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Resumen

En la tesis consideramos acciones de grupos en variedades unidimensionales.

En el primer capitulo probamos que la entropia de la accién de un grupo en el circulo,

por difeomorfismos de clase C?, es igual a la entropia de la accién restringida al conjunto de
puntos no errantes.

Especificamente
Teorema A. Si G es un subgrupo finitamente generado de Diff% (S!), entonces para cada

sistema finito de generadores T' de G, se tiene hr (G O S) = hr (G O ), donde ) es el
conjunto de puntos no errantes.

Teorema B. Si G es un subgrupo finitamente generado de Homeo, (S') sin elementos subex-
ponencialmente distorsionados entonces para cada sistema finito de generadores I' de G, se

tiene hr(G O S*) = hr (G © Q).

En el segundo capitulo consideramos el problema de hacer actuar grupos nilpotentes en
el intervalo, por difeomorfismos de clase C**® y abordamos la siguiente pregunta.

Dado un grupo nilpotente, finitamente generado, libre de torsién, no abeliano GG encontrar
el supremo «(G) de los valores a > 0 tal que G se incrusta en Dif f17%([0,1]) y probamos
los siguientes resultados.

Teorema C. Para todo n € N y a < 1 existe un subgrupo nilpotente, metabeliano de
Dif fi7%([0,1]) de grado de nilpotencia n.

Teorema D. Para todon > 2 ya < E(T?Tn el grupo Npi1 se incrusta en Dif f17*([0,1]),
donde N, denota el grupo (nilpotente) de las matrices triangulares inferiores de n X n con
entradas enteras y unos en la diagonal.



Abstract

We consider group actions on one—dimensional manifolds.

In Chapter 1, we show that the topological entropy of a group action, by (- diffeo-
morphisms, on the circle is equal to the topological entropy of the action restricted to the
non—wandering set. More precisely, we prove the following two results.

Theorem A. If G is a finitely generated subgroup of Diffi(Sl), then for every finite system
of generators T of G, we have hp (G O S*) = hr (G O Q).

Here €2 denotes the non-wandering set.

Theorem B. If G is a finitely generated subgroup of Homeo, (S?) without sub—ezponentially

distorted elements, then for every finite system of generators I' of G, we have hp(G O S*) =
he (GO Q).

In Chapter 2, we consider nilpotent group actions, by C'**-diffeomorphisms, on the
interval. We tackle the following problem.

Given a finitely generated, torsion-free, non-Abelian, nilpotent group G, find the supremum
a(G) of the values of & > 0 such that G embeds into Diff:**([0, 1]).

We prove the following.
Theorem C. For eachn € N and each o < 1, there exists a metabelian, nilpotent subgroup
of Diff:**([0, 1]) whose nilpotence degree equals n.

Theorem D. For eachn > 2 and each o < E(TQ—T)r the group Np11 embeds into Diff1+*([0, 1]).

Here N, denotes the (nilpotent) group of nxn lower-triangular matrices with integer entries,
all of which are equal to 1 on the diagonal.
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Introduction

In recent years, the study of group actions on manifolds has attracted the interest of
many people because of its connexions with classical subjects as Rigidity Theory [7] and
Foliation Theory [2]. This work deals with group actions on the circle and the interval, mainly
by diffeomorphisms. Two different (though related) subjects are treated: the topological
entropy for actions on the circle, and the differentiability for nilpotent group actions on the
interval. To describe the first of these, we need to introduce some notation.

Let (X, dist) be a compact metric space and G a group of homeomorphisms of X gener-
ated by a finite family of elements I'={gi, ..., g.}. To simplify, we will always assume that T’
is symmetric, that is, g=* €T for every g€T. For each n € N we denote by Br(n) the ball of
radius n in G (w.r.t. I'), that is, the set of elements f € G which may be written in the form
f=in - gi, forsomem<nand g;, €T". Forg € Gwelet | f| = || fllr := min{n: f € Br(n)}

As in the classical case, given ¢ > 0 and n € N, two points z,y in X are said to be
(n,€)-separated if there exists g € Br(n) such that dist(g(z),g(y)) > . A subset A € X
is (n,€)-separated if all z # y in A are (n,¢)-separated. We denote by s(n, &) the maximal
possible cardinality (perhaps infinite) of a (n, £)-separated set. The topological entropy for
the action at the scale £ is defined by

log
(G X, 6) = limaup == (Si”’ e))
nTeo

and the topological entropy is defined by

Notice that, although hr(G © X, ¢) depends on the system of generators, the properties of
having zero, positive, or infinite entropy, are independent of this choice.

The definition above was proposed in [10] as an extention of the classical topological
entropy of single maps (the definition extends to pseudo-groups of homeomorphisms, and
hence is suitable for applications in Foliation Theory). Indeed, for a homeomorphism f, the
topological entropy of the action of Z~ (f) equals two times the (classical) topological
entropy of f. Nevertheless, the functorial properties of this notion remain unclear. For
example, the following fundamental question is open.

General Question. Is it true that hr(G O X) is equal to hp(G O Q) ?
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Here 2 = Q(G O X) denotes the non-wandering set of the action, that is, the set of points
z € X such that for every neighborhood U of # we have f(U)NU #  for some f # id in
(. This is a closed invariant set whose complement ¢ corresponds to the wandering set of
the action.

The following example, due to Kleptsyn, shows that the answer to the question above is
negative when X is the unit sphere (nevertheless, the action that we will discuss is not an
action by diffeomorphisms).

Example. Let G be the fundamental group of a closed surface Sy of genus at least k > 2
endowed with the canonical generating set I'y,. Then Gy freely acts by isometries of the
hyperbolic plane H?, so that the quotient H?/G} corresponds to S;. Let us consider the
one-point compactification of H?, which is isomorphic to the two-sphere S2. The action of
(', continuosly extends to an action on S? so that the point at infinity p is fixed by every
element. It is not hard to see that {ps} coincides with the non-wandering set €. of this
action. Hence, hr, (G O ) = 0. We claim, however, that the entropy for the action of
G, on S? is strictly positive. More precisely, let us fix a point ¢ € S? \ {pw}. Let £ be the
minimum among the (finitely many, positive) numbers dists2(q,q’), where ¢’ projects into
the same point of Sy as ¢ and they belong to “contiguous” fundamental regions (viewed in
H?). Let &5 := dists2(q, S*\ R,), where R, is the union of the fundamental region containing
g and all the regions contiguous to it. Finally, let € := min{e;,2}. We claim that

hr, (Gx © 8%€) > 0.

To show this, for each g € Br,(n) let g, := g(g). If we are able to show that these points
are (n,c)-separated then we are done, as the number of them coincides with the cardinality
of Br,(n), which growths exponentially on n (c.f. §1.1). Now, to see that these points are
(n, €)-separated, choose any two of them, say g, # g». Then, by definition of ¢, the distance
between the points ¢ and g~*h(q) is greater than or equal to . Notice that ¢ = g~'(g,) and
g 'h(g) = 97 (qn). Since g~! belongs to Br,(g), the claim follows.

The first chapter of this work deals with the General Question in the case where X is
a one—dimensional manifold. In this context, the notion of topological entropy for group
actions is quite appropriate. In fact, in this case, the topological entropy is necessarily finite
(c.f. §1.1). Moreover, in the case of actions by diffeomorphisms, the dichotomy hip = 0
or hyp > 0 is well understood. Indeed, according to a result originally proved by Ghys,
Langevin, and Walczak, for groups of C? diffeomorphisms [10], and extended by Hurder
to groups of C! diffeomorphisms (see for instance [24]), we have hy,, > 0 if and only if
there exists a resilient orbit for the action. This means that there exist a group element f
contracting by one side to a fixed point zg, and another element g which sends zp into its
basin of contraction by f.

The results of the first chapter of this work (which are reproduced from [12]) give a
positive answer to the General Question in the context of group actions on the circle under

certain mild assumptions.
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Theorem A. If G is a finitely generated subgroup of Diff2 (S!), then for every finite system
of generators T of G, we have hr (G © S') = hr (G © Q).

Our proof for Theorem A actually works in the Denjoy class C**%, and applies to general
codimension-one foliations on compact manifolds. Here bv means bounded variation. In the
class C**1% it is quite possible that we could give an alternative proof using standard
techniques from Level Theory [4, 11]. -

It is unclear whether Theorem A extends to actions of lower regularity. However, it
still holds under certain algebraic hypotheses. In fact, (quite unexpectedly) the regularity
hypothesis is used to rule out the existence of elements f € G that fix some connected
component of the wandering set and which are distorted, that is, those elements which
satisfy

lim ﬂf—“ = (.

n—oo 7
Actually, for the equality between the entropies it suffices to require that no elememt in G
be sub-exponentially distorted. In other words, it suffices to require that, for each element
f €G with infinite order, there exist a non—decreasing function q: N — N (depending on f)
with sub—exponential growth satisfying ¢(||f*||) = n, for every n€ N. This is an algebraic
condition which is satisfied by many groups, as for example nilpotent or free groups. (We refer
the reader to [3] for a nice discussion on distorted elements, as well as [1] for a proof that every
irrational rotation is distorted inside some finitely generated group of circle diffeomorphism.)
Under this hypothesis, the following result holds.

Theorem B. If G is a finitely generated subgroup of Homeo . (S*) without sub-ezponentially
distorted elements, then for every finite system of generators I' of G, we have

he(G O SY) = he (GO Q).

The hypothesis of the theorem above is natural, since distorted elements and the entropy
of general group actions seem to be related in an interesting manner. Indeed, though the
topological entropy of a single homeomorphism f may be equal to zero, if this map appears
as a sub—exponentially distorted element inside an acting group, then this map may create
positive entropy for the group action.

The second part of this work (Chapter 2) concerns the differentiability of nilpotent group
actions on the interval. This fits into the general study of the algebraic constraints of finitely
generated subgroups of Diff([0,1]). The origin of this study relies on classical works on
centralizers of C2-diffeomorphisms of the interval [6, 14, 21, 22]. As a sample classical result
which will be relevant for us, we can mention that —using the well-known Kopell lemma on
commuting diffeomorphisms— Plante and Thurston showed in [19] that nilpotent groups of
C?-diffeomorphisms of [0, 1] (resp. ]0, 1) are Abelian (resp. metabelian).
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As is well known, most of the rigidity properties are lost when we consider centralizers
of C'-diffeomorphisms. In relation to Plante-Thurston’s theorem above, this fact is cor-
roborated by the work of Farb and Franks. In [8], they construct an embedding of N,
into Diff} ([0,1]), where N,, denotes the (nilpotent) group of lower-triangular matrices whose
entries are integers which equal 1 on the diagonal (and n > 3). Since every finitely gener-
ated, torsion-free, nilpotent group embeds into N, for some n (see [20]), one concludes that
all these groups can be realized as groups of C*'-diffeomorphisms of the (closed) interval.
(Since the center of a nilpotent group is nontrivial, this provides examples of centralizers of
diffeomorphisms with rich dynamics.)

In recent years, the study of intermediate differentiability classes (i.e. between C' and
C?) has become particularly relevant from both the dynamical and the group-theoretical
viewpoints (see [5, 13, 15]). Recall that, for 0 < @ < 1, a diffeomorphism f is said to be of
class C'** if its derivative is a-continuous. In other words, there exists a constant M such
that for all z,y we have

1f'(z) = f'(y)] < Mlz —y|*.
We denote the group of C***-diffeomorphisms of [0, 1] by Diff1™*([0, 1]).

Main Problem. Given a finitely generated, torsion-free, non-Abelian, nilpotent group G,
find the supremum a(G) of the values of o > 0 such that G embeds into Diff:7*([0,1]).

Although there is a big hope of answering this question by using the ideas from [5, 13, 15],
the value of @(G) remains a mystery to guess in the general case. At the beginning we
suspected that it was related to the nilpotence degree of the group. However, the following
result (which is the main content of the first part of Chapter 2) shows that this is not the
case.

Theorem C. For each n € N and each o < 1, there ezists a metabelian, nilpotent subgroup
of Diffi+*([0, 1]) whose nilpotence degree equals n.

The proof of this theorem uses techniques introduced by Denjoy and Pixton (a brilliant
exposition of these techniques appears in [23]). Nevertheless, putting these methods in
practice in the present case is far from being a trivial issue. The computations are quite
involved, and some of them are only sketched.

In the second part of Chapter 2, we further elaborate on these techniques. Extending
the main result of [8], we show the following theorem.

Theorem D. For eachn > 2 and each a < aﬁ, the group Ny41 embeds into Diff ;7 ([0, 1]).

We suspect that this theorem is sharp though no result in this direction is given. Anyway,
we point out that [5, Théoréme B| implies that the actions constructed for the proof cannot
be topologically conjugate to actions by C'*@-diffeomorphisms for any o > 1/(n—1). Filling
the gap between the exponents 1 +2/n(n —1) and 14 1/(n — 1) is at the core of the Main
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Problem above. Nevertheless, we strongly believe that Theorems C and D should shed some
light in the pursue of a (hopefully, prompt) solution for it.



Chapter 1

On the topological entropy for group
actions on the circle

1.1 Some background

In this chapter we will consider the normalized length on the circle, and every homeo-
morphism will be orientation preserving.

We begin by noticing that if G is a finitely generated group of circle homeomorphisms
and I is a finite generating system for G, then for all n € N and all £ > 0 one has

s(n,€) < S#Be(n). (1.1)

Indeed, let A be a (n,e)-separated set of cardinality s(n,e). Then for every two adjacent
points z,y in A there exists f € Br(n) such that dist(f(z), f(y)) = e. For a fixed f, the
intervals [f(z), f(y)] which appear have disjoint interior. Since the total length of the circle
is 1, any given f can be used in this construction at most 1/¢ times, which immediately gives
(1.1).

Notice that, taking the logarithm at both sides of (1.1), dividing by n, and passing to
the limits, this gives

he(G O §%) < gre(G),

where grp(G) denotes the growth of G with respect to I, that is,

grr(G) = lim w.

n—eo n

Some easy consequences of this fact are the following ones:

— If G has sub-exponential growth, that is, if grp(G)=0 (in particular, if G is nilpotent, or
if G is the Grigorchuk-Maki’s group considered in [15]), then hp(G O S') = 0 for all finite
generating systems I'.
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— In the general case, if #I' = ¢ > 1, then from the relations

#Br(n) <1+ 2g(2g — 1)1 = { iéf) ((2¢ —1)" - 1), g 2 ?

j=1 ’

one concludes that
hr(G © S') < log(2q — 1).

This shows in particular that the entropy of the action of G on S! is finite. Notice that
this may be also deduced from the probabilistic arguments of [5] (see Théoréme D therein).
However, these arguments only yield the weaker estimate hr(G O S') < log(2q) when I' has
cardinality q.

1.2 Some preparation for the proofs

The statement of Theorems A and B are obvious when the non-wandering set of the
action equals the whole circle. Hence, we will assume in what follows that 2 is a proper
subset of S!, and we will currently denote by I some of the connected components of the
complement of Q. Let Est(I) denote the stabilizer of I in G.

Lemma 1.2.1. The stabilizer Est(I) is either trivial or infinite cyclic.

Proof. The (restriction to I of the) nontrivial elements of FEst(I)|; have no fixed points,
for otherwise these points would be non-wandering. Thus FE'st([)|; acts freely on I, and
according to Holder Theorem [9, 16], its action is semiconjugate to an action by translations.
We claim that, if Est(l)|; is nontrivial, then it is infinite cyclic. Indeed, if not then the
corresponding group of translations is dense. This implies that the preimage by the semicon-
jugacy of any point whose preimage is a single point corresponds to a non-wandering point
for the action. Nevertheless, this contradicts the fact that I is contained in Q°.

If Est(I)|; is trivial then f|; is trivial for every f € Est(I), and hence f itself must be
the identity. We then conclude that Fst(I) is trivial.

Analogously, Est([) is cyclic if Est(I)|; is cyclic. In this case, Est(I)|; is generated
by the restriction to the interval I of the generator of Est([). O

Definition 1.2.2. A connected component I of Q¢ will be called of type 1 if Est(I) is
trivial, and will be called of type 2 if Est(I) is infinite cyclic.

Notice that the type of an interval is preserved by the action, that is, for each f &G the
interval f(7) is of type 1 (resp. of type 2) if I is of type 1 (resp. of type 2). Moreover, given
two connected components of type 1 of 3¢, there exists at most one element in G sending
the former into the latter. Indeed, if f(I)=g(I) then g~!f is in the stabilizer of I, and hence
f=gif I is of type 1.
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Lemma 1.2.3. Let z1,..., 2z, be points contained in a single type 1 connected component
of Q°. If for some £ >0 the points z;, z; are (¢, n)-separated for every i # j, then m < 1+ 1.

Proof. Let I =|a,b| be the connected component of type 1 of Q° containing the points
Z1,...,ZTm. After renumbering the z;’s, we may assume that a < 7; < 22 < ... < z,, < b
For each 1 < i < m—1 one can choose an element g; € Br(n) such that dist(g;(z;), gi(zis1)) =
€. Now, since [ is of type 1, the intervals |g;(z;), g:(z:i+1)| are two by two disjoint. Therefore,
the number of these intervals times the minimal length among them is less than or equal to
1. This gives (m — 1)e < 1, thus proving the lemma. O

The case of connected components [ of type 2 of Q° is much more complicated than
the one of type 1 connected components. The difficulty is related to the fact that, if the
generator of the stabilizer of I is sub-exponentially distorted in G, then this would imply the
existence of exponentially many (n,¢)-separated points inside I, and hence a relevant part
of the entropy would be “concentrated” in /. To deal with this problem, for each connected
component I of type 2 of Q0° we denote by p; its middle point, and then we define ¢;: G — Ny
as follows. Let h be the generator of the stabilizer of I such that h(z) > z for all z in I. For
each f € G the element fhf~! is the generator of the stabilizer of f(I) with the analogous
property. We then let £;(f) := |r|, where r is the unique integer number such that

SR (pny) < flor) < FRTY PN ppeny)-

Lemma 1.2.4. For all f, g in G one has

€r(go f) < Lyny(g) + & (f) + 1.

Proof. Let r be the unique integer number such that

(PR (psy) < Flpr) < (FRFTH ™ (prny), (1.2)

and let s be the unique integer number such that

(9fRf7r g7 (osay) < 9(psny) < (9fRf g™ pgsry),s

so that
bL(f) =1rl, lxn(g) =]s|.
We then have

9 g fhf g Pasn) < ey < 9 afRF 107 Dy,

that is
(FRf)°97 Poriny) < ppay < (FRETH g™ (pgs())-
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Therefore,

(FRFTD)(fRITY) g paray) < flor) < (FRET)™HFRST g (pasiny)s
and hence
(fRE) g™ papny) < Flpr) < (FRFTH 297 (gsny)-
This easily gives
g * g posy) < 9f (p1) < g(FRF )™ 297 (pgs 1),

and thus
(9f RS g™ )™ (Pesny) < 9f (pr) < (9FRS T g7 ) 2 (Dos(r))-
This shows that [;(gf) equals either |r + s| or |r + s + 1|, which concludes the proof. O

The following corollary is a direct consequence of the preceding lemma, but may be
proved independently.

Corollary 1.2.5. For every f€(G one has

1er(f) = ¢pn(fHI S 1

Proof. From (1.2) one obtains

R (pn) < f 7 psay) < R (pr) < AT (pr),

and hence £51y(f™') equals either |r| or |r + 1|. Since £;(f) = |r|, the corollary follows. [

1.3 The proof in the smooth case: Theorem A

To rule out the possibility of “concentration” of the entropy on a type 2 connected
component [ of (¢, in the C? case we will use classical control of distortion arguments in
order to construct, starting from the function ¢;, a kind of quasi-morphism from G into Np.
Slightly more generally, let F be any finite family of connected components of type 2 of
Q. We denote by F¢ the family formed by all the intervals contained in the orbits of the
intervals in F. For each f € G we then define

Lx(f) = sup &(f).

IeFC

A priori, the value of £5 could be infinite. We claim however that, for groups of C? diffeo-
morphisms, its value is necessarily finite for every element f.
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Proposition 1.3.1. Let F be a finite family of type 2 connected components of ¢. Then,
for all f € G, the value of ££(f) is finite.

To show this proposition, we will need to estimate the function £;(f) in terms of the
distortion of f on the interval I.

Lemma 1.3.2. For each fixed type 2 connected component [ of ¢ and every g € G, the
value of £;(g) is bounded from above by a number L(V) depending on V = wvar(log(g'|r)),
the total variation of the logarithm of the derivative of the restriction of g to /.

Proof. Denote Ja,b[=1I and ]a,b[=g(I). If h is a generator for the stabilizer of I, then for
every f € G the value of ¢;(f) corresponds (up to some constant +1) to the number of
fundamental domains for the dynamics of fhf~! on f(I) between the points ps(r) and f(p1),
which in its turn corresponds to the number of fundamental domains for the dynamics of A
on I between f~!(psr)) and pr. Therefore, we need to show that there exists ¢ < d in ]a, b]

depending on V' and such that g='(py()) belongs to [c,d]. We will show that this happens
for the values

1]
c-a+-2—87 and d:b—ze—v
We will just check that the first choice works, leaving the second one to the reader. By the
Mean Value Theorem, there exists € g(/) and y € [@, pyr)] such that

- ]
(g7 () =
@ = )
and e .
(g—l),'( ) - '.g ([a"ﬁpf(.[)])' o g_ (pg(f)) o
(@, po(n| lg(1)1/2
By the definition of the constant V', we have (¢g71)'(z)/(g7!)'(y) < e". This gives
IO (7720 I '
~ 297 (pory) — a)/lg(D] 2(g7Hpg()) — a)’
thus proving that g~ (py)) > a + 2,] I, as we wanted to show. O

Proof of Proposition 1.3.1. Let J =]a,b[ be an interval in the orbit by G of I =|a,b[. If
9= Gi, " 9i» 9;; €T, is an element of minimal length sending [ into J, then the intervals
I,9:,(I), 9:,9i, (1), - - ., Gy +  Gi29i, (I) are pairwise disjoint. Therefore,

—

n—

var(log(g'|r)) < ar (10g(g;, ., lgi, g5, (0 ) <> var(log(h')) =: W.
) hel

Il
=

Moreover, denoting V =wvar(log(f’)),

var(log((f9)'11)) < var(log(s'ln)) + var(log(f)) = ¥ + V.
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By Lemmas 1.2.4 and 1.3.2 and Corollary 1.2.5,

) < L@+ a(fg)+1
< L(g) +(fg)+2
< L(W)+L(W+V)+2.

This shows the proposition when F consists of a single interval. The case of general finite
F follows easily. OJ

For a given £ >0 we define £, := {5, where F.={I1,..., I} is the family of the connected
components of 2¢ having length greater than or equal to €, with k= k(e). Notice that, by
Lemma 1.2.4, for every f,g in I' one has

(9f) < &(g) +E(f) +1 | (1.3)

Lemma 1.3.3. There exists constants A(g) >0 and B(¢) satisfying the following property:
If z1,...,%, are points contained in a single connected component of type 2 of Q¢ and z;, z;
are (&,n)-separated for every i # j, then m < A(g)n + B(e).

Proof. Denote ¢.= max{f.(g): g € T'} (according to Proposition 1.3.1, the value of ¢, is
finite). Let I be the type 2 connected component of )¢ containing zi,...,Z,. We may
assume that z; < z3 < ... < .. For each 1 < ¢ < k let h; be the generator of Est([;).
Notice that £.(h]) > |r| for all r € Z.

If f is an element in Br(n) sending I into some [;, then the number of points which are
e-separated by f is less than or equal to 1/ + 1. We claim that the number of elements
in Br(n) sending I into I; is bounded above by 4nc. + 4n — 1. Indeed, if g also sends [
onto I; then gf~! € Fst(l;), hence gf~! = h] some r. Therefore, using (1.3) one obtains
ir|< €e(hT) < 2nc. +2n — 1.

Since the previous arguments apply to each type 2 interval [;, we have

m < k(% + 1) (4nc. + 4n — 1).

Therefore, letting

Ale) i= (4k + %’E)(l + c:) and  B(e) =—(k+-),

this concludes the proof. O

To conclude the proof of Theorem A, we will use the following notation. Given € > 0
and n € N, we will denote by s(n,e) the largest cardinality of a (n,e)—separated subset of
S1. Likewise, sq(n,¢) will denote the largest cardinality of a (n, c)—separated set contained

- &1 . . v . i
1 e mon-wanoerinoT 32
. 1l ancering set.
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Proof of Theorem A. Fix 0 < e < 1/(2L), where L is a common Lipschitz constant for the
elements in I'. We will show that, for some function p. growing linearly on n (and whose
coefficients depend on &), one has

s(n, &) < pa(n)sa(n, &) + pe(n). (1.4)

Actually, any function p. with sub-exponential growth and verifying such an inequality
suffices. Indeed, taking the logarithm in both sides, dividing by n, and passing to the limit,
this implies that

hr(G O SY,€) = hr(G O Q).

Letting £ go to zero, this gives
he(G O S') < he(G O Q).

Since the opposite inequality is obvious, this shows the desired equality between the entropies.

To show (1.4), fix a (n,¢)-separated set S containing s(n,e) points. Let ng (resp. noc)
be the number of points in S which are in Q (resp. in Q¢). Obviously, s(n,¢) = ng+ngq-. Let
t=tg be the number of connected components of Q¢ containing points in S, and let { := [£],
where [] denotes the integer part function. We will show that there exists a (n, £)-separated
set T' contained in § having cardinality [. This will obviously give sq(n,e) > [. Using the

inequalities t < 21 + 1 and nq < sq(n,¢), and by Lemmas 1.2.3 and 1.2.4, this will imply
that

s(n, ) na + naqe

it
< ng+tk(1+ g)(4ncg+4n— 1)

IA

sa(n,€) + (2sa(n,e) + k(1 + é)(élncg +4n—1),

thus showing (1.4).

To show the existence of the set T with the properties above, we proceed in a constructive
way. Let us number the connected components of ° containing points in S in a cyclic way
by I,...,I;. Now for each 1 < i <1 choose a point t; € Q between Iy, and Iy, and
let T := {ty,...,;}. We need to check that, for i # j, the points ¢; and t; are (n,&)-
separated. Now by construction, for each i j there exist at least two different points z,y
in S contained in the interval of smallest length in S! joining ¢; and ¢;. Since S is a (n,€)-
separated set, there exist m <n and gi,,..., i, in I' so that dist(h(z), h(y)) > &, where
h=g; -+ 0i,g:,- Unfortunately, because of the topology of the circle, this does not imply
that dist(h(t:), h(t;)) > €. However, the proof will be finished if we show that

dist(gi, -+ gi,(t:), 91, - - g (t;)) > € forsome 0<r<m. (1.5)

This claim is obvious if dist(t;,t;) > e. If this is not the case then, by the definition of the
constants = and L, the length of the interval [g;, (t;). g, (t;)] is smaller than 1/2, and hence it
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coincides with the distance between its endpoints. If this distance is at least £, then we are
done. If not, the same argument shows that the length of the interval [gi,gi, (i), 6i.9i, (t;)]
is smaller than 1/2 and coincides with the distance between its endpoints. If this length
is at least £, then we are done. If not, we continue the procedure... Clearly, there must
be some integer r <m such that the length of the interval [g;._, - - ¢i,(t:), gi._, - - - 9i (£5)] 1s
smaller than ¢, but the one of [g;, - - gi,(t:), 9i, * * + 95, (¢;)] is greater than or equal to . As
before, the length of the later interval will be forced to be smaller than 1/2, and hence it
will coincide with the distance between its endpoints. This shows (1.5) and concludes the
proof of Theorem A. O

1.4 The proof in the case of nonexistence of sub-expo-
nentially distorted elements: Theorem B

Recall that the topological entropy is invariant under topological conjugacy. Therefore,
due to [5, Théoreme D], in order to prove Theorem B we may assume that G is a group of
bi-Lipschitz homeomorphisms. Let L be a common Lipschitz constant for the elements in I'.
Fix again 0<e<1/2L, and let I1,..., I} be the connected components of ¢ having length
greater than or equal to £. Let h; be a generator for the stabilizer of I; (with h;=1Id in case
where I; is of type 1). Consider the minimal non decreasing function ¢. such that, for each

of the nontrivial k;’s, one has g.(||h||) > r for all positive r. We will show that (1.4) holds
for the function

pe(n) = 2k(1 + é)(ZqE(En) ¥ 1)1,

Notice that, by assumption, this function p. growths at most sub-exponentially on n. Hence,
as in the case of Theorem A, inequality (1.4) allows to finish the proof of the equality between
the entropies.

The main difficulty for showing (1.4) in this case is that Lemma 1.3.3 is no longer avail-
able. However, the following still holds.

Lemma 1.3.4. If z4,...,x,, are points contained in a single type 2 connected component
I of Q° having length at least ¢, and z;,z; are (g,n)-separated for every i # j, then
m < k(L +1)(2g:(2n) + 1).

Proof. Let I be the type 2 connected component of ()¢ containing z,...,Zn. We may
assume that ; < T3 < ... < Tp,. If f is an element in Br(n) sending I into some [;, then
the number of points which are e-separated by f is less than or equal to 1/e + 1. We claim
that the number of elements in Br(n) sending [ into I; is bounded above by g.(r). Indeed,
if g also sends I onto I; then gf~' € Est(I;), hence gf~'=h] some r. Therefore,

2n > |lgf ~Hl = IR,
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and hence
g:(2n) = qe([[R71]) = |7
Since the previous arguments apply to each type 2 interval I;, this gives

m < k(é +1)(2¢:(2n) + 1),

thus proving the lemma. O

To show (1.4) in the present case, we proceed as in the proof of Theorem A. We fix a
(n,€)-separated set S containing s(n,e) points. We let ng (resp. nge) be the number of
points in S which are in 2 (resp. in 2°), so that s(n,&) = ng+ngq-. Let t=t5 be the number
of connected components of Q° containing points in S, and let [ := [£], where [] denotes
the integer part function. As before, one can show that there exists a (n,s)-separated set
T contained in €2 having cardinality {. This will obviously give sq(n,z) > [. Inequalities
t <2041 and ng < sq(n,€) still holds. Using Lemmas 1.2.3 and 1.3.4 one now obtains

I

< ng+ tk(l + é)(2q5(2n) +1)

s(n, )

IA

sa(n,e) + (2sq(n,e) + 1)k(1 + é)(?qE(Qn) +1).

This concludes the proof of Theorem B.



Chapter 2

Nilpotent groups of diffeomorphisms
of the interval

2.1 A reminder on Denjoy-Pixton actions

For the constructions leading to the proofs of Theorems C and D, we will use Pixton’s
technique [18]. The main technical tool will be the following lemma from [23].

Lemma 2.1.1. For a certain universal constant M, there exists a family of diffeomorphisms

cpf}’f o I — J where I,1',J,J' are any non-degenerate intervals such that I' (resp. J') is

contiguous to I (resp. J) on the left, satisfying npﬁ,' o (pf,‘::]{f' - Wf’{{,' Moreover, one has

|log (Zorr (w) — log (Zern ()| _ M IIHJ’I_l’
lu — v = I

for all u,v in I provided that 1/2 < |I|/|J| € 2. Furthermore, the derivative of gof:f: equals
|JI/|I| (resp. |J'|/|I'|) at the right endpoint (resp. left endpoint) of I.

The proof of this lemma given in [23] proceeds as follows. Let £(z)(Z) be a C™ vector
field on [0,1] such that £(z) = z near 0, and £(z) = 0 on [1/2,1]. Moreover, assume that,
for all z,

¢
5:5(33)
Let 94(x) be the solution of the differential equation

P 0) = ule)), ola) ==

<L 1.

Let us consider the diffeomorphism = — b1;(z/a) sending the interval [0, a] onto the interval
0,5, For any real numbers a,a,b,b such that o’ < 0 < a and ¥/ < 0 < b, let &7} be the
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diffeomorphism from [0, a] onto [0, b] defined by

¢ol (z) = bihrog(rasay (z/0).

Its is easy to check that for all positive a, b, c and all negative o', ¥, ¢, one has

b’ b ‘35 = ‘?53'2
Moreover, as is shown in [23],
6(,35!)!:' b B?/)I valal T
] U0 log S plog ~— B 200, [ _
oz () =ilog + Oz (a)’ (2.1)
awlog(b’a/a’b) ba b b
log —————| < |log — g—— log—|. e
Furthermore, letting C' > 0 be a constant such that |§—§;|5 C for all z, we have
8\, 0bys C |Va
— | log ! < —|——=11. 2
i(ax) ¢ oz (=) < a |a'b l ()

Starting with the maps ¢)a » we construct the desired family {L,of:f:} as follows. Letting
['=[ww+a), I =[w+d, w], J:=[w,w +b), and J' := [w' + ¥, w'], where o’ < 0 < a

and ¥ < 0 < b, we let

JJ . bb
(10]',]" L (ba’,a(‘r - T.U) + wf‘

2.2 A family of metabelian subgroups of Diff'**([0,1]):
Theorem C

In what follows, M will denote a universal constant whose explicit value is irrelevant for
OUr Purposes.

For each pair of integers (4,7), let ;; be an interval of length |/;;| so that the sum
> ij|1ij] is finite. Joining these intervals lexicographically, we obtain a closed interval I.
Following [8, §2.3], we will deal with a particular family of nilpotent groups G, acting on .
Each G, has nilpotence degree n + 1, and G coincides with the Heisenberg group.

The group G, has a presentation

<f1 o, 91y 9n: [gi:gj] = ?‘d: [f1 901 = Zd, [fagﬁl = Gi-1 fOI‘ all () 2 1)

As maps, the generators send each interval I;; into a certain Iy ; and coincide with the
T I.' 7
diffeomorphism (,o; 01 therein. The map f sends I ; into f;;1,;. The maps go and ¢
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send I;; into I; ;11 and I j4, respectively. To describe the dynamics of gy, ..., gn, for each
0 < k <nandeachieZ, welet

i D)E+2). (i k- 1)
- k! ’

and we define ro(i) := 1 for all i. (Note that |ry(i)| < |i|¥ for £ > 0.) Then the element g
sends the interval I; ; into I; jir,(i)-

Now fix a positive number o < 1. To carry out the preceding construction so that the
resulting maps are C'**-diffeomorphisms of I, we need to make a careful choice of the lengths
|1;j|. We let ¢ > 1 be such that the following conditions are satisfied:

(i) L < g2,

ki) s

(li,) 2 <2 —g,
(i) @ < 545,
: 1
(ive) @< 2.

Note that since a < 1 and the preceding right-side expressions go to 1 or to infinity as ¢
tends to 1 from above, we may choose g very near to 1 in such a way that these conditions
are fulfilled.

Now let p := 27;1_:11. Clearly, we may also impose the following supplementary conditions:

(ve) P> ng,
(Vic) a < Z-2

— q p?
(viig) @ < 25 — 524
We then define
P S
R+ gle+ 1

Since 1/p+1/g <1, it follows from [13, §3] that the sum }°, ., [/; ;| is finite. We claim that
the group G, thus obtained is formed by C**-diffeomorphisms of I.

2.2.1 The map f is of class C'*™®

For simplicity, we only deal with points in the intervals [; ; with ¢ > 0 and j > 0 (the
other cases are analogous).

First we consider z,y in the same interval I; ;. We have

|log f'() —log f'(Y)| o M | sl [iv1] _1’.

j2—a| = i) | figag] ig—1l
Hence |
|log f'(z) —log f'(y)| _ M | il Mis1,-1l _ | (L, e = M | gl Hivrg-1] 1‘
[~ e = gl vl [Li-1] " - Wi sl® Plisrg] il |
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This yields

log f(z) —log /()| _ | G+ +47+1 P+ G-DI+T
|z — y|® - P4+l E+1P+(G-1)094+1

Therefore, the value of Llog f I(;):;l‘lgf ‘Wl i bounded from above by

(G+1P+77+D)@E+(G-1)1+1) - @+ +D(E+1)P+( ~ 1y + 1)‘
(i + 9+ D-=((i+ 1P+ (§ ~ 1)7+ 1)

M

which equals
(G+1)P =) (2= (G —1))
@+ g7+ 1)@+ 1P+ (G -1+ 1)
By the Mean Value Theorem, this expression is bounded from above by

,l'p—qu—l

M i (G P+ G-+ D)

Thus 1 ’ | ; p—1 (g—1
|log f'(z) —log f'(W)| _ 5, * i
ERR (i 17 o0
Now notice that the last expression is uniformly bounded when ¢ — 1 < g(1 — &), which is
satisfied by condition (iv.).

Next we consider ¢ € I;; and y € Iy, with j < j". The definition of f and property (2.1)
yield

log f'(z) = log

Oyl b rog(prafay) (T =W
b o\ — log o + 1 og(b'a/a’b)
Oz (—u) =l a TR Oz ( aQ )

where I;; = [w,w+a], Lijo1 = [w+ o w], Lipr; = [, w' +b], and Ly -1 = [’ + v, w).
Analogously,

P c’f,c
log f'(y) = log g;; .

d 671[)0 'ele! — U
(y — ) = log — +log log(d'c/<'d) (y )

oy c

where Ii,jf = [u, U -+ C], Ii’jl_l = [’U,-I-C!,’LL], Ii+1,jf == [U’,’LL’ +d], and Ii+1,j’—1 = {u’ +dl,uq. By
property (2.2),

|log f/(z) —log f'(¥)| <

i awlog(d’c/’dd) (y - u)

b d a@blog(b’a/a’b) r—w
1Oga—logz +\log oz a )]_'_ © dy c

!

b b
= + |log — —log —| +
a a

b d
log — — log —
a c

4 d
log = — log =| .
ODC’ Ogcl

log (|{i+1,j’w}|>_log (lI‘i+1,j’l\: *
T Lol )
i,/ —1] [4,371

A

Notice that the last expression corresponds to

e (Vi) g (Vi) g (et} (V)

I N Mgl / digl /010 TN =1l
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Since the function j — “"I—”“l’i is non-decreasing, the preceding inequality yields
¥

|log f'(z) —log f'(y)| < 3|log (|Ii+1,j’|) ~log (V_—l_.v_—_ﬂ,)l
|I”.'rjr| ‘Ii,j—ll
[iv1,5] |Jij-al
= 3 |log : )
IIi.j’l ‘Ii+1,j—ﬂ
@+59+1) (G+1)P+(G-1)7+1)
i+ 1P+ +1)  (P+(G—1)1+1)

= 310g((

Hence the value of |log f'(z) — log f'(y)| is bounded from above by

i (1 n @F+7T4+1)(GE+D)P+G-1)94+1) - (G+1)P+59+DEP+ (G- 1)+ 1})
) (G+1P+59+ 1)@+ (j—1)7+1)

M

| (2.4)
Since (15’1;? :qu1+1 (“;}f{jéfﬁjjfl“ is uniformly bounded from below, namely

P70+l (+DP+ (G171 P41 P4+ ]

(G+1)P 45941 P+(j—19+1 T 2P ga41 = WP 4w 420 2P

the expression (2.4) is bounded from above by

. (P4+7T+1)(GE+1)P+G-1)T+1) —(E+ 1P+ 79+ )P+ (j— 1)+ 1)
(G+1P+79+1)(P+ (7 —1)7+1) ’

which equals
(% — g — 1N+ 1P — &)
(G+1)P+j9+1)(P+(G-1)09+1)
By the Mean Value Theorem, this expression is bounded from above by

- P11 — G+ 1)
(G+1)P+j94+1)(P+ (F—1)2+1)

Therefore,

)
! —log f! <M .
| log f (:E) og f (y)| = (i;u + jm)(ip + JQ)

We will split the general case into the following four cases:
() i <2j+1,

(b) 7 <,

() 7/ >27+1,7%9>4P,59 >,

(d) 7/>25+1,59>4,59 <P,

In cases (a) and (b), notice that from

-yl 2 (' -7 -1y
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it follows that

.,._._1 o
o —yl* 2 (2
w459+ 1

|log f'(z) —log ()]  , #—0""(4" — (& + 5 + 1)°
R N GRS DICEN DI

Hence by (2.5),

that is,

| log f'(z) —log f'(y)| ., #1975~ j)'*
jz -yl T (g0 + )

In case (a), we have j' < 2j + 1, and hence the right-side of (2.6) is bounded from above
by

(2.6)

[ ip—qu—-ljl—a B ip—qu—a
(z‘P DR CEND BN CESDES
iq—a+tl

On the one hand, if 7 < 3 , then this expression is bounded by %,y_—; = j@=D@-1  Since

a < 1, the expression is umformly bounded. On the other hand, 1f j < 71 then we have
the upper bound

jp—1+(p—1)(g-a)
N N o o

ip(2—a)
Now this expression is uniformly bounded by condition (ii.).
In case (b), we have 5/ < ¢?, and hence the right-side expression of (2.6) is bounded from

above by
p-1;5(a-1);2(1-0)

V e By
= qo—3) L

3P+P(1_0‘)

which is uniformly bounded by condition (iii,).

In case (c), we have
1 1 7' dx
—yl > il = e Y 3za’
|z —y| = Z Zin Z P4+ni+l "~ Z j‘1+n‘1+1 Z 3na fj+1 3z4
jen<ij' j<n<y’ j<n<j’ m<y!

and hence

1 J -+ 1 g-1 1 1 q—1
|$—y|ZfVIF1)q—_1(1—(T) )Zm(l—(i) )
Therefore,

— Q> M._._._.__
I‘T y| - (j+l)(q_1)a1
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and this yields

|log f'(z) —log f'(W)| _ , 714" 715" — §)lV I(g"Q“l(j’ = j)) (ip‘lj{‘?‘”“)
|z -yl B (% + j'9)(#° + 59) P + g’ w+ga )

In the last expression, the first factor is uniformly bounded, while the second one is bounded
by
(-1 +(g-1)a
v sl sulla
jq
This last expression is uniformly bounded when %(p — 1)+ (g — 1)a < g, which is ensured
by the condition (iii,).

The last case (d) is
i>2+1, 79>, 1< P
For the distance between x and y we now have the estimate
1 7 1 7 1
REVI W S Sy U WY U W
.'i<nZ<j’ " j<§n;j’ st L 1Pz +1 j+1 (-i§+$+1)q

The last integral is essentially
i+ + 1) — (ie + +2)

WES :
(6% +j +2)91(F + j/ + 1)1

and by the Mean Value Theorem, this is larger than

M y —q—1
(65 + 5" + 1)272(i% + j + 2)a1(35 + j7 + 1)a-2

Therefore, ‘ .
[§' = j=1)"
(65 4§/ + 1)2(49 + j + 2)la-Da

lz—y|* =M (2.8)

This yields

|log f'(z) ~log f'(9)] /P79 = )i + 4+ 1)%(is +j +2)0 Ve
[z~ vl - (@ + 3@ + 590 — 7~ 1)°
PR 45+ 1)+ +2) e

< M e

- r g~ 7~ 1)»

< PR A 1) (240 4 2)a e

- (# + 79)(%5)°
p-1(;% (g-1a

< M’ (i* +1)

¥

GESD
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)
(3]

and by condition (iii,) the last expression is uniformly bounded.

We finally consider the case where z € I; ; and y € Iy ;- for different 7,4’. In this case, we
let z (resp. z’) be the endpoint of the interval I; (resp. I) obtained as the union of all the

Iix's (resp. Ij,s), with k € Z, situated between z and y. The estimates so far show that
the derivative of f at z equals 1, and

| log(f'(2)) — log(f'(y))] | log(f'(2)) — log(f'(2))] " | log(f'(2)) — log(f'(1))]

=g |t ~g] & = ylo
|log(f'(x)) — log(f'(2))| . |log(f'(z)) — log(f'(y))|
- |z — 2| |z —y|°

< 2M.

This completes the proof of the C1*® regularity of f. Similar arguments apply to its
inverse f~!, thus showing that f is a C'**-diffeomorphism of I.

2.2.2 Each map g; is of class C'*@

Again, we will only consider the case of positive 7,7. First, we take z,y in the same
interval -J; ;. We have

|log gi.(z) —log gi.(y)| = M

il igare-1] 1|

lz -yl = gl | Higare@]  ig=l
Hence
llog gi(z) —log g (W)l _ M | _figl Mijenwl _ 1‘ | ;|1
&~ g|® = Higl WHigemm|  Hig=] ¢

- M |I'i,j| |Ii,j+Tk(i)—1] -1 |Ii,jl_a
Wil  Hig=1l
P+ +re(i))?4+1  P4(G—1)741 - cx

< = P q 132,

= M P+ 79+1 P+ (+r(d) —1)2+1 | B ]

The last expression may be rewritten as

| @G @)+ D@+ G -1)?+1) = @+ 57+ DE + (G +md) - 1)7 + 1)‘
(@ + 79+ 1)1 + (G +74(8) = 1)7+1) '

By the Mean Value Theorem, the value of this expression is bounded from above by

PJU P (G + ()7 4 597+ (G A () + (G + ()90 + (5 + e(8))7151
(2 + go)r=2(iP + (J +re(é) — 1)9) ’

M
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and hence by

P + (@) + (o ra(@)5 4 G+ (@)

. @+ g0

<

P AT (G )T 4 G+ )T

<M
- @+ 597

We claim that the preceding right-expression is uniformly bounded. Indeed, if i? < j9, then
it is smaller than or equal to

i ;
P+ (G5 + ()

e
Ve (j+3 ' |
jfl(2—a)

which is uniformly bounded by the conditions (iv,) and (v.). If 77 < 47, then it is smaller
than or equal to

P(i% +i%)771 4 (65 + )90 4 (68 + k)l
ip(?-cx) )

M

which is again uniformly bounded by the conditions (iv,) and (v.).

Next we consider the case where z € [;; and y € I;j», with j < j'. In this case,
| log g;.(z) — log g;.(v)| is smaller than or equal to

IOUlIi,j-E-rk(i)i_lo | Lisrimay] +IOU‘Ii,jJer(i)—lI_IOU[Ii,j+rk(i)l lfi,jf+rk(i)—1!__loglfa:,j'+rk(a‘)|
7 gl Zi,5| ° gl 7 gl |1 51l © |y

The estimates for the last two terms are similar to those above, and we leave the computations
to the reader. The first term equals

+llog

log Misl Higsnl

Pt 59 4] iP+(j+Tk(i))‘?+1’

“Nhjma! il &5 + (5 + (i) +1 P+ 59+ 1
that is,
log (1 PPN+ G A+ 1) = @ 4 (@) + D+ 5+ 1>)1
@+ (5 + re(i))e + D) (@ + j9+ 1) -

We claim that the expression ;;,Jr—g'%;(l:g-l}m ﬁ%’%llﬁﬂ is bounded from below by a positive

number. Indeed, the first factor 1s uniformly bounded because:
— if j9 < 4P, then i+l e 2 e
—_ ?

, and the last expression i3

P+ ())9+1 = P+( +r(3))7+] = ip+(i§+ik)Q+1
uniformly bounded from below by a positive number;
_ifsp -1q P+j'9+1 P+j'9+1 7941 . ! i
if i < 5", then zo—rr=ay 2 syt 2 -+, which is uniformly bounded

(345 P )1

B Vil mre Tnee m vpmodcbiea 111y .
fromn below by a positive number.
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The second factor is uniformly bounded as well because:
k
o s : . P(brali)4l ~ Pli—g P )41 < (=
S then 0% 5 - 5% <44y, thus SR 5 extiBrn 5 oot
which is uniformly bounded from below by a positive number;

= q < 4P P4 (e (1))?+1 P41
if 79 <P, then i = I

which is uniformly bounded from below by a positive
number.

From what precedes, we deduce the estimate

- Ligare@] - i i (i) .
° gl R 7 I
< p [T D@+ G+ D) = (P4 (a4 D@+ 5+ D))
- (2 + (§ + (@) + )P + j7+ 1)

Using the Mean Value Theorem and the inequalities j < j' and ry(i) < ¢, the right-side
term above is easily seen to be smaller than or equal to

i ) L o e o0 A e 1 © e o0 N

M
(@ + O )

To get an upper bound for this expression, we separately consider the cases (a), (b), (c), and
(d), from the previous section.

The first case (a) is j' < 25 + 1. We have |z —y| > and hence

= m:
ip+k(j’ =M ik)q_l-i-jq(j' 4 ik)q_l'ik+j’q(j +ik)q_1ik (ip+j"i'+1)“
(1P + j'9) (& + j9) ('=j—1)°
PR 4 )1 4 §9(5  8)ILR 451G iF)aLeR
(ip + jn’q)l—a(ip i jq)
PHE(5 4 )91 4 259(5 + %) 1
(i + g9 = (P + j9)

|log g, (z)—log g (v)|

|z — yl|*

M

+ M

<M

+ M

<M

+ M.

Pk (jik)ya-1
UPES'T) = [P 4T)

Rl e )
(t"ﬂ’")1 “(tf‘+3‘1)

We will deal with the expressions
first we have

and separately. For the

z'P"'k(j s z'k)qﬂl < 'ép+k(j +14 )q—l
@+ e +59) = (@ + 50>

Now notice that

.2 (p+k), . 5'5 =
~if ? < 49, then & ;E;;?f L i jq((l_,fi," " and this is bounded when %(p+ ky+qg—1<
g(2 — ), that is, when o < -:; - %, which is our condition (vig);

I e
—if j9 < 4P, then “’;:f;;;’?_l - < 1p+k£;(qul’;)q " and this is bounded when p + k + Ho=1=

p(2 — @), that is, when o < % — 5

b~
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For the second expression we have

JGHEE G 4 ik
@+ )o@ +50) (P +goEe

Again, notice that

k 1k ak 1 i
ap . 19(7 43344 j9(qj-+4 P Y915 P
—if i < j9, then LUV o 190G+ P )T

A S = , and as before, this is bounded when o <

2
e . a(ipikya=1k ip(i 5 1ikya-1k
—if §9 < 4P, then EUFE1" 4 i ol

lireji=a- = — pe-ar > and as before, this is bounded when o

The second case (b) is 7/ < . The inequality |z — y| > m yields

|log g.(x) — log g}, (v)| M@'P“‘(j’ +18)I7 4§95+ iR)I R g (g 4 gk)amTik (P44 )e

o
wn

1_ k.
qg p’
k
P

< 1 _
= 4

lz —yl*
P G L L o LU ) O o o 0 KA
(@ +j9)2=e

PHE(a 4 i8)01 4 ja(35 4 %)a- ik 4 P(j 4 i)a-14k
( + 59>~

+ M

<M

To estimate the last expression, we will bound the following three expressions:

PE(ie 4 R)1 ja(iE 4 )e gk iP(j + i*)a 1k
> 5 ) , and , . :
(# + 7)o (# + j9)*== ( + j9)2==

For the first we have . .
’ip+k(i? +ik)q—1 ip+k(iq +ik)q—1
(P + jo)2—« = ir(2-a) ?

and the rlght side member is bounded provided that p + k + E(q -1)<p2-

a< }? - 5 which is our condition (vi.). For the second expression, notice that

~ if 7 < §9, then JUET +ik)a- ik < G+ T 3 ya-15% 3

Faa=— < prie= , and this is bounded when g + %

q(2 — @), that is, a<—...%:

2
. . . q(;q kyg—1.k iP(iq15kV9—1;k
—1fj‘—’§zp,then’ﬂ +i*)9- 14 PEI+i%)I 14

#1ja== ~ = — p@-o > and the last term is bounded because o <

For the third expression, we have that

k k
—if i < 49, then ® (‘;’,i‘ q);; = Jq(ﬁ;:’q;;)i) i , which is bounded when a <

o 4 P kyg—-1;k iP( kyg—1;k
— if j¥ < 4P, then ZUTLN" & < Fikyets

(# + 79 (2 +59) (' =3-1)~

+ M.

@), that is,

+f—1=

. . 1 k
R & gy which is also bounded when a < -

The third case (c) is j' > 2j + 1,7 > ?, 49 > i*. Using (2.7) we obtain

|log g;(z) —log g;(y)|

' ip+k(j! g Z'k)q—-l + jCI(jf o ik)q—lik +ij(j g ik)q—lik (
[z = yj®

<M
(ip + j’q)(\,j.n L jq)

jlate L M,
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To estimate the preceding right-side expression, we deal separately with

¢P+k(jf+z-k)q—1 (g-1)a jq(jr+ik)qflz'k j(q—l)a o j'q(j+ik)q_1’ik (g=1)a
(# + ') (& + j9) C @+ @@+ 59) ’ (% + 5"9)(& + 59)

For the first one has

. 8 . . il E_E — Hg—1l)ox
I L () i el 0 i 0 i e
@i+’ T wege j :

and the right-side term is bounded by condition (vii,). For the second expression one has

k k
] (] +14 )q 1 k (~1)a < (jr_*_z-k)q—lz-kji(q—l)a < (jf‘i-j’g!;)q_lj’%j’(q_l)a
(& + j')(@* + j9) - P + j1 - 7" ’

and the right-side term is uniformly bounded by the condition (vii.). Finally, for the third
expression one has

S 0 e o el ek gk
VAR e O R s ok ) i v O e D e 0 i
R A R S R

and the right-side term is also bounded by condition (vii,).

The last case (d) is j' > 2j+1,5'7 > i, j7 < . Inequality (2.8) shows that |log gg‘ﬁi?‘ﬁ 9; W)l
is smaller than or equal to

PG )T G )TN 4 (G 4 )TN G+ 1)+ g 2)ee
(& + j9) (@ + j7) (G —5-1)e

+ M.
'E 1 (=3 37 (23
In this expression, the term %fj—:%)? is bounded by g%}')—?—, and hence it is uniformly
2
bounded. Therefore,

|log gi(z) —log gu(w)l _ ,,"**(" +8)71 + 495" + )1 1* + 195 + F)r Mt
|2~y B (& + j'2) (& + 5)

(a+5) 0=,

To estimate the right-side expression, we will deal separately with

ip+k -I+ik g—1 2 §'+1 g—1; k:
74 (iq ‘p) iq (“_H)(q b, Jp( i'q ?u q
(e + j9) (e + j9) (P + j9) (P + 59)

-1 q—1 k
(T:E-Fj)(q)l) , and 3 (J +E )

5 1)@ Da
(@ + j'9) (P +Jq)(“+'7) '

For the first one has

PR 4 k)1
7+ 7@ + )

P'C o 'k qfl _,i& - .;2_'5 q_l
B (g gL+ B (g R i
(zq +J)(Q’ o < _-((?-p_!_—j“);)'(zq_’_])(q 1o £ ( 7 ) (J +7 )(q e
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and, as before, we know that the right-side term is uniformly bounded by the condition
(vii). For the second expression one has

g o9 5 ; N d—1 ok ) v 1 L fE
(Jq(jl _|__)2(}.)q 14 (z-g_f_j)(q—l)a < (.7’ + z.k)q ;Zh (i§+j)(q—1)a < (.7, 8 J, P )q IJ’ P (j,+jl)(q_l)&-
iP + ') (P + 59) (P45 - s ‘

and the right-side term is uniformly bounded by the condition (vii,). Finally, for the third
expression one has

5 + ¥yl
(% + 5'9) (% + j9)

(o d*)ieF
(&% + 79)
Here the right-side term is bounded when g(q —1)+k+ E(q —1)a < p, which is true by the

condition (vii,).

(LE =3 ik)q_lik

2 4 (g-Da
(i9 + 7) < =

(i% +5)00* <

(1% +4a)@ e,

To conclude the proof of the regularity of gi, notice that the case where z € [;; and
y € Iy j for different ¢,4' can be ruled out by using the same argument as that of f.

2.3 Realizations of lower-triangular matrix groups as
groups of interval diffeomorphisms: Theorem D

We now deal with the group N, of n x n lower-triangular matrices with integer entries,
all of which are equal to 1 on the diagonal. Notice that N3 corresponds to the Heisenberg
group. In general, NN, is a nilpotent group of nilpotence degree n — 1. A nice system of
generators of Nyi1 is {f1,..., fn}, where the only non-zero entry of f; outside the diagonal
is the (j + 1, j)-entry and equals 1.

The group N,.; acts naturally on the interval. Indeed, let {Iil,....ini (81, -5%n) € Z"}
be a family of intervals so that the sum »Z; ;| ;.| is finite. Joining these intervals

“lexicographically, we obtain a closed interval /. Then an embedding of N, into Homeo, (I)
is obtained by identifying f; to the (unique) homeomorphism whose restriction to each
interval I = I;;, ;. coincides with cpf:_f:, where:

—forj=1:

T = Ii;,iz,...,in_hin—l: J = I‘i1+l,i2,.-.,in_1,in: J' = i1+182, . in1,in—11
—for2<j<n—-1:

I'sy, . det F = Ly bbb J' =L, i bigotpsin=15
—for j =n:

Pl . au . A

!/
Edii ih—1lin—1: L “liengla=1dn—!ln=i? J - IF‘.----»ln—l;f't'f'in—l'l'
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This realization comes from the natural action of N,4; on Z"*! noticing that the affine
hyperplane 1 x Z™ is invariant under this action.

In order to prove Theorem D, we fix once and for all an arbitrary positive number
a < ﬁ Our aim is to show that, for a good choice of the lengths |[;, .|, the f;’s

previously defined are C'**°-diffeomorphisms of the corresponding interval I. From now on,
we will assume that n > 3: the case of the Heisenberg group N; is covered by Theorem C.

We begin by choosing number p, €]1,5/4], and for 1 < j < n — 1 we choose p; > 0 so
that the following properties are satisfied:

(ip) pL1>pP2> ... > Ppo1 > pr > 1,
(ip) 2+ +...+; = +21 <1,

Pn-1 Pn
Pn
(HID) 8 S (pn—1)p1°

(ivD)a<—E‘—(—1-— - )fora,lll<j<n,

— pn—1 \ pj Pj-1
1 1
v B i,
( D) Q= Pn Pn—1

A concrete choice is p; := m. (Hence, one may take p, := 5/4 and p; := ;;% for
1 < j<n—1.) Indeed, the first property is easy to check. For the second one, we have

2 o 1y 3 ja(l—1/pn) = i+a(1— 1/;0,1)M

1
<=+ (1-1/p) =1,

=1

where the inequality comes from the hypothesis o < ﬁ For the third and fourth
properties, we actually have equalities with our choice. Finally, since n > 3,

2 2_ _1/pn _ 1/pn

G e B ;
S A1) S372-1/p, ~ 1+ (n-1)(1—1/py)
Hence,
a1+ (n=-1)(1-1/p)] < =
Pn
that is i 4 :
& s g WYL= Lpy) = o s aee
~ P (n=1){1 = 1/p) Pn  Pnet

which shows (vp).

It is worth mentioning that, for a > mg—T)v the properties above are incompatible. (This
is one of the main reasons why we suspect that our construction is optimal.) Indeed, from
(iiip) we get pil > g(z;;;l). Using (ivp) inductively, we obtain é > &1‘;‘:—1) for1<j<n-1.
This yields

—

n—

S ydelpn=1) 1 _epa—Une-1) 1

Da Pn 2pn Pn

o 1

j=1 p‘?

[
Il
i
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If a> -ﬁ, the right-side expression is greater than or equal to 1, contrary to (ii)p.

Now fixing any choice of the p;’s as above, we let

1
o filr et il 1

According to [13, §3], property (iip) implies that the sum of the lengths |J;, ;.| is finite.
We next proceed to show that the induced maps f; are C'*te-diffeomorphisms of the corre-
sponding interval .

2.3.1 The map f; is of class C1*¢

First we consider z,y in the same interval I;, ;.. We have

| log(fi(z)) —log(fily))| . M
|z —y| I P

Liy,..oiin] [ iyt1,in=a] 1’
| Tip41,in] g, in—1]

Hence,

| log(fi(z)) — log(fi(¥))l < M e, il Hag, gt ‘
|z — yl° - | List1,in] Migyin—1] ]

The right-side expression is bounded from above by

(1P ot fin = U1 (fi+ 1P+ finfr+1)

M
([ + 1Pt i = LPr 1) (Jia P24 o [Pt 1)

wn ]

(|aaP ...+ |a]P+1),

which equals

(inlP>=lin = 1) (2P~ i + 17
iz + TP Tzl lin = 1o+ ) ([l i+ -+ Jinn 1)

(i + . . i +1)7

By the Mean Value Theorem, this expression is bounded from above by
(Jin]+1)Pr=2(Jiy |+ 1)P2 1
(|31 [P+ |ig|P2+ . . . + |ip|Pr+1)2—a"

In the case [i1|P*< |in|P, this is bounded by

(2.9)

(lin|41)Pr 2 (| 1 1)
(Jin[Pr+1)2-2

M

This expression is uniformly bounded when p, — 1 + ;L:(pl —1) < pn(2 — @), that is, when
a < pil + 51:, which is ensured by the condition (vp). In the case |i,|P»< |i;|P* we have the
upper bound

P e i G e Vi

{15, 1oy 22—
NES TS L_,_1)
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This expression is uniformly bounded when p; — 1 + :;—i(Pn —1) < p1(2 — a), that is, when
a < p% + pl—n, which —as we have already seen- is ensured by the condition (vp).

Now we consider z,y so that z € I;; _,_,4, and y € I, __;,_,« for some in, i, such that
in —in > 2. To simplify, we will just deal with positive i,,,, the other cases being analogous.
By property (2.2), the value of |log(fi(z)) — log(fi(¥))| is bounded from above by

Liysr,..i L1, Tsr,. B, .. L,z Lis1,.ir -
tlogl 11+1,...,1n' -1 l 1.1-!—1,...,3‘;1”+ logl 11+1,...,1n| —log{ i141,...,in 1||+ 10g| n+1,...,z{.‘| —-log[ i1+1,...,20 1”

‘Iilx---)ini if-h.--.,i;" I |Ii1,....inl |Ii1,...,in-—1| | lIil,.._,i;| lfi, ,,,,, i;—1l l
Since ¢ — Patirntogal 3o a monotonous function, this expression is smaller than or equal to

[1:)

:-'-ﬂ'n-—l.iL

3

i1, | [ Bid, =]
1 o LR — l o 1 yrergbm
OD( | Ly, | o8 Hay...g5=1]
(a1 [P+ ia)P2 4. . . + |in — 1Pr+1)(J3y + 1Pr+[ia|P2+. .. + |i;1|1'°"+1)‘

= |lo
‘ € (|iy + 1|Pr4|ig[P2+4. .. 4 |in — L[Pr1)(|e1|Pr+]d2|P2+ . .. + |i [Pr+1)
= (1 ¥ (i = (i — 1)) ([ — i1 + 1)

( |

i1 + 1|Pr|ialP2+ ...+ |ip — 1|Pr-1)(Jey [Pr 4 |ia|P2+ . .. + il [P +1)
Since the expression in brackets in the right-side term equals

(Jia|Pr+]iafP2+ . .. 4 [in — 1P +1)(J31 + 1P |ia|P2+ . .. + |3, [P~ +1)
(lix + 1Pr+|ig|P2+. . + [in — 1Pr41)(Jia|Pr4]ig|P2+ . . . + |iL|Pr+1)

it is bounded from below by a positive number. Therefore,

Pn __ ,;pn)(ﬁllm_lil + 1|:ﬂ1)
log( f1(z))=log(f; <M U L , .
|log(f1(z))~log(fi(y)) < (i + 1P +izlP+ . . + linlP + ) ([ Pr il 1 - -+ [Pt 1)

By The Mean Value Theorem, the last expression is bounded from above by

#8nL (i, — ) (Jia [ 1)P2 2
(il 4.+ 8+ (it ..+ + 1)

Thus, in order to get an upper bound for 1281 (Tizlﬁ,g(f 10D e need to estimate the expres-
sion
i (i — i) ([ +1)P
(i .o+ + D(JalP+ .+ i+ Dz —yle
We will split the general case into four ones:
(a) @ < 2 +1,

(b) £¥% < [P+ b Jlpa [Py

N ol 00y P D 1. 1p1 1 ; |Pn=1
WO}, 2 2in 42 3.!1‘.'1 3}1" 2 ‘liltp = Iu__upl i

(2.10)
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(d) i, > 26n +2 and i < [i]P'+ .+ [ [Pt <

In case (a), the estimate |z —y| > (i}, —in —1)|i, 4,12 | shows that the expression (2.10)
is bounded from above by

i~ (i — i) (Ja [+1)7

M— _ . : : 2.11
(laJpr+ .o+ 8 + 1)(Jaa |+ ..+ i + 1)1e 211)

By the condition ¢/, <2i, + 1, the latter expression is smaller than or equal to

,[ (i 1)1
(fiafPr4a2™ + 1)2e
P 1 P % 1
; ; Py P1— Pn—e (g P1- ‘ i .

If |¢1]|*< 4P~, then E;l‘plﬂzgﬁﬂ);w < = (iﬁg’jrl)ﬂ)ul , and the last expression is uniformly

P = ). - . gl@n-&) : -
o B o 1 (2 Ll Tl (RSN
bounded by condition (iiip). If #* < |ia|P*, then i < T nee — and

this is uniformly bounded again by condition (iiip).

In case (b), the expression (2.10) is still bounded from above by (2.11), which in its turn
is smaller than or equal to
i (Jaa+1)P
(Jir]Pr+. .. + |gq [Pr141)2-0"

Now using the condition P < |i;|P*+... + |i,—1]|P*~!, we see that this last expression is
bounded from above by

(la 1) (fia 41
(2P finea [P+ 1) 7% o 7 (fig 1) 7 e

Finally, the right-side expression is uniformly bounded by condition (iiip).

In case (c), we first need to estimate the value of |z — y|:

1
e=yl2 D Minsil = D G e 71 2

in<j<iy, in<j<iy

1 1 o1
> _—2 > dxr >
- Z g1 T Z 3jPn — /in+1 3P T

in<j<il, in<j<il,

S M - g ek 1§ Pt
= (in + 1)Pn-1 il

pn—1 ]
M (TN, M
(i 1Pt 3 = Gt Dt

v

v
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where in the second inequality we used the hypothesis if* > |i1|P*+... + |in—1|P"~*. Using
this, the value of (2.10) is easily seen to be smaller than or equal to

z‘;fn—l(q;’n—in)(|i1|+1)m—1(in+1)(pn—1)a <M(|2-1|+1)p1—1(i _|_1)(pn—1)cx
(Pt + &+ D(aPt.. i +1) — O JaPdorE L

Since by hypothesis we have i~ > |i;["!, the right-side expression above is bounded from
above by

B,
2 G 1P (o o+ 1)
ir+1

which is uniformly bounded by the condition (iiip).

)

Let us finally consider the case (d). Letting
Faee T # [l i)™ a2,

we first observe that

lm_y|~>— Z |11 oin— 131 Z

tn<j<in, in<j<il,

=

/"" dz >/i:‘ dz
S+JP“ = Jiqn@Pe +8 T Sy wqi(g 4 SHiee e

The last integral equals

1 [ 1 1 }_ 1 [(@ 4 SRRl (i, 4 14 SY/Pr)pe]
( .

(pr—1) |(in+1+S81/pn)Pn=1 (il + P )Pl T (pp—1) (i +1481/Pn)Pr=1(4! 4 §1/Pr)Pn—1
Using the Mean Value Theorem, we conclude that

i =iy —1

T

==yl = (in + 1 + SYpa)en=1(3! 4 S1/Pn)’

Using this, we conclude that (2.10) is smaller than or equal to

iPa—1(3 — in) ([81] 412 (i + 1+51/pn)a(pn-1)(i;1+ Si/pn)e .
(i + ... + & + D)+ ..+ + 1)~ — 1)
< (Jia|+1)P (e + 1 + St/pm)alpn=1)(j! 4 SI/pn)a.
N (i 4. + B+ 1) (&, — i — 1)°

(2.12)

By hypothesis, 1+ < §, thus i, < S/Pn . Since by definition, |#;|P* < S, this yields

; mn-1(; 1/pn\a(pn=1) p1-1 ﬂzn;ll
(|i1|41)P (zn+1+.S ) < MS T 1. (2.13)
(Jir|Pr+. .. + 2" + 1)
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By hypothesis, we also have S <1+~ and i, > 2i, + 2, which gives

(i, + Stpm)a
—_— < M. 2.14
@ —in =1 =M (214)

Putting together (2.13) and (2.14), we conclude that the expression in (2.12) is bounded

from above by
sz"1+ 0!(1;r-.*Q41
1 n
MS :

which is uniformly bounded by the condition (iiip).

To conclude the proof of the regularity of fi, notice that the case where z € I;, ;. and
y € Iy, .« for different (41,...,%,—1) and (¢},...,%,_;) can be ruled out by an argument

similar to those used for the maps f and g, of previous sections.

2.3.2 For 2<j<n-1, the map f; is of class C'*®

We first consider z,y in the same interval I;; _; . We have

|log(f;(z)) — log(£;(v)) o M iy, ...ta . i_,+i_1-ﬁ1,...,in—1|_1|
jz -] SR L | ET— Wi, guil
Hence,
LI Gl T
o — gl VL. tsigmr o] | Tiy, i —1]

One readily checks that the right-side expression equals

/ (lin[Pr—lin — 1[P)(185]P7 — |35 + 351["9)
(afPr o+ 25+ 4ialPit o [in = 1Pt L) ([P 4[4 [P fig[Pr 1)1

By The Mean Value Theorem, and since p;_; > p;, the last expression is bounded from above
by
(Jin|+1)P 1l ]+ 85 -1 )P~ i1
(Ii1lp1+ — ]’L;jlpj‘f' . Iin|p“+1)2ﬁa-
To estimate this expression, let us first assume that |i;[?< |i;_;|Pi-*. In this case, (2.15) is
bounded from above by

(2.15)

. E-u . B .
(lin)+2)P(J651] 2 1|} 451

M . .
(11 [Pi=2 +[in|P+1) %

(2.16)

If |¢,]|P~< |i;—1/P~, then this expression is smaller than
Pj-1 Pj-1
-1 5% +1)P " (Jiga] 7 i) i

(li;oqlPimig1)2-e

15— 4

M (
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Since pj_1/p; > 1, this is uniformly bounded if

Pj— Pj—
2 I(Pn“l)“*‘;_l(?jj’"1)""1—19;'—1(2“”(1) < 0

n J

thatis, o < ;—n-i—plj—m%l, and this is ensured by conditions (ip) and (vp). If |i;_1|P-1< |i,]P,

then the expression (2.16) is smaller than or equal to

o e —Pn_
(Jin|H1)Pn (3| 75 + i | F3=1 P51 i] Fa-1

M
(a1

Since pn/pj—1 < pn/pj, this is uniformly bounded if

Pn—1+2(p; — 1) +

P Pji-1

which is again ensured by conditions (i)p and (vp).
Assume now that |¢;_1|P-1< |¢;/%. In this case, (2.15) is bounded from above by

e o
(RS e (1 E o P e i 71 R
(145]Pi +|in[Pn+1)2—=

M

Proceeding as in the previous case, one readily checks that this expression is uniformly

bounded when a < pi + pij = p_l -, which is ensured by conditions (i)p and (vp).
n 3=

Now we consider the case where z€I; ;,,..i, and y€I; 4, .2 , With i), — i, > 2. (For the
case where z € I, ;, and y € I u for different (4y,...,4,_1) and (#,...,4,_;), one may
apply the same argument as that of f;.) To simplify, we will only deal with positive iy, ,:
the other cases may be treated in a similar way.

Once again, property (2.2) implies that |log(f;(z)) — log(f;(y))| is smaller than or equal
to the sum

s, ..iytis—proin PO
1 T —1 +
I 5 O, ij,---,inl | ilr--,ij.n-.i;ll
" 1 g |Ii1‘,[...,ij+’ij_1,...,'in| _1 c |Ii1}..,ij+‘ij_1,...,in—1I ¥
. |ty
|Ii1.-~-,ij+ij—1,---,ii-.—1f |Ii1,---.ij+ij—1,~--,i'n|
+ |log i -1 i
iyt =1 FE—

As in previous estimates of similar expressions, we have

log (lfilr--'}ij+ij—1:---,in_1|) _ log (Ilelsij'i'tj-*ll)?':-z I) { '
lIfl.,..,f;-‘ ..... ’!.n—ll lIf]_....,ij,...,‘l:‘:,ll

| log(f;(x)) — log(fj(¥))| <3
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The last expression equals

3 liog (B oo [P o [ = PP A D) (a4 i+ Gy P+ i"-%[”"*"l)l
2 (laalpr+ .o i+ P e = P (Jin P P | [P D) |
that is,
3 liog (1 £ (lin = 1P~ = 2"l + 85111~ is ) )} |
(ler|Pr+. ..+ |i +ij-1Pid .o+ fin — 1Pr+1) (e [P+ .. 4 |45]P5+ ...+ il |Pr+1)
(2.17)

The expression into brackets in the right-side term equals

(JaafPr 4o |5P 4+ i — 1P L) (8 P24 |65 + 4 [P+ .+ |2 |Pr+1)
(il ot 4T + a4 Jin — TP ([Pt - Jig Pt et D)’

hence it is uniformly bounded from below by a positive number. Therefore, the value of
(2.17) is smaller than or equal to

(5 — i) (25 + 45 [P —4;17)
(leafP oo |5 + djma Pt o+ finfer D) (G 4.+ [ ]P4LL + fin[Pr+1)

/1

Using the Mean Value Theorem and the condition p;_; > p;, this last expression is easily
seen to be bounded from above by

[ i = ) (185141350 )P 7 iy

[log(f;(z))—log(£; (v))I

Therefore, =

is smaller than or equal to

dpn—=1(s1 _ 2 . ) ;Dj—l P
. i2n 2 (4, — i) (lig |+ li5-21)P 451 (2.18)

li[Prd o+ P B 4 D (P P+ )| -yl

In order to estimate this expression, we will again consider separately the cases (a), (b), (¢)
and (d) of the previous section.

The case (a) is i), < 24, + 1. Here the estimate |z — y|> (i, — in — 1)|/i, ip,....iz,| sShOWs
that (2.18) is bounded from above by

et (i, — in) T (G 1 P g

M 7 ; 2.19
(it o+ 3P4 a8+ ([P + G fPi .+ im™ + 1)1 (219)
which is smaller than or equal to
yPn—0C¢ - = P_]_ .
M A (7] R il PN -

(JirfPra. o+ glPi4 . 80 + 1)2e
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There are three subcases:
~ If |’ij|pj5 Iij_llpj‘l and 2~ < |ij_1|pj—1, then

o o : i N - YN (NU . — i
ol (7] G (P ) il (8 < pyli=l ™ P (40| 7 +ija])P il
(P4 ..+ |35Pa4. ..+ + 1)2- — (|2j=1|Pi-141)2=

The last expression is easily seen to be uniformly bounded by condition (ivp).
— If |3;|P9 < 8 and |i;_1|P-1< P~ then

En —Bn_ _Bn_
(5|4 |d 1P i - ﬂ/fiﬂ"“"‘(z}fj i Pl
(Jaalpr+. ..+ |4 [Pi+ ...+ + 1)%e — (& + 1)2- 1

and the last expression is uniformly bounded by condition (ivp).
= If |;_1|Pi-1< |¢5]P and 2~ < |i;|P7, then one has
e . A . . R <
(] R O (P20 2 M|Zj|‘°“(p (P R e 1
(liafr ... + [5]Po+. ..+ 48" +1)22 — (I4;[Pi+1)%= ’

and the last expression is uniformly bounded by condition (ivp).

In case (b), we still have the upper bound (2.19) for (2.18). Now using the condition
iPr < Jiq [P 4. ..+ |in_1|P*t, the value of (2.19) is easily seen to be bounded from above by

TR U it VR (gD il
(JiafProt o fina et 1272 7 (it i et 1)

To estimate the right-side expression of this inequality, we consider two subcases:
- If |'ij_1lpj_1§ |’£:j|pj, then

. . ey . T T
(i3] +]25-11)P iz < [(|3j|+|2j|"’“1)p3 e
(laa|Pr4 o A+ Jip— [Pt 41) 7% o T (Jij|Ps41) "% %n

’

and the last expression is easily seen to be uniformly bounded by condition (ivp).
- If IZJIP-"S ’ij_1|pjal, then

i i N L
(5141852 )P~ |51 (lg5-a] P+l )P~ 5|
(alPr+ oot |in—1|p“—1+l)lﬁa+P_n o (Jij—q [P —}-1)1‘“'*';:7 ’

and the last expression is easily seen to be uniformly bounded by condition (ivp).
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In case (c), we had the estimate

M

S [ . e 2.21
o= 2 G Ry

which shows that (2.18) is bounded from above by

; i (i, — i) ([ |2i-a )P~ fi-1| (in + 1) P70
(Jia]r .+ P+ o+ + D) (et o+ 4P+ .+ idm + 1)
This is smaller than or equal to

(h.'?|+|z]"1l)PJ_ll7’J—1‘(Zn + 1)(}371—1)0! (222)

lig[Pr4 .+ P iR+ 1
Now from the condition @~ > |§;|P*+... + |in—1[P~-? it follows that [i;|’< 5 and
|i;-1|Pi-1< i8».  Therefore, (2.22) is bounded from above by

» (z-??;n/Pj a izn/pj-l)pj—liﬁn/pf—l (Zn + 1)(‘Pn—1)a
i+ 1 ’

and this expression is easily seen to be uniformly bounded by condition (ivp).

In case (d), we had the estimate
i =iy —1
ty + 1+ SUPn o1 (§) 4 Sl/En)’
where S =1+ [ [P* + |i2|P2 ... |in-1|/P*-*. Thus, (2.18) is bounded from above by
27, — i) (i g igmal in 1 4+ S92}, 4 Vo)
(et [P+ 0+ (Pt + gl o+ 88+ 1) — n = D
hence by

lz —y| > ( (2.23)

(sl )P Bl (in + 1 + SV )0lEa—1(g 4 SL/Pa)e
(Jéa|Pr+. .+ |41Pi4 .+ R+ 1)(8, — i — 1)
Since the condition 1+ i» < § yields i, < S*/?=, this expression is smaller than or equal to
(igh+lig 2 [Pl SYo)? otepeh
(3;1 —in — 1)0 '
The conditions 1+i#* < § and p;_1 > p; also yield |i;| < S5 and |i;_1| < Si/pi1 < §1/Ps,
n j j j j
thus showing that the last expression is smaller than or equal to

M

M

(if, + SYP )2 Fr-niglyesipsila
(é, —in — 1)
Using the conditions i, > 2i, + 2 and S < 1+ ¢P~, this last expression is easily seen to be

_L_(P.__‘])+_‘1_.+___M-F"]_1

MS

which is uniform!y bounded by the condition (ivp).

b
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2.3.3 The map f, is of class C'*®

First we consider z,y in the same interval I;, ;. . We have

| log(fr(2)) —log(fL(w))l . M l Bipinl  inpsinbinaal 1'
|z =yl = Wassind Whipostntineal Wi, tut ’
hence
| log(fn(2)) — log(f ()| M‘ (1 S —~1’|I- e
|z — y|o T Hipintinal Higyinal Byt

The right-side term above is smaller than or equal to

(|ia|Pr+. ..+ |in — PP 1) (Jér )P+ .+ | + G [Pr+1)

M .
(liafPr+ o lin + iy = 1Prt (i Pr+ - A [inPr+1)

—1 (|i1|P1+_ y e I,inlpn_%_l)ct,

which equals

| ol i + o= P) 4 S Pl = Ui + it = W) 4 O gy oy
(Jir[Pr+. .. + g + dpq = 1Pr+1) (1P + - . . + |in|Pr+1) wen

where

C = |t =1 |intina [P —lintina1— 1" |in P +lin— 1P —|in+in—1 = 1P +lin+in-a [P —[in >

and, as before, S := 1+ |41]P* + |ia["* ... |in_1[P~-*. By the Mean Value Theorem, the last
expression is bounded from above by

1y SonblialP linl i 2P s+ SR Pl i +1)P i[O
(51P =+ .. - + [in + in-1 — 1P+ 1) ([P + . .. + [in]Pr+1)1-e !

where
C' = |in + in*1|pn(|in|+1)pn_l + |in|p“(1in|+|in—l|+1)pﬂ_l+
+ (linl+lin-a|+1)P"  in1l+ (e |+ |ina )P fin-al-
To get an upper bound for this last expression, it is enough to do so for

‘in + in—llpn(|in|+l)pn—1

. : - : - (2.24)
(i T+ it — WP ) (Tt a1

and . . . 1 .
|57 (|8 ] +3n-1)P" " in-1]
(la|Pr+ . . 4 lin + p1 = LPr1)([8a [P+ .+ [P +1)1m
vwhere 1 < k< n. '

(2.25)
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Expression (2.24) may be written as
lin + dn—1 [ (lin|+1)P"
(P Tim it — 1P D) (- + Pt 1)a
The first factor is uniformly bounded, whereas the second is smaller than or equal to

(lin|+1)P"
(finfPr+1)t=

This last expression is uniformly bounded provided that p, — 1 — p,(1 — @) < 0, which is a
consequence of condition (vp).

Concerning expression (2.25), notice that, since p,_; > pp, it is smaller than or equal to

[P (lin | +lin—1 )P~ [én1| (lin]+[én—1 )P~ in—1|
(Pt finfPrt1)270 7 (JafPr4 o finfPrt 1)t

On the one hand, if |i,|Pr< |é,—1|P~-?, then

i Pn-1 , s
(Ién |+ |21 )P~ i1 (linza| #» +|in-a|)Pr " in-]
(lilipl-*‘ R Iinlpn_i_l)lwa - (lin—1|p“"l+1)l—a )

and the last term is uniformly bounded when 22=%(p, —1)+1 < p,_1(1—a), which is ensured
by condition (vp). On the other hand, if |i,_1|P"=*< |iy [P, then

—Pn —Pn
(lin|+lin—ll)pﬂ_llin—-1j (lin|+|in|Pn=t )Pr=t|ig|Pr-1
([Pt + [in|Prt1)tme — (lenfPm+1)1=e ’

which is uniformly bounded when p,—1+-* < p,(1—a), that is when condition (vp) holds.

Pn—-1 —

Next we consider the case where z € I, 4, ;. and y € I;, 5, &, with ¢, — i, > 2. (For

the case where z € I, ;, and y € Iy i for different (iy,...,4,-1) and (4,...,4,_,), one

applies the same argument as that of fi;.) Once again, we will only deal with positive iy, i,.
As in previous cases, |log(f;(z)) — log(f,(y))| is bounded from above by

(lig[Pr+. .. + i + D(Jin P+ . .. + i, + in—1[Pr+1)
(i1 ... + lin + i Pr 1) (a1 P 4. .. + ™ + 1)

Notice that the right-side term may be rewritten as

Sorc il (12 + dnoa[Pr=iP) + Sop i|PE (8 — |in + dn1 ") + C
log{ 1+

PRI, | (R Ty

3

log < M |log

|Ii1,---,in"1l |Ii1,---.i';.-!-’in-1‘

M

H

(2.26)

(il -+ -+ fin + inca P4 D) (4 -+ 887 +1)

where

é = Zﬂn]?‘ln + Zli't—llpn“li'fl + in—llpnig’ﬂ + if;" i i’rfn + ]Z; £a i'n-—llpn_lin + "inﬂllpn

. . i 7 § i 5 » i 3 . 3 . v N,
A A I NI BN TN Y TR
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Since the expression

(il + - + 8B + D([8afP'+ - . + [ + dnaP+1)
(lia|Prt .+ fin + bna PR L) (J [P+ + 3P + 1)

is uniformly bounded from below by a positive number, (2.26) is bounded from above by

et ik lPE (12 + e [Pr—in) + S p ik lPE (B = [in + g |P*) + C

M
(Jia|Pr+ - oo+ in + i Pr+1) ([0 P2+ i + 1)

By The Mean Value Theorem, and since p,—; > p,, this last expression is smaller than or
equal to

E;}!ikwk(i;z i |in—-1|)p"_1|in—1|+ Z:_—W_ilik]pk(in + |in—1|)p"_1|in—l|+é’

M
(|4 ...+ &+ D) (fig e+ i + 1)

)

where C" equals
8% (i, + lin11)P" i1 |17 (in + [in-1 )P fin—1|+(in + lin-1])P* " in—1 |+ (i + lin-1)P"" |in-1-

Therefore, in order to get an upper bound for the value of 128l n(@)-log(a@l  we only need

|lz—y|*
to do so with !
|iklP* (35, + lin—1])P* " lin| where 1 < k<n (2.27)
(Jig|Pr+. .. + 88 + D) (fir[Pr+. .. + 38" + 1) |z — y|*’ - T
and s ' i
A O ) Y (2.8)
(JigJpr+ ...+ 8 + D) (i |Pr+ ..+ 38 + D)z — ylo
Expression (2.27) is easy to deal with. Indeed, since
i, — iy — 1
gl 3o T e — TV e ] i L ; 2.29
]:E y| - (Z'n in )l fr112v--':n| (l%llpl‘}‘.--",rz'r?n"i—l) ( )

we have

ik lPx (2, + |in—a|)P" " |in-1|
(Jirlpr+ ..+ + D(|infpr+ ...+ + D]z —yle —
liklpk (Z:n. 55 [in—-ll)pn_llin-—ﬂ =
T (JaPt ([l iR 1) T
(i + 1))~ [in—1]
= (Jia]pr .. i 4 1)1
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To estimate the right-side expression, we consider two cases. If, on the one hand, we have
i < iy P2, then

, . g . Pn—1 . .
(2:1 + lzn—ll)p"—liln—il (|zn—ll Pre +izn—1|)pnh~1|3n—1i
(lfpr .. +agm + e (Jtn-1[Pr-r+1)1-e

This is uniformly bounded when p;f (pn — 1) +1 < pu—1(1 — @), which is equivalent to

condition (vp). On the other hand, if |in—1[Pr-*< 42", then

_Pn_ n
(G o Y BN G 78 L i 9 K
alertsws 42" + 12 T (ig" -+ 1)1-e

and the right-side term is uniformly bounded provided that condition (vp) holds.

To obtain an upper bound for (2.28), we will consider separately the cases (a), (b), (c)
and (d) of the previous two sections.

In case (a) we have i, < i, < 2i, + 1. Hence, the upper bound already obtained for
(2.27) with k=mn is an upper bound for (2.28).

In case (b), we have i’Pn < [i1|P'+. ..+ |in—1|P"~*. Hence, (2.28) is smaller than or equal
to

n—1

3 |3 |P* (30, + |in—1])P* " in-1]

(it 4+ &+ ([ +. .+ + )|z — gl

and we have already seen that each term of this sum is uniformly bounded.

In case (c), we use (2.21) to obtain

32 (in + lin—1])P " il
Gl + & + D+ ...+ + Dz — gyl =
(in + |in—1|)p"_1lin_1| (zn + 1)(Pn“‘1)&
(il + &+ D2 (Pt i+ D

<M

In the right-side expression, the second factor %)—& is uniformly bounded. To show
that the same holds with the first factor, one may proceed as at the end of the estimates for
(2.27) just changing i;, by in.

Finally, in case (d), the estimate (2.23) shows that (2.28) is smaller than or equal to

(i + [in])P" Uinor| (in + 1 + SYPn)alen=D) (3 4 §1/en)e

(lilme B+ 1M — iy — 1)
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Since the condition 1+ " < S yields i, < S/~ this expression is smaller than or equal to

(i" =+ |in-11)pn—1|z‘n—1[(i; + Sl/pn)a S_(E—” ;‘n_l -1
(i —ip — 1) ;

n_

M

Moreover, by the definition of S, we have |i,_;| < SV/Pr-1 < SY/P» which shows that the
last expression is smaller than or equal to

(i;+31/pn)a pa=l, 1 alpn=1) ,

Pn ' Pn—1 Pn
(i, — in — 1)°

Because of the conditions ), > 2i,, +2 and S < 1+ 4¢P~ this last expression is bounded from
above by

M

P.&Tl+_l_+ﬂﬂﬁ'ﬂl_1
n

Ms ot

which is uniformly bounded by the condition (vp).

b
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