1.

Consequently, the only three factors of the decomposition are determined
by the rational representations associated with the complex representations

V 1
(1,0,0), V

p2

(1,0), and V p2

(1). Using the above notation, we are able to conclude the
decomposition of JXK and JXH is in the statement of the Theorem 13, that
is, the primitive factors in the Jacobian decomposition are those associated
with these representations, which are:

B(1,(p−1)(t1+t2)), C(1, 1
2

(p−1)(p−3)+(p−1)2(t1+t2+t4)) , D(1,(t1+t2)p2(p−1)+(1+t3+t4)p(p−1)2) .

On the other hand, to calculate the genus of the surface generated by the
intermediate covering determined by the subgroups H and K we apply the
expression given in the Proposition 3. If we define

G1 :=
〈
a−1
〉
,

G2 :=
〈
xyap+1b

〉
,

G3 :=
〈
y−1
〉
,

G4 :=
〈
x−1
〉
,

then we have the following equalities:

|H \G/G1| = |
{
H1G1, HbG1, Hb

2G1, . . . , Hb
p−1G1

}
| = p.

|H \G/G2| = |
{
H1G2, HbG2, Hb

2G2, . . . , Hb
p−1G2

}
| = p.

|H \G/G3| = |
{
HaibjG3 : 0 ≤ i, j ≤ p− 1

}
∪
{
HaipbjG3 : 0 ≤ j ≤ p− 1, 1 ≤ i ≤ p− 1

}
|,

= 2p2 − p.

|H \G/G4| = |
{
H1G4, HaG4, Ha

2G4, Ha
p2−1G4, HbG4, Hb

2G4, . . . , Hb
p−1G4

}
|,

= p2 + p− 1.
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Replacing what is obtained in expression (1.15), we are in a position to
conclude that the genus of X/H, and X/K, is

p3(t1 + t2 + t3 + t4 + 1)− p2

(
2t3 + t4 −

3

2

)
− p(t1 + t2− t3 + t4 + 1) + t4 +

3

2
.

4.2 Image of primitive idempotents

As said in Theorem 1 (see Chapter 1), for any action ofGp, JXH and JXK are
isogenous to a subvariety of JX defined as the image of certain idempotent,
we study this in what follows, for the action we are considering.

Theorem 14. Let H,K,Gp be as before. Consider X a Riemann surface
with the action of Gp with signature(

0; {p2}2t1+1, {p2}2t2+1, {p}2t3+1, {p}2t4+1
)

and generating vector

[(a−1, a)t1 , a−1, (xyap+1b, (xyap+1b)−1)t2 , xyap+1b, (y−1, y)t3 , y−1, (x−1, x)t4 , x−1].

Then, the Jacobian variety JXH of X/H is isogenous to the subvariety of
JX defined as the image of the idempotent

fH := pH(eBW(1,0,0)
+ eCV(1,0) + eD(1)

) (4.1)

and the Jacobian variety JXK is isogenous to the subvariety of JX defined
as the image of the idempotent

fK := pK(eBW(1,0,0)
+ eCV(1,0) + eD(1)

), (4.2)
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where the idempotents are described by

eBW(1,0,0)
=

1

p5

 ∑
(i,j,k,l)∈J1

(p− 1)xiyjapkbl +
∑

(i,j,k,l)∈J2

(−1)xiyjakbl

 ,

J1 =
{

(i, j, k, l) ∈ (Z+
0 )4 : 0 ≤ i, j, k, l ≤ p− 1

}
,

J2 =
{

(i, j, k, l) ∈ (Z+
0 )4 : 0 ≤ i, j, l ≤ p− 1 ∧ 1 ≤ k < p2 ∧GCD(k, p) = 1

}
.

eCV(1,0) =
1

p4

 ∑
0≤k,i≤p−1

(p(p− 1))ykapi +
∑

(h,i,j)∈I

(−1)yhapibj

 ,

I =
{

(h, i, j) ∈ (Z+
0 )3 : 0 ≤ h, i, j ≤ p− 1, (h, i, j) 6= (0, 0, 0)

}
.

eD(1)
=

1

p3

(
p2(p− 1)1Gp +

p−1∑
i=1

(−p2)api

)
.

Proof. The proof follows from the proof of Theorem 13 (see Section 4.1), and
a direct application of Theorem 1 (see Section 1.2).

Remark 15. Note that we can establish an isomorphism between the sub-
groups H and K by means of the relation y → yap+1 which induces a mor-
phism on Q[G].

Corollary 6. Let p > 2 be a prime and t1 ∈ N0. The group Gp acts on
a Riemann surface X with signature (0; {p2}2t1+1, p2, p2, p, p) and generating
vector

[(a−1, a)t1 , a−1, xyap+1b, y−1, x−1],

as in Corollary 2. Then, the decomposition of the Jacobian varieties of the
Riemann surface arising from taking quotients by the subgroups H and K, is
given by the following expression.

JXH ∼ JXK ∼ B1
(1,t1(p−1)) × C1

(1, 1
2

(p−1)(p−3)+t1(p−1)2)
×D1

(1,p(p−1)2+t1p2(p−1)),

and the genus of intermediate surfaces X/H and X/K is

p3(t1 + 1)− 3

2
p2 − p(2t1 + 1) + t1 +

3

2
.

Example 5. Consider p > 2 a prime and t2 = 1 in the Corollary 6. Then,
the decomposition of the Jacobian varieties of the Riemann surface arising
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from taking quotients by the subgroups H and K, is given by the following
expression

JXH ∼ JXK ∼ B1
(1,p−1) × C1

(1,
(p−1)(3p−5)

2
)
×D1

(1,p(2p−1)(p−1)) ,

and the genus of intermediate surfaces X/H and X/K is 2p3− 3
2
p2− 2p+ 3

2

Corollary 7. Let p > 2 be a prime and t2 ∈ N0. The group Gp acts on a
Riemann surface X with signature (0; p2, {p2}2t2+1, p, p) and generating vector

[a−1, (xyap+1b, (xyap+1b)−1)t2 , xyap+1b, y−1, x−1]

as in corollary 3. Then, the decomposition of the Jacobian varieties of the
Riemann surface arising from taking quotients by the subgroups H and K, is
given by the following expression

JXH ∼ JXK ∼ B1
(1,t2(p−1)) × C1

(1, 1
2

(p−1)(p−3)+t2(p−1)2)
×D1

(1,p(p−1)2+t2p2(p−1)),

and the genus of intermediate surfaces X/H and X/K is

p3(t2 + 1)− 3

2
p2 − p(2t2 + 1) + t2 +

3

2
.

Example 6. Consider p > 2 a prime and t2 = 1 in the previous corollary.
Then the intermediate Jacobian varieties of the Riemann surfaces arising as
quotients by the subgroups H and K have genus 2p3 − 3

2
p2 − 2p + 3

2
and the

decomposition of JXH isogenous to JXK is given by

JXH ∼ JXK ∼ B1
(1,p−1) × C1

(1,
(p−1)(3p−5)

2
)
×D1

(1,p(2p−1)(p−1)),

Corollary 8. Let p > 2 be a prime and t3 ∈ N0. The group Gp acts on a
Riemann surface X with signature (0; p2, p2, {p}2t3+1, p) and generating vector

[a−1, xyap+1b, (y−1, y)t3 , y−1, x−1]

as in corollary 4. Then, the decomposition of the Jacobian varieties of the
Riemann surface arising from taking quotients by the subgroups H and K, is
given by the following expression

JXH ∼ JXK ∼ C1
(1, 1

2
(p−1)(p−3))

×D1
(1,(t3+1)p(p−1)2),

and the genus of intermediate surfaces X/H and X/K is

p3(t3 + 1)− p2(2t3 +
3

2
) + (t3 − 1)p+

3

2
.
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Example 7. Consider p > 2 a prime and t3 = 1 in the previous corollary.
Then, the decomposition of the Jacobian varieties of the Riemann surface
arising from taking quotients by the subgroups H and K, is given by the
following expression.

JXH ∼ JXK ∼ C1

(1,
(p−1)(p−3)

2
)
×D1

(1,2p(p−1)2),

and the genus of intermediate surfaces X/H and X/K is 2p3 − 7
2
p2 + 3

2
.

Corollary 9. Let p > 2 be a prime and t4 ∈ N0. The group Gp acts on a
Riemann surface X with signature with signature (0; p2, p2, p, {p}2t4+1) and
generating vector [a−1, xyap+1b, y−1, (x−1, x)t4 , x−1] as in corollary 5. Then,
the decomposition of the Jacobian varieties of the Riemann surface arising
from taking quotients by the subgroups H and K, is given by the following
expression

JXH ∼ C1
(1, 1

2
(p−1)(p−3)+(p−1)2t4)

×D1
(1,(t4+1)p(p−1)2) ,

and the genus of intermediate surfaces X/H and X/K is

p3(t4 + 1)− p2

(
t4 −

3

2

)
− p(t4 + 1) + t4 +

3

2
.

Example 8. Consider p > 2 a prime and t4 = 1 in the previous corollary.
Then, the decomposition of the Jacobian varieties of the Riemann surface
arising from taking quotients by the subgroups H and K, is given by the
following expression.

JXH ∼ C1

(1,
(p−1)(3p−5)

2
)
×D1

(1,2p(p−1)2),

and the genus of intermediate surfaces X/H and X/K is 2p3− 5
2
p2− 2p+ 5

2
.

This concludes the decomposition analysis of the Jacobian of the quotient
Riemann surfaces arising from taking quotient by the linked groups H,K of
Gp. From the above, we observe that the only case where the decomposition
of JXH , or JXK , has only two factors (at most), is when t3 is not null. This
also means that the idempotent decomposition will have only two factors.

Regarding the variables ti ∈ N0 with i = 1, 2, 3, 4, we can conclude the
following:

Corollary 10. Let t1, t2, t3, t4 be elements in N0. If we denote as JX
(t1,t2,t3,t4)
H

the decomposition given in Theorem 12 for JXH and JXK, then

JX
(t1,r−t1,t3,t4)
H ∼ JX

(r−t2,t2,t3,t4)
H , (4.3)

for all r ∈ N such that r > t1, t2.



Chapter 5

Action of the group G3 on
Riemann surfaces and Jacobian
varieties

In this chapter we show the results obtained in Chapter 3 and 4 for case
p = 3; this is, the group

G3 =

〈 a9 = b3 = x3 = y3 = 1,
a, b, x, y : ab = ba, xy = yx,

x−1ax = ab, x−1bx = ba3, y−1ay = a4, y−1by = b

〉
.

5.1 Decomposition of Jacobian varieties in-

duced by G3 group action

If we use Theorems 12 and 13 for the prime 3 we obtain the following results:

Proposition 12. Let (t1, t2, t3, t4) ∈ N4
0. The group G3 acts on a Riemann

surface of genus

35(t1 + t2 + t3 + t4 + 1)− 34(t3 + t4 + 1)− 33(t1 + t2 + 1) + 1

with signature (0; {9}2t1+1, {9}2t2+1, {3}2t3+1, {3}2t4+1) and generating vector

[(a−1, a)t1 , a−1, (xya4b, (xya4b)−1)t2 , xyap+1b, (y−1, y)t3 , y−1, (x−1, x)t4 , x−1].

Under these conditions, the GAD of the Jacobian variety of the corresponding
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Riemann surface is given by the following expression

JX ∼B1
(1,2(t1+t2)) ×B1

(1,2(t1+t3)) ×B1
(1,2(t1+t4)) ×B1

(1,2(t2+t3)) ×B1
(1,2(t2+t4)) ×B1

(1,2(t3+t4))

×B1
(1,2(t1+t2+t3)+1) ×B1

(1,2(t1+t3+t4)+1 ×B1
(1,2(t1+t2+t4)+1) ×B1

(1,2(t1+t2+t3)+1)

×
3∏
i=1

B1
(i,2(t1+t2+t3+t4+1)) × C3

(1,4(t1+t2+t4)) ×
2∏
i=1

C3
(i,3+4(t1+t2+t4)+6t3)

×Dp2

(1,18(t1+t2)+12(1+t3+t4)).

Besides, the decomposition of the Jacobian JXK and JXH corresponding to
the intermediate quotients by the linked groups H and K is given by the
following expression:

B1
(1,2(t1+t2)) × C1

(1,4(t1+t2+t4)) ×D1
(1,18(t1+t2)+12(1+t3+t4)) ,

and the genus of intermediate surfaces X/H and X/K is

24t1 + 24t2 + 12t3 + 16t4 + 39 .

Considering particular cases of this theorem, the following examples are
concluded.

Example 9. The group G3 acts on a Riemann surface of genus 136 with
signature (0; 9, 9, 3, 3) and generating vector [a−1, xyap+1b, y−1, x−1].
Under these conditions, the GAD of the Jacobian variety of the corresponding
Riemann surface is given by the following expression

JX ∼
4∏
i=1

B1
(i,1) ×

3∏
i=1

B1
(i,2) ×

2∏
i=1

C3
(i,3) ×D9

(1,12),

Moreover, the decomposition of the intermediate Jacobian varieties of the
Riemann surfaces arising as quotients by the subgroups H and K is given by
the following expression.

JXH ∼ JXK ∼ D1
(1,12) ,

and the genus of intermediate surfaces X/H and X/K is 12.

Example 10. The group G3 acts on a Riemann surface of genus 352 with
signature (0; 9, 9, 9, 9, 3, 3) and generating vector [a−1, a, a−1, xya4b, y−1, x−1].
Under these conditions, the GAD of the Jacobian variety of the corresponding
Riemann surface is given by the following expression

JX ∼ B1
(1,1) ×

3∏
i=1

B1
(i,2) ×

3∏
i=1

B1
(i,3) ×

3∏
i=1

B1
(i,4) ×

2∏
i=1

C3
(i,7) × C3

(i,4) ×D9
(1,30).
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Moreover, the decomposition of the Jacobian varieties of the Riemann sur-
faces arising as quotients by the subgroups H and K is given by the following
expression.

JXH ∼ JXK ∼ B1
(1,2) × C1

(1,4) ×D1
(1,30) ,

and the genus of intermediate surfaces X/H and X/K is 36.

Example 11. The group G3 acts on a Riemann surface of genus 352 with sig-
nature (0; 9, 9, 9, 9, 3, 3) and generating vector [a−1, xya4b, (xya4b)−1, xya4b, y−1, x−1].
Under these conditions, the GAD of the Jacobian variety of the corresponding
Riemann surface is given by the following expression

JX ∼ B1
(1,1) ×

3∏
i=1

B1
(i,2) ×

3∏
i=1

B1
(i,3) ×

3∏
i=1

B1
(i,4) ×

2∏
i=1

C3
(i,7) × C3

(i,4) ×D9
(1,30).

Moreover, the decomposition of the Jacobian varieties of the Riemann sur-
faces arising as quotients by the subgroups H and K is given by the following
expression.

JXH ∼ JXK ∼ B1
(1,2) × C1

(1,4) ×D1
30 ,

and the genus of intermediate surfaces X/H and X/K is 36.

Example 12. The group G3 acts on a Riemann surface of genus 298 with
signature (0; 9, 9, 3, 3, 3, 3) and generating vector [a−1, y−1, x−1, x, x−1].
Under these conditions, the GAD of the Jacobian variety of the corresponding
Riemann surface is given by the following expression

JX ∼ B1
(1,1) ×

3∏
i=1

B1
(i,2) ×

3∏
i=1

B1
(i,3) ×

3∏
i=1

B1
(i,4) ×

2∏
i=1

C3
(i,7) × C3

(1,4) ×D9
(1,24).

Moreover, the decomposition of the Jacobian varieties of the Riemann sur-
faces arising as quotients by the subgroups H and K is given by the following
expression.

JXH ∼ JXK ∼ D9
24,

and the genus of intermediate surfaces X/H and X/K is 24.

Example 13. The group G3 acts on a Riemann surface of genus 298 with
signature (0; 9, 9, 3, 3, 3, 3) and generating vector [a−1, y−1, x−1, x, x−1].
Under these conditions, the GAD of the Jacobian variety of the corresponding
Riemann surface is given by the following expression

JX ∼ B1
(1,1) ×

3∏
i=1

B1
(i,2) ×

3∏
i=1

B1
(i,3) ×

3∏
i=1

B1
(i,4) ×

2∏
i=1

C3
(i,7) × C3

(1,4) ×D9
(1,24).
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Moreover, the decomposition of the Jacobian varieties of the Riemann sur-
faces arising as quotients by the subgroups H and K is given by the following
expression.

JXH ∼ JXK ∼ C3
(1,4) ×D9

(1,24) ,

and the genus of intermediate surfaces X/H and X/K is 28.

Let us note that in the examples there are coincident intermediate Jaco-
bian decompositions, this happens because the conditions of Theorem 12 are
satisfied.
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[33] R. Rodŕıguez, Abelian varieties and group actions. Contemporary Math-
ematics, Volume 629, (2014).

[34] A. M. Rojas, Introducción a las Superficies de Riemann y Curvas alge-
braicas. Course Notes (2009).

[35] A. M. Rojas, Group Actions on Jacobian Varieties. Revista Matemática
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