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Resumen

Mejoramos las cotas inferiores de Odlyzko para conductores de Artin. Comen-
zamos adaptando los métodos de Odlyzko al lenguaje de las formulas explicitas.
Esto da una primera mejora a los resultados de Odlyzko. Después introduci-
mos una técnica que aprovecha la contribucién de los primos, mejorando aun
més las cotas inferiores. Estas mejoras se presentan independientemente del
comportamiento de la representacién en los diversos primos.
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Abstract

We improve on Odlyzko’s lower bounds for the Artin conductor. We begin
by translating Odlyzko’s methods to the language of explicit formulas. This
yields an initial improvement on Odlyzko’s bound. Then we introduce a tech-
nique to take advantage of the contribution of the primes to further improve
the lower bounds. This improvement occurs regardless of the behavior of the
representation at the various primes.
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Introduction

Let K be an algebraic number field such that K/Q is Galois and let y be
a linear character of G = Gal(K/Q). We denote by f, the Artin conductor
associated to x ([3], pp. 525). The purpose of this thesis is to improve the
known lower bounds for the Artin conductor due to Odlyzko by using Weil’s
explicit formulas. Also we introduce a technique for taking advantage of the
contribution of the prime numbers in these formulas.

Our work, like Odlyzko’s, is heavily influenced by the search for lower
bounds for the discriminant Dg of a number field K. Kronecker conjectured
that |Dg| > 1. Later, Minkowski proved this and found a lower bound
increasing exponentially with the degree of K by using geometry of numbers.
In 1976, Odlyzko greatly improved on this bound by using analytic methods
applied to the Dedekind zeta function of K. J.P. Serre showed [7] that
Odlyzko’s results could be obtained from Weil’s explicit formulas. G. Poitou
and Odlyzko developed this method in [5] and [6], obtaining good results.

Odlyzko [4] also found lower bound for the Artin conductor [x» applying
his original methods to the Artin IZ-function of a character x ([3], pp. 540).
He obtained

fx = (3.70)%¢(2.38)"x,

where a, and by are integer numbers such that a,+b, = x(1), a,—by, = x(g0),
with go € G a complex conjugation. He also observed that the conductor
fxx» where X is the character of the contragredient representation, divides

f)?(x(l)-l) . Using this, for irreducible characters he obtained

(ay—b )2 dayb

S0 > (1.78) 50T (AT)XOF 40(1),  asx(1) - co.

Odlyzko assumed the Artin conjecture for x and y¥. We also need to make
the same assumption.

This thesis has been divided in two chapters. In chapter 1, following
Mestre [1], we adapt Weil’s explicit formulas to Artin L- functions. More
precisely, consider a function F' : R — R which satisfies '(0) = 1 and some
conditions for insuring the convergence of series and integrals and suppose
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that (s — 1)"L(s, x) is entire. Putting x(1) =n we get

ay by 4r
— loe = =& T s, Pt
= 10,:> fx log(ﬂ') -+ P Frt+ = F o RF

¥ ?21_ Z Zlggm(/?Re(x(p’"))F(mlogp)+Z¢(p)=

p prime m=1

where I, Jp and Rp are integrals depending only on the function F, and
X(p™) is the character x evaluated on the m-th power of a Frobenius element
associated to a prime ideal @ above p, acting on the subspace of V fixed by
the inertia group of 8/p. Also, p runs over all the zeros of the L-function
and the transform ¢(s) is defined by

oQ
B(s) = / F(2)e¢P=dz.
—00

In order to obtain a lower bound for f,, we take F' positive and such that
Re(¢(s)) > 0 when 0 < Re(s) < 1. If in addition, we suppose that Re(x)
is positive, we can dispose of the sum over the primes and the contribution
of zeros. Nevertheless, the bounds obtained like that are not valid for all
characters. To deal with this, following Odlyzko, we consider the character
X = x+x(1)xo which always has positive real part and verifies f, = fz. Thus,
with a suitable choice of a function F' we can improve Odlyzko’s bounds for
any character x of G. In Theorem 1.3.2 we obtain

Fie = (4.90)%%(2.91)b.

This is close to best possible as there are reducible representation with con-
ductor 5%x3% as is clear on taking direct sum of the 1-dimensional represen-
tation with conductor 5 and 3 asociated to the quadratic fields Q(+/5) and
Q(v-3).

Another way to obtain lower bounds is to consider the character ¥ and
to use the relationship between f, and f,5 found by Odlyzko. For irreducible
characters, in Theorem 1.4.1 we obtain

. 2
fum > 4.73(1.648)““‘?‘*‘ 2 g~ (13.34/n)

This bound hardly improves on Odlyko, as he obtained excellent ones for large
degrees. However, for small degrees we are able to improve substantially on
Odlyzko’s lower bounds (see the table at the end of Chapter 1).

In chapter 2, we introduce a new idea into Odlyzko’s method (rather than
just clean up his method using the explicit formulas, as we do in chapter 1).



The main observation is that the first method (valid for all characters) does
not yield good lower bounds only because the primes may contribute negative
terms. When we pass to irreducible characters and consider x, the primes
always contribute positively. However, without further information on the
primes, we have to just drop these terms. Thus we consider simultaneously
both inequalities and remark that we need not take the worst possible case
in both methods. If the primes hurt us (that is, amount to a negative term)
in the first method, then they exist and will help us in the second one. This
stragegy is carried out in chapter 2. It yields substantial improvements when
ay # 0. In particular, we obtain in Corollaries 2.0.2 and 2.0.3,

f;/n > 09.482 6—10.359/n,

for a, = n, and
fx]./n 2 5.542 6—21.537/11

for a, = by. This improves on the lower bounds
fn > 7.797 ¢~ (1334/n)’

and
2
fl/n w473 & (13.34/n) )

respectively from chapter 1. A table for small degrees giving improved lower
bounds by this method is given at the end of chapter 2.



Chapter 1

Explicit Formulas and
Odlyzko’s Method

1.1 Summary

In this chapter we improve on Odlyzko’s lower bounds for Artin conductors
[4] using Weil’s explicit formulas [9] as simplified by Mestre [1]. Our approach
here is entirely analogous to Poitou’s [6] (and Odlyzko’s) use of these same
formulas to improve on and simplify Odlyzko’s original discriminant bounds.
Following Odlyzko, we assume throughout the truth of Artin’s conjecture.
We begin by explaining Mestre’s explicit formula in §1.2 and then give
lower bounds valid for arbitrary characters in §1.3. In §1.3.1 we give a slight
improvement on these bounds using the zeroes of the Riemann zeta function.
In §1.4.1 we again follow Odlyzko’s methods to give lower bounds for con-

ductors of irreducible characters. We tabulate our results and compare them
with Odlyzko’s in §1.4.1.

1.2 Mestre’s Explicit Formulas

Let K be an algebraic number field, i.e. a finite field extension of Q. Suppose
that K/Q is Galois, x is a linear character of G = Gal(K/Q) and f, is its
Artin conductor ([3], p. 527). Let us define the completed Artin L-function

by
e = () "P(5) P () s, o

where L(s, x) is the Artin L-function associated to x with base field Q, a,
and b, are integers such that

ay +by = x(1),  ay— by = x(90), (1.2.2)
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with 1 the identity element of G and gy € G a complex conjugation ([3], pp.
522, 540). This function verifies the functional equation ([3], p. 540)

Al = 8,%) = W(X)A(s, x), (1.2.3)

where W(x) € C is such that |W(x)| = 1 and Y is the character of the dual
(or contragredient) representation of x ([8], p. 12).

We will need Mestre’s form ([1], pp. 212-213) of Weil’s explicit formulas
for rather general L-functions. We assume our L-functions L; have Euler
products of the type

Mn'

Ly(s) = H H (1 - ey p_s)_lj

p i=1

=TI -Bippr) ",

p i=1

where p runs over the prime numbers and a; ,, 0; , are complex numbers such
that

|ai,p|1 I,Bi,p| S P . (124)
M

For positive real numbers A, B,a; and a} (1 <4 < M) such that Zai =
i=1

M
Za and complex numbers b; and b}, with Re(;) > 0 and Re(d}) > 0, we

i=1
consider meromorphic functions

M
Asi(s) = A°Ly(s) [ [ T(ais + b3),

i=1

As(s) = B*Ly(s HFas-I—b’,
i=1
verifying by assumption
A1(1 — 8) = whAy(s),

for some w € C*.
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Let F : R — R be a function such that:

*
(1.2.5)
(x) There exists € > 0 such that I’ (z)elztet9)* is integrable over R, with
¢ > 0 satisfying (1.2.4).

(#x) There exists € > 0 such that F' (:v)e(%““)m is of bounded variation, the
value at each point being the average of the right- and left-hand limits.

F(z) - F(0)

T

(x ) The function is of bounded variation.

We define the Mellin transform of F' by

o0
5) = f F(z)e-Podz, (—e<Re(s) <14¢).  (126)
Define!
(5+b)z -z
ab—a/ ( F(az)e™ _ F(0)e )dz
l—e® T
and

oo _ —(£+b)z -
J(a,b) =af (F( ol 5 Y )dz.
0 lw—g= x

For a function F verifying the conditions (%), Mestre obtained the fol-
lowing explicit formula ([1], pp. 212-213):

Z¢p) qu Z (@i, bs) + Y J(ai, ) (12.7)

M’

1
_F(O)lo,:, AB) -3 Z F(mlogp) + F(—mlogp));f/fv

i=1 p prime m=1

where p and p run respectively over all zeros and poles of A; (counted accord-
ing to their multiplicity) in the vertical strip {s € C| —c<Re(s) <1+ c}

We will apply Mestre’s formula as follows. Let x be any character of §.
If p: G — GL(V) with V a C-vector space, is the representation associated

! There is a slight misprint in the definition of I{a,b) in ([1}, p- 212), where f(az)
appears instead of F'(az)
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to X, B is any prime idea] of K over
automorphism, we can write the A
factors for each prime as

pand gz is a corresponding Frobeniys
rtin L-function as a product of Euler

Lisx)= ] (det(Id — p=<p(ipg); v45)) ™,

P prime

where Vs is the subspace of invariants in 1/ under the inertia group /I3 ([3],

p. 518). If A, .. -y Am,p are the eigenvalues of p(eg) acting on V15, then
Mp S n = x(1) and

Mp n
det(Id — p=*p(ip); V%) = [[(1-p=r,) = [I(=pr,),
i=1 i=]1

where we have put A, =0if n 21> my,. Thus,

Lisx) =T]T[a- P N,) (1.2.8)

P i=1

In Mestre’s formula take

Ly(s) = L(s, x), Ly(s) = L(s, %),
A(s) = A(s,x) and As(s) = A(s, x),

with A the completed Artin L-function in
because G is a finite group. Take q;,, = Aip, S0 that Qip =iy and ¢ = 0 in

(1.24). As Al 18 an eigenvalue of P(eF), if we denote by x(p™) the character
X evaluated on P acting on V7% we have

(1.2.9)
(12.1), Note that |;,| < L

x(e™) =>"ar, 2Re(x(p™) = 3" (af, + 67). (1.2.10)
i=1 - i=1
We also take

M’:M:n=x(1)=ax+bx, ai =a; =1/2 for1<i<n,

b;=b;=0 for1 <i<a,, b =b;=1/2 foray +1<i<np,

and Fre \1/2 fr \1/2
A=(35)"  B- (=)
Actually,

A=B, (1.2.11)
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because f) = fy and x(1) = n = X(1). Here is an analytic proof of f, = fx.
Take absolute values of both sides of the functional (1.2.3) for s = § +it and
t € R such that L(s, x) # 0, to get

£ 1/4
fx
Here we used L(s,x) = L(3,X) and |[W(x)| = 1. As the conductor is a
positive integer, we conclude that f, = f.

A more satisfactory arithmetic proof of this same fact can be carried out
as follows. If 9 is any representation of G let f,;, = H pP¥ If @ ; is the j-th

pfoo
ramification group at p in the lower numbering, we have for each prime p

Z |G4w(1) — ¥(Gy),

J)O

where (G Z ¥(g) (see [3], pp. 528-530). Since f,(¢) is a real number,

geG;

we have fp( ) = f(#) = f,(¥) for each prime p.
Let us now assume that the function F' in Mestre’s formula (1.2.7) verifies

F(—z) = F(z) and F(0) = 1. Thus I(a,b) = J(a,b), since F' is even, and

n n
S Has b + 3 (el B) =25 s b) = 20 (3, 0) + 25, (3, ),
i=1 j=1

i=1

L(3 +it,x) 3
L +it,x)|

where
1 [ e F(z/2) e
b = — —_— 2,12
(250) 2‘/‘; ( 1— ez p )diE, (1 )
1 [ ,e~3=/4F(5/2 e ”
O A L

l—e 2 47

Finally, if (s — 1)"L(s, x) is entire, with r being exactly the order of the pole
at s =1, from (1.2.7) to (1.2.12), we obtain the explicit formula

log fy = qu ) = r(#(0) + ¢(1)) + x(1) log(r)

e *F(z/2) e e 3/AF(x/2) e7®
+ ax/; ( 1 —e2 )d+b/ ( 1—e=z T)dm

+ 2> leg(ﬁ p™)) F(mlogp), (1.2.13)

p prime m=1
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where ¢(s) is like (1.2.6) and p runs over all the zeros of A(s, x) in the critical
strip 0 < Re(p) < 1.2

Remark 1. We shall obtain lower bounds for conductors by controlling the
signs of various terms appearing in the explicit formula. For this we will
have to impose sign conditions on F' and its Mellin transform. On the other
hand, since we only want an inequality, we may weaken slightly some of the
analytic conditions

Let F: R — R be a function such that:

(&%)
(1.2.14)

(%) There exists € > 0 such that F(z)e(z+e+9)7 ig integrable over R, with
¢ > 0 satisfying (1.2.4). If € = 0 assume in addition that

Z ilog(p)w < 00.

pmf2
p prime m=1

(%) There exists £ > 0 such that F(z)e(z+e+9)= is of bounded variation, the

value at each point being the average of the right- and left-hand limits.
F(z)—F

(o) The function —M

T

is of bounded variation.

(o) F' is even, F(0) = 1, F(z) > 0 for all z € R, and Re(¢(s)) > 0 for
0 < Re(s) < 1.

The purpose of the last condition is to ensure that the contributions from
the zeroes p are all non—negative. In & and & we have weakened % by al-
lowing € = 0. This can be achieved by a limiting argument, replacing F(z) by
F(z) exp(—e|z|) and taking & — 0 using Lebesgue dominated convergence
(cf. Proposition 5 in [6]).

2 L(s,x) has neither zeroes nor poles on the lines Re(s) = 0 or Re(s) = 1, except
possibly at s = 1, where there may only be a pole. Its order is exactly the multiplicity
of the trivial representation in x (see (2], p. 6). This will be important when we consider
L(s,xX) in the last chapter.
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Under (&) we have then®

© e~t/AF(x/2) e
log fy 2 x(1)log(m) + ay (—1_—8(_;[“2 -
0

+ bx/oo (iﬂ/——)——) d:r—4rf F(z) cosh(z/2) dz

l—e= T

DS l°i/2 p™) F(mlogp).

p prime m=1

) dz (1.2.15)

As Odlyzko pointed out (cf. [6]), the conditions of nonnegativity on F(z),
and on Re(¢(s)) on the critical strip, are equivalent to the requirement that

f(z)

F(z) = SR (1.2.16)

where f(z) > 0 and f(z) has a nonnegative Fourier transform. Indeed,
note that ¢(s) = ¢(1 — s), because F is assumed even, and Re%gb(s)% is a
harmonic function on the strip 0 < Re(s) < 1. To show that Re(¢(s)) > 0
in the critical strip, the maximum principle for harmonic functions tells us
that we need only check that Re(¢(s)) > 0 on the boundary. But there we
have

Re(g(1 +it)) = Re(¢(it)) = ]_oo f(z) cos(tz)dz.

If we assume the Riemann Hypothesis for L(s,x) (i.e. L(p,x) = 0 for
0 < Re(p) < 1 implies Re(p) = 1) we have only to ensure Re(¢(} +it)) > 0
for all real t. In this case we w1ll only need to assume that F(z) > 0 and
that I has a nonnegative Fourier transform.

1.3 Bounds for arbitrary characters
A preliminary result is the following:

Theorem 1.3.1. Suppose that X is a character of G such that Re(x(g)) = 0
for all g € G and that for some integer r, (s — 1)"L(s, x) is entire. Then

fr = (6.5735)%(3.9046)"x(0.1134)". (1.3.17)

3 Use

#(0) + ¢(1) = 4./000 F({z)cosh(z/2) dx.
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Proof. Consider the family of functions (introduced by L. Tartar [6])

_ flzY)
where . )
f(z) = 9(sin(z) ;ﬁm cos(x)) (13.19)

and y > 0 is a positive parameter. F, satisfies (o) (see [6]). In ([6], p.
13) it is shown that f has a non-negative Fourier transform.* Since we have
assumed Re(x(g)) > 0 we may drop from inequality (1.2.15) the sum over
the primes. Putting a, + b, = x(1), F = F,, and y = 12 in (1.2.15), yields
numerically

log f > 1.88305 a, + 1.36216 b, — 2.17656 7,

and this is equivalent to (1.3.17). O

In general Re(x) is not positive, so Theorem 1.3.1 does not apply. Nev-
ertheless, following Odlyzko we can prove

Theorem 1.3.2. Let x be a character of G such that its Artin L-function
L(s,x) ts entire. Then its conductor f, satisfies

fr = (4.90)%(2.91)",

where a, (resp.by) is the number of T'(£) (resp.T'(3$2)) factors in the com-
pleted Artin L-function.

Odlyzko ([4], p. 382) obtained
Fx > (3.70)x(2.38)%.

Our bounds are nearly best possible for (possibly) reducible characters. In-
deed, the quadratic field Q(\/g) has a character xs with x5(1) = 1, ay, =
1, by =0and fy, = 5, and Q(+/—3) has a character x5 with x3(1) =1, ay =
0, by = 1 and f,, = 3. Thus, if x := axs + bxs (for arbitrary non-negative
integers a and b),

fx = 5'1 Sb?

with a = a, and b = b,.

4 We note that there is an error in ([6], p. 13) concerning the normalization constant
required to ensure Fy(0) = 1. There the 9 in (1.3.19) is wrongly replaced by 4/72.
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Proof. Consider the character

X = x + x(1)xo,
where o is the one-dimensional identity character. Since L(s, x) is assumed
entire, we see that (s — 1)XM L(s, X) is entire. Indeed,
L(s,x +x(1)x0) = L(s,x)L(s, x(1)xo)
= L(S: X)L(S, XD)X(l)
L(s, x)¢(s)¥V,

where ((s) is the Riemann-zeta function. Since |x(g)| < x(1) for all g € G,
we have

Re(X(9)) = x(1) + Re(x(g)) = 0.
From the properties of the conductor ([3], p. 533),
fx = Ferxtoxo = Fxfxxo = fx- (1.3.20)
Also (see (1.2.1)), |

ag = ay + x(1) = 2a, + by, be= by, X(1) = 2x(1).
Applying Theorem 1.3.1 to the character ¥ we obtain

Fr > (6.5735)3ax+b)(3,9046)%x (0.1134)x()
= (6.5735)Px*x)(3,9046)% (0.1134)(@xFbx)
> (4.90)%(2.91)%.

1.3.1 Contribution of zeros

So far, we have not considered the positive contribution from the zeros in
the explicit formulas. In general, we know almost nothing about the location
of zeros of L(s,x), but in the proof of Theorem 1.3.2 we introduced the
Riemann zeta function and dropped the contribution from its zeros. If we
restore the contribution from the lowest zeros pp = % +114.134725142 of the
Riemann zeta function we gain 2Re ¢, (o), where ¢, is the Mellin transform
of Fy,. In this way we obtain, with y = 10.35

fy > (4.947)%x(2.833),

which is slightly better than Theorem 1.3.2 if a, is much larger than b,.
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Another possibility is to take y = 13.5 to obtain likewise,
fy > (4.832)%(2.95)bx,

With y = 12 we obtain a (minor) improvement for all a, and b,. Namely,
under the hypotheses of Theorem 1.3.2,

2 (4.905)Gx(2.913)bx.

1.4 Bounds for irreducible characters

We have seen that our results above are nearly optimal for arbitrary (i.e., pos-
sibly reducible) characters. In this section we again follow Odlyzko to obtain
better lower bounds for irreducible characters. We will need the following
lemma, valid for any character .

Lemma 1.4.1. (Odlyzko) f,5 divides fi(x(l)—l)_

Proof. (Odlyzko) Since the conductor f, is a product of local conductors
pf() ([3], p. 532), we need to prove that

fo(x) < 2(x(1) — 1) fp(x)- (1.4.21)
For this, we will show that for every subgroup H of G
|H|x(1)* = xx(H) < 2(x(1) — V(| HIx(1) — x(H)), (1.4.22)
where f(H) = Z f(h) and |H| denotes the cardinality of H. We decompose
heH
Xz =rdo+ Y rit, (1.4.23)
i>1

where ¢ is the trivial character of H, the ¢; are distinct, irreducible, non-
trivial characters of H, and r; > 0, r > 0. We have that

X(H) =Y do(h)+ 3 7Y dilh)

heH i1  heH

and Zqzbg(h) = |H|, and that ), , ¢i(h) = 0 (see [8], p. 17). Hence
heH
x(H) = r|H|. Also,

XXla = r’¢0+71 ) ribi+rilerl’ + 1Y ridi G+ raldal’ +12 ) ridadi ...
i>1 i1 i#2

+ raloel® + 7 Zmék&-
ik
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Thus,
XX(H) =21 H|+7) riy Gk +71 Y |oi(h) +...rE ) ou(h)
121l heH heH heH
and so xx(H) = (r* + Z )|H|. But (1.4.22) is equivalent to
izl
x(1)? =12 = r? <2(x(1) - D(x(1) - ),
i>1
and to

=y P < (x(1) = )(x(1) -7 —2).

i>1

From (1.4.23), x(1) =r + Z r:6:(1), so the last inequality is equivalent to
i>1

-y < (anﬁ@(l))(zrféi(l) -2). (1.4.24)

i>1 i>1 i>1

The right side is negative only if Z r:¢:(1) < 2, and this can happen only if
i>1
r; = ¢j(1) = 1, for some j and r; = 0if i # j. In this case we obtain equality
in (1.4.24), so (1.4.22) is true.
Returning to the proof of the lemma, let G; be the j-th ramification
group in the lower numbering ([3], p. 528) associated to a prime of K above
p. Then, from (1.4.21)and (1.4.22) we obtain®:

O = Z 1G4lx(1)% - xX(G})) (see [3], p. 530)
< IGol ;}2 1(|G;lx(1) — x(G;))
= 200~ )y G - (G)

= 2(x(1) - ) fp(x)-

O

5 Note that Neukirch defines f(H) slightly differently from us. He divides by |H|.

This explains an apparent difference between our formula for f, and his on the first line
displayed below.




CHAPTER 1. EXPLICIT FORMULAS AND ODLYZKO’S METHOD 15

If we take y an irreducible character and assume the Artin Conjecture for
the (reducible) character X of G, then (s —1)L(s, ¥X) is entire. In fact, the
number of times that the representation pyy associated to xX contains the
trivial representation with character xo is

— 1
< XX Xo > = @E IX(@)* =<x;x>=1,
geg

the last step being precisely because y is irreducible ([8], p. 16).
Lemma 1.4.1 implies
i £ JRO, (1.4.25)

and therefore
P e f (1.4.26)

Now, applying (1.2.15) to the character xx with r =1,

log fg = axx(Ir (y) +10g(m)) + byxg(Jr(y) +log(m)) —4Rr(y)  (1.4.27)

where
oo —z/4 T —z
Ir(y) = fo (e—ly - ia;_) dx (1.4.28)
o0 ,—3z/4 -z
Tr(y) :=/0 -(e_jl_wsz_Eﬁ - %) dx (1.4.29)
and -
Rr(y) :=/ F,(z) cosh(z/2) dz. (1.4.30)

Observe that (1.4.27) is equivalent to

108 fir 2 (b)) +1og(m) 2t ((FO T I T 206y g ),

: 2
(1.4.31)
Hence, from (1.4.26) with n = x(1),
1 L
- logfy = o2 log fyx
(g — byz) Ir(y) +log(m)\ | 2byg JTr(y) + Jr(y) + 2log(m)\  2Rr(y)
— n? ( 2 )+ nz ( 4 )— n? L

Using the definition (1.2.2) of a,x and by

Gy — by = xX(90) = x(g0)* = (ax — by)?
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and _ B ; ;
by = XX —Zxx(go) _x(®) —Qx(go) —%ab,,
we have
log fy > (ay —sz)2 (]p(y) + log(w)) + dayb, (Ip(y) + Jr(y) + 210g(7r))
n n 2 n? 4
2Rr(y) (1.4.32)
He

From here, we obtain a lower bound that is useful for large n.

Theorem 1.4.1. Let x be an irreducible character of degree n with conductor
fx such that L(s, xX) satisfies the Artin conjecture. Then

o g 8
FYn > 4.73(1.648) e~ (13:34/m)7 (1.4.33)

Proof. Evaluate (1.4.32) with y = 0.0045 to obtain

by )2

f;/n > (7_797)4—23—(“ - (4.?3)%;2‘3—(13-34/11)2,

which is equivalent to (1.4.33) since ay + by, =n and ZZI > 1.648. O

If we assume the Generalized Riemann Hypothesis (see the end of Remark
1), we can improve the lower bounds.

Theorem 1.4.2. Let x be an irreducible character of degree n with con-

ductor f, such that L(s,xX) satisfies the Artin conjecture and the Riemann
hypothesis. Then

. ay—b: )2 :
f > 6.50(2.163) T =882 ) (1.4.34)

Proof. Consider the even function® F = F, : R — R which vanishes for
z > y~*/? and which for z € [0,y~/?] is given by

sin(mz./vy)
Foy(z) = (1 — z./y) cos(rz/y) + ——W—\/_ (1.4.35)
Setting y = 0.0004 and using (1.4.32) we obtain (1.4.34). O

6 Introduced by Odlyzko, cf. [6]. The crucial property of fy is that it and its Fourier
transform are non-negative.
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Odlyzko (]4), p. 33D) obtained

£ 4.71(1.645)%3 = 4 0(1/n?), as n— oo,

and, assuming the Riemann hypothesis,

(ax—bx)?
fi™ > 6.44(2.13) =" 4 O(1/n?), as n — co.

Taking y = .001 in the above proof, we can get (still under the Riemann
hypothesis for L(s, xX))

F4n > 6.458(2.004) T e (26081/m)?

For large n our bounds are only marginally better than Odlyzko’s. In
the next subsection we shall substantially improve on his bounds for small
degrees.

1.4.1 Tables for small degrees

In the previous section we used inequality (1.4.26), since we were interested
only in large n. In this section we are interested in small n, so we use the
stronger original inequality (1.4.25). The net effect is to replace every n”® on
the right-hand side of (1.4.32) by n(n—1). From (1.4.31) we therefore obtain

log f (ax —b)? Ir(y) +log(m)y  4aydy Ir(y) + Jr(y) + 2log(m)
n = n(n—l)(F 2 )+n(n—1)( 4 )
2Rr(y)

"1 (1.4.36)

As before, we obtain bounds by evaluating (1.4.36) with Tartar’s F, as in
(1.3.18) and y as given in the table below.

From (1.4.28) and (1.4.29) we find Jr(y) < Ir(y). Hence, from (1.4.36) we
have the lower bound, valid for any non-negative a,, b, with a,+b, =n > 1,

logf o _n Ir(y) + Jr(y) +2log(r)  2Rr(y)

for n even (1.4.37)

n n—1 4 n(n—1)’
and
log [y s ", Ir(y) + Jrp(y) + 2log() 1 i r(y) — Jr(y)
n ~ n-1 4 n(n — 1) 4
2Rrp(y)

- — . 1.4.38
m for n odd (1.4.38)
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These bounds are given in the third column of the table below for 2 < n < 20.
We also give lower bounds for the extreme cases in which a, = 0 or b, = 0,
this time using (1.4.36). Finally, for the bounds under GRH we use Odlyzko’s
function (1.4.35) with y as shown.

Table 1. Lower bounds for irreducible characters.”

Assuming Artin’s Conjecture Artin’s Conjecture and G.R.H.
[ Any a,, b, tpliy=1) Any ay, b, ayby =0
n| y |fm>]od] vy [pm>10dfl g [AP>] v [ AT
2 | 471 | 3.255 | 2.83 | 2.65 | 5.067 | 4.21 || 0.2353 | 3.266 0.14 | 5.127
31 15 | 4103 | - 0.84 | 6370 | - = = 0.053 | 6.615
4 | 08 | 4.245 |[3.74 || 0.460 | 7.059 | 5.86 ||| 0.052 | 4.347 | 0.033 | 7.544
5| 048 | 4528 | - /0300 7432 | - = ~ 0.024 | 8.169
6 | 0.4 | 4.553 |4.07 | 0.220 | 7.649 | 6.47 || 0.0269 | 4.785 | 0.019 | 8.619
7 | 0.25 | 4.681 - |1 0.169 | 7.782 | - - - 0.016 | 8.962
8| 02 | 4.684 | 4.22 | 0.140 | 7.867 | 6.47 ||| 0.0192 | 5.0227 || 0.014 | 9.235
9 | 0.19 | 4.748 | - 0.11 { 7.922 | - = 0.013 | 9.460
10| 0.18 | 4.738 | 4.30 | 0.096 | 7.960 | 6.88 ||| 0.0153 | 5.175 | 0.012 | 9.647
11| 0.120 | 4.782 - 0.084 | 7.984 = = = 0.011 | 9.810
12 | 0.11 | 4.776 | 4.35 | 0.074 | 8.002 | 7.06 ||| 0.0129 | 5.283 0.01 | 9.952
131 01 | 4799 | - | 0.065| 8.013 = = = 0.0094 | 10.076
14 | 0.116 | 4.776 | 4.39 | 0.059 | 8.020 | 7.38 || 0.0113 | 5.365 | 0.0091 | 10.185
15| 008 | 4808 | - | 0.064| 8.025 | - = = 0.0085 | 10.287
16 | 0.09 | 4.798 | 4.47 | 0.049 | 8.027 | 7.57 || 0.0101 | 5.431 |/ 0.0081 | 10.377
17 | 0.067 | 4.812 | — || 0.045 | 8.028 | - = = 0.0077 | 10.46
18 | 0.06 | 4.806 | 4.55 | 0.042 | 8.028 | 7.69 || 0.00925 | 5.484 | 0.0074 | 10.536
19| 0.05 | 4.813 - |/ 0.039 | 8.026 | - = = 0.0071 | 10.606
20 { 0.036 | 4.809 | 4.61 | 0.036 | 8.025 | 7.77 ||| 0.00855 | 5.529 | 0.0069 | 10.671

7 The columns labeled Odl show the lower bounds obtained by Odlyzko ([4], p. 404).
Cases not covered by Odlyzko’s tables have a — in the Odl column. All bounds are rounded
down so that the inequality is rigorous. We assume ¥ is irreducible and that L(s, x%) is
analytic for s # 1. The last four columns on the right apply when we also assume GRH,
i.e. that all zeroes p of L(s,xX) satisfy Re(p) = 1. The first lower bound in each case
(Columns labeled Any ay, by) apply for any value of ay or by with ay + b, = n. The
lower bounds in the columns labeled ayb, = 0 only apply when a, = n or b, = n.

We note that for large n our non-GRH bounds will drop toward 4.78 because the term
—i(—?"-_hi'—; in (1.4.37) becomes irrelevant (it approaches 0) and the decrease in the factor
-2 takes over.




Chapter 2

Beyond Odlyzko’s Method

In the previous chapter we obtained lower bounds for the conductor f, of
the irreducible character y by two different methods. In the first one (where
irreducibility was irrelevant) we had to compensate for the possible negativity
of Re(x). In the second method the primes entered positively, but we dropped
them. In this section we improve on these bounds by noting that if the
first method requires primes to be compensated for, then they must make
a substantial contribution to the second method. If primes do not require
compensation, then the first method can be substantially improved. Thus we
are able to obtain an improvement regardless of the behavior of the primes.

We shall need a lemma which will allow us to balance gains against losses
in the two methods.

Lemma 2.0.2. Let j run over a finite set of indices and let T, §; and (3; be
real numbers, with 7 > 0 and §; > 0 for all j. If

> 3B < - (2.0.1)
J

then 5 . )
2 T _ J
;a:jéj > T where L — ZJ: ?53— (2.0.2)

Proof. Since the J; are assumed positive, there is a minimum value m of
the positive quadratic form Zj a:?-dj as the z; range over the region defined
by ZJ- z;f; < —7. First we show that m can only be a assumed on the
boundary. Indeed, suppose that there exist z; such that >, Z;8; < —7
and m is assumed at T = (Z;). Then 7 is a critical point of the quadratic
form. Taking partial derivatives we find 2z;6; = 0 for all j. Hence T = 0,
contradicting 3, Z;0; < —, since 7 is assumed positive.

19
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Thus we seek the to minimize the expression (2.0.2) using the condi-
tion (2.0.1) with equality. We will use Lagrange multipliers. Note that the
minimum is known to exist, and hence will be given as a critical point of
the auxiliary function F(x,A) used with Lagrange multipliers. We shall see
that there is a unique critical point, and hence this yields the minimum m.
Consider the function

F(X., )‘) = g(x) - }\h(x):
= ZE?(SJ
x) =7‘+Za:j/3j.

Now, we will find critical point for F'. This is equivalent to solving the system

where

and

oF oF
— =0 — =0
8.Tj ) ’ oA ’
which is equivalent to 5
F
gj = 233_75 )\ﬁj =0
oF
5): =T+ Zj:il?jﬁj =0
Thus,
B
728y
and so 2
AR
—T = Z:L'J,BJ Z 5. -:2—
: g J
Hence, z; = rgj Moreover,
2 2 2 2
2 _ T J . T ﬁj _ T_
Z.'Bgéj 1_‘225_?53_.1:‘52_5;_?
j J J
Therefore,

as claimed in the lemma. O
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To describe our main inequality we need some notation. Fix non-negative
integers a and b, and set n = a+b. For F : R — R an even function satisfying
condition o (1.2.14), set

Ip i= /:O (%{@ _ e:) dz, (2.0.3)
I o= /Om (‘e"si/i_i(_i/?l -5 dz, (2.0.4)
Rp = -/00 F(z) cosh(z/2) dz, (2.0.5)
0
Gr = IOg(ﬁ)-F%IF-}—%Jp, (2.0.6)
_ (a—b)? Ip+log(n)y, 4ab  Ir+ Jp+2log(m)
He = n(n—l)( 2 )In(n—l)( 4 )
_ n_(nz_ 5 Re, (2.0.7)
i = 10?55)2) log(p) | (2.0.8)

We note Hp is exactly the right-hand side of inequality (1.4.36) for %bg F
for irreducible characters, while Gr would also be a lower bound for % log fy
(cf. (1.2.15) with 7 = 0) if the primes had not forced us to replace x by X to
ensure Re()"((pm)) > 0. Terms like o m had not appeared in our inequalities
as we had arranged to drop all terms coming from the primes in the explicit
formulas.

Theorem 2.0.3. Let x be an irreducible character of G of dimension n > 2
and assume the Artin conjecture for L(s,x) and L(s,xX). Suppose further
that F and F satisfy condition & (1.2.14) and Gr > Hz, with F' compactly
supported and F > 0 on the support of F. Then ' :

2
1 (n—1)T \/ n Grp—Hp
~1 > Hg 4+ it : - 0.9
~log fy 2 Hp + —— ( 14+ —— T 1], (209

2

CF . . —

where T = E —SBT  the sum ranging over all primes p and positive integers
pm aF'p‘m

m such that mlogp is contained in the support of F'.

The way to interpret the messy expression (2.0.9) is to think of Hz as the
lower bound we had from the previous chapter, with the rest of the expression
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[S]
[S]

as the gain from the primes. In calculating (2.0.6) and (2.0.7) we take a =
ay, b=>b, andn=a+b.

Proof. From the basic inequality (1.2.15) with r = 0, we obtain

1 2 -
- log fy 2 Gr + = pzmap‘p,m " Cpom, where Cpym = Re(X(p ))

(2.0.10)
Consider now the character x, for which we have proved in Lemma 1.4.1
1 1 1
—1 D | v = ——] v
n 08 xz 2n(n — 1) o8 fx (n—1)2n2 08 fix

We now apply (1.2.15) to xx (which corresponds to a representation of di-
mension n?) the basic inequality (1.2.15) with r = 1 and F' = F to obtain

1 1 -
p Bl 2 H+m;aﬁ,p,m'|)€(p )
: 2
- H+m§;‘aﬁ,m-%,m- (2.0.11)

In the last sum over p and m we may (and do) drop all p and m for which
F(mlog(p)) = 0.! Dropping these terms ensures that sums over p and m are
finite, which will be required when we apply lemma 2.0.2 below. From the
hypotheses in the theorem we have the strict inequality az,,, >0 for terms
p and m remaining in the sum.?

Let

2
(ﬂ—l)r \/ I GF'_Hﬁ
T:=Hg+—-—- 1 . = . 2.0.
B —— g . 1 (2.0.12)

We claim,
Gr>T > Hp.

Indeed, the second inequality is trivial and the first one is equivalent to (on
letting I = (=1L

2
GF—Hﬁ>r'( :LJFG*"—;,ﬁ - 1),

! This is permissible since the last condition in ek ensures o B 2 O

2 In (1.4.36) previously we had simply dropped all of the sum over the primes using
xX(p™) = 0. We wish to exploit in the explicit formula for xX the finitely many primes
appearing in the explicit formula for ¢ with non-zero coeflicients.
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D
(%]

which, on expanding the square, is equivalent to

=
GF*Hﬁ>GF—Hﬁ+2T'(l—\/l+—_GF F)1

FI

which is clearly true since Gp— Hz > 0 by assumption. Let us write (2.0.10)
as

1 2
Elogfx > T—i—t—l—ach,m.ap,p,m,

p,m
where
t:=Gp—T>0. (2.0.13)
If we had 5
b+~ Y . Ea B 2 0, (2.0.14)
p,m
we would have A
—log fi, 2 T,
n

proving the theorem in this case. Hence, we may suppose that (2.0.14) is

false, i.e.
nt

Zcp’m * a'F,p’m < “?.
p,m

As consequence of lemma 2.0.2, with j indexed by p and m as in the lemma,
Tj = Cpm, Bj = Appms 0 = Qf ., T =nt/2 we have

2 t2 2
Zcp,maﬁ‘p,m & En !
pm

Therefore, in (2.0.11) using (2.0.13),

1 2 n (GFr—T)* n
_1 > — — == e - 2. .15
nogfx—HF+4I‘(n—1) Hz+ T (n=1) T, {2.0.15)

where at the end we used definition (2.0.12) and some algebraic manipula-
tions.> Our last inequality proves the Theorem. Ol

3 Here are the details. Let us abbreviate IY = (n —1)['/n, H = Hgz, G =GF. Then
we have from the definition of T

T~H=I"(\/1+I"“1(G—H)—1>2. (2.0.16)
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We now apply the above theorem to obtain improved lower bounds for

large degrees.? In this case, we can replace every occurrence of n—11in (2.0.7)
and (2.0.9) by n.> Then (2.0.9) simplifies to

2
Gp— Hz
%longZH;,:—H‘-( 1+LP—F - 1). (2.0.20)

In (2.0.20) we will take F' to be Bernardette Perrin-Riou’s function, in-
troduced in [6], p. 13,°
riz
F(z) = f(_ﬁyc_),
cosh(z/2)
where y¢ is a positive parameter to be specified later, fr(z) is even, vanishes
for z > 2r and for z € [0, 27] is given by

fr(z) = % (27r o TOBN ”COS@; — (=) Cos(m)) . (2.0.21)

Since now F in Theorem 2.0.3 depends on an extra parameter, we add it
everywhere to the notation, writing for example Gr(y¢) for Gr in (2.0.6).
For F' in (2.0.20) we will take Tartar’s function

= f(@\/yn)
F(z) = Ec;s_h(Tf;) (2.0.22)
where . 5
fz) = 9(sin(z) — z cos(z)) (2.0.23)

76

and the trivial equation

G—H=2T( 1+ G- H) - 1) + T'(1+ T (G~ H) +1 —o\/1+07 (G- B)).

_ (2.0.17)
Subtracting (2.0.16) from (2.0.17) we obtain
G-T=2'(/1+T (G- H)-1), (2.0.18)
whence G T
- ) — "
ST (V1+T7 G - H)-1)%, (2.0.19)

which is equivalent to (2.0.15), in view of (2.0.16).

4 In the next section we will tabulate such bounds for small degrees.

5 To see this, note that the n— 1 comes from inequality (1.4.36), which becomes strictly
weaker if we replace every ocurrence of n — 1 by n.

6 There the function is described as a convolution square, but not explicitly calcu-
lated. The formula we give in (2.0.21) is the result of carrying out the calculation of this
convolution square.
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and yy > 0 is another positive parameter to be specified below. Since Tar-
tar’s (non-negative function) function is positive for 0 < z < 4.49/, /Yy, one
finds that I is positive on the support of Perrin-Riou’s F if yg < yg/2.

We have the following numerical corollaries of the Theorem 2.0.3.7

Corolary 2.0.1. Let x be an irreducible character of G and assume the Artin
conjecture for L(s,x) and L(s,xX). Then

! (a—b)* 4.743
- 5 1, 374 —
- log f, = 1378+ —5—0.374 —
= 2
+ 0.609(\ﬁ1 + 21677+ ﬂ”z—a)o.m 4 7'7,?2 — 1)
n n n2

Proof. Take yg = 0.632 and yg = 2.968, which satisfy yy < yg/2. Also
we must verify Gp(yg) > Hp(ym) for all a,b. In fact, we can consider
Gr(yc)—Hg(yn) as a function of a letting b = n—a, then with Gr(ye) = g(a)
and Hz(ym) = h(a) we have (replacing n by n — 1)

—~

9(a) —h(a) = log(r) + Jr(ye) — Tp(ym) + ~(Ir(yo) = Jr(ve))
20029 Tty ~ Tetum) + ZEL, (2,020

where Ir(y), Jr(y) and Rp(y) were defined in (2.0.3), (2.0.4) and (2.0.5)
respectively (but we have now put the dependence on y into the notation),
and

+

& Ir(y) + log(m)

Ir(y) = : ,
jF(y) _ Ir(y) + JF(Z) + Qlog(ﬂ").

Since Ir(y)—Jr(y) > 0, the expression (2.0.24) is quadratic in a with negative
leading coefficient, its minimal value in any interval is attained at one of the
interval extremes. One thus checks that on the interval [0, n] the minimum
is attained at a = 0. This implies '

r(\/Hg(a);h(a)_l) ZI‘(\/l—z—g(O);h(O) _1) |

We have that g(0) — h(0) = 0.0615, then Gr(ys) > Hy(yn) for all a. After
this one simply evaluates (2.0.20). O

" The case a = 0 is not treated below as Theorem 2.0.3 gives no significant improvement
in this case.



CHAPTER 2. BEYOND ODLYZKO’S METHOD 26

Corolary 2.0.2. Let x be an irreducible character of G with a = n and
assume the Artin conjecture for L(s,x) and L(s,xX). Then,

fi™ > 9.482 ¢ 1035/, (2.0.25)

1/n

This improves on the lower bound fy/" > 7.797 e~ (334" from Theorem

1.4.1 in the previous chapter.

Proof. Evaluating 2.0.20 with yg = 1.2 and yy = 0.033, we obtain

: 2 ¥ 2
Zlogf, > 2.0302— 227020 4 1 5e05 (\/ 1.9934 4 18:00%6 -1)
" TL

> 58033 — 2.585\/ 1.9934 4 20000

> 22494 - 0,

where in the last step we used VA + B < VA++/B for A and B positive. [

Corolary 2.0.3. Let x be an irreducible character of G with a = b = n/2
and assume the Artin conjecture for L(s,x) and L(s, xX). Then,

f;/n > 5.542 o~ 16.859/n (2.0.26)

This improves on the lower bound f3/™ > 4.73 ¢~(1334/7)? from the previous
chapter.

Proof. We evaluate 2.0.20 with yg = 2.069 and yg = 0.05 and use the same
procedure as in the previous corollary. O
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2.1 Small degrees

In this section we use Theorem 2.0.3 to improve on the lower bounds in the
previous chapter for small degrees. We use the same functions (Tartar’s and
Perrin-Rious’s) as in the previous section, with different values of y¢ and yx,
as given in the table below. Unlike in the previous section, we keep the n —1

in Theorem 2.0.3 as this improves lower bounds for small n.

In the following tables, we tabulate the lower bound for 2 < n < 20. We
have omitted the case a = 0 as the gains over the Chapter 2 are minor in

this case.

Table 1 Lower bounds for irreducible characters

| iy = N D= By
n | Ye YH > | ye YH e
2 13.147 | 1.651 | 7.469 || 5.997 | 2.696 | 4.599
3 | 1.890 | 0.675 | 8.636 — - -
4 | 1.517 | 0.378 | 9.207 || 2.968 | 0.632 | 5.336
5 | 1.35 | 0.265 | 9.509 = = =
6 | 1.263 | 0.190 | 9.68 | 2.433 | 0.301 | 5.559
71 1.21 | 0.153 | 9.781 - = —
8 | 1.016 | 0.121 | 9.834 || 2.253 | 0.197 | 5.645
9 | 1.153 | 0.105 | 9.882 = = =
10 | 1.115 | 0.088 | 9.906 || 2.169 | 0.135 | 5.684
11 | 1.102 | 0.079 | 9.920 - - =
12| 1.1 |0.069| 9.929 || 2.134 | 0.116 | 5.7
13| 1.1 |0.059 | 9.934 = - -
141 1.142 | 0.052 | 9.935 || 2.099 | 0.08 | 5.71
15| 1.138 | 0.047 | 9.935 = - -
16 | 1.136 | 0.043 | 9.933 || 2.085 | 0.072 | 5.714
17 | 1.160 | 0.041 | 9.930 - - =
18| 1.1 | 0.038 | 9.928 || 2.081 | 0.060 | 5.715
19| 1.13 | 0.035 | 9.924 - - =
20| 1.2 |0.033 | 9.917 | 2.069 | 0.050 | 5.714
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