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Abstract

This is the first paper to estimate and model property tax evasion
in Chile. Property size as reported to Chile’s national tax authority by
homeowners is compared with estimates of property size obtained from a
private appraisal company in order to produce estimates of underreport-
ing. These estimates are rationalized via an optimal tax evasion model
where a tax notch at 140 square meters (after which the tax rate on prop-
erties doubles) plays a central role. The model parameters are estimated
using method of moments. Moments that capture bunching for both ac-
tual and reported square meters at the tax notch are consequential for
the estimation. Finally, the model is used to analyze the implications of
various changes to the property tax rate, particularly moving to a regime
with no tax notch. A regime with no tax notch results in a significant
reduction in tax evasion.1

In 2019, Chile’s national broadcaster aired an investigation exposing the preva-
lence of property tax evasion among the country’s high-income groups, including
serving politicians. The broadcast, using administrative and anecdotal evidence,
described the different ways in which individuals manage to evade property
tax, including not registering the property with Chile’s national tax authority
(known by its Spanish acronym, SII), declaring a false use of the property (i.e.,
agricultural rather than residential), or underreporting the area of buildings by
not regularizing new extensions to the property. Property tax evasion is particu-
larly important because it is a progressive tax; it consists of three increasing tax
rates for three brackets of property value. Moreover, property tax is the main
source of income for municipalities, amounting to nearly 38% of municipalities’
income, particularly for lower-income administrative areas2.

One Chilean law known as DFL-2 (1959) aims to support social and affordable
housing by reducing by half the rate of tax on properties of 140 square meters or
less3. This law creates a tax notch—that is, a discontinuity in the average tax
rate—and as a result it creates an incentive to underreport the size of buildings.
This poses the question, how does the tax notch defined by the DFL-2 impact the
behavior of households regarding the real and reported size of their properties?

In this paper the focus is on evasion that is achieved by underreporting the size
of the property. An optimal tax evasion model is proposed that incorporates
a discontinuity in the tax rate with close form solutions. A novel database
allows the measurement of evasion by size of the property through access to the
official SII data that records reported size and new data from a private appraisal
company that provides an estimation of the actual sizes of properties.

1This thesis is part of a Master’s degree in Economics at the Universidad de Chile. Super-
vising Professor: Eduardo Engel.

2Tax revenues are distributed from higher-income residents to lower-income residents, and
property tax correlates with wealth

3The tax rate doubles for properties of more than 140 square meters. This also applies
to inframarginal square meters. The corresponding tax rate for properties depends on an
appraisal. Properties with appraisals that are equal to or less than US$41,000 are exempt of
the property tax. For properties with appraisals equal to or less than US$146,000, the annual
tax rate is 0.933%, and for property appraisals over US$146,000 the annual rate is 1.088%.
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This is the first study in Chile that measures and analyzes tax evasion of prop-
erty tax. The findings show evasion of significant magnitude (7.6% of the real
size) and various effects of the DFL-2 law on evasion. More specifically, house-
holds bunch near the threshold and this behavioral response is seen particularly
in reported size suggesting an important evasion response because of the DFL-
2. This prompted the development of a model of property tax evasion, where a
rational individual chooses the size of their property and how much to underre-
port to the authority. An individual pays a rate equal to t1 if the reported size
of the property is more than u and pays a rate equal to t0 < t1 if the property
is less than u. With a probability p(e) = p0e, an audit will occur discovering
the full amount of evasion and the individual must pay the amount evaded plus
a proportional fine.

The collected data is used to estimate the model allowing a study of the effects
of three counterfactual scenarios with a constant rate, revoking the tax notch.
The tax rates evaluated are t0, t1, and a tax rate that maintains aggregate
utility unchanged denoted by t̄, where t0 < t̄ < t1. In all cases evasion decreases
significantly and tax revenue increases when the rate is equal to t1 and t̄. This
suggests a number of potential policies that will help to reduce evasion and
increase the tax income of municipalities.

There are five main contributions to the existing literature produced by this
study. First, it is the first study of property tax evasion using Chilean data.
Second, it provides evidence of the effects of a property tax law that provokes
a tax rate discontinuity—that is, bunching near a notch for real and reported
property size. Third, a model of tax evasion with a tax notch, and with close
form solutions, is developed. Fourth, the model is estimated with the data
obtaining a good fit for the main characteristics. And fifth, the model is used
to analyze counterfactual scenarios where the tax notch does not exist, which
decreases the evasion rate and in some cases increases tax revenues.

The paper is organized as follows: Section 1 presents the related literature.
Section 2 explains property tax in Chile. Section 3 introduces the data along
with four stylized facts. Section 4 develops an static model of tax evasion with
the tax notch, which is later estimated by a method of moments in Section 5.
Finally, Section 6 present the counterfactual exercises and 7 concludes.

1 Relation to literature

This paper primarily relates to a recent body of literature that studies the
bunching phenomenon. Bunching occurs in the presence of a discontinuity in
the tax rate and can occur as a result of a tax kink—a discrete change in the
marginal tax rate—or a tax notch—a discontinuity in the average tax rate.
Recent literature has used bunching for a new empirical approach to estimate
structural parameters (Kleven, 2016). This type of analysis, based on kink
points, was developed by Saez (2010) who examined kink points in the US
income tax schedule and built a model to estimate compensated elasticities
using bunching evidence. Kleven & Waseem (2013) developed a design based
on notches.

Bunching responses can occur through legal or evasion responses, or both, which
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is very relevant for this paper. Saez (2010) finds clear evidence of bunching
around a kink point for self-employment income but no evidence of bunching
for dependent workers that only receive income from their wages. This suggests
that most of the bunching may be because of reported rather than real income
effects. Seim (2017) studies the behavioral response to wealth taxes in Sweden,
which includes financial securities, real estate, and consumption durables. The
paper examines the response to a kink point from self-reported and third-party-
reported wealth finding smaller bunching for individuals with no incentive to
misreport (third-party and taxable wealth below the exempt threshold), which
suggests substantial underreporting to evade the tax. Using income data from
Denmark, Kleven et al. (2010) study a tax enforcement field experiment where
a selection of individuals were audited. This allows a break down of the total
response to a kink into evasion and legal response. In the pre-audit distribution,
Kleven et al. (2010) observe substantial bunching around the kink, bigger than
the observed bunching in the post-audit distribution, which implies there is
an evasion response as well as a real response to the kink. This work also
extends the standard economic model of tax evasion so that the probability of
auditing is dependent on the type of income being underreported (third-party
versus self-reported). The model predicts low evasion for third-party income and
larger effects of tax enforcement for self-reported income. Literature regarding
property tax and bunching effects is less prevalent. Albouy et al. (2021) focus
on a kink produced by an exemption base on the size of property in the rental
market in Tehran. Using this kink the price elasticities of housing supply and
demand are estimated using administrative data and a structural model.

The theoretical literature follows the main models of tax evasion. It begins with
the work of Allingham & Sandmo (1972), who develop a static model where the
actual income is exogenously given and the tax payer decides the amount they
will declare to the authorities. However, as a result of a certain probability
an audit will occur, the taxpayer will have to pay the undeclared amount at a
penalty rate higher than the tax rate.

Finally, with respect to the literature on property tax in Chile, this is the first
study that examines and estimates evasion. Furthermore, it is the first study
that focuses on the behavioral response of tax notches in the tax system in Chile
and, specifically, the tax notch introduced by the DFL-2.

2 Property Tax in Chile

The property tax is a tax that must be paid on real estate based on the value
of the real estate. The administration and auditing is the responsibility of the
SII; however, the revenue from property tax goes to municipalities. The base of
this tax is a downward biased estimate of the property’s market value, which is
a function of the area, location, and quality of material of the property, among
other factors. The property tax is progressive and very relevant for the finances
of Chilean municipalities. In the case of nonagricultural real estate for residential
use, the tax rate increases according to three brackets of appraisal:properties
that are appraised as being equal to or less than US$41,000 are exempt from
property tax, for properties that are appraised as being equal to or less than
US$146,000 the annual tax rate is 0.933%, and properties over US$146,000 the
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annual rate is 1.088%. Over 60% of properties in Chile are exempt of property
tax as a result of being appraised as under US$41,000.

Property tax in Chile correlates with wealth: the richest municipalities in the
Metropolitan Region have more than 95% of residential properties paying taxes,
whereas in the lowest-income areas less than 7.6% of households pay property
tax. Also, the correlation between the proportion of households that do not
pay property tax and level of poverty in the municipalities in the Metropolitan
Region is positive and high (0.68). In addition, municipalities have a system
of horizontal transfers contributing 60% of the revenues from property tax to
a common fund, the five richest municipalities contribute 65%. The fund is
distributed according to the total income of the municipality and the propor-
tion of residents that live below the poverty line. Thanks to this mechanism
property tax is the main source of income for municipalities, it’s nearly 38% of
municipalities’ income, and a substantial part of the common fund equating to
almost 60% in 2017 (Razmilic et al., 2015; Department of Treasury of Chile).
Residential properties correspond to approximately two thirds of the total tax-
able properties and one third of the property tax revenues, this accounts for the
difference in valuation relative to other types of properties (e.g., commercial)
and various exemptions (Razmilic et al., 2015).

In the last five years, a number of news articles and television programs in Chile
have revealed how high-income individuals, including politicians, have been
evading the property tax. Evasion can be accomplished by different means,
as described by anecdotal evidence. First, some individuals may not register
their property with the authorities and will therefore not be taxed. Second, an
individual could register a false use for the property. For example, by declaring
a property to have an agricultural use instead of a residential one, since agricul-
tural usage is subject to lower taxes. Another method, common according to
the anecdotal evidence, is to underreport the area of the buildings on a prop-
erty. This can be achieved by not reporting new extensions to the authorities
or hiding rooms using fake walls that are later demolished. The penalties for
underreporting are stipulated in the General Law of Urbanism and Construc-
tion that establishes fines for buildings without regulation and in the Tax Code
that stipulates penalties for evasion. When there is an incomplete or erroneous
declaration that leads to less taxes being paid the fine is between 5% and 20%
of the resulting difference.

One particular law introduces an incentive to underreport size of the buildings on
a property. The Decree-Law N°2 (DFL-2, 1959) provides tax relief for residential
properties that are 140 square meters or less. This decree aimed to support
social and affordable housing. Properties that meet this criteria have a 50%
exemption from property tax4 for up to 20 years, which is the focus of this work.
Other benefits of this law include an exemption from taxes when selling, renting,
donating, or inheriting the property5. Accordingly, the DFL-2 introduces a tax

4The SII will apply the most advantageous exemption for the tax payer. There is a limit
of two properties per person. And the exemption expires after 20 years if the property is 70
built square meters or less, 15 years if it is between 70 and 100, and 10 years if it is between
100 and 140.

5This only applies to properties with residential purposes and with natural persons as
owners. With respect to inheriting and donating, this exemption can be used only if the
donor has built or acquired the property in the first transfer.
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notch—that is, a discontinuity in the average tax rate. Given the anecdotal
evidence and the DFL-2, this study will focus on the underreporting of the area
of the buildings as a relevant means of evasion.

3 Data

Our main objective is to estimate the magnitude of evasion and its behavior
given the DFL-2. Particularly, we need a proxy for underreported square meters
(sqm). Data from the SII have the information of all register properties in the
country (for several years) with their main characteristics such as size, age and
taxes paid. The novelty of this work is that we have access to a data that supply
an estimate of actual sqm. The data come from a private appraisal company
that estimate the value of property. In the process it obtains fundamental
information like size, constituting an independent measure from SII registers.
Each property have a unique identification number that allow us to merge both
data sets. As we know the exact date of valuation from the private appraisal,
we can compare with the SII data in the same semester. We will denote the sqm
from SII as “reported sqm”, and the sqm from the private company as “real
sqm”.

The first best would have been to measure the taxes paid with the taxes that
the household would actually have to pay if they share truthful information
to the authority, meaning, if we have a counterfactual for the fiscal appraisal.
Unfortunately, we don’t have all the information that would allow us to calculate
the counterfactual fiscal appraisal with the data from the private company, since
this appraisal depends not only on square meters but also on price of the land
defined by the SII, quality of materials, among others. However, as explained
before, underreport in the size of the property is not only a viable practice to
evaded the property tax, but is relevant considering the tax notch introduced
by the DFL-2.

3.1 Basic Descriptive Statistics

In order to work with a more homogeneous sample, that at the same time has
enough properties subject to property tax, we focus on a subsample (N=8,241):
residential properties from Metropolitan Region municipalities with more than
400 observations and more than 70% of taxable properties. The data is from
the years 2015 (50%), 2016 (28%) and 2017 (22%) and considers eight munic-
ipalities: Las Condes, Santiago, Ñuñoa, Lo Barnechea, Providencia, Vitacura,
San Miguel and La Reina6 which represent 24% of the total population of the
Metropolitan Region and earn more than 37% of the property tax revenues of
the whole country (National Statistics Institute of Chile; Department of Trea-
sury of Chile).

Because there isn’t a one-to-one correspondence between sqm and taxes paid, we
begin by describing their relation. Figure 1 shows a positive relationship sum-
marize in the local polynomial, although it has a great variance. It is important
to notice that there are properties of all sizes, including those with reported
sqm below 140, that pay taxes suggesting that small properties could also have

6Proportion in the sample respectively: 27%, 18%, 13%, 11%, 11%, 10%, 5% and 4%
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appraisals over the exempt value. Besides, the figure shows a kernel density
of the reported sqm, which described the distribution of properties where the
great majority relies on and below 140 meters.

Figure 1. Semiannual taxes against reported sqm

0

.005

.01

.015

D
e
n
s
it
y

0

0.5

1

1.5

T
a
x
e
s
 (

m
ill

io
n
s
)

0

4
0

8
0

1
2
0

1
6
0

2
0
0

2
4
0

2
8
0

3
2
0

Reported square meter

Local polynomial Kernel density of sqm
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use is epanechnikov. The red curve is a kernel density with
bandwidth 2.

Figure 2 provides evidence of underreporting which seems relevant for its fre-
quency and magnitude. First, the underreporting happens at all levels of re-
ported square meterage. Second, the average underreporting is 7.6% of real sqm
and more than half of homeowners underreport more than 7%. Nevertheless,
there is a considerable fraction that underreport close to zero: 19% have under-
report between −1 and 1. Finally, some individuals have reported sqm greater
than its real sqm which means negative underreporting (9% has underpreport
under −1). This phenomenon could occur because of measurement error or dif-
ference in the measuring method between SII and private appraisal company.
Finally, Table 1 presents the main descriptive statistics for our central variables:
not surprisingly, reported sqm have a smaller mean than real sqm.
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Figure 2. Underreport sqm against reported sqm
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Table 1. Descriptive statistics: real, reported and underreported sqm

Real Reported Underreported
Mean 131.0 121.0 10.0
Standard Deviation 108.6 110.2 50.8
Median 99.3 90.0 6.0
Interquartile range 100.0 80.0 15.4

3.2 Stylized Facts

This section establish four key facts showed in our novel data.

1. Households bunch at the DFL-2 threshold for real sqm

DFL-2 introduce a big incentive to have a property of 140 square meter or less
to save half of the property taxes. Figure 3 presents a histogram of the real sqm
where we can see bunching of households around 140. The fraction of households
that choose to be at 140 more than doubles the households that choose to be
right above 140. In fact, 1.6% have properties from 139 to 140 whereas only
0.2% from 140 to 141. Measurement error, difference in sizing methods and (or)
frictions of the real world, could make the spike smaller than it would be if no
error or frictions exists7.

7Notice that near 70 or 100 sqm, the other two thresholds for DFL-2, don’t exhibit such
notorious bunching; this serve as a confirmation that the salient and relevant notch for indi-
viduals is the one at 140. This could be because the threshold 140 defines the property tax
exemption as well other tax benefits, whereas at 70 and 100 sqm only changes the duration
of the property tax benefit.
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Figure 3. Histogram for real sqm

(a) From 35 to 320 sqm
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(b) From 100 to 185 sqm
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2. Bunching at the threshold is larger for declared sqm

In Figure 3 we show the histogram of reported sqm. Just as in real sqm, there
is bunching around 140 because there is also an incentive to report having a
property of 140 sqm or less. The bunching is more than twice as large as the
one found in real sqm. Therefore, DFL-2 seems to introduce a larger incentive of
reporting rather than actually having a property of 140 sqm or less. The behav-
ioral response of taxpayers is distributed between real and reporting responses.
Fact N° 1 and 2 are the most important for what follows.

Figure 4. Histogram for reported sqm

(a) From 35 to 320 sqm
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(b) From 100 to 185 sqm
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3. Underreport increases sharply after the threshold, as a function of
real sqm

Households that choose to report 140 square meters have very different levels
of real sqm. In Figure 5 underreporting increase after 140 as a function of real
sqm, we highlight those with reported sqm equal to 140.
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Figure 5. Underreported sqm against real sqm
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4. Underreport drops near zero around the threshold, as a function
of real sqm

Underreport as a function of real sqm falls close to zero at 140 sqm as shown
by Figure 6. One possible explanation is that individuals who have a optimal
property near 140 decide to underreport just enough to report 140 so they can
benefit from DFL-2 and minimize the costs of underreporting that is greater for
those who have real sqm over 140, but reported sqm below 140, as evasion law
establishes that fines are proportional to the amount evaded.

Figure 6. Median of underreport against real sqm
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4 A model of property tax evasion

In what follows we present a model of evasion where households simultaneously
choose the size of their property and how much to underreport to the authority.
The goal is to replicate the stylized facts describe in Section 3.2, mainly the
bunching phenomenon.

4.1 Setting and case with no notch

A rational individual works and produces
√
AL units, where A is her productiv-

ity and L are the hours work. Her disutility from work is L2

2 . She only consume
one good: her property. The utility is defined by w(C) = C where w is the
utility function and C is the size of her property. We denote by z the sqm of
the property. Assuming preferences are additively separable and since all pro-
duction goes into the household z =

√
AL, then without taxes the household

maximizes:

g(z) = z − z2

2A
, (1)

Property owners pay a tax with rate t0 on reported sqm. Denoting the later
by d and underreporting by e, so that z = d + e, taxes pay are T (z − e) with
T (d) = t0d. With probability p(e) = p0e (p0 > 0) an audit occurs discovering
the full magnitude of evasion. If audited the household must pay the amount
evaded T (z)− T (z − e) plus a fine proportional to it with parameter θ ∈ (0, 1).
The structure of the tax fines is motivated by the tax laws.

It follows that the property owner maximizes over z and e:

U(z, e) = z − z2

2A
− T (z − e)− p(e)(1 + θ)[T (z)− T (z − e)] (2)

So the solutions are:

ẑ = (1− t0)A (3)

ê =
1

2p0(1 + θ)
(4)

4.2 Introducing a Tax Notch

Now we introduce what it is called in the literature as “tax notch”. This is a
discontinuity in the tax schedule T (z), where the average tax rate change after
a threshold (u). Unlike a “tax kink” where there is a increase in the marginal
tax rate (Kleven, 2016). The new tax schedule is:

T (d) =

{
t0d if d ≤ u
t1d if d > u

(5)

With t0 < t1. In our case u = 140 and t0 = t1/2. Solving (2) subject to (5) for
z and e we obtain close form solutions:
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Proposition 1. (Optimal z)

z∗ =


(1− t0)A if A < A0

u if A ∈ [A0, A1)
A[1+up0(1+θ)(t1+t0)]

1+2p0t1A(1+θ) if A ∈ [A1, A2)

(1− t1)A if A > A2

(6)

Proposition 2. (Optimal e)

e∗ =


1

2p0(1+θ)
if A < A1

z − u if A ∈ [A1, A2)
1

2p0(1+θ)
if A > A2

(7)

Proposition 3. (Optimal d)

d∗ =


(1− t0)A− 1

2p0(1+θ)
if A < A1

u if A ∈ [A1, A2)
(1− t1)A− 1

2p0(1+θ)
if A > A2

(8)

We have explicit although complicated formulas for each threshold of A: A0,
A1 and A2 that depends on parameters θ, t1, t0, p0, u. See Appendix 8.1 for the
proof of the solutions, the expressions for A0, A1 and A2, and more details.

4.3 Model implications

We identify the consequences of the tax notch by showing the relationship be-
tween z, d and e with respect to the productivity A in the case with and without
tax discontinuity (Figure 7). The real and reported size of the house (z and d)
are increasing functions of the productivity A, but not strictly as there are
ranges of A for which z and d are constant. The discontinuous increase in the
average tax rate produce a range of productivities where the household prefers
to maintain z (or d) constant equal to the threshold u. This implies: less work
because of the smaller z chose for the same productivity; less taxes paid because
of the smaller reported size d chose for the same productivity.

On the other hand, e is constant8 except for those with d∗ = u, where is an
increasing function of A. These individuals choose z∗ > u and d∗ = u, so they
are subject to the tax rate t0 instead of t1 which is the rate accordingly to their
real size z. For this reason, in case of an audit they would have to pay an
amount (1+θ)[T (z)−T (d)] = (1+θ)[t1z− t0d] > (1+θ)t0e. The marginal cost
of e is larger for those with d = u and z = u+ε for a small ε > 0, than for those
with d = u and z = u. As a result, the individual would want to minimize the
cost of underreport and still be subject to the smaller rate t0.

From these implications we can understand the aggregate implications of our
model. The aggregate version of our model consist on assuming that A is a

8Another probability function that depends negatively on z like p(e, z) = p0
e
zγ

with 0 <
γ < 1 lead to a different result with e being increasing in A. We didn’t do this to obtain close
form solutions. The main conclusions doesn’t change.
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random variable that is distributed according to a continuous distribution func-
tion such as a lognormal with parameters µA and σA, we assume that these
parameters are equal for all individuals and the variance is large enough to have
individuals affected by the tax notch. The main aggregate implication is that
households bunch at the threshold u. The bunching occurs both in z and d,
this implies the existences of density hole just above u. Refer to Figures 8 and
9 to see the distribution of d and z for some given parameters. There is a also
density hole for d below u. Under certain conditions9 d jumps from its opti-
mal value when z∗ = u, to the value d∗ = u, the reason behind this behavior
is the same previously explained: marginal cost of evasion is larger when the
individual choose d∗ ≤ u and z∗ > u.

Figure 7. Optimal choices: z, d, e against A
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5 Model Estimation

We are able to set in advanced the following parameters:

� t1 = 0.933%, according to the SII.

� t0 = 0.4665%, because the DFL-2 stipulates that properties pays only half
(in this case t0 = t1/2).

� u = 140, according to the DFL-2.

� θ = 0.125, θ ∈ [0.05, 0.2] according to the fines specifies in tax laws.

Nevertheless we don’t have a clear measure for p0 or A. The parameter p0 will
be estimated. Besides, because z is an (not strictly) increasing function of A and
due to the form of observed distribution of z (see Figure 3) we will assume A has
a continuous distribution that takes positive values as the standard lognormal
function, where µA and σA the mean and variance of the logarithmic values,
respectively.

9See Appendix 8.1.
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A ∼ lognormal(µA, σA)

5.1 Method of Moments

To estimate the model parameters we will use the method of moments. Denoting
by N the total number of observations (equal to 8,241), from Fact N° 1 and 2,
DFL-2 provokes bunching near the threshold, we have these moments:

m̂1 =

∑N
i=1 1(z(i) ∈ [138, 140])

N

m̂2 =

∑N
i=1 1(d(i) ∈ [135, 140])

N

To better assess the spread of the distribution of productivity (σA), we also
include:

m̂3 =

∑N
i=1 1(z(i) > 140)

N

m̂4 =

∑N
i=1 1(d(i) > 140)

N

As noted in the basic descriptive statistics, there is a considerable fraction of
home owners with small underreported amount. To account for this feature we
extend the model to two types of individuals. A fraction 1 − α as before, and
fraction α choose z optimal and does not underreport. This introduces a new
parameter α to estimate and motivates a fifth moment (m̂5):

m̂5 =

∑N
i=1 1(e(i) ∈ (−1, 1))

N

In synthesis we have four parameters to estimate: µA, σA, p0 and α; and five
moments to match. We denote β = (µA, σA, p0, α). For every β we calculate
m1(β), m2(β), m3(β), m4(β) and m5(β) and minimize the loss function called
“average absolute deviation”:

v(β) =

∑N
j=1|log(mj(β))− log(m̂j)|

N
(9)

Where mj(β) is the estimated moment and m̂j the data moment. Since we
have explicit expressions for d and z as a function of A we are able to calculate
explicit expressions for log(mj(β)) and no simulations are needed.
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5.2 Results

The results of the estimation are shown in Table 2 and 3. We estimate two
models: one where α = 0 excluding m5 (e ∈ [−1, 1]), the second where α ≥ 0,
including m5. For both estimations the average absolute deviation is small,
all theoretical moments are close to their counterpart in the data. Also, the
addition of α makes the calibration more realistic, since the model on its own
it’s not capable of reproducing the behavior of the underreport we see in Figure
2, thus we select the second model. According to Bernasconi (1998) the audit
probability is normally between 0.01 and 0.03 which match our estimations.

Table 2. Parameters

α = 0 α ≥ 0

µA 4.62 4.67
(0.023) (0.020)

σA 0.72 0.59
(0.044) (0.034)

p0 3.03% 2.94%
(0.20%) (0.20%)

α 0.00% 18.68%
(-) (0.43%)

Note: Bootstrap standard de-
viations in parenthesis.

Table 3. Data and estimated moments

Data α = 0 α ≥ 0

Average absolute − 0.0152 0.0125
deviation
m1 (z ∈ [138, 140]) 2.03% 2.03% 2.03%
m2 (d ∈ [135, 140]) 7.07% 7.07% 7.07%
m3 (z > 140) 32.29% 30.39% 30.34%
m4 (d > 140) 23.31% 23.31% 23.32%
m5 (e ∈ (−1, 1)) 18.67% 0.00% 18.68%

5.3 Evaluation of Estimation

The smooth kernel estimation of the data and simulated distributions evidence
how well our estimated model fit the data (see Figure 9 and 8). Stylized facts
N° 1 and N° 2 are incorporated in the estimation, because they are the most
important features we want to reproduce, which is accomplished as seen in the
figures.
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Figure 8. Kernel density of data and simulated model: d
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Figure 9. Kernel density of data and simulated model: z
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For the evaluation of Fact N° 3 and N° 4 we compare the smooth median of
e against z described in Figure 10. Far from the threshold the fit is not good
because our model describe a constant underreport whereas the data show an
increasing underreport for small values of z. Nevertheless our focus is near the
threshold where our simulation does well for the most part. In particular the
Figure 10 shows a sharp decrease around 140 followed by a rapid increase in
underreport after the threshold.
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Figure 10. Median of e against z around the threshold
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Note: p25 and p75 denotes the 25th and 75th percentile. The
smooth median and percentiles are calculated taking overlap-
ping intervals of width two.

Given the basic descriptive statistics that shows negative underreporting and
suggest a potential measurement error in the estimation of actual property size
by the private appraisal company, we develop an estimation of the model only
with the SII data obtaining good fit. See Apendix 8.2 for details.

6 Counterfactuals

In comparison to a tax schedule without a tax notch, a schedule with a tax notch
can create inefficiencies because it imposes a very high marginal tax rate over
a range of workers. There are three mechanisms through which the tax notch
may lead to inefficiencies. First, less work because of households that choose
a smaller z for the same productivity i.e those who bunch at the threshold;
second, less taxes paid because there is also bunching near the threshold for
d, these individuals choose a smaller d for the same productivity; third, less
taxes paid as larger evasion occurs for individuals who choose d ≤ u and z ≥ u
because these individuals pay tax at a rate equal to t0 instead of their actual
rate t1 > t0.

The implications of the tax notch led to an analysis of three counterfactual
scenarios in which the tax notch no longer exists and, instead, all individuals are
subject to the same tax rate, equal to: (i) the tax rate above the threshold t1 =
0.933%; (ii) the tax rate for those on or below the threshold t0 = 0.4665%; (iii)
and a constant tax rate that maintains the aggregate utility constant denoted
by t̄ = 0.7025%. Note that t0 < t̄ < t1.

The individuals most affected by these changes are the ones who chose d0 = u
with a tax notch because they reported a property size which pays t0, when
they should have been charged t1. In consequence, they have a significant level
of tax evasion. To illustrate the importance of these individuals, they represent
7% of all individuals but 46% of all tax evasion defined as T (z) − T (d). At an

aggregate level, the evasion rate (
∑N
i=1[T (zi)−T (di)]∑N

i=1 T (zi)
) is 13%. For the group with
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d0 = 140 it is 54%, this serves as a reference point for the importance of the tax
notch for property tax evasion.

The most direct consequence of the tax notch ceasing to exist is that there is
no bunching around the threshold. In the three counterfactuals, the decrease in
evasion (Table 4) is primarily due to changes in the group that chose d0 = 140
in the baseline model (Table 5). Regarding tax revenue (T (d)), naturally the
larger increase occurs when the tax rate charged is t1. Conversely, there is a
decrease in tax revenues when the tax rate for all individuals is t0. For a tax
rate t̄, tax revenue increases by 2.7%. When the analysis only takes account of
individuals with d0, tax revenue increases in all cases.

The impacts described are a lower bound because audits are costly. This factor
is not accounted for in the model. A lower evasion rate could imply less audits
and less resources expended on this task. For the same reason, we focus on tax
revenue that does not account for fines because in an ideal world there would be
no evasion, no audits, and no fines. In addition, evasion is costly for individuals
because they have to make an effort to evade tax (e.g., hiding rooms, moral
costs, etc.) which can also implies benefits of reducing evasion not accounted in
the model.

These counterfactual exercises show that the revocation of the tax notch has a
significant effect on tax evasion. For individuals that are affected by the notch
(d0 = 140) tax revenue increased for all and the evasion rate decreased con-
siderably. At an aggregate level, the tax revenue increased for counterfactuals
with tax rate t1 and t̄; however, it decreased for t0 because there is a significant
proportion of these individuals not affected by the notch who use to pay t1 and
now pay half the amount.

Table 4. Percentage change from baseline model to counterfactual scenarios

Tax rate t1 t0 t̄

Evasion rate -27% -27% -28%
Tax Revenue 36.0% -31.6% 2.7%
Utility -0.4% 0.5% 0%

Note: Evasion rate is define as
∑N
i=1[T (zi)−T (di)]∑N

i=1 T (zi)
,

Tax Revenue as
∑N

i=1 T (di); t0 = 0.4665%, t1 =
0.933%, t̄ = 0.7025%.
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Table 5. Percentage change from baseline model to counterfactual scenarios:
for d0 = 140

Tax rate t1 t0 t̄

Evasion rate -82% -82% -82%
Tax Revenue 103% 1.9% 53%
Utility -0.4% 0.5% 0.04%

Note: Evasion rate is define as
∑N
i=1[T (zi)−T (di)]∑N

i=1 T (zi)
,

Tax Revenue as
∑N

i=1 T (di); t0 = 0.4665%, t1 =
0.933%, t̄ = 0.7025%; This table shows the changes
for individuals with optimal reported size equal to 140
when there is a tax notch.

7 Summary and Concluding Remarks

Property tax only represents a small proportion of the total tax revenue in Chile
and is therefore often neglected. It is an important tax, however, because of its
progressiveness and significant contribution to the income of Chilean municipal-
ities. It has become evident that property evasion occurs, and it is particularly
adopted by high-income groups. The Chilean taxation system provides an in-
teresting context for this study because of the DFL-2 law that stipulates all
properties of a size equal to or lower than 140 square meters receive a 50%
exemption from property tax. This produces a discontinuity in the tax rate
and an incentive to underreport size. This, in addition to anecdotal evidence,
suggests that underreporting of size is a relevant means of property tax evasion.

This study employs a novel database that enables the measurement of under-
reporting of property size because it combines the reported square meterage to
the Chilean tax authority and the information from a private appraisal com-
pany that supply estimations of the actual size of properties. Because of this
combination of data an analysis of how real and reported size behave in light
of the DFL-2 is possible. Evidence of underreporting (7.6% of real size) and of
bunching near the threshold for real and reported size was found. The bunch-
ing for reported size is higher than for real size, suggesting that evasion plays
a relevant role. Driven by these features, a model of tax evasion was developed
introducing a tax notch with close form solutions, which was then estimated
with a simulated method of moments using the novel database.

The primary policy implications stem from the counterfactual exercises that are
applied using the simulated model. The revocation of the tax notch is evaluated
by instead implementing a constant tax rate. Three rates are investigated: (i)
the tax rate charged above the threshold t1, (ii) the tax rate charged below
the threshold t0, and (iii) the tax rate where aggregate utility remains constant
(denoted by t̄ with t0 < t̄ < t1). The tax schedule without tax notch decreased
the evasion rate significantly (by around 27%). Considering the importance of
property tax and the evasion evidenced in this study, a revision of the DFL-2
would be beneficial. Originally, the purpose of the DFL-2 law was to support
affordable housing; however, the market has changed and small properties can
now have large market values. Besides, a lot of exemptions already exist that
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result in less than 40% of properties being subject to taxes. A reform of property
tax law could have relevant effect. This study suggests that there is a policy that
can decrease evasion and potentially increase tax revenues for municipalities,
this will have a direct benefit of the lowest-income municipalities.

This is the first study of property tax evasion in Chile and the first to focus on
the DFL-2 and its effects on real and reported size. The model developed in
this paper does not reproduce all data characteristics and future research could
develop a more complex model that replicates other interest features, such as
variation in underreported size given a certain productivity. Extensions of the
model could include the introduction of dynamic effects in the model as anecdo-
tal data suggests that unregulated extensions are common—that is, a household
can choose their property size in an initial stage and later decide by how much to
increase the size of their property. On the other hand, richer data could enable
the estimation of a counterfactual fiscal appraisal using the information from
the private appraisal company to have a measure of tax evasion. Additionally,
other means of evading property tax were not studied because of the lack of
data. For instance, the false declaration of purpose (agricultural versus residen-
tial) seems to be an important source of evasion considering the difference in tax
rates between the two uses and should be studied in the future. Finally, it may
be worthwhile to investigate the role of municipalities in evasion because they
directly benefit from decreasing property tax evasion but must also confront a
potential political trade-off: a strong anti-evasion policy could hurt a mayor’s
reelection bid. This situation is amplified because it is often the case that those
who should be subject to more tax are the same individuals who finance political
campaigns. Until recently, mayors—the main authorities in municipalities—had
no limit to the number of times they could be reelected. A new law in Chile has
now limited the reelection of mayors, resulting in a maximum of three periods
in office. This change could be exploited by evaluating the audit behavior of
municipalities with mayors who can no longer be reelected with majors that can
still run for reelection.
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8 Appendix

8.1 Model solution

8.1.1 Minimization of G(e)

First, we fix z > u. Without loss of generality, t0 = 1 and t1 = t > 1. We define
G(e) by:

G(e) =

{
e2p0(1 + θ)t+ t(z − e) if e < z − u
e2p0(1 + θ) + e[p0z(1 + θ)(t− 1)− 1] + z if e ≥ z − u

For now on:

G1(e) = e2p0(1 + θ)t+ t(z − e)
G2(e) = e2p0(1 + θ) + e[p0z(1 + θ)(t− 1)− 1] + z

G′(e) = 0→

{
e∗1(z) = 1

2p0(1+θ)
if e < z − u

e∗2(z) = 1−p0z(1+θ)(t−1)
2p0(1+θ)

if e ≥ z − u

z − u = e∗1(z)→ z =
1

2p0(1 + θ)
+ u = z1

z − u = e∗2(z)→ z =
1 + 2up0(1 + θ)

p0(1 + θ)(t+ 1)
= z2

We will assume:

u >
1

p0(1 + θ)(t− 1)

This implies that e∗2(z) < 0 so z−u > 0 > e∗2(z). For simplification we will focus
in this particular case that doesn’t lose the important features of our model.

Case I: e∗1(z) > z − u↔ z < z1

min[G1(z − u), G2(z − u)] = G2(z − u)

Because G1(z−u) > G2(z−u)↔ z < 1+up0(1+θ)
p0(1+θ)

condition that is met because

z < z1 <
1+up0(1+θ)
p0(1+θ)

Case II: e∗1(z) < z − u↔ z > z1

min[G1(e∗1), G2(z − u)]

The result is a quadratic equation with one root that is greater or equal to u:
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z̄ =
t+ p0u+ p0tu+ p0θu+ p0tθu

2p0t(θ + 1)

+
p
1/2
0 u1/2[(t− 1)(2t− p0u+ p0tu− p0θu+ p0tθu)]1/2(θ + 1)1/2

2p0t(θ + 1)
≥ u

So:

min(G(e(z))) =

{
G2(z − u) if z < z̄
G1(e∗1) if z > z̄

Proposition 4 (Optimal evasion). Be v = (p0, t, u, θ). Given the therholds
z̄(v):

e∗(z) =

{
z − u if z ∈ (u, z̄]

1
2p0(1+θ)

if z > z̄
(10)

8.1.2 Maximization of H(z)

Given e(z) from (10) and including the possibility for z < u the individual
maximizes:

U(z, e(z)) = H(z) = z − z2

2A
−G(e(z))

H(z)


H1(z) = z − z2

2A − t0(z − 1
2p(1+θ) )− p0(1 + θ)t0( 1

2p(1+θ) )
2 if z ≤ u

H2(z) = z − z2

2A − t0u− p0(1 + θ)(z − u)[t1z − t0u] if z ∈ (u, z̄]

H3(z) = z − z2

2A − t1(z − 1
2p(1+θ) )− p0(1 + θ)t1( 1

2p(1+θ) )
2 if z > z̄

H ′(z)

 H ′1(z) = 1− z
A − t0 if z ≤ u

H ′2(z) = 1− z
A − p0(1 + θ)[t1z − t0u]− p0(1 + θ)(z − u)t1 if z ∈ (u, z̄]

H ′3(z) = 1− z
A − t1 if z > z̄

H ′(z) = 0→


z∗1 = (1− t0)A if z ≤ u
z∗2 = A[1+up(1+θ)(t1+t0)]

1+2p0t1A(1+θ) if z ∈ (u, z̄]

z∗3 = (1− t1)A if z > z̄

H(z) is not continuous in u, but it is continuous in z̄ because G1(e∗1(z̄)) =
G2(z̄ − u)

First, 1
2p(1+θ) is different from 1−pz(1+θ)(t−1)

2p(1+θ) , except when t = 1. So H(z) is

discontinue in u.

Second, 1−pz1(1+θ)(t−1)
2p(1+θ) = z1 − u. So H(z) is continue in z1
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Third, for z3 defined by G1(e∗1(z3)) = G2(z3 − u), so H(z) is continue in z3.

CASES AROUND u

z∗1 = u↔ A = A0 =
u

1− t0
z∗2 = u↔ A = A′0 =

u

1− up0(1 + θ)(t1 − t0)

A > A0 because we assume u > 1
p0(1+θ)(t−1) . Also H1(u) > H2(u)

Case I: A < A′0 ↔ z∗2 < u & A > A0 ↔ z∗1 > u

max[H1(u), H2(u)] = H1(u)

Case II: A < A′0 ↔ z∗2 < u & A < A0 ↔ z∗1 < u

max[H1(z∗1), H2(u)] = H1(z∗1)

Because H1(z∗1) > H1(u) > H2(u)

Case III: A > A′0 ↔ z∗2 > u & A > A0 ↔ z∗1 > u

max[H1(u), H2(z∗2)]

Lead to a quadratic equation with one solution greater than A′0:

A1 =
(
t0 + 4p0u+ t

1/2
0 (t0 + 8p0u+ 8p20t0u

2 + 8p20t1u
2 + 8p0θu

+ 8p20t0θ
2u2 + 8p20t1θ

2u2 + 16p20t0θu
2 + 16p20t1θu

2)1/2

+ 4p20t0u
2 − 4p20t1u

2 + 4p0θu+ 4p20t0θ
2u2 − 4p20t1θ

2u2

+ 8p20t0θu
2 − 8p20t1θu

2
)
/
[
4p0(θ + 1)(p20t

2
0θ

2u2 + 2p20t
2
0θu

2

+ p20t
2
0u

2 − 2p20t0t1θ
2u2 − 4p20t0t1θu

2 − 2p20t0t1u
2

+ p20t
2
1θ

2u2 + 2p20t
2
1θu

2 + p20t
2
1u

2 + 2p0t0θu+ 2p0t0u− 2p0t1θu− 2p0t1u− t0t1 + 1)
]

In conclusion A0 < A′0 < A1 and

z∗ =

{
z∗1 if A ≤ A0

u if A ∈ (A0, A1)
(11)

CASES AROUND z̄
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z∗3 = z̄ ↔ A = A3 =
z̄

1− t1
z∗2 = z̄ ↔ A = A′3 =

z̄

1 + p0u(1 + θ)(t1 + t0)− 2z̄p0t1(1 + θ)

A3 < A4. And H2(z̄) = H3(z̄) because of continuity of H in z̄

Case I A < A3 ↔ z∗3 < z̄ & A < A′3 ↔ z∗2 < z̄

max[H2(z∗2), H3(z̄)] = H2(z∗2)

Case II A > A3 ↔ z∗3 > z̄ & A > A′3 ↔ z∗2 > z̄

max[H2(z̄), H3(z∗3)] = H3(z∗3)

Case III A > A3 ↔ z∗3 > z̄ & A < A′3 ↔ z∗2 < z̄

max[H2(z∗2), H3(z∗3)]

Lead to a quadratic equation with root:

A2 =
(

2t1 + 2t1θ − 2t21θ − 2t21 + 2p0t0u+ 2p0t1u+ p20t
2
0u

2

+ p20t
2
1u

2 − 4p0t0t1u+ 4p0t0θu+ 4p0t1θu+ 3p20t
2
0θu

2 + 3p20t
2
1θu

2 + 2p0t0θ
2u+ 2p0t1θ

2u

+ 3p20t
2
0θ

2u2 + p20t
2
0θ

3u2 + 3p20t
2
1θ

2u2 + p20t
2
1θ

3u2 + p
1/2
0 u1/2(θ + 1)3/2(−(t0 − t1)(2t1 − p0t0u

+ p0t1u− p0t0θu+ p0t1θu)(p20t
2
0θ

2u2 + 2p20t
2
0θu

2 + p20t
2
0u

2 − 2p20t0t1θ
2u2 − 4p20t0t1θu

2

− 2p20t0t1u
2 + p20t

2
1θ

2u2 + 2p20t
2
1θu

2 + p20t
2
1u

2

− 6p0t0t1θu− 6p0t0t1u+ 4p0t0θu+ 4p0t0u− 2p0t
2
1θu− 2p0t

2
1u

+ 4p0t1θu+ 4p0t1u− 4t1 + 4))1/2 − 2p20t0t1u
2 − 4p0t0t1θ

2u− 6p20t0t1θu
2 − 8p0t0t1θu

− 6p20t0t1θ
2u2 − 2p20t0t1θ

3u2
)
/
(

4p0t1(t1 − 1)2(θ + 1)2
)

In conclusion, A1 < A3 < A2 < A′3 and:

z∗ =

{
z∗2 if A ∈ (A1, A2)
z∗3 if A > A2

(12)

From (10), (11) and (12):

z∗ =


(1− t0)A if A < A0

u if A ∈ [A0, A1)
A[1+up0(1+θ)(t1+t0)]

1+2p0t1A(1+θ) if A ∈ [A1, A2)

(1− t1)A if A > A2

(13)

e∗ =


1

2p0(1+θ)
if A < A1

z − u if A ∈ [A1, A2)
1

2p0(1+θ)
if A > A2

(14)
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Where:

A0 =
u

1− t0

A1 =
(
t0 + 4p0u+ t

1/2
0 (t0 + 8p0u+ 8p20t0u

2 + 8p20t1u
2 + 8p0θu

+ 8p20t0θ
2u2 + 8p20t1θ

2u2 + 16p20t0θu
2 + 16p20t1θu

2)1/2

+ 4p20t0u
2 − 4p20t1u
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8.2 Estimation of the model only with SII data

We could assume the data from the appraisal company has significant measure
of error and therefore is not useful. Nevertheless we can do the method of
moments based only on data from the SII and use our model to estimate values
for the actual size of the properties. We re-estimate the simulated method of
moments with the following moments:
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m̂1 =

∑N
i=1 1(d(i) ∈ [60, 90))

N

m̂2 =

∑N
i=1 1(d(i) ∈ [90, 135))

N

m̂3 =

∑N
i=1 1(d(i) ∈ [135, 140])

N

m̂4 =

∑N
i=1 1(d(i) ∈ (140, 240])

N

m̂5 =

∑N
i=1 1(d(i) > 240))

N

The next tables and figures (Tables 6 and 7, Figure 11) present the results of the
method of moments. The fit is good for the distribution of d and the conclusions
from the counterfactual exercise maintain.

Table 6. Parameters

α = 0

µA 4.70
(0.014)

σA 0.65
(0.010)

p0 3.48%
(0.09%)

Note: Bootstrap standard de-
viations in parenthesis.

Table 7. Data and estimated moments

Data α = 0

Average absolute − 0.0864
deviation
m1 (d ∈ [60, 90)) 25.2% 19.8%
m2 (d ∈ [90, 138)) 20.9% 20.6%
m3 (d ∈ [135, 140]) 7.1% 7.3%
m4 (d ∈ (140, 240]) 13.2% 16.2%
m5 (d > 240) 10.0% 9.4%
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Figure 11. Kernel density of data and simulated model II: d
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Note: Epanechnikov kernel; half-width of kernel = 2.

We also developed an estimation of the model where z had measurement of
error (not shown in this paper). Nevertheless, this extension impose a trade-
off between the fit of the bunching of z and the proportion of households with
negative underreporting. In the end, this extensions was not beneficial for our
purposes.
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