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Abstract. This paper establishes conditions for global/local robust asymp-
totic stability for a class of multi-order nonlinear fractional systems consist-
ing of a linear part plus a global/local Lipschitz nonlinear term. The deriva-
tion order can be different in each coordinate and take values in (0, 2). As
a consequence, a linearized stability theorem for multi-order systems is also
obtained. The stability conditions are order-dependent, reducing the conser-
vatism of order-independent ones. Detailed examples in robust control and
population dynamics show the applicability of our results. Simulations are
attached, showing the distinctive features that justify multi-order modelling.

1. Introduction. A multi-order (also called mixed-order [11], or incommensurate)
fractional system is a set of fractional differential equations (i.e. involving frac-
tional derivatives) where each equation is allowed to have its own differential order.
Since fractional systems have been mainly used to get empirical models of complex
processes [1], the importance of the qualitative study of multi-order fractional sys-
tems becomes evident as they represent the more general structure. Moreover, in
applications of fractional operators to classic integer-order problems, these systems
naturally appear.

Lyapunov stability is one of the main research topics in the qualitative study
of nonlinear differential equations due to its capability to characterize asymptotic
properties. Although most of the research has been focused on systems where each
equation has the same differentiation order, some partial results have been obtained
for the multi-order case. The triangular linear case was studied in [8] and BIBO
(bounded-input, bounded-output) stability, through Laplace domain arguments,
has been studied in [2] and subsequent papers. Attractiveness for a class of local
Lipschitz nonlinear systems was studied in [21]. In [15, 21], a comparison lemma
and the knowledge of asymptotically stable multi-order fractional systems were used
to study multi-order systems.

In this paper, we establish conditions for Lyapunov stability of multi-order non-
linear systems in which the nonlinear part is a Lipschitz function. The proposed
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results establish a kind of small-gain conditions on the non-linearity to ensure sta-
bility. These conditions are order-dependent and reduce the conservatism of order-
independent ones. By contrast, the Lyapunov-like method yields conditions that
do not depend on the derivation order (e.g. [12]). However, in systems defined
through fractional-order derivatives, order-independent conditions for stability are
conservative, which can be easily seen in linear time-invariant systems. Moreover,
serious limitations of the Lyapunov technique have been found in comparison with
the integer-derivative counterpart, mainly due to the lack of monotony [20].

Our method relies on a fixed-point technique, devised in [5] to prove the local
stability of single-order systems, that we have extended to prove the global and
local stability of multi-order ones. Moreover, robustness properties, i.e. the preser-
vation of the convergence or the boundedness under uncertainty, are also provided.
By contrast, the Laplace method devised in [19] cannot assert the stability in the
Lyapunov sense and contains some gaps when establishing the asymptotic conver-
gence (essentially, the same problems that have been indicated in [20]). Finally, we
show, by applications of the main results, how the multi-order approach enhances
the representation capabilities by providing qualitatively different behaviour from
single-order systems.

The rest of the paper is organized as follows. In Section 2 we provide some
definitions and notations. In Section 3 the main results are established. These
results are discussed and extended in Section 4, meanwhile, in section 5 we provide
illustrations of the main results.

2. Preliminaries. This section is devoted to review notation and basic results
adapted to the paper context.

We start with some notation and definitions. R and C denote the set of real and
complex numbers, respectively. ∥ · ∥ denotes a norm in Rn and also a compatible
matrix norm in Rn×n so that ∥Ax∥ ≤ ∥A∥∥x∥ (e.g. the induced norm). B(x, r) ⊂
Rn denotes the closed ball around x ∈ Rn of radius r. ′ or ⊤ denote the transpose
operation for vectors in Rn. In (or simply I) denotes the identity matrix in Rn×n.
λm(·) and λM (·) are the minimal and maximal eigenvalue functions. C([0,∞),Rn)
is the space of continuous functions from [0,∞) to Rn endowed with the infinite
norm ∥f∥∞ = supt≥0 ∥f(t)∥.

Definition 2.1. The two parameter Mittag-Leffler function is defined as

Eα,β(z) =

∞∑
k=0

zk

Γ(kα+ β)
, z ∈ C.

The convention Eα(z) := Eα,α(z) is used.

Definition 2.2. For a function x : [a, b] → R, the Caputo derivative operator of
order α is defined by

Dα
0+x(t) =

1

Γ(α−m)

∫ t

0

(t− s)α+1−mx(m)(s)ds, t ∈ [a, b], (1)

where Γ is the gamma function and m is an integer satisfying m− 1 < α ≤ m.

Our main results concern to nonlinear systems with Lipschitz nonlinearities. So,
we recall this concept:
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Definition 2.3. A local Lipschitz continuous function g : Rn × [0,∞) → Rn,
uniformly in its second argument, is a function satisfying for any t > 0

∥g(x, t)− g(x̂, t)∥ ≤ L(r)∥x− x̂∥, ∀x, x̂ ∈ {x ∈ Rn : ∥x∥ < r} (2)
where L(r) > 0. A global Lipschitz continuous function g : Rn× [0,∞) → Rn in the
first argument with Lipschitz constant L uniformly in t is a local Lipschitz function
such that L(r) is a constant.

2.1. Laplace domain. For a function f : [0,∞) → Rn×m, f̂(s) := L[f(t)](s) is
its Laplace transform, which is computed component-wise so that its component
f̂ij corresponds to the Laplace transform –in its usual definition [16]– of the scalar
component fij of f for each 1 ≤ i ≤ n, 1 ≤ j ≤ m and s ∈ C. Similarly, let
L−1[f̂(s)](t) be the Laplace anti-transform, also defined component-wise. A pole of
a matrix function f̂(z) is a complex number z such that it is a pole of some scalar
component f̂ij of f̂ .

We will need the following version of the Final Value Theorem.
Theorem 2.4. Let y : [0,∞) → Rn×m be a function such that y and dy

dt have
Laplace transforms, with dy

dt piecewise continuous. Assume that every pole of sŷ(s)
lies in the open left-hand side of the complex plane. Then, limt→∞ y(t) exists and
is given by

lim
t→∞

y(t) = lim
s→0

sŷ(s), (3)

where the limit is taken component-wise, i.e. limt→∞ yij(t) = lims→0 sŷij(s) for
each 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Proof. Let x̂ij := sŷij any component of sŷ. From the hypothesis, x̂ has all its
poles in the open left-hand side of the complex plane. Then, xij is dominated
by an exponential (see [4, p. 98 at the bottom]), and in particular, it is abso-
lutely integrable. Since ŷij = s−1x̂ij , we have that yij(t) =

∫ t

0
xij(τ)dτ . Since∫ t

0
xij(τ)dτ =

∫ t

0
x+ij(τ)dτ −

∫ t

0
x−ij(τ)dτ , where x+ij(t) = max(x(t), 0) and x−ij(t) =

max(−x(t), 0), and x is absolutely integrable, we have limt→∞ yij(t) exists and
is denoted by yij(∞). Then, lims→0 L[ ddtyij(t)](s) = lims→0

∫∞
0

d
dtyij(t)e

−stdt =∫∞
0

d
dtyij(t)ds = yij(∞) − yij(0), where we pass the limit inside the integral in

the second equality due to the uniform convergence [16, p. 315]. On the other
hand, using a classical property, L[ ddtyij(t)](s) = sŷij(s) − yij(0), which implies
limt→∞ yij(t) = lims→0 sŷij(s).

Notice that the limit on the right-hand side of (3) is implicitly assumed to exist.

2.2. Operator norms. For a function f : (0,∞) → Rn, its Lebesgue p−norm is
defined by ∥f∥pp :=

∫∞
0

∥f(t)∥pdt; Lp is the set of functions with finite p−norm. For
an operator G on Lp, its induced p−norm is given by ∥G∥Lp := supu̸=0,u∈Lp

∥Gu∥p

∥u∥p
.

Recall that the convolution y = h ∗ u may represent the zero state response of a
linear system of input u and output y. Such linear systems are often specified by
the Laplace transform H of h because in this domain one has ŷ = Hû. Thus, the
notation ∥H(s)∥1 means ∥h∥1.

Since ∥H(s)∥1 = ∥H∥L∞ when H is a linear operator (see e.g. [7, p.23]), a linear
system H(s) is BIBO stable (i.e. bounded input u implies bounded output y) if
and only if ∥H(s)∥1 <∞. The following result establishes that the boundedness of
∥H(s)∥1 is determined by the sign of the real part of the poles of H(s).
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Lemma 2.5. Let H(s) be a complex matrix function. Then ∥H(s)∥1 <∞ implies
H(s) has no poles in {Re s ≥ 0}. Conversely, suppose that H(s) has no poles
in {Re s ≥ 0} then ∥H(s)∥1 < ∞ when each component of H(s) has the form
p(s)/q(s), where p(s) =

∑m
k=1 bks

βk , q(s) =
∑n

k=1 aks
αk and maxk=1,...,m{βk} <

maxk=1,...,n{αk}.

Proof. Since ∥H(s)∥1 < ∞, each component of H satisfies ∥Hij(s)∥1 < ∞ for
1 ≤ i ≤ n, 1 ≤ j ≤ m. This means that

∫∞
0

|hij |dτ < ∞. By the definition of
the Laplace transform, it follows that Hij(s) =

∫∞
t=0

hij(t)e
−stdt is bounded for any

Re s ≥ 0, implying that Hij(s) and, hence, H have no pole on {Re s ≥ 0}. On the
other hand, whenH(s) has no poles in {Res ≥ 0}, then each component has no poles
in {Re s ≥ 0}. Applying [2, Theorem 3.1] (considered without delayed terms), it
follows that each component satisfies ∥Hij(s)∥1 <∞ and hence ∥H(s)∥1 <∞.

3. Order-dependent conditions for stability. In this section, we study the
stability problem for the class of multi-order systems described by the following set
of equations

Dαi

0+xi(t) =

n∑
j=1

aijxj(t) + gi(x1, . . . , xn, t), i = 1, . . . , n, (4)

which will be compactly written as
Dα̂

0+x(t) = Ax(t) + g(x, t), (5)

where Dα̂x(t) is a short notation for the vector of components Dαixi(t) with αi ∈
(0, 2) for i = 1, . . . , n. The vectors x : [0,∞) → Rn and g : Rn × [0,∞) → Rn, and
the matrix A ∈ Rn×n are similarly defined. The results of this paper are stated for
the continuous solutions to (5) (see [11] for sufficient conditions on g).

To work with a compact notation, we denote sα̂I the diagonal matrix whose
entries are sαi , i.e.

sα̂I := diag(sα1 , . . . , sαn). (6)
The following result is obtained by generalizing to the multi-order case the

method proposed in [5], which is concerned with the stability analysis for the single-
order (commensurate) instance of (4).

Theorem 3.1. Let g be a global Lipschitz function in its first argument, uniformly
in its second argument, with Lipschitz constant L and such that g(0, t) ≡ 0. If

L <
1

∥(sα̂I −A)−1∥1
<∞, (7)

then x = 0 is a globally asymptotically stable point for system (4).

Proof. Consider first the case 0 < αi ≤ 1 for any i = 1, . . . , n. For any x0 ∈ Rn,
define the operator Tx0

on C([0,∞),Rn) by

Tx0(ξ)(t) := ψx0(t, α̂, A) +

∫ t

0

ΨE((t− τ), α̂, A)g(ξ(τ), τ)dτ. (8)

where ψx0
(t, α̂, A) := L−1((sα̂I − A)−1sα̂−1Ix0)(t) =: ψ(t, α̂, A)x0, ΨE(t, α̂, A) =

L−1((sα̂I −A)−1)(t), and sα̂−1I := diag(sα1−1, . . . , sαn−1)
The form of Tx0 is taken from what can be called the variation of constants

formula for (4) which is obtained by solving (4) (with initial condition x(0) = x0)
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in the Laplace domain and then applying the inverse transform. This procedure
yields1

x(t) = ψx0
(t, α̂, A) +

∫ t

0

ΨE((t− τ), α̂, A)g(x(τ), τ)dτ. (9)

This solution is unique in C([0,∞),Rn) because the existence of another continuous
solution y for the same initial condition implies that the difference z = x− y has a
Laplace transform ẑ ≡ 0, and its inverse Laplace transform gives z(t) = 0 almost
everywhere, implying z(t) ≡ 0 when x, y ∈ C([0,∞),Rn). Comparing (8) with (9),
it follows that any fixed point of Tx0 on C([0,∞),Rn) only can be equals to the
unique continuous solution to (4) satisfying x(0) = x0. Thus, we can prove the
theorem by studying the properties of Tx0

and its fixed point.
We first note that Tx0

(ξ) defines, for each fixed ξ, a system that is better appre-
ciated by making explicit the dependence on u(t) := g(ξ(t), t), which plays the role
of input, namely Tx0,u(ξ). One then can ask if this system is BIBO stable, which
concerns to the operator

∫ t

0
ΨE((t − τ), α̂, A)g(ξ(τ), τ)dτ since the BIBO stability

is studied for null initial condition (x0 = 0, in our case). By the identification
u(t) = g(ξ(t), t), one realizes that this is exactly as ask the BIBO stability of the
linear system Dα̂

0+x(t) = Ax(t) + u(t) for which the results of Section 2.2 can be
applied, after applying the Laplace transform. In particular, condition (7) implies
that in fact this system is BIBO stable. By the first claim of Lemma 2.5, this im-
plies that (sα̂I − A)−1 has no poles in {s ∈ C : Re(s) ≥ 0}. Then, we can apply2

Theorem 2.4 to obtain that ψx0 , whose Laplace transform is (sα̂I − A)−1sα̂−1Ix0
and hence it satisfies the hypotheses of Theorem 2.4, converges to zero. Being the
solution to (4) with g ≡ 0, ψx0

is continuous3 [11], and hence ∥ψx0
∥∞ < ∞. Since

∥(sα̂I − A)−1∥1 < ∞ and g is Lipschitz uniformly on t, the second term in the
right hand of (9) is continuous when evaluated on C([0,∞),Rn). Then, Tx0

maps
C([0,∞),Rn) to C([0,∞),Rn).

From the Lipschitz continuity of g and using (7), we obtain ∥Tx0
ξ − Tx0

ξ̂∥∞ ≤
q∥ξ − ξ̂∥∞ for any ∥ξ∥∞, ∥ξ̂∥∞ < ∞, where q := L∥(sα̂I − A)−1∥1 < 1. Since
g(0, t) ≡ 0, we also have

∥Tx0
ξ∥∞ ≤ ∥ψx0

∥∞ + qϵ. (10)
for any ϵ > 0 and any ∥ξ∥∞ < ϵ. Since ∥ψx0

∥∞ < ∞, it follows ∥Tx0
ξ∥∞ < ∞,

and hence Tx0
is a contractive map in the Banach subspace B∞ of C([0,∞),Rn)

defined by all the bounded functions for the ∥ · ∥∞ norm. Using the Contraction
Mapping Principle, Tx0

has a unique fixed point ξ0 ∈ B∞ ⊂ C([0,∞),R), which is
then a bounded function. From the reasoning in the third paragraph of this proof,
the continuous solution x of (4) with x(0) = x0 is also a fixed point of Tx0

. From

1Notice that each component of the vector (sα̂I −A)−1ĝ is a sum of convolutions in the time
domain, which can be regrouped to form the integral in (9).

2Using the Lipschitz assumption, each xi is dominated by an exponential as t → ∞ implying
that the Laplace transform of x exists. This is due to the fact that one can find a linear bound to
the nonlinear equation by employing the Lipschitz inequality. Then, one can bound the solution
by choosing the largest αi ≤ 1, which yields the solutions that can grow faster asymptotically,
obtaining a Mittag-Leffler upper bounding function dominated by an exponential. Since ẋ satisfies
a similar equation as x but with the addition of a term proportional to tαi−1 for each i when x

continuous (see [11, eqn. (3.5)]), the same holds for ẋ.
3More rigorously, this can be seen from the fact that each component of ψx0 is the sum of

fractional integrals of integrable functions according to the anti-transform of (sα̂I−A)−1sα̂−1Ix0,
whereby they are continuous
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the uniqueness of the fixed point in C([0,∞),Rn), we conclude that x ≡ ξ0, and
hence, the continuous solutions of (5) are bounded functions.

Pick any ϵ > 0 and choose x0 ∈ Rn such that ∥x0∥ < δ := ϵ(1− q)/∥ψ(t, A)∥∞.
From (10), it follows that Tx0

maps the ball B(0, ϵ) of C([0,∞),Rn) to B(0, ϵ).
Applying the Contraction Mapping Principle again, it follows that the fixed point
of Tx0

must be contained in B(0, ϵ). On the other hand, we know that the unique
continuous solution x such that x(0) = x0 is a fixed point of Tx0 . Therefore,
∥x∥∞ < ϵ, and the Lyapunov stability of x = 0 follows.

Now pick any x0 ∈ Rn. Using in the following order (9) the triangular inequality,
properties of lim sup, the fact that ∥ψx0

(t, α̂, A)∥ converges to zero as t → ∞, and
the Lipschitz assumption on g together with the fact that g(0, t) ≡ 0 (which implies
that ∥g(x, t)∥ ≤ L∥x(t)∥), we have respectively

lim sup
t→∞

∥x(t)∥

≤ lim sup
t→∞

(
∥ψx0(t, α̂, A)∥+ ∥

∫ t

0

ΨE((t− τ), α̂, A)g(x(τ), τ)dτ∥
)
,

≤ lim sup
t→∞

∥ψx0(t, α̂, A)∥+ lim sup
t→∞

∥
∫ t

0

ΨE((t− τ), α̂, A)g(x(τ), τ)dτ∥,

= lim sup
t→∞

∥
∫ t

0

ΨE((t− τ), α̂, A)g(x(τ), τ)dτ∥

≤ L lim sup
t→∞

∫ t

0

∥ΨE((t− τ), α̂, A)∥∥x(τ)∥dτ.

From the already established boundedness of the solutions to equation (5), we have
lim supt→∞ ∥x(t)∥ < ∞. Then for any ϵ > 0 there exists T (ϵ) such that ∥x(t)∥ ≤
lim supt→∞ ∥x(t)∥+ ϵ for any t > T (ϵ). Hence,

lim sup
t→∞

∥x(t)∥ ≤ L(lim sup
t→∞

∥x(t)∥+ ϵ) lim sup
t→∞

( ∫ t

T (ϵ)

∥ΨE((t− τ), α̂, A)∥dτ

+ ∥x∥∞
∫ t

t−T (ϵ)

∥ΨE((t− τ), α̂, A)∥dτ
)
.

Using (7), which implies, in particular, the integrability of ΨE , the integral term in
the second line above converges to zero and the first integral is bounded by ∥(sα̂I−
A)−1∥1. This implies lim supt→∞ ∥x(t)∥ ≤ L∥(sα̂I−A)−1∥1(lim supt→∞ ∥x(t)∥+ϵ).
Sending ϵ→ 0+, we obtain

lim sup
t→∞

∥x(t)∥ ≤ L∥(sα̂I −A)−1∥1 lim sup
t→∞

∥x(t)∥.

Using (7), L∥(sα̂I − A)−1∥1 < 1 and the above inequality only makes sense if
lim supt→∞ ∥x(t)∥ = 0. Therefore, 0 ≤ limt→∞ ∥x(t)∥ ≤ lim supt→∞ ∥x(t)∥ = 0,
completing the proof of the asymptotic stability of x = 0.

Consider now the case where some derivation orders satisfy 1 ≤ αi < 2. Without
loss of generality, suppose that αi > 1 for i = 1, . . . ,m with m ≤ n, and αi ≤ 1
otherwise. Instead of (8), we define

Tx0,ẋ0(ξ)(t) := ψx0,ẋ0(t, α̂, A) +

∫ t

0

ΨE((t− τ), α̂, A)g(ξ(τ), τ)dτ,
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where

ψx0,ẋ0(t, α̂, A) = L−1{(sα̂I −A)−1sα̂−1Ix0

+ (sα̂I −A)−1(sα1−2ẋ01, . . . , s
αm−2ẋ0m, 0, . . . , 0)

′}(t).

That is, the only difference with the precedent case occurs every time that the func-
tion ψx0,ẋ0(t, α̂, A), associated to the initial condition, is used. We have lims→0(s

α̂I−
A)−1sα̂Ix0 = 0 and lims→0(s

α̂I − A)−1s(sα1−2ẋ01, . . . , s
αm−2ẋ0m, 0, . . . , 0)

′ = 0,
as in the latter case αi − 2 ∈ (0,−1) for i = 1, . . . ,m. Since Lemma 2.5 and
the continuity results in [11] hold for arbitrary orders in (0, 2), the boundedness
claim on ψx0,ẋ0

(t, α̂, A) can be obtained as above. The explicit form of the ini-
tial condition term is used to assert the stability. To reproduce the arguments
above, we must consider the augmented vector (x′0, ẋ′0) and define the diagonal ma-
trix ψ(t, A) of elements, written in the s-domain, (sα̂I − A)−1sα̂−1I and (sα̂I −
A)−1diag(sα1−2, . . . , sαm−2, 0, . . . , 0).

Remark 3.2. Despite its concision, condition (7) looks hard to compute since it
involves the L1−norm of the Laplace inverse of (sα̂I − A)−1. In the next section,
we will see a more practical condition, which can be verified by simple calculations.

Remark 3.3. Seen g as a disturbance of the linear part, Theorem 3.1 ensures the
preservation of the asymptotic stability under Lipschitz disturbances whenever the
order-dependent condition (7) is fulfilled.

The proof of Theorem 3.1 relies on the Lipschitz characteristic of the nonlinearity.
According to Definition 2.3, similar reasoning can be developed when the nonlin-
earity is locally Lipschitz. Indeed, the next result shows that the (local) asymptotic
stability can be established without the condition (7).

Theorem 3.4. Consider system (4) with g a local Lipschitz function in the first
argument, uniformly in t, such that limr→0 L(r) = 0 and with g(0, t) ≡ 0 . If
(sα̂I − A)−1 has no poles in {s ∈ C : Re(s) ≥ 0}, then the origin of (4), x = 0, is
asymptotically stable.

Proof. Since (sα̂I−A)−1 has no poles in {s ∈ C : Re(s) ≥ 0}, we use Lemma 2.5 to
obtain ∥(sα̂I − A)−1∥1 < ∞. From the hypotheses, we have that L(r) → 0 as r →
0+, and hence, there exists a small enough r0 such that ∥(sα̂I − A)−1∥1 < 1/L(r)
for any r < r0. The rest of the proof follows along the same lines as the proof of
Theorem 3.1, by restricting to the Banach subspace of C([0,∞),Rn) such that for
any ξ in that subset, we have ∥ξ∥∞ ≤ r0−ϵ, where ϵ > 0 is a small enough constant
independent of ξ.

Remark 3.5. In the linear case, i.e. system (4) with g ≡ 0, the asymptotic stability
is global. In [6], authors obtain the same condition of Theorem 3.4 to assert just
the attractiveness of x = 0 for this particular case, while Theorem 3.4 asserts the
Lyapunov stability of x = 0.

Remark 3.6. In [21, Theorem 5], the attractiveness of x = 0 for system (5) with
rational multi-orders belonging to (0, 1) is asserted. In addition to the local Lipschitz
of g and the pole conditions, they impose a nonnegative definiteness condition on A,
restricting the result to Hurwitz matrices. Therefore, this result is strictly included
as a particular case in Theorem 3.4.
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From Theorem 3.4, a generalization of the Lyapunov indirect method can be
obtained for the following nonlinear multi-order system

Dαi

0+xi(t) = fi(x1, . . . , xn), i = 1, . . . , n, (11)
or, in compact notation,

Dα̂x(t) = f(x), (12)

where Dα̂x(t) is the vector of components Dαixi(t) for αi ∈ (0, 2), i = 1, . . . , n,
x : [0,∞) → Rn, and f : Rn × [0,∞) → Rn is a continuously differentiable function
with f(0) ≡ 0. Although rather a corollary, we state the next result as a theorem
due to its applicability.

Theorem 3.7. Let A := Jf (x = 0) be the Jacobian of the function f evaluated at
x = 0. If (sα̂I−A)−1 has no poles in {s ∈ C : Re(s) ≥ 0}, then the origin of system
(11), x = 0, is asymptotically stable.

Proof. By making a Taylor expansion, we can write f(x) = Ax+g(x), where g(x) is
the Taylor polynomial. Since g is locally Lipschitz with limr→0 L(r) = 0, the result
follows from the application of Theorem 3.4.

Remark 3.8. Theorem 3.7, which is a local result and has the intuitive motivation
of the linear approximation of a nonlinear system, has been informally used in
previous works.

Finally, we study the robustness under a more general disturbance. The next
result generalizes to the multi-order case the results for the single-order in [9].

Corollary 3.9. Consider system (5) where (sα̂I − A)−1 has no poles in {s ∈
C : Re(s) ≥ 0}. Let g(x, t) = g0(x, t) + g1(t) with g0 locally Lipschitz with
limr→0 L(r) = 0 or Lipschitz of parameter L < 1

∥(sα̂I−A)−1∥1
, uniformly on its sec-

ond argument. If g1 is a bounded function, then the solutions of (5) are bounded,
and if, in addition, g1 converges to zero, then x = 0 is locally or globally attractive,
respectively.

Proof. For brevity’s sake, we only prove the case αi ≤ 1 for any i and g0 being
Lipschitz with L < 1

∥(sα̂I−A)−1∥1
. Firstly, we state the boundedness. Let

Tx0
(ξ)(t) := ψx0

(t, α̂, A) +

∫ t

0

ΨE((t− τ), α̂, A)g0(ξ(τ), τ)dτ

+

∫ t

0

ΨE((t− τ), α̂, A)g1(τ)dτ.

From the hypothesis that (sα̂I − A)−1 has no poles in {s ∈ C : Re(s) ≥ 0} and
using the same arguments of the proof Theorem 3.1, we have that ΨE ∈ L1 and
ψx0

is bounded. Since g1 is bounded, the convolution of g1 with an L1 function is
bounded by, say, C <∞. Thus, instead of (10), we have

∥Tx0
ξ∥∞ ≤ ∥ψx0

∥∞ + C + qϵ, (13)
that is to say, Tx0

maps the subspace B∞ of C([0,∞),Rn) defined by all the bounded
functions for the ∥ · ∥∞ norm to itself. Furthermore, we still have ∥Tx0

ξ−Tx0
ξ̂∥∞ ≤

q∥ξ − ξ̂∥∞ for any ∥ξ∥∞, ∥ξ̂∥∞ <∞. Therefore, the boundedness follows by noting
that the unique fixed point of Tx0 in B∞ is also the solution to (5) with g = g0+g1.
Secondly, we prove the convergence when g1 converges to zero. Since ΨE ∈ L1
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and g1 is bounded and converges to zero, the convolution of them, i.e. the second
integral in Tx0 , converges to zero. By redefining ψx0(t, α̂, A) as ψx0(t, α̂, A) plus this
integral, yielding a term that converges to zero, the same arguments of the proof
Theorem 3.1 can be carried out to prove the final claim.

4. Discussion. In this section, we discuss the results of Section 3.

4.1. A more tractable hypothesis. The condition (7) in Theorem 3.1, i.e. L <
∥(sα̂I − A)−1∥−1

1 , has the advantage of concision, but it is hardly useful to solve
practical problems. In the following result, we provide a necessary condition for
(7), which is computationally tractable.

Proposition 4.1. Consider 0 < αi < 2 for any i = 1, . . . , n, α̂ the vector of
components αi and the notation in (6). If (sα̂I − A)−1 has no poles in the closed
right-hand complex plane and A is invertible, then

∥(sα̂I −A)−1∥1 ≥ ∥A−1∥, (14)

and the condition

L ≤ ∥A−1∥−1 (15)

implies (7).

Proof. Recall that ∥(sα̂I − A)−1∥1 is a short notation for ∥L−1[(sα̂I − A)−1](t)∥1.
If (sα̂I −A)−1 has no poles in the complex right-hand plane, then according to the
proof of Theorem 2.4, limt→∞

∫ t

0
L−1[(sα̂I − A)−1](τ)dτ as t → ∞ exists and can

be obtained from the asymptotic value of ss−1(sα̂I−A)−1 = (sα̂I−A)−1 as s→ 0.
Thus, we have

∥(sα̂I −A)−1∥1 = lim
t→∞

∫ t

0

∥L−1[(sα̂I −A)−1](τ)∥dτ

≥ ∥ lim
t→∞

∫ t

0

L−1[(sα̂I −A)−1](τ)dτ∥

= ∥ lim
s→0

(sα̂I −A)−1∥ = ∥A−1∥,

which proves the first claim. Since L ≤ ∥A−1∥−1 ≤ ∥(sα̂I − A)−1∥−1
1 , the second

claim is also proved. The restriction to 0 < αi < 2 is only to stress that when
αi = α0 for any i = 1, . . . , n, (sα̂I −A)−1 can only satisfy the pole’s hypothesis on
this range.

Remark 4.1. Inequality (14) is order-independent, but it is a sharp one, as it
becomes an equality in the scalar case with α ≤ 1. Indeed, when A = λ < 0,
(sα−λ)−1 has anti-transform given by tα−1Eα,α(λt

α). From [13, equation (1.10.7),
p.50], we have

d

dt
tαEα,α+1(λt

α) = tα−1Eα,α(λt
α), ∀α > 0.

Thus, ∫ t

0

τα−1Eα,α(λτ
α)dτ = tαEα,α+1(λt

α).
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From [13, equation (1.8.28), p.43], Eα,α+1(λt
α) = −1

λtα +O( 1
(λtα)2 ) for any 0 < α < 2,

t → ∞ and any λ such that πα/2 < |arg(λt)| ≤ π. Since Eα,α(−x) ≥ 0 for
0 < α ≤ 1, we conclude

∥τα−1Eα,α(λτ
α)∥1 =

1

|λ|
.

Although order-independent conditions are conservative, they provide robustness
under uncertainty in the derivation order as shown in the following result.

Theorem 4.2. Let system (4) with αi = 1 for any i = 1, . . . , n and g ≡ 0 be the
nominal case. If condition (15) holds for A invertible, then x = 0 is robustly stable
in the sense that for any disturbance in the derivation order such that 0 < αi < 2
for any i = 1, . . . , n and (sα̂I − A)−1 has no poles in the closed right hand side of
the complex plane, and for any nonlinear disturbance with Lipschitz constant lesser
or equal than L, x = 0 is asymptotically stable.

Proof. The claim follows from Theorem 3.1 and Proposition 4.1 by recalling that a
Lipschitz function with parameter Lg is also a Lipschitz function with parameter L
when L ≥ Lg.

4.2. Commensurate case. The (so-called) commensurate case for system (5) oc-
curs when αi = α for all i = 1, . . . , n. In this case, L−1((sαI − A)−1)(t) =
tα−1Eα,α(At

α). Also, the condition of A having all its eigenvalues in {λ ∈ C−{0} :
|arg(λ)| > απ

2 } implies ∥tα−1Eα,α(At
α)∥1 <∞ (e.g. [2]). So, from Theorem 3.1, we

need in addition the order-dependent condition L < ∥tα−1Eα,α(At
α)∥−1

1 (or, from
Proposition 4.1, L < ∥A∥−1), to ensure the stability of x = 0. In turn, Remark
4.1 suggests carrying out the problem in a scalar formulation. Consider thus the
function V (x) = x′Px with P > 0 a constant matrix. After some manipulations,
we obtain

DαV ≤ λm(Q)

λM (P )
V + ḡ(V ),

where ḡ(V ) = η
λm(P )V , η = L2 + ∥P∥2, and Q := A′P + PA < 0 is an arbitrary

matrix. Then, (15) is satisfied if |λM (Q)|η < λm(P )λM (P ). Since Q is arbitrary,
we can have for instance L2 < λM (P )− ∥P∥2.

Notice that the order-dependent condition on Theorem 1 includes the case of
A having all its eigenvalues in {λ ∈ C − {0} : |arg(λ)| > απ

2 }, as seen above.
Meanwhile, the condition using Q := A′P + PA < 0 implies that the eigenvalues
of A must belong to {λ ∈ C − {0} : |arg(λ)| > π

2 }, reflecting the conservatism of
order-independent conditions.

4.3. Parametric uncertainty. Consider now the case where the matrix A in (4)
is partly unknown due to uncertainties in its entries. The approach here is different
from that of [18] because, on the one hand, we study the multi-order fractionaliza-
tion of the state equation rather than the single-order input-output one, and on the
other, we consider time-varying perturbations.

Corollary 4.3. Consider system (4) with g ≡ 0 and A = A0 +∆A(t), where A0 ∈
Rn×n is a known constant matrix, and ∆A ∈ Rn×n is an unknown perturbation.
Then, x = 0 is asymptotically stable if ∥∆A(t)∥ ≤ ∥(sα̂I − A0)

−1∥−1
1 < ∞ for any

t > 0.
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Proof. It is a direct consequence of Theorem 3.1 by defining ḡ(x, t) := ∆A(t)x,
which is Lipschitz uniformly on t, and noting that the perturbed system becomes
Dα̂x = A0x+∆Ax.

5. Applications. We explore some practical application of the obtained results.
The performed simulations are accomplished using a filter approximation of the
fractional integral.

5.1. Robust control. For the nominal system
ẋ = Ax+Bu, (16)

consider the robust control problem consisting in synthesizing a signal u such that
the state x(·) converges to the origin x = 0 despite uncertainties. The traditional
way in that uncertainties are accounted for is by adding a term g(x, t), which can
express parametric (see Corollary 4.3) and/or unmodelled uncertainty. Theorem
4.2 enables us to consider a more general instance by including uncertainties in the
derivation order. The practical relevance of this kind of uncertainty is supported
by the fact that fractional-order derivatives have been mainly employed to match
observed responses in complex dynamical systems, taking inspiration from a model
written originally in integer-order derivatives [1], what is called fractionalization.

Assuming that the pair (A,B) is controllable, we can find a matrix K such
that Ac := A + BK has arbitrary poles in the complex open left-half plane. This
implies that A−1

c exists and that its norm can be dominated, using the relationship
between the induced norm and the spectral radius, in order to satisfy (15). To
apply Theorem 4.2, what remain is to verify the pole condition on (sα̂I − Ac)

−1

for each α̂ in the allowed range of derivation orders. For numerical detail, consider
the pair in canonical controllable form A = [0, 1;−1, 2], B = [0; 1]. To deal with a
Lipschitz disturbance g with parameter L < 1/4 in the Euclidean norm, we can set
the eigenvalues of Ac in −1 by choosing u = k1x1 + k2x2 = 4x2, so that |A−1

c |−1 =
0.41. Considering a derivation order disturbance α̂, the poles of (sα̂I − Ac)

−1 are
determined by the solutions to sα1+α2 +2sα1 +1 = 0. Using [3, Proposition 1, 3(a)],
it follows that all the poles belongs to the open left-half plane when α1, α2 ∈ (0, 1)4.

A simulation is made for the disturbances g(x, t) = 1/4(0, sin(x2))
′ and α̂ =

(0.7, 0.8)′, while the initial condition was set at x(0) = (2.5, 3). In the spirit of
the problem, g and α̂ are unknown. Fig. 1a shows the effectiveness of the robust
control. Fig. 1b reveals that a slow convergence is an indication that a derivation
order disturbance can be present, as the speed of convergence is notoriously affected
when compared for the same g using the nominal instance α̂ = (1, 1)′. In this sense,
Fig. 1a also shows that the motivation for using multiple order of derivation as
disturbance, as opposed to the commensurate case, is to capture different speeds of
convergence as x1 and x2 converges in different orders.

5.2. Population dynamic. Due to their capability to incorporate long-memory ef-
fects, fractional systems seem suited to model population dynamics in which learned
habits or instincts affect the present behaviour of individuals [17]. Moreover, since
the derivation order of an equation determines restrictively the convergence order
of its solution [10], this order can represent qualitatively different adaptation capa-
bilities of species, which can evolve with a speed lower than exponential as shown in

4We conjecture that this is always the case, i.e. that for any αi ∈ (0, 1) the poles of (sα̂I−Ac)−1

have negative real value when Ac is Hurwitz.
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Figure 1. Robust performance

virus propagation. This provides the motivation for the introduction of multi-order
models in population dynamics.

Consider thus the fractionalization of the classic competition model given by the
Verhulst-Pearl logistic equation (see e.g., [14, Eqn. 4.4.5, p.154]),

Dαi

0+xi = xi
(
ai + fi(x)

)
, xi(0) > 0, i = 1, . . . , n, (17)

where xi is the population of the i−specie, i = 1, . . . , n, x = (x1, . . . , xn)
′, αi ∈

(0, 1], and fi : Rn → R is a smooth function codifying the interaction (competi-
tion/cooperation) of the i−specie with the other species.

Equilibrium points of (17), i.e. the zeros of its right-hand side, are relevant
as they characterize the asymptotic distribution of the population. Theorem 3.7
provides a sufficient condition for the asymptotic stability of an equilibrium point.
Around or close enough to non-trivial stable equilibrium points, we are assured that
(17) is a meaningful population model, i.e. xi ≥ 0, which is a nontrivial fact for
fractional systems.

For numerical visualization, we consider the following dynamic

Dα1x1 = x1
(
a1 + b1x1 + b12x2

)
,

Dα2x2 = x2
(
a2 + b2x2 + b21x1

)
,

where a1 = a2 = 1, b1 = −0.3, b2 = −0.5, b12 = 0.03 and b21 = 0.05. The
equilibrium points are (x1, x2) = (0, 0), (x1, x2) = (0, 2), (x1, x2) = (10/3, 0),
and (x1, x2) = (1060/297, 700/297) ≈ (3.56, 2.35). The latter equilibrium point
is asymptotically stable since the Jacobian of the corresponding function f associ-
ated to (17) evaluated in this point is given by [−1.06, 0.10; 0.11,−1.17], and hence,
the characteristic polynomial has the form sα1+α2 +asα1 +bsα2 +c where a = 1.175,
b = 1.068, c = 0.106 ∗ 0.1175, for which [3, Proposition 1, 3(a)] provides the satis-
faction of the hypothesis of Theorem 3.7.

We study the case in which a change in the dominant species occurs due to
their interactions. The initial condition x(0) = (2.5, 3) avoids the crossing with
the other equilibrium points in the case that the attraction region of (x1, x2) =
(1060/297, 700/297), whose existence follows by Theorem 3.7, includes (2.5, 3). Fig-
ure 2 shows that this is the case and also how the choice of the derivation order de-
termines the behaviour in the population dynamic while the population equilibrium
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Figure 2. Population dynamics depending on the derivation order

is preserved. On the one hand, the speed of convergence decreases as the derivation
order decreases, as the bottom curve in Figure 2b is still descending meanwhile the
bottom curve in Figure 2a is nearly flat for the same simulation time. On the other
hand, for t near zero, the fastest response corresponds to the smallest derivation
order, which explains the decreasing of the crossing time in Figure 2b.
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