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Strain induced localization 
to delocalization transition 
on a Lieb photonic ribbon lattice
Diego Román‑Cortés1, Guillermo Fadic1, Christofer Cid‑Lara1, Diego Guzmán‑Silva1, 
Bastián Real2 & Rodrigo A. Vicencio1*

Ribbon lattices are kind of transition systems in between one and two dimensions, and their study 
is crucial to understand the origin of different emerging properties. In this work, we study a Lieb 
ribbon lattice and the localization–delocalization transition occurring due to a reduction of lattice 
distances (compression) and the corresponding flat band deformation. We observe how above a 
critical compression ratio the energy spreads out and propagates freely across the lattice, therefore 
transforming the system from being a kind of insulator into a conductor. We implement an experiment 
on a photonic platform and show an excellent agreement with the predicted phenomenology. Our 
findings suggest and prove experimentally the use of compression or mechanical deformation of 
lattices to switch the transport properties of a given system.

The understanding of transport and localization properties of different materials is the most relevant aspect 
in solid-state physics, not only from a fundamental point of view but also in terms of concrete applications. 
When synthesizing materials some deformations could emerge during the process; such as, compression, strain, 
defects and/or dislocations. However, they can also be added deliberately to enhance or to induce certain trans-
port properties. In particular, compression and strain of materials have driven much attention lately because 
their transport properties can be dramatically modified. For instance, graphene can go from a semimetallic to 
an insulating phase when an uniaxial compression is applied1,2, phenomenon known as Lifshitz transition. In 
other two-dimensional (2D) materials similar transitions have been predicted. For example, black phosphorous 
switches from a semiconductor into a metal when it is subjected to an uniaxial strain3. This allows the control 
of the electronic transport properties on a nanodevice when an external electric field is applied4, which can be 
interpreted as a delocalization–localization transition. And, for germanium kagome lattices5 a transformation 
from a semimetallic into a semiconductor is observed when applying compression due to an increment of the 
orbital frustration that induces an electronic gap. Furthermore, the electronic structure and charge properties 
were studied in KCuSe and KCuTe6, finding that pressure effectively modifies the transport properties due to an 
enhancement of carrier mobility, which could have direct applications in optoelectronic technologies as, e.g., 
solar cells.

On the other hand, during the last decade, artificial lattices have arisen as feasible platforms to emulate and 
test most of the electronic properties predicted for solid-state-like materials7–14. Some of these systems have 
shown the ability to carefully engineer compression and, thus, exploring interesting phenomena that are some-
times unrealizable in natural and sinthetized materials. For example, the Lifshitz transition of graphene has been 
addressed using matter waves in optical lattices15, waveguides arrays16, arrays of microwave resonators17 and 
exciton-polariton lattices18. In the latter system, a predicted semi-Dirac scenario arises in graphene at a critical 
compression, which produces a highly anisotropic transport and particular localization features. Remarkable 
also, it has been experimentally shown in graphene photonic lattices that a smart design in term of compression 
or strain could induce a pseudomagnetic field, causing the rupture of Dirac cones and the appearance of Landau 
levels in the band structure19–21, which constitutes a clear delocalization–localization transition.

Besides compression properties, very fundamental condensed-matter phenomena has been experimen-
tally proved in photonic lattices; e.g., Anderson localization22, topological insulation23, and Flat Band (FB) 
localization24,25. FB lattices have became an ideal solution for observing transport and localization phenomena 
on a completely periodic and linear configuration26–28, as well as for studies considering highly degenerated 
and interacting systems29,30. Moreover, during the last years, several contributions in optics have demonstrated 
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different FB properties considering diverse lattice configurations31–39 and, thus, FB systems have emerged as a 
well-established and relevant research area where to continue asking/solving questions about the improvement or 
modification of fundamental properties in very different physical contexts; namely, electronic systems, magnetic 
lattices, metamaterials, mechanical lattices, quantum configurations, photonics, etc.40–49.

In this work, we explore the consequences of compression of a quasi-1D photonic lattice known as a Lieb 
photonic ribbon. Without compression, this lattice possesses four dispersive and one flat bands, and only nearest-
neighbor (NN) couplings are relevant. When compression is applied, we observe that a next-nearest-neighbor 
(NNN) diagonal coupling starts to weakly affect the linear spectrum. It has been predicted that for Lieb-like 
lattices50 a weak diagonal coupling destroys the FB and all the spectrum becomes dispersive. However, in this 
work, we show that although diagonal coupling is not effectively zero, the FB phenomenology is still present 
and persists up to a critical compression value. We fabricate several dimer systems to fully characterize the 
coupling dependence and define a relation between coupling constants. Then, using this experimental informa-
tion, we observe a localization–delocalization transition by theoretically analyzing the band spectrum as well 
as by numerically studying the transport through different compressed ribbon lattices. Afterwards, we fabricate 
several Lieb ribbon lattices using a femtosecond-laser written technique where we experimentally demonstrate 
this transition. We observe that, above a critical lattice distance (uncompressed ribbon), there is a tendency to 
localization, whereas below this distance (compressed lattice) the energy spreads out through the system induc-
ing a delocalization transition.

Femtosecond laser written Lieb photonic ribbon
Our aim is to study the effect of compressing a Lieb ribbon lattice and observe how the emergence of a diagonal 
NNN interaction Vd affects the dynamics across the system. For this task is useful to understand first how the 
coupling constants are modified in our experimental platform. We fabricate several Lieb ribbon lattices by using a 
femtosecond (fs) writing technique51, as sketched in Fig. 1a. This fabrication method generates a small refractive 
index modification on a transparent glass-like material; in this case, a borosilicate Eagle XG wafer of width × 
length × thickness: 10× 50× 1 mm (blue block in that figure). By focusing a Menlo BlueCut femtosecond laser 
(red beam in Fig. 1a), we are able to slightly modify the refractive index at the focal region, achieving a contrast 
�n ∼ 10−4 − 10−3 . The axial geometry of the fabricated method produces vertical and elliptical elongated 
waveguides. Full waveguides are obtained by translating the glass wafer along the whole length L = 50 mm, 
at a constant velocity of 0.4 mm/s. Three-dimensional control of the sample is achieved by a fully automatized 
Thorlabs micrometer stage (sketched as a dark plate in Fig. 1a), which allows us to translate the sample in x, 
y and z directions and, therefore, to generate arbitrary two-dimensional (xy) lattice configurations, with the z 
dimension acting as a time.
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Figure 1.   (a) Femtosecond waveguide writing setup. (b) Simplified characterization setup showing a focused 
HeNe laser beam at the input facet of a photonic chip (PC), and imaging onto a CCD camera. (c) Coupling V 
versus nominal distance d for vertical (black), horizontal (orange), and diagonal (gray) couplers. Vertical dashed 
lines are for d = 16 and 24 µ m. Inset: fractional ratio r versus d (horizontal dashed line corresponds to 25% ). 
(d) White light microscope zoom of a Lieb photonic ribbon. (e1) and (e2) Two ribbon examples with 33 and 43 
waveguides for dv(dh) = 24(22.9) µ m and 13.5(12.4) µ m, respectively. This figure was drawn using Wolfram 
Mathematica 12, Flycapture2 and Omnigraffle 7.18.5.
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As a first step, we characterize the waveguide coupling dependence versus separation distance by fabricating 
sets of vertical, horizontal, and diagonal couplers (see dashed rectangles in Fig. 1a). These couplers consist of 
two waveguides separated by a variable center-to-center distance, where one waveguide has a full length ( L = 50 
mm) and the other one a shorter length of 5 mm, as sketched in Fig. 1b inside the photonic chip (PC). We 
experimentally measure them by using a standard setup (see Fig. 1b), where a focused horizontally polarized 
HeNe laser beam excites a given waveguide at the input facet. Then, we obtain output light intensities on a CCD 
camera and extract the intensity information at every waveguide. The intensities follow a cosine-like dependence 
over propagation distance51–53, and they allow us to extract a coupling function for every waveguide separation. 
By compiling all the information, we obtain an exponential fit for a coupling versus distance dependence51,52, as 
shown in Fig. 1c, where Vv(dv) = 26.43 exp(−0.185dv) cm−1 and Vh(dh) = 21.41 exp(−0.184dh) cm−1 . Due to 
the elliptical waveguide profile obtained from a fs-laser fabrication method51,52, vertical coupling Vv (black line 
in figure) is always larger than the horizontal Vh one (orange line in figure). However, we find a simple relation 
between these two coupling functions, obtaining that Vv ≈ Vh for dh = dv − 1.1 µ m, which is a very important 
detail for setting up a fabrication routine. Therefore, by adjusting dh and dv distances we are able to correct the 
anisotropy of the lattice, which implies having an effectively symmetric (square-like) lattice. As a consequence, 
for simplicity, we define a nominal distance d, as a control parameter in our simulations. Now, we characterize 
the diagonal coupling ( Vd ) considering a center-to-center distance dd =

√

d2h + d2v  . We immediately notice that 
the diagonal coupling (gray curve in Fig. 1c) is very small in comparison to NN (vertical and horizontal) coupling 
constants but, nevertheless, not strictly zero. We find that this diagonal NNN coupling has the following form: 
Vd(dd) = 36.50 exp(−0.273dd) cm−1 . In order to compare the magnitude of this NNN coupling constant, we 
plot a fractional ratio r ≡ Vd/Vv over nominal distance d as inset in Fig. 1c. We notice that for d � 20 µ m, Vd 
is less than 25% of Vv.

After adjusting all coupling parameters, we start the fabrication of a total number of 14 photonic lattices. 
We split into two sets of arrays having a total number of 33 and 43 waveguides, for d � 18 µ m and d � 17 µ m 
respectively. Figure 1d shows a microscope image at the output facet of a fabricated photonic Lieb ribbon lat-
tice, after white light illumination. Bright regions in this figure correspond to elliptical fs-written waveguides 
on a Lieb ribbon geometry, with relevant distances indicated explicitly at figure. This image shows dipole-like 
white light states52, which are originated due to the multiple wavelength excitation coming from a white light 
lamp. However, in this work, we will study our photonic lattices by using a red HeNe laser beam at 633 nm, for 
which all the waveguides are single-mode. Figure 1e shows two examples of different lattices at two regimes: 
uncompressed and compressed lattices.

Model and linear spectrum
In order to study a Lieb ribbon lattice, a singular flat band class54, we consider a tight-binding-like model with 
NN and NNN coupling constants due to an evanescent interaction in between close waveguides. The lattice 
structure is sketched in Fig. 2a, where the unit cell [see dashed rectangle] is composed of five sites: A, B, C, D and 
E. This lattice has three relevant coupling constants: horizontal Vh , vertical Vv , and diagonal Vd , as shown in this 
figure. Light dynamics is governed by a paraxial wave equation, which after applying coupled mode theory26,55 
reads, in a general form, as

Here, u�n describes the amplitude of a fundamental mode wave function located at lattice site �n , and z is the propa-
gation coordinate. β�n corresponds to the propagation constant at site �n . For a homogeneous lattice, this parameter 
is equal for all waveguides and, without loss of generality, we simply set it as β�n = 0 . V�n, �m defines the evanescent 
coupling between sites �n and �m , which naturally depends on the specific geometry and waveguides distance. 
Model (1) is generally referred as Discrete Linear Schrödinger (DLS) equations26,55, where z is the dynamical 
variable (time t in other contexts). On a solid-state scenario, u�n and β�n correspond to the wave-function of elec-
trons and the site energy at lattice site �n , respectively, while V�n, �m defines the tight-binding matrix coefficients.

As we described in previous section, we consider an effective symmetric lattice where dh = dv = d and, 
therefore, we can assume Vh = Vv = V  in our model. We compute the linear spectrum of this ribbon lattice by 
assuming the following Bloch ansatz

Here, kx corresponds to the transverse wavenumber (Bloch wavevector), d to the nominal distance (lattice unit), 
and n to the discrete horizontal position through the lattice. As a Lieb ribbon lattice is classified as a quasi-1D 
system26,31–34, we have not included a vertical ky wavenumber due to the absence of transport on that specific 
direction. � represents the solution’s frequency or energy for linear modes (macromodes) of the full system.

First of all, by taking a null diagonal (NNN) coupling: Vd = 0 , the system converges to a standard 1D Lieb 
lattice, which is quite similar to a Stub32,35 or to a 2D Lieb24,25,50,56 system, but in this case it presents five linear 
bands instead of only three. In this limit ( Vd = 0 ), the system possesses a flat band (FB) located at � = 0 , and 
four dispersive bands given by �(kx) = ±V

√
2(1+ cos(kxd)), ±V

√
2(2+ cos(kxd)) , where we have defined 

V ≡ Vh = Vv . Figure 2b shows a symmetric linear spectrum, where each positive frequency is paired to a 
negative one57. The flat band mode (see Fig. 2b-inset) has exactly the same profile than the one of a 2D Lieb 
lattice24,25,56, and it is formed by only four sites different to zero, with a staggered phase structure, and the follow-
ing amplitude condition: D = E = −VvB/Vh and A = C = 0 . As this system has as much FB compact modes as 
closed rings along the lattice, all of them with equal propagation constant � = 0 , they can be linearly combined 

(1)−i
∂u�n

∂z
= β�nu�n +

∑

�m

V�n, �mu �m .

(2){An,Bn,Cn,Dn,En} = {A,B,C,D,E}eikxdnei�z .
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to form spatially larger states26,31. For example, two neighbor FB modes constructively superposed form a spatial 
state having a larger peak at the central B site. Therefore, this localized state can be excited dynamically using 
a single B-site excitation, as we will numerically and experimentally show below, in the limit of a negligible 
diagonal coupling.

Now, we study the full case of considering a Lieb ribbon lattice with NN and NNN interactions as a more 
realistic model to understand the dynamics of this lattice, when considering the effect of compression. Along this 
work, we will assume that lattice compression implies a symmetric reduction of distances as the example shown 
in Fig. 1e. Therefore, we expect to switch on the diagonal coupling after a given critical compression, of course 
considering the realistic dependence of coupling constants described in Fig. 1c. For example, it is well known 
that a 2D Lieb lattice presenting NNN coupling ( Vd  = 0 ) losses its perfect flat band � = 0 , but it nevertheless 
remains thin in comparison to the other two dispersive bands50. After inserting the plane-wave ansatz (2) in 
model (1), we obtain a set of five algebraic coupled equations. We solve the eigenvalue problem and find two 
analytical solutions �±(kx) = ±V

√
2(1+ cos(kxd)) . These bands are the same than in the previous perfect FB 

case ( Vd = 0 ) and are associated to transport along upper and lower rows of the lattice; i.e., a 1D-like transport 
with a total band width of 4V (the pairing of positive and negative bands57 is preserved on these two bands). The 
other three solutions can not be written in a compact form; therefore, we directly plot them in Fig. 2c as a func-
tion of kx and nominal distance d. As we described in the previous section, all couplings constants are a direct 
function of distance d: Vh(d), Vv(d) and Vd(d) . Therefore, by varying d we are indeed modifying these coupling 
coefficients using the functionality shown in Fig. 1c, which was obtained directly from experiments. Figure 2c 
shows a strong modification of the linear spectrum in terms of distance d. We observe how for distances larger 
than d ∼ 18 µ m bands are quite flat, implying a slow transversal dynamics, due to the small band curvature26,55; 
however, strickly speaking, the spectrum is not flat: �  = constant. In this regime, we expect a tendency to locali-
zation and weak dispersion due to the small available velocities in the system. On the other hand, for distances 
smaller than d ∼ 18 µ m, we observe a much broader linear spectrum, which grows rapidly, with larger slopes 
in general, something that guarantees a faster propagation through the lattice; i.e., a good transport regime (a 
wider spectrum implies larger available kinetic energies). Therefore, a lattice compression in real space produces 
a broadening in frequency space, as expected from reciprocal relations.

Figure 2d shows two band examples to illustrate the main differences observed in the linear spectrum. Full 
lines show the five linear bands for a distance d = 24 µm , where we observe a narrow spectrum area and three 
bands which are notoriously flat/thin (red, black and green). This case corresponds to a relaxed (uncompressed) 
lattice and coupling constants are: V = 0.314 cm−1 and Vd = 0.052 cm−1 (i.e., V ≈ 6Vd ) being, therefore, a sort 
of realistic FB-like regime. Therefore, in this flat-band-like regime, we expect to observe a reduced transport55 
when exciting the lattice edges (upper and lower rows), and a localization tendency when exciting the central 
row (B site). Dashed lines in Fig. 2d correspond to a distance d = 16 µm ; i.e., an already compressed lattice. We 
observe now that three bands are completely dispersive and broad (red, orange and gray), while two (black and 
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Figure 2.   (a) A Lieb ribbon lattice with coupling coefficients indicated by arrows. Every filled disk represents 
an optical waveguide. (b) Linear spectrum versus transversal wavenumber kx for V = 1 and Vd = 0 . Inset: flat 
band mode, where only yellow and black disks are different to zero. (c) Linear spectrum versus kx and nominal 
distance d. (d) Linear spectrum versus kx for d = 24 µ m and d = 16 µ m shown using full and dashed lines, 
respectively. (e) Band width �� versus nominal distance d. This figure was drawn using Sketch 4.9.9, Wolfram 
Mathematica 12 and Omnigraffle 7.18.5.
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green) are kind of mixed. They have regions where � ∼ constant, which is kind of heritage from the previous 
FB-like limit. In order to analyze a bit more the bands properties, while compressing the lattice, we define a band 
width parameter as �� ≡ [�(kx = 0)− �(kx = π)]/|�±(kx = 0)| . We compare all bands with respect to the 
total width of 1D-like bands as a reference, considering that these bands always produce transport and define a 
sort of dispersion scale in our lattice. Figure 2e shows �� versus nominal distance d. By definition, �� = 1 for 
orange ( �+ ) and gray ( �− ) bands. We observe that the upper (red) band, although been always dispersive, has 
always a smaller band width than the 1D reference, in the interval shown in this figure. For larger distances, 
red and green band widths converge to a value (

√
3− 1)/

√
2 ≈ 0.5 (as expected from Fig. 2b), while the black 

(central) band naturally converges to a FB with zero width ( �� → 0 ). For a decreasing distance d, black and red 
band widths increase and, therefore, we expect an increasing transport tendency. The lower (green) band width 
tends to saturate, showing the possibility of a weak tendency to localization as well. For d ≈ 18 µ m we observe 
a crossing region for an increasing black and decreasing green bands, which somehow could indicate a critical 
regime for observing a dynamical transition around this nominal distance. As the black band is originated at the 
FB for larger distances, when this band is not the thinnest one, we expect to observe a dominant transport across 
the system and, therefore, a localization–delocalization transition when compressing the lattice.

Finite lattice dynamics
Real systems are always finite and possess a fixed number of lattice sites N. We study numerically the proper-
ties of a finite system in order to obtain more realistic details for this quasi-1D photonic lattice. Although we 
are experimentally limited to the study of small systems only, due to the short available propagation distances 
of the fs waveguide writing technique, we study finite properties on a larger system having a total number of 
N = 263 sites (which corresponds to a lattice with 52 closed rings). This choice is necessary to correctly analyze 
the properties of the linear spectrum of each lattice and determine more clearly the excited frequencies of the 
system as we will show below. First of all, we construct a tight-binding matrix V�n, �m for lattices having different 
nominal distances d, which considers vertical, horizontal and diagonal coupling interactions only, as it was 
described in the second section considering the experimental data. We obtain the linear spectrum of every lat-
tice system and calculate its density of states D�(d) , by computing an eigenfrequencies histogram, on a given 
interval and defined resolution. This allows us to not only see the projected linear spectrum for each lattice 
but also adding the information about the number of states associated to each frequency, as a way to predict 
the phenomenology of a given system in terms of the available states on each array. We show our results in 
Fig. 3a. For d � 18 µ m we notice that the spectrum is composed by a strong peak at � ≈ 0 , with four dispersive 
bands clearly defined and isolated states in between. In Fig. 2c,d we observe that bands are always connected at 
kx = π/d , with no gaps in between, been therefore a continuum of states in practice. The density is high close to 
central (originally flat) band and well disseminated in the dispersive surrounding bands. Therefore, we expect 
to observe a tendency to localization while exciting a bulk-B site, while dispersion and transport when exciting 
a bulk-A site. Below d ≈ 18 µ m we observe that the pseudo-FB peak starts broadening. In fact, at inset we show 
the participation ratio in frequency space R� versus distance d, obtained by using the density of states informa-
tion [ R� = R�(d) ≡ (

∑

�
|D�(d)|

2)2/(
∑

�
|D�(d)|

4) , where a small (large) value indicates few (many) strongly 
excited frequencies]. We observe how R� clearly increases for distances d � 18 µ m, indicating a noticeable 
change in the density of states for shorter distances d and compressed lattices. This naturally implies that the 
linear spectrum broadens and the FB phenomenology starts disappearing that is again a signature of a change 
in the lattice phenomenology.

We numerically integrate model (1) by exciting the lattice at a single-site. By exciting an A-site (or a C-site, 
due to lattice symmetry) we observe very good transport in Fig. 3b1, where we project the lattice sites intensi-
ties on a 1D row by applying a lattice ordering scheme with columns priority. In this figure, we chose a long 
propagation distance zmax = 100 in order to observe a dynamically asymptotic regime as a consequence of well 
excited linear bands. Due to the large propagation distance, all the lattice is well excited and some fast waves 
are reflected at lattice surfaces. The participation ratio R shown as inset in this figure indicates a rather constant 
dissemination of the energy, with values larger than 0.2 for different distances d (an R value close to zero corre-
sponds to a localized profile, while R ∼ 1 indicates a delocalized one26,55). The dynamically excited spectrum in 
this case is shown in Fig. 3b2. This is obtained by Fourier transforming the wave amplitude at every lattice site, 
in the interval z ∈ {0, zmax} . This gives us the frequencies excited on a specific lattice position, which are then 
numerically integrated by simply summing the absolute value over the whole lattice58. This gives us the excited 
spectrum in the dynamics and the key modes which are responsible for the observed spatial profiles, where we 
observe quite clearly that dispersive (surrounding) bands are excited the most, with an almost absent central 
(flat-band-like) band. On the other hand, Fig. 3c1 shows the compiled results for a B-site excitation. We clearly 
observe a dynamical transition at d ≈ 18 µ m (see dashed horizontal line), from a localized/trapped output profile 
into a completely broad/dispersed spatial pattern. We include an inset showing the participation ratio R versus 
distance d computed with the data shown in this figure. We observe a dynamical transition around d ≈ 19 µ m 
(see linear fits included), with a notorious change in the slope as an indication of a larger excited area after this 
transition. Therefore, in this asymptotic regime, we clearly predict a localization–delocalization transition when 
compressing the Lieb ribbon lattice, below a critical distance d. Figure 3c2 shows the frequency spectrum excited 
during the propagation described in Fig. 3c1. Figure 3c2 shows quite clearly the persistence of the original flat 
(central) band located at � ≈ 0 , when exciting a B-site, where broader (surrounding) dispersive bands are only 
weakly excited in this case. This central band is strongly excited and its width properties will somehow define 
the observed transition, what from the presented data would occur for a band width �� ≈ 0.35 , as shown in 
Fig. 2e. Then, for d � 18 µ m we see how this main peak broadens and shifts to smaller frequencies, and spatial 
output profiles increase abruptly, as a result of an increasing band width.
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These results show that a localization–delocalization transition, appearing when comprising the lattice with 
the consequent reduction of nominal distance d, is originated due to the persistence of localization properties 
of the central band of this lattice, which is responsible for the existence of a FB when the diagonal interaction 
becomes negligible. Therefore, we theoretically and numerically predict that FB properties will not disappear 
immediately when switching on the diagonal interaction and that will persist up to a given threshold distance, 
which we have found is in the range of d ∈ {18, 20} µ m, for the experimental parameters we are using in this 
study. From a more theoretical perspective, and using the previous analysis, we could claim that this transition 
would happen when band widths are all larger than �� ≈ 0.3 , for this specific Lieb ribbon lattice. Nevertheless, 
the transition would be observed only if the right site is excited. As the input site directly defines the specific 
bands excited dynamically, there will be some sites showing the localization–delocalization transition and other 
sites showing only transport.

Experimental results
As commented in the second section, we fabricated 14 ribbon lattices to experimentally study the localiza-
tion–delocalization transition produced by a symmetric lattice compression. By using a characterization setup 
as the one shown in Fig. 1b, we are able to study the dynamics for all the fabricated lattices and measure the 
intensity output pattern after a propagation distance of L = 50mm . In Fig. 4 left-column we observe the excita-
tion of an A-bulk site, as shown in inset (this is equivalent to a C-site excitation as well). We clearly observe a 
good transport scenario when exciting this site. The energy spreads out homogeneously across the lattice, due 
to the fact that only dispersive bands are excited. For lattices with a larger nominal distance d, the diffraction 
area is narrower due to the smaller maximum velocities excited (narrow linear spectrum as shown in Fig. 2c). 
Therefore, the necessary propagation distance for observing a whole energy dissemination would be much larger 
than 50 mm, as described numerically in Fig. 3b1. For d � 18 µ m we observe that in the opposite (bottom) row 
already light is diffracting in a 1D-like form, although light has not arrived to the edges strongly. This is the main 
reason for fabricating smaller lattices up to this nominal distance, as transport is still occurring slowly. Then, for 
d � 17 µ m we increased the system size to a total of 43 waveguides and immediately observe how light spreads 
through a larger transversal area. We notice that for an even shorter distance d light explores quite well the whole 
lattice with noticeable reflections at edges as a clear manifestation of a broader linear excited spectrum and larger 
kinetic energies. Therefore, we have shown quite clearly the transport regime for these ribbon lattices, that is 
independent of the nominal distance d but, naturally, it depends on the dynamical coordinate z.
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Figure 3.   (a) Linear spectrum and density of states versus nominal distance d. Inset: dependence of the 
participation ratio in frequency space R� versus distance d. (b) and (c) excitation of bulk-A and bulk-B sites, 
respectively. (b1) and (c1) intensity output profiles |u�n(zmax)|

2 , for zmax = 100 , versus distance d where, for 
simplicity, the lattice is projected on a 1D row. Insets: participation ratio R for output intensities versus distance 
d. (b2) and (c2) dynamically excited frequency spectrum versus distance d. This figure was drawn using 
Wolfram Mathematica 12 and Omnigraffle 7.18.5.
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Figure 4 center-column shows the excitation of a B-bulk site for Lieb ribbon lattices, while symmetrically 
compressing the system and, effectively, reducing the nominal distance d. We clearly observe that for d � 18 µ m 
the energy remains completely localized at the input region, independent of a distance d reduction, which for 
an A-site excitation already shows a very good transport. The energy remains localized mostly at the input site, 
therefore being a quite localized profile with a participation ratio of R ∼ 1 , which for finite and infinite systems 
corresponds to a perfect localization. This localization tendency comes from the FB heritage and shows very 
clearly the preservation of FB properties although, strictly speaking, diagonal coupling Vd  = 0 and, consequently, 
the FB compact states are not system eigenmodes. Then, for smaller distances the energy starts to weakly spread 
through the lattice. We observe for d = 15.5 µ m that the maximum intensity is not at the B input site anymore; as 
a result, the transition into delocalization has started to occur quite clearly. Finally, for smaller distances the spec-
trum is even wider and the FB heritage is simply lost. The energy is well disseminated across the lattice as an effect 
of compressing the system. Therefore, we have observed a localization–delocalization transition experimentally 
and showing quite clearly the possibility of changing the transport properties abruptly by comprissing the lattice.

As an extension, we experimentally excited the surface of every lattice to also show the transition under 
compression at the lattice edge. We injected light at the input facet of a B-site as shown by inset in Fig. 4 right-
column. Again, we observe high localization up to a nominal distance of around d = 18 µ m, with a single-peaked 
profile. For d � 17 µ m we observe a spatial transition and observe that the profile has now two main peaks, 
although it is still quite localized and compact, but showing that a delocalization transition is starting to occur 
also at the lattice edge. For even smaller distances, we observe how the energy spreads out into the system and 
how the dispersive nature of the compressed lattice manifests. Therefore, a relaxed Lieb ribbon lattice behaves as 
an insulator, in the sense of not conducting energy through the system. Under compression, the energy is able 
to spread out across the lattice and the system becomes a conductor-like media.
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Figure 4.   Left, center and right columns show the experimental output intensity pattern for A-bulk, B-bulk, 
and B-edge input excitations, as indicated at insets by red circles. Nominal distance d decreases downwards, as 
indicated directly beside left column. The aspect ratio was corrected to compare different lattices on a similar 
visual scale. A rainbow-like color scale is applied, which is normalized to the peak power of every image. This 
figure was drawn using Thorlabs’ Beam 8.0 and Omnigraffle 7.18.5.
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Conclusions
In conclusion, we have studied theoretically and experimentally a localization–delocalization transition induced 
by strain in Lieb ribbon lattices. We found the analytical solutions of the system and how they are affected by 
a compression value, which in photonic lattices can be understood as the inclusion of next-nearest-neighbor 
coupling. For small values of compression, the solutions are localized, and the system presents a low transport. 
But under severe compression, the solutions are extended, and a high transport is obtained. This transition 
from localized to delocalized states was observed by using excitations in B sites of the lattice, where properties 
of localized states, reminiscence of flat band states, prevails until a critical value of coupling. These results show 
that Lieb lattices, and presumably other lattices possessing flat bands, are good candidates to the study of band 
structures modification and the tuning of transport properties through compression.

Methods
Sample fabrication.  The photonic lattice used in our experiment was fabricated using the femtosecond 
laser writing technique51. By focusing a laser beam on a borosilicate wafer, we are able to locally modify the 
refractive index. Then, we translate the sample at fixed velocity and create a complete waveguide inside the glass 
plate. Depending on the transversal pattern of the specific lattice, we repeat this procedure on several positions 
and fabricate a full photonic system.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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