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Resumen

In a recent paper by M. Mantoiu and M. Ruzhansky a global pseudo-differential
calculus has been developed for unimodular groups of type 1. In the present thesis
we generalize the main results to arbitrary locally compact groups of type I. Our
methods involve defining suitable Weyl systems, Wigner transforms and the use of
Plancherel’s theorem for non-unimodular groups. We also give explicit constructions

for the group of affine transformations of the real line and Grélaud’s group.

\7



Contents

1 Framework

1.1 General remarks from functional analysis and measure theory

1.2 Direct integrals of Hilbert spaces . . . . . . . . .o oo oo

1.3 Basicrepresentation theory . . . . . .. ... ... ..
1.3.1 The left and right regular representations . . . . . . . . . . ..

1.4 Induced representations and the Mackey machine . . . .. .. .. ..
1.4.1 Induced representations . . . . . . . . ... ... ...
14.2 The Mackey Maching » « » « « « ¢ ¢ 4 2 san v o sww o s s

1.5 Square-integrable representations . . . ... .. ... ... ... ...

1.6 The Fourier and Plancherel transformations . . . . . ... ... ...

1.6.1 The Fourier algebra and Plancherel inversion . . . . . . PR

Quantization on locally compact groups of type I

2:1 The quadtization . . s & com s mm o 6 8 5 5 5 5 8 4 4 58 4w o a e e
2.2 Left and right quantizations . . . . . ..................
2.3 Some operators arrising from thé caleulus. . . . ... .. ... .. ..

2.3.1 Other convolution operators that appear in the literature . . .

b
.

Quantization by a Weyl system . . . . . .. e

| \)
ot

Pseudo-differential operators . . . . . . .. . . .. SERERET T TY

2.5.1 Relations between different 7-quantizations . . . . . . . . . ..

vi



2.6 Involutive algebras of symbols

3 Some concrete examples of non-

unimodular groups

3.1 A pseudo-differential calculus for the affine group . . . . . ... ..

3.1.1 Representation theory of the Affine group . . ... ... .. .
3.1.2 The quantization for the affine group . . . . . . ... .. .. .

3.1.3 Operators that arise from the representation . . . . . .. .. .

3.2 Grélaud’sgroup . . . ... ..

3.2.1 Representation theory of G . . . . ... .. .. ... .... .

3.2.2 Computing the unitarydual . . . . .. ... ... ...... :

3.2.3 The quantization . . .

4 Crossed products of C*-algebras
4.1 (C*-dynamical systems . . . .

- 4.2 The Schrédinger representation

4.2.1 Interlude on Amenable groups . . . . . ... ... .. ... ..

5 Conclusions

vii



Introduction

M. Mantoiu and M. Ruzhansky developed [33] a global pseudo-differential calculus,
or quantization, for the class of second countable locally compact unimodular type I
groups. Our aim is to generalize their main results to the more general class of non-
unimodular groups. There are many important examples of non-unimodular groups,
the simplest one is perhaps the affine group consisting of all affine transformations
of the real line, the only non-unimodular Lie group in dimension two. In dimen-
sion three there are many infinite families of non-isomorphic non-unimodular Lie
groups. Many other examples arise in the study of parabolic subgroups of semisim-
ple Lie groups that are used to study irreducible representations through extensions

of Mackey’s machine [19-23].

Let GG be a locally compact group. It will be assumed that & is second countable
and of type 1. Let G be its unitary dual, that is, the space of all classes of unitary
equivalence of (strongly continuous) irreducible unitary representations. The formula

(cf. eq. (1.1) [33] for the simpler unimodular case)

Op(@)l (@) = [ [T (a(e.Dim(ay™)) M) Huly) dedy,  O)

is the starting point for a global pseudo-differential calculus on G. It involves special

measures on G and G, namely, the Haar and Plancherel measures, operator-valued



symbols defined on G x G, the modular function A of the group and a family of
unbounded operators; the formal dimension operators D introduced by Duflo and
Moore in [8, §3]. Formula (0.1) also makes use of the Haar and Plancherel measures
on G and G respectively. In order to make sense of formula (0.1), we also have
to fix a measurable field of irreducible representations (m¢). 5 such that m¢ is a
representations in the class of ¢ that acts on a Hilbert space H;. For the moment
the symbols are essentially chosen so that the compositions a(z, £ )Dé/ * are trace-
class operators on the Hilbert space H, almost everywhere. We also require the map
sending £ to the trace-class norm of a(z, £ )DE/ ? to be absolutely integrable for almost

all z € G.

The notion of quantization comes from the passage from classical mechanics
to quantum mechanics. It is a rigorous formalism in which one passes from abelian
C*-algebras of observables, as in Hamiltonian mechanics, to non-abelian ones, as in
quantum mechanics where the observables are operators on an infinite-dimensional
Hilbert space. Quantizations have been proven useful in the study of partial differen-
tial equations, quantum optics and signal processing. It also has many connections
to Lie theory, as it is directly connected [11] to the Heisenberg group and to the

metaplectic group, which is the double covering of the symplectic group.

Formula (0.1) is a generalization of the one derived in [33, eq. (1.1)] to the class
of unimodular groups, but our formula has a difference in the order of the factors
that has to do with the choice of a convention for the Fourier transform (cf. Remark
1.4) our quantization will give rise to right-invariant operators whereas the one in [33]

gives rise to left-invariant operators.

Particular cases of compact Lie groups have been extensively studied in [35,

37] for example, and in the references cited therein. The class of nilpotent Lie

2



groups is treated in [10] and in other references. For a general treatment of pseudo-
differential operators in a group-theoretic setting see [10,36]. The idea of using
the irreducible representations of a group to define such calculus seems to come
from [42, §1.2], but it was not develéped in this abstract setting. All the articles
cited above contain historical background and references to the existing literature
treating pseudo-differential operators and quantization in a group-theoretic context.

For a historical survey on harmonic analysis see [32], for example.

One of the advantages of using operator-valued symbols is that one gets a
global approach. Even for compact Lie groups there is no notion of full scalar-
valued symbcls for a pseudo-differential operator using local coordinates. For a

more detailed discussion of the advantages of this approach see [33].

When our group is G = R", formula (0.1) boils down to the extensively studied
Kohn-Nirenberg quantization rule. In that case there is a much bigger class of
symbols, namely the Hérmander symbol classes S75(R™). More general classes of-
symbols have been studied, but definitively the Hérmander classes are the most
important ones, they are extensively studied in —but not only— [25,41,44], and the
spectral theory of pseudo-differential operators is studied in [38]. For G = R" there

are also T-quantizations given by
[OPT(O«)?-;’J] (z) = / f a((1=7)z + 7y, &) ¥ S Vy(y) df dy, (0.2)

with 7 € [0, 1] mostly related to ordering issues. The Kohn-Nirenberg case amounts
to take 7 = 0. Another interesting case is 7 = 1/2, the so-called Weyl quantization,
which is a more symmetric quantization that has the desirable property Op(a) =
Op(a)*. It is possible to extend the idea of T-quantizations to our pseudo-differential

calculus on type I groups with a fixed measurable function 7 : G — @ instead of a



real number 7 € [0,1]. For a r-quantization the right modification of formula (0.1)

turns out to be

09" (@pul(e) = [ [ Tr (alrlya )z, )Dlnelay™) ) Ay Huty) dedy, (0.9

from which one recovers (0.1) after setting 7(-) = e to be the constant function,
where e is the identity element of the group. Another interesting example is when
7(z) = z. In the simplest case of G = R™ this amounts to taking 7 = 1 and one gets
the quantization in which derivatives are composed to the left and position operators
to the right. Anyhow, the formalisms corresponding to different choices of 7 are
actually isomorphic when we restrict to the classes of symbols we are considering in

the present thesis.

If G =R", then one can write the quantization as

Op(a) = [ ale,2)W (&) dr e,

where the Weyl system is the family
{W(,2) =V(EU(z) | (¢z) eR™},

of unitary operators in L?(R™) obtained by putting together the operators of trans-
lation and modulation. The Weyl system offers a precise way to codify the canonical
commutation relations between position and momentum operators from quantum
mechanics, and the quantization Op can be seen as a non-commutative functional
calculus on these operators. Begides the physical interest, this opens the way to some
new topics or tools such as the Bargmann transform, the anti-Wick quantization, co-
orbit spaces, and others. In Section 2.4 we show how to carry this point of view to
the general category of locally compact type I groups, but one of the drawbacks of

non-unimodular groups is that the resulting operators are only defined in a dense



subspace.

Weyl systems were one of the first examples of projective representations. The
study of projective representations of R** was one of the most important problems
in the 20th century and had its roots deep in the foundation of quantum mechan-
ics. One can see that the projective representations of R** can be seen as unitary
representations of the Heinsenberg group with n degrees of freedom [1] and the rep-
resentations of the latter were settled down with the Stone-von Neumann theorem,
which says that under some hypothesis, and up to equivalence, there is only one

possible representation that satisfies the canonical commutation relations.

Another approach to a quantization consists of using the formalism of C*-
algebras. Given a locally compact group G there is an action by left (or right) trans-
lations on various C*-algebras of functions on G. In such situations there are natural
crossed products associated to them (cf. Chapter 4): Among the non-degenerate rep-
resentations of these C*-algebras we mention the Schrddinger representation, acting
on the Hilbert space L*(G). This formalism allows us to take full advantage of t.he

theory of C-algebras, extending to the bigger class of compact operators on L?(G).

In the present thesis we are not going to rely on properties such as compact-
ness, semisimplicity, nilpotency or smoothness. Almost all hypotheses shall be on
the measure-theoretic side. The category of second-countable type I locally compact
groups has a nice integration theory and their unitary duals have an amenable inte-
gration theory. This framework allows for a general form of Plancherel’s Theorem,
which is all that is needed to develop the basic features of a quantization, even for
non-unimodular groups. The non-unimodular Plancherel theorem is originally due
to [40] and had many contributions by Duflo, Moore [8], Lipsman and Kleppner [27],

To apply the theorem one needs to know the complete unitary dual of a group,



including its Plancherel measure. Later H. Fithr [14] found the exact domain in
which the inversion formula holds in the non-unimodular case. For an introduction

to abstract harmonic analysis we refer to [12].

We now summarize the present thesis.

e In Chapter 1 we introduce notation used throughout the thesis and the general
theory and tools required to properly develop a quantization, including tools
from abstract harmonic analysis and functional analysis, the main tool being

the non-unimodular Plancherel transform.

e In Chapter 2 we make & preliminary construction of the quantization Op on
a densely defined subspace using formula (0.1). We include a discussion on
the differences between the left and right quantizations which comes from the
non-commutativity of the group, and we study how to recover the families of

convolution and multiplication operators using our quantization.

e In Section 2.4 we introduce the notion of a Weyl system, a measurable family
of densely defined closed operators. Then we define a T-quantization for an
arbitrary measurable function 7 : G — G that has to do with ordering issues
of the operators. In Section 2.5 we introduce a more general 7-quantization,
and prove that it is a unitary map from our class of symbols onto the Hilbert-

Schmidt operators on L2(G).

e [n Sections 3.1 and 3.2 we work out the explicit formulas of the quantization for
the group of affine transformations of R and Grélaud’s group, two examples of
non-unimodular solvable Lie groups. We compute the unitary dual of Grélaud’s

group using the Mackey machine reviewed in § 1.4.



e In Chapter 4 we review the basic theory of crossed products of ¢ *-algebras
and we show how it relates to our theory. This formalism is also used to
cover a bigger class of compact operators using the Schrédinger representation

associated o a natural crossed product.

In the future it is our goal to extend formula (0.1) for more general classes of
densely defined operator-valued symbols, to cover for example differential operators
on Lie groups, or even the class of bounded operators. Many developments have
been done in this direction for connected nilpotent Lie groups [10] and compact

groups [37].



Chapter 1

Framework

In this Chapter we set up the general framework of this thesis,and also recall some
known results in the Fourier theory of non-unimodular groups of type I. We also
briefly discuss the theory of square-integrable representations, for which we have
many explicit constructions. We also review the basic aspects of the Mzg:key machine

that will be used to compute the unitary dual of Grélaud’s group in Section 3.1.

1.1 General remarks from functional analysis and

measure theory

We denote Hilbert spaces, over the field of complex numbers, with the letter %,
using the convention that their scalar product, denoted by (-,-)%, will be linear in
the first variable and anti-linear in its second. In the following we assume all Hilbert
spaces to be separable. If H is a Hilbert space we denote its conjugate Hilbert

space by H', whose elements are the same as those of H but the scalar product is



defined as - u = au, and its inner product is conjugate to the one from 7, i.e.
{u,v)z1 = (v,u)y. B{H) denotes the C*-algebra of all bounded linear operators on
H, and By(H) stands for the two sided *-ideal of compact operators on H. We also
make use of the Schatten-von Neumann classes B,{#) for p > 1; these are Banach
*-algebras with the norm

1/p

ITlls, = T ((T°T)"?)

The most important cases are Bi(#), the space of trace-class operators, and Bo(H),
the space of Hilbert-Schmidt operators. The latter when endowed with the inner

product

{T,8)p, = Tr (T5"),
becomes a H*-algebra. As a Hilbert space it is unitarily isdmorphic with the Hilbert
tensor product H ® H' in a natural way. Both Bi(H) and Ba(H) are two-sided

*-ideals in B(H) whose closure in the operator norm is By(H).

Let A be a set of bounded operators on a Hilbert space H. By A" we denote
the family of all bounded operators on H that commute with all the elements of 4.
This set is a von Neumann algebra, i.e. a C*-algebra which is closed in the strong
operator topology. There is a celebrated theorem due to von Neumann [4, Chapter
IX, Theorem 6.4] that says that if 4 is a C*-subalgebra of B(H) containing the

identity, then A” coincides with the closure of A in the weak operator topology. |
gy

A Borel space is a set X endowed with a g-algebra of subsets of X, called
Borel sets or measurable sets. We are going to refer interchangeably to Borel space

as measurable spaces.

Definition 1.1. A measurable space X is called countably separated if there

is a countable family {{;};en of measurable sets such that for all z € X one has
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{z} = Nien, . The space X is called a standard Borel space if there is a
measurable isomorphism X — Y, where Y is a complete second countable metric

space, endowed with the Borel o-algebra generated by its topology.

Clearly being a standard Borel space implies being countably generated, and
the former is a much stronger hypothesis that one may initially think. In a famous
classification due to Kuratowsky it is shown that every standard Borel space is Borel
isomorphic either to the interval [0,1] or to a countable discrete set [34, Theorem
2.14]. We say that a measure v is countably separated (or standard) if there

is a measurable v-conull subset 2 C X that is countably separated (standard).

Much of the interest of studying these properties comes from the study of quo-
tients of measurable spaces. Let ~ be an equivalence relation on a measurable space
X. The quotient Borel structure on X/ ~ is the finest o-algebra making the nat-
ural projection X — X/~ a measurable map. Sometimes we shall need measurable
transversals (3 C X, that is a measurable set that contains exactly one element of
each equivalence class in X/~. Another construction comes as follows. Let X, Y be
Borel spaces, and let f: X — Y be a Borel map, let v be a given measure in X.
We say that a measure © on Y is a pseudo-image of v, if ¥ is equivalent to the
measure vy given on measurable sets by vy(2) = v(f~1Q)), this means that for any

measurable set {2 C Y one has that §(Q) = 0 if and only if v(f~1(22)) = 0.

Definition 1.2. Two measures vy, 2 on a Borel space X are called strongly equiv-
alent if there is a continuous function g : X — (0,00) such that for each compactly

supported continuous function f: X — C one has

J f@ dvi@) = [ f@)g()dvs(a).

"This does not implies equivalent, since the function g does not need to be integrable. -
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1.2 Direct integrals of Hilbert spaces

Let X be a Borel space. A field of Hilbert spaces over X is just a family (H.),ex
of separable Hilbert spaces H,. A function s : X — [[,cx H. is called a section
over X, or a vector field if s, € H, forall x € X. A measurable field of Hilbert
spaces over a field X is a field of Hilbert spaces (H,).cx together with a countable

set {e/}°, of sections over X with the following properties:
7=1 g prop

(i) The functions = — (€%, el) are measurable for all 4,7 € N.

(ii) for each z € X, the set {€’ }icn is a total subset of H,.

We say that a section s over X is a measurable section if the map z — (s;, L) is

measurable for all 7 € N.

Definition 1.3. Let X be a Borel space and let (H,).ex- be a measurable field of
Hilbert spaces over X. Suppose that v is a measure on X. The direct integral of

the spaces H,, denoted by
M, du(a),
[} ot
is the Hilbert space consisting the all the measurable sections s over X such that
Il = [ llssllf, dv() < o0,

in where two sections are identified if they coincide in a v-conull set. The inner

product of two sections s, s’ is given by
(5,87 = [}{(SI,S;>HI dv{z).

Example 1.1. Let (X, ) be a measure space. Then, if H, = #H is a fixed Hilbert

14



space for all z € X, then
)
/X H, do(z) 2 LA(X, v; H).

This space is also naturally isomorphic to the Hilbert tensor product H @ L*( X, v)

under the identification (n ® u)(z) = u(z) 7.

Definition 1.4. A measurable field of operators (7;),cx over X is a family of
(not necessarily bounded) operators T} : H, <+ H,, where (H.)zex is a measurable
field of Hilbert spaces, such that the section (7:8;)zex is measurable whenever s is

a measurable section over X.

Suppose that v is a measure on a Borel space X, then if 7= (Ty)zex is a
measurable fleld of operators such that esssup,.x||T;| is finite, then T defines a
bounded operator on the direct integral [§ H, dv(z) with operator norm bounded

by the essential supremum of the norms ||7}|; we denote this operator by

([/Xe 1, dv(y)} s):r =T.5,.

1.3 Basic representation theory

Let G be a Hausdorff second countable locally compact group. For the most part
this means that the product and inversion laws of the group are continuous maps,
and as a topological space G is both second countable and locally compact. We
denote its unit by e € G.

Remark 1.1. Recall that a second countable group is separable, Hausdorft, o-compact
and completely metrizable. In particular, as a measurable space it will be standard.
Since every irreducible representation is cyclic, it must act on a separable Hilbert

space.

12



Let H be a closed subgroup of G. Then the quotient G/H, endowed with
the quotient topology, is a locally compact topological space. It is even a locally
compact group when H is a normal subgroup. The spaces G and G /H are completely
metrizable. When they are endowed with the Borel o-algebra generated by their
topology they become standard Borel spéces. The following proposition (cf. [28]

Lemma 1.1) is due to G. Mackey.

Proposition 1.1. Let G be a second countable group and let H be a closed subgroup.

Then there exist a measurable transversal of G/H.

Definition 1.5. A representation of a group G on a Hilbert space H, is a function

m: G — B(H.), such that for each pair of elements T,y el
m(zy) = n(z)m(y).

The representation is called unitary if #(z)* = 7(z~!) for all z € G. Tt is called
a strongly continuous representation if for each u € H, the map = — o (z)u
is continuous. Every unitary representation considered in this thesis is strongly

continuous, even if it is not explicitly mentioned.

Definition 1.6. A projective representation on a Hilbert space H, is a map

7 : G — H, such that there exist a measurable map w : G x G — S into the unit
circle satisfying

m(@)r(y) = w(z, y) (o),
and that for each pair of vectors u,v € H,, the map z (u, m(z)v) is measurable.

We say that 7 is a projective representation with multiplier w, or that it is a

w-projective representation.
Definition 1.7. A representation 7 on a Hilbert space ¥, is called irreducible if

13



there are no proper closed linear subspaces £ C H, such that 7(z)€ C &€ for all

z e G,

Definition 1.8. Let 7, ¢ be two representations. An intertwining operator 7 :

H. — H, is a bounded operator such that for each € G one has

We say that two representations are unitarily equivalent if there exist an unitary

intertwining operator between them.

The most basic, and perhaps, the most important result about irreducible rep-

resentations is the following.

Proposition 1.2 (Schur’s lemma). A unitary (projective) representation 7 is drre-
ducible if and only if 7(G) = C-1dy,.. Suppose that w1, 7o are irreducible uritary
(projective) representations of G. If they are equivalent, then there exists a unique
(up to multiplication by a constant) intertwining operator. Otherwise there are no

non-trivial intertwining operators.

Let 7 be a strongly continuous unitary representation of G on a Hilbert space
H.. For any such representation we also have its contragradient 7t acting on Ht

by mt(z)u = w(z)u. Note that in general 7 is not equivalent to 7.

We say that 7’ is a subrepresentation of 7 if it is unitarily equivalent to the

restriction 7|g, where £ is a closed invariant subspace of H.

Definition 1.9. We say that two representations =, p are quasi-equivalent if for
every subrepresentation 7’ of 7 there is a non-trivial operator intertwining 7’ and p,
and for every subrepresentation p’ of p there is a non-trivial operator intertwining

p' and 7. This is an equivalence relation among representations. Two equivalent

14



representations are clearly quasi-equivalent and the notions coincide when we refer

to irreducible representations.

Definition 1.10. A unitary representation = is called primary, or a factor rep-
resentation, if the center of the von Neumann algebra generated by 7(G) C I3(#,)

consist only of multiples of the identity i.e.
(@) N7(G)" =C - Idy, .

Definition 1.11. A unitary representation m of G is called multiplicity-free if the
von Neummann algebra 7(G)" is commutative. It is called a type I representation

if it is quasi-equivalent to a multiplicity-free representation.

By Schur’s lemma one has that any irreducible representation is a multiplicity-
free primary representation, but the converse is not necessarily true, this is the

content of the following definitions.

Definition 1.12. We say that a topological group G is type I if every primary
representation is quasi-equivalent to an irreducible representation, or equivalently,
if it is a direct sum of copies of some irreducible representation. If G is second
countable, another characterization is that the group is type I if and only if every

representation is type I [14, Theorem 3.23].
Example 1.2. Some examples of type I groups are:
— Compact groups.

— Connected semisimple Lie groups [20].

— Abelian groups.

Exponentially solvable Lie groups [2], in particular connected simply connected
nilpotent Lie groups.

15



— Real algebraic groups [6].

It is known that a discrete group is of type I if and only if it possesses an abelian

normal subgroup of finite index [43].

Fix a left Haar measure p on G, that is, a Radon measure z such that

v dun) = [ 1) duty)

for all f € C.(G) and x € G. We will denote this choice of left Haar measure by
du(z) = dz; Every locally compact groups admits a left Haar measure, and it is
unique up to a positive constant. Once p is fixed we get a right Haar measure p"
defined by the formula £"(Q2) = p(Q71).

Let A : G — (0,00) be the modular function of G, defined by the formula
1(Qz) = Alz)u(Q) for all measurable sets 2 C G and z € G. This implies in
particular that du™ = A~'du. Hence the left and right Haar measures are strongly
equivalent.

The modular function is a continuous (smooth if G is a Lie group) homomor-
phism into the multiplicative group (0,00). We say that a group is unimodular if

the modular function is a constant function. If G is a connéected Lie group then
A(z) = |det Ad(z™1)],
where Ad is the adjoint representation of G on its Lie algebra [24, Chapter 10,

Lemma 1.2].

Remark 1.2. The the following classes of groups are unimodular:

~ Connected semisimple Lie groups.
— Abelian groups.

16



— Connected nilpotent Lie groups.
— Compact groups.

— Discrete groups.

We also note that G is unimodular provided that the abelianization of G is a compact

group.

Let N be the kernel of the modular function; it is a closed normal subgroup of
G, which is itself a unimodular group [12, Theorem 2.49]. We also note that since
our groups are locally compact the image of the modular function is a subgroup of

R.q. It may be either dense in (0, c0) or a closed discrete subset.

The spaces LP(G) = LP(G, p) of p-integrable complex-valued functions on G
will always refer to the left Haar measure. These are separable Banach spaces for
p € [1,00). By C.(G) we denote the space of continuous complex-valued functions
on G with compact support, a dense subspace of LP(G). The space Cyp(G) denotes
the C*-algebra of all continuous complex-valued functions defined on G that vanish

at infinity.

1.3.1 The left and right regular representations

Every group naturally comes with a pair of unitary representations, namely, the left

and right regular representations, defined on L*(G) by

N f(z) = fly'x)
pyf(z) = Ay)? f (zy).

17



These are unitary strongly continuous representations of G [12, §2.5]. It is a deep

fact [39] that one has the following equality of von Neumann algebras
MG =p(G),  p(@) =)NG).
There is also the two-sided regular representation A ® p of G x G given by
A®p(zy)f =Xepyf [ € LPG).

For the convenience of the reader we recall that the modular function plays the

following role in integration by substitution of variables

Lfwdy= [ A@)fwe)dy= [ AT F@)dy. C8)

The modular function implements a Banach *-algebra structure on L'(G): the con-

volution of two functions defined by the integral
(206 = [ 6ol
and the involution is given by

fr(z) = A=) f(=Y).

In general, one has a p-dependent involution on L*(G) given by

f(z) = A(z) 7 f(z71). (1.2)
In the following we reserve the notation f* for functions in the Hilbert space L*(G).

Definition 1.13. Let X be a Borel space. A measurable field of representa-
tions of G over X is a measurable field of operators (,),ex such that each 7, is a

unitary representation of G. A measurable field of representations induces a unitary

18



representation on the direct integral [ H, du(y) given on sections s over X by

(Us -ry(:c)c-iv_(y)J s) = 7,(1)s,.

X

An important result due to G. Mackey [30, Theorem 10.2] is that for each mea-
surable subset Q0 C G on which the Mackey Borel structure is standard, there exist
a measurable field of irreducible representations (7 )ecq over 2, acting on canonical

Hilbert spaces H, such that 7, € £ for each £ € (2.

Consider the Banach *-algebra L'(G) endowed with the universal norm

1]

c*(G) = Slgpﬂﬂ(f)”,

where the supremum is taken over the set of all non-degenerate *-representations of
L'(G). The completion of L*(G) with respect to the universal norm is called the
group algebra of G. We denote this C*-algebra as C*(G). It is a standard fact
that the irreducible unitary representations of G are in one-to-one correspondence
with the non-degenerate *-representations of C*(G), the correspondence being given
by
n(f) = [ fW)m(y)dy
for functions in the dense subspace L}(G).
Remark 1.3. For a type I group G, its C*-enveloping algebra is postliminal. An equiv-

alent formulation of the type I hypothesis is that for all irreducible representations

7 one has that 7(C*(G)) contains all the compact operators on H,.

Given a locally compact group G, its unitary dual G is the collection of all of its
irreducible unitary representation modulo unitary equivalence. For a representative
me € § of an element of the unitary dual of G, we denote the Hilbert space on which

it acts by H¢ = H,.. The unitary dual is known completely for various classes of
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groups, including abelian, compact, and connected nilpotent Lie groups. It is known
up to a set of measure zero in the case of connected semisimple Lie groups. In the
case of abelian groups, G is also a second countable locally compact group, but as
soon one leaves the abelian world, there does not seem to be a natural way in which

this space is a group, even for the case of compact groups.

We endow G with the Mackey Borel structure introduced in [29, §9]. This
is done as follows: Let Irr,(G) be the set of all irreducible unitary representation
acting on a fixed Hilbert space H, of dimension n € N U {co} and let Irr(G) =

o lrtn(G).  We endow each Irr,(G) with the weakest o-algebra such that the
maps 7 = (u, 7(z)v) are measurable for all u,v € Hn,z € G. Then a set Q C
Irr(G) is said to be measurable if and only if Q N Irr,(G) is measurable for all
n € NU{oo}. The Mackey Borel structure is the quotient Borel structure
induced by the map Irr(G) — G that sends each representation to its equivalence
class. The next proposition (cf. [14] Lemma 3.15) sheds some light on the Mackey

Borel structure.

Proposition 1.3. Assume that X is a standard Borel space and let (72)ecx be a
measurable field of irreducible representations of G. Then the map X > z — [72),

where [n] denotes the equivalence class of m, is a measurable map into G.

A consequence of G being of type I is that G is a standard Borel space [18].
It is known [7] that being of type I is equivalent to G being countably separated
and is also equivalent to being a standard Borel space. Since spaces which does not
satisfy the former hypothesis are badly behaved, it is very hard to expect to have a

reasonable integration theory for non-type I groups.

One also provides G with the Fell topology. This topology is T provided that G
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is of type I, and then the Mackey Borel structure coincides with the Borel o-algebra
generated by this topology. For semisimple and nilpotent connected Lie groups this
topology is 77, but in general this space is not Hausdorff. For a proof of these

assertions see [7,18], and for more information on the Fell topology see [9, Chapter

VII §1].

Definition 1.14. We say that a standard measure v on G is a Plancherel measure
(cf. [14] Definition 3.30 and Theorem 3.24) if it yields a direct integral central de-
composition of the left regular representations into irreducible representations. That

is to say, v is a Plancherel measure if the following conditions hold

(4) There is a measurable map m : G — N U {0, 0}, a measurable field of ir-
reducible representations (7‘1‘5)565 with m¢ € &, and a unitary isomorphism

U: L*G) — fg m(€) - He dv(€) such that such that for each element z € G

one has

&
Ue = [ m(e) - me(e) dv(€) U.
More precisely, let I,, be a set with n elements endowed with the counting

measure, then m(§) - He = L*(Iin(e)) ® He and m(€) - me(z) = Idpaqz, ) ® e ().
(¢4) U implements an equivalence of von Neumann algebras

l 7}
AG)Y NAMG)" = /a C - Idgey 2, A(£)-

Plancherel measures do exist for separable locally compact groups of type I and
in fact they are all mutually equivalent (cf. Theorem 1.3 below). From now on we
adopt the notation dv(§) = d€ for a Plancherel measure v. If necessary, we will

denote by vg the Plancherel measure of a group G.
There are various cases in which the Plancherel measure can be given explicitly.

21



For abelian groups their unitary dual is also an abelian group in a canonical way and
the Plancherel measure coincides with a multiple of its Haar measure. For connected
simply connected nilpotent Lie groups it corresponds to a measure on the space of
coadjoint orbits arising from the Lebesgue measure on g* [26, Chapter 3 §2.7]. For
compact groups the Peter-Weyl theorem says that the irreducible representations
form a discrete set and that the Plancherel measure of an irreducible representation
is equal to 1. Note that this is only valid using our convention of the Plan cherel
transform in which the Dﬁﬂo-Moore operators are taken into account (cf. Theorem

1.2). For a proof see [12, Theorem 5.12].

1.4 Induced representations and the Mackey ma-

chine

The Mackey machine is one of the most important tools for computing the unitary
dual of a general locally compact group, it consist of inducing representations from
a closed normal subgroup and a family of “small subgroups” that appear in the
quotient group. This method is developed mainly in [30] and is the basis of a more
geometric study of the unitary dual. This point has been proven to be very fruitful, it
is directly connected to Kirillov’s orbit method, which is the tool of choice to compute
the unitary dual of a connected simply connected nilpotent Lie group. This method
can be even extended to exponentially solvable Lie groups without many changes.
It is even possible to extend this method for the class of connected semisimple Lie
groups, since they do not have proper closed normal subgroups, one has to study the
parabolic subgroups instead, and there is a similar result in this case allowing one

to compute at least the support of the Plancherel measure.



1.4.1 Induced representations

Let v be a Borel measure on a locally compact Hausdorff G-space X, define the
measures vz () = v(z71Q) for each Borel subset @ C X, and all z € G. Note that

for all integrable functions f one has

| f@ ) = [ fapdv®). (13)

Definition 1.15. A measure v on a G-space X is said to be in*-fariant if the measures
v, coincide. It is called quasi-invariant if the measures v, are all mutually abso-
lutely continuous. We will call v strongly quasi-invariant if the Radon-Nikodym
derivative (z,p) — (dv./dv)(p) is a continuous function defined on G x X. This is
a stronger assumption than the hypothesis of having all the measures v, mutually

strongly equivalent, since the Radon-Nikodym derivative must be jointly continuous.

It is a standard fact [12, §2.6] that any transitive locally compact G-space
admits a strongly quasi-invariant measure and in fact it is unique up to strong
equivalence. Moreover if X = G/H is a transitive G-space, there is a G-invariant
Radon measure v on X if and only if the modular functions on G and H satisfy the

relation Ag = Ayg. In such a case, v unique up to a positive factor.

Let H be a closed subgroup of GG, and assume that X = G/H admits a strongly
quasi-equivalent measure v.. Let ¢ be a representation of H on a Hilbert space
H,. The induced representation 7 = Ind$(c) acts on the Hilbert space H, =

L*(G, H,o,v) consisting of classes of equivalence of functions f : G — H, such that

() The maps z > (f(z),u) are measurable for all u € H,.

(i7) f(zh) = a(h)*f(z) for all z € G, h € H, except for a possible set of pairs (z, h)

such that the corresponding products zh’s belong to a v-null set in G/H.
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(i) The following quantity is finite
2= f *do(zH).

As usual, we impose the equivalence relation f = g if and only if Ilf—gll = 0 (cf.

[16] §4, Theorem 9). The inner product of H,, is given by

(o) = (F(@), o(2)n. dv(zH).

JG/H
Thanks to condition (i) the quantities (f(z), g(z))x, depends only on the right H-

coset of z, so the formulas above are well defined. The induced representation 7 is

(@) (4) = | G2 i) 1)

du
Thanks to formula (1.3), and the fact that the Radon-Nikodym are jointly continu-

given by formula

ous, 7 i8 a strongly continuous unitary representation of (.

1.4.2 'The Mackey Machine

Let N be a closed normal subgroup of G. The dual action of G on the unitary dual
of N is given by

zo(n)=clz 'nz) z€G,neN.
With this action N becomes a Borel G-space. We denote by G, the stabilizer in @
ofc € N. Let H = G/N, since N acts trivially on N , the dual action gives rise to an
action of H. We denote by H, the stabilizer in H of ¢ € N. These groups are usually
called “small groups” in the literature. We denote the orbit of an element & € NV as

O,, the type I hypothesis implies that (0, = N /H, as Borel spaces [14, §3.2].

Definition 1.16. Let N be a closed normal subgroup of G and let H = G/N,
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endowed with the Borel quotient structure. We say that V is regularly embedded

in G if the orbit space N/H is a countably separated Borel space.

Let N = ker(A) and let H = G/N. It is proved in [8, Theorem 6] that the left
regular representation of G is type I if and only if the left regular representation of
N is type I and the orbit space N/H is a standard Borel space. In particular since

our groups are type I, N is automatically regularly embedded in G.

Definition 1.17. We say that a representation o € N has trivial Mackey ob-

struction if it can be extended to a unitary representation of Gy.

There are two very simple cases in which a representation o € N has trivial
Mackey obstruction. Namely when G, = N or when G = N x H is a semi-direct
product and N is abelian. Nevertheless, these cases cover a great number of exam-

ples.
In general it is possible to extend o to a projective representation of G, in the
following way. If z € H, stabilizes o, there is a unitary operator U, such that

Uzo(n)U: = o(znz™).

This choice is unique up to a factor of norm 1. Without loss of generality we choose
them so that U, is the identity and z — U, is a measurable map, that is to say, z —
{u, Uzv) is a measurable map for all u,v € H,. Let Q be a measurable transversal of
G,/N. An element y € G, can be written in a unique way as y = sn, where s € (

and n € N. We define 5(y) = Usyo(n). Then one sees that for all z,y € G,
UUyo(n)U,U; = o(zyn(zy)™).

Hence, by the uniqueness of the operators U,’s, there is a constant w(z,y) of norm

1 such that U,U, = w(z,y)U,, for all 2,y € G,. Since U is measurable, one sees
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that w is measurable. Hence & is a projective representation that extends ¢ to G,
with multiplier w. The Mackey obstruction is trivial precisely when we can chose &

so that w = 1.

We cite the celebrated theorem of G. Mackey [30] which is the main tool for
computing the unitary dual of a group in terms of a normal subgroup N and a family
of “small groups” that depend on the dual action. For simplicity we restrict ourselves
to unitary representations. The hypothesis of having trivial Mackey obstruction can
be removed, but the resulting induced representations turn out to be projective

representations instead of unitary.

Theorem 1.1 (The Mackey machine). Let N C G be a reqularly embedded closed
normal subgroup and suppose that each o € N has trivial Mackey obstruction. Given
a representation g &€ N , denote a fized extension to G, by &. Given a unitary
representation p € H,, we define the unitary representation o X p of G, which acts

on the Hilbert tensor product H, @ H, by
(0 x p)(z) =5(z) ® p(zN).
Then one has that
(i) The induced representation Indga(a X p) is a unitary irreducible representation
of G.

(ii) Suppose that N is of type I. Then every irreducible unitary representation of G

is of the above form.
(iii) Moreover, if we fiz a measurable transversal @ C N i.e. a set that contains

ezactly one representative for each orbit in N /H, then the map

{(a,p)|c€N,pe H,} - G given by (c,p) — Indg (o % p),
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is a bijection.

We also cite an extension of the theorem due to Kleppner and Lipsman [27]
that allows us to compute the Plancherel measure of the unitary dual. And only

requires the Mackey obstruction to be trivial vy-almost everywhere.

Proposition 1.4. Let G be a locally compact group and let N be a closed normal
type I unimodular subgroup. Suppose that N is reqularly embedded and that there is
a G-invariant measurable vy -conull subset 1 C N such that all ¢ € Q have trivial

Mackey obstruction. Then the set

U {ndg (o xp)|p<cH,},
O,cQ/H

is a v-conull subset of G and the Plancherel measure may be obtained as follows:
Pick a pseudo-image Uy of the Plancherel measure of N on Q/H. Then there is
for Dn-almost all O, € QU/H, a normalized Plancherel measure vy, such that if we
identify Indga (o x p) as the point (o, p) one has that the Plancherel measure of G is

given by

dv(o, p) = dvy, (p) don{O,).

1.5 Square-integrable representations

Given a representation 7 on a Hilbert space H,, and two vectors u, v € H,, we define

the matrix coefficient of 7 at the pair (u,v) as
Cup(z) = (u, m(2)v).

Note that C, is a uniformly continuous bounded function and the algebra gen-

erated by all the matrix coefficients of a given representation depends only on its
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equivalence class. If a matrix coefficient C,, is square-integrable for some non-zero
u,v € H, we say that 7 is a square-integrable representation. If 7 is an irreducible
representation it is known [7] that the representation is square integrable if and only

if C\,» € L*(G) holds for all u,v € H,.

Theorem 1.2. Suppose 7 is a square integrable irreducible unitary representation.
There 1is a densely defined positive self-adjoint operator D, : Dom(D,) = H,. with

dense image, called the Duflo-Moore operator, satisfying:

(i) For all vectors u,u’ € Hr,v,v" € Dom(DL?)

(Cuntiny s Cur i) gy = (8 0).

U,y

In particular this implements an isometric linear map C: H. @ H] — L?(G).

(i) Up to normalization by a positive constant, D, is uniquely determined by the

relation

7(z) Dpm(z)* = A(z) 1D, (1.4)

We presented this result as it is stated in [14, p. 97], in which an explicit con-
struction of the operators D, is made for square integrable representations. When
the group is unimodular the operators D, are just multiplication by a positive scalar
d. that coincides with the dimension of H, when the latter is finite. An operator sat-
isfying (1.4) is called semi-invariant with weight A=1. In general not all irreducible
representations admit a semi-invariant operator, they only exist v-a.e. (cf. Theorem

1.3).
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1.6 The Fourier and Plancherel transformations

Suppose we have fixed a Plancherel measure v in G, a measurable field of representa-
tions (7 )5 <& and there is a family of densely defined self-adjoint positive operators
D¢ : He — He satisfying relation (1.4) for v-almost all £ € G. We define (in the
weak sense) the operator-valued Fourier transform of a function f € LY(Q) as

FOE© = [ f)mely

This is the unique operator F(f)(&) such that for all u,v € L?*(G) one has
(F(Eu vy = [ f@)mely)u,v) dy

The Fourier transform is a non-degenerate *-representation of L'(G), but in the
non-unimodular case it fails to intertwine the two-sided regular representation of G
with fg £ ® £7d¢ and it also fails to be a unitary map. So we also introduce the

Plancherel transform of f € L}(G) N L*(G) as the operator

P(£)&) = F(F)()D¢
In the following we denote by P(f) = f, the Plancherel transform of a function ¥
The Plancherel transform satisfies the following identities for functions f,g €

L}G)NL(G),

me(2) FE)me(y)” = Xapy (6,
ey =F @)
Fxg(&) = me(3(e).

When 7 is square integrable, f(£) extends to a Hilbert-Schmidt operator on He.

It turns out that this will hold for v-almost every £ € G and not only for the
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representations which are square-integrable (cf. Theorem 1.3 below); for a proof
see [8, Theorem 5.1].

We are going to present a formulation of the Plancherel Theorem for non-
unimodular groups. For a proof in the unimodular case we refer to [7]. The non-
unimodular Plancherel Theorem was developed by N. Tatsuuma [40] and later an
extension of his theory, including a clarification of the role of the hypothesis required,
was obtained by Duflo and Moore [8]. Similar results were obtained by Kleppner
and Lipsman in [27]. We state the following theorem as it was derived in the article

of Duflo and Moore and in the spirit of [14, Theorem 3.48].

Theorem 1.3. Let G be a type I second countable locally compact group. Then
there erists a o-finite Plancherel measure v on G, a measurable field of Hilbert spaces
(Hf)geé’ a measurable field of irreducible representations (W‘f)fe@ with m¢ € £, and
a measurable field (Dg)éeé‘ of densely defined self-adjoint positive operators on H;
with dense tmage satisfying (1.4) for v-almost every & € G, which have the following

properties:

(i) Let f € LN(G) N L*(G). For v-almost all £ € G, the operator f(€) extends to

a Hilbert-Schmidt operator on He and
1713 = LIFEN, 2 (15)

(i) The Plancherel transformation extends in a unique way to a unitary operator

@®
P I¥G) = fa By(He) de. (1.6)

(i) P implements the following unitary equivalences of representations and von
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Neumann algebras

A ﬁf@ Id.; d 1.
2 = me(z) ® dﬁgcé, (1.7)
© .
py & /a 1y, ® 7}(z) de, (1.8)
®
/\(G)’zfé C - 1dy, ® B(H}) de, (1.9)
NG)'= [ BH) @ C 1d, de (1.10)

In particular these relations show that v satisfies the azioms required by Defi-

nition 1.14 to be a Plancherel measure.

(iv) The Plancherel measure and the operator field may be chosen to satisfy the

inversion formula

f(&) = [, Tr (Fe)Dime(a)") de. (111)

for all f in the Fourier algebra of G (cf. Section 1.6.1 below). The integral in
5 3
the inversion formula converges absolutely in the sense that f (§)D¢ extends to

a trace-class operator v-a.e. and the integral over G of the trace-class norms is

finite.

(v) The choice of (r/, (De), e@) is essentially unique: The semi-itnvariance relation
(1.4) fizes each D¢ up to a multiplicative constant, and once we fiz these, v is
fized by (1.11). On the other hand if we fiz v, (which is unique up to equiva-

lence) the operators D are completely determined by v.

(vi) G is unimodular if and only if there exist positive constants de such that Dg =
de 1dy, for v-almost all €. If G is non-unimodular, D is an unbounded operator

for v-almost all & (this can be seen from equation (1.4)).
(vii) Suppose there is another Plancherel measure v/ on G and measurable fields
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(e, DE’)EEE that share the properties i)-1ii). Then v and V' are equivalent meq-
sures, and there is a measurable field of unitary operators (Us) e intertwining
me and 7', such that for v-almost all £ € G the Radon-Nikodym derivative of

v with respect to v satisfies

dv’ )
E;(@ D = U; D U. (1.12)

The operators D, are called the formal dimension operators, or the Duflo-
Moore operators. When 7 is induced from a subgroup H on which the modular
function is trivial, the Hilbert space H, is then formed by vector-valued functions on

G, and the Duflo-Moore operators have the very simple expression (cf. [12] Theorem

7.42)
(D f)(z) = A(z)f(2).
Moreover, if we require for N to be type I, then v-a.e. the representation £ € G is

induced from a representation of N (cf. [40]).

In the unimodular case, if one replaces the Plancherel transform with the usual

Fourier transform, then formula (1.11) reads

f@)= [ de- Tr (F©)me(a)") de.

Most books that treat the unimodular case refer to de - v as the Plancherel mea-
sure. This explains how to recover the unimodular theory using the non-unimodular

Plancherel theorem.

Remark 1.4. Alternatively, we could also define the Plancherel transform of a inte-

grable function f as
P()E) = D} [ f(a)me(o) do.

Using the semi-invariance relation of D, and the involution given in (1.2), we get the

32



following relation

PIE = [ f@)me(a) D) dz
= /G f@ ) A() tme(z) DF da
=P(7)).

so the two definitions differ by an automorphism of L?(G). Another thing to have
in mind is that the inversion formula (1.11) takes the form

1

f@=Fehamt
= [T (PF)ODime(a™)) M) dg
= [T (DEP(1)Ome(a)) de

For simplicity we make use of the following notation

-1
2

BS(G) = [ Ba(He) de, BY(G) = [, BulHe)D; de,

S(G) = L(G) @ BE(G), S(G) = B2(GQ) ® L*(G).

S(G) will be the natural space for our symbols. It comes with a natural inner product

given by

(a,D)si0) = [ [ Tr (ale,)b(z,€)") d€ da.
Remark 1.5. By formula (1.7), a representation m¢ € £ is subrepresentation of the
left regular representation if and only if the singleton {£} has positive Plancherel
measure. It is known that a representation appears as a summand in the decompo-
sition of A only if it is square-integrable. In addition one checks that for unimodular
groups, all the square-integrable representations satisfy v({¢}) = 1 [14, pp. 84], for
some normalization. When the Hilbert space has finite dimension d,, the normal-

ization is given by D, = d, - Id.
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1.6.1 The Fourier algebra and Plancherel inversion

Most of the results of this section are presented in the works [13, 14] of H. Fithr. In
order to shed some light on the trace-class hypothesis imposed on our symbols, we
elaborate a little on the natural domain of the Plancherel transform in such a way
that formula (1.11) holds. We also give the natural domain on the Plancherel side

for the inversion formula (1.11).

Definition 1.18. The Fourier algebra A(G) of a locally compact group G is

defined as the closure of the linear span of
{f+d" | f.9€ LG},
where ¢’(z) = g(z~1), with the norm

lull ey = it {[| fllzllgllz | w = f = ¢},

Tt becomes a Banach *-algebra with convolution as the product law and ° as the
involution. This is the space of matrix coefficient functions of the left regular repre-

sentation of G (cf. (1.13) below).
We record some calculations for further use in the following lemma (cf. [14]
Lemma 4.14).
Lemma 1.4. Let f, g be two square integrable functions on G. Suppose that g* €
LY @), then if
h(z) = (f, Xa9) = (f * §')(). (1.13)
Is a matriz coefficient of A\, we have that
- . 1
h(§) = f(€)3(£)" D¢ *. (1.14)
Hence h(¢) 5% extends to a trace-class operator v-almost everywhere.
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For a function in L*(G)N A(G), by the previous lemma, its Plancherel transform
is in BF(G) N BE(G) for v-almost every £ € G. A straightforward calculation shows

that the inversion formula holds for such a function.

In [14, Theorem 4.12] it is shown that the Plancherel transform induces an
isomorphism between the Banach spaces A(G) and BF(G). This induces an isomor-

phism of Hilbert spaces
P:AG)NIL*G) —» BE(G)n B3(G).

The next proposition (cf. [14] Theorem 4.15) shows that A(G)N L*(G) is the natural
domain of the Plancherel transform in such a way that the inversion formula holds,
Considering the preceding paragraph it also shows that, on the Plancherel side, the

natural domain for the inversion formula is B(G) N BE(G).

Proposition 1.5. Let F' € BS(G) and suppose that Jor v-almost everywhere the

1
operator F(§)D¢ extends to a trace-class operator. Suppose moreover that

JIF©)DE 2, de < oo.

If f is the inverse Plancherel transform of F, then we have for p-almost everywhere

Pl = /a Tr (F(g)waf(x)*) de. (1.15)
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Chapter 2

Quantization on locally compact

groups of type I

In this chapter we introduce a quantization leading to a pseudo-differential calculus
for operator-valued symbols defined on the whole group times its dual. In order to
do so we take advantage of the irreducible representations of the group. In section
2.4 we develop the notion of a Weyl system which will be used to make a sense of
the formulas in a rigorous way for more general symbols. This will also makes things
clearer when dealing with a general r-quantization.

In the following we fix a Plancherel measure and choice of a measurable field of
irreducible representations (7¢) ¢c and formal dimension operators (Dg) ce@ SO that
Theorem 1.3 holds. By (viz) of Theorem 1.3, different choices of the measurable fields

of representation or formal dimension operators will lead to isomorphic formulations.
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2.1 The quantization

Given a symbol a € L*(G) ® (BE(G) N BE(G)) we define the operator Op(a) :
L*(G) = L*(G) with symbol a to be

Op(a)u] @) = [ [ Tr (a(o, &) Dlme(oy™)) Al Huty) dé ay,

where v is a square integrable function. The operator Op{a) is called the pseudo-

differential operator with symbol a. Let
1
kero(2,9) = Aw)F [ e (ale, )Dime(ay)') de
&

Since a is in the domain of the inverse Plancherel transformation in its second variable

Py, the above integral converges absolutely and
" _1
kero(z,y) = [P5a](z, zy™")A(y) 3.

By Plancherel’s theorem and the change of variables given by equation (1.1), we
conclude that ker, is a square integrable function on G x G. Hence Op(a) is a

Hilbert-Schmidt operator with kernel ker, and Hilbert-Schmidt norm

10p(a)l5, = |lkerall2(exe) = ||allsc).

Now we are ready to extend the definition of Op(a) for an arbitrary symbol @ € S (G)
using the previous formula and the fact that L*(G) ® (BE(G) N BP(G)) is a dense
subspace of S(G). Hence Op extends to a unitary map Op : S(G) = By(L*(@)) in

a unique way.
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2.2 Left and right quantizations

Having in mind the familiar Kohn-Nirenberg quantization for G = R” (cf. (0.2)
with 7 = 0), one notes that for non-abelian groups there are at least two possible
generalizations; a left quantization Op;, (the one used so far in this thesis)and a right

quantization given by

(Opa(@)] (&) = [ [ Tr (ala.§)Dinela™v)" ) u(w) de dy.

Actually, these two quantizations are related in the following sense: let a be a symbol,

and consider the symbol defined by
a.(.’l’.', 6) = ﬂg(I)PQP{la(I,f)’.’Tf(x)*.

It is an easy exercise to check that Opy(a) = Opg(a) using symbols of the form
a = f® g For unimodular groups the assignment a +— a is isometric, but for
general non-unimodular groups this is not the case since the modular function is not

bounded.

2.3 Some operators arrising from the calculus

One of the most important families of operators in L?(G) is the one given by convo-
lution operators. In this section we show how to recover the usual convolution and

multiplication operators using pseudo-differential calculus.

For f,g € L*(G) define the operators

[Mult; uj(z) = f(z)u(z),

(ConvE ul(z) = [ o)) dy.
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In general Mult ¢ and Conv;‘ are not bounded operators. In fact, Mult; is bounded
if and only if f is essentially bounded. Similarly, Conng is bounded if and only if
esssup, _=[1g(é)| < oo nevertheless, for general non-unimodular groups the compo-

sition Mult, Conv} extends to a Hilbert-Schmidt operator.

Suppose now that @ is unimodular, and let f, 9 € L*(G). Define the symbo] g
by

o

a(z,§) = f(z) §¢).
Using the Planchere] inversion formula one gets that the quantizations give us a very

simple way to recover these families of operators. Namely,
Op;(a) = Mult; Conv;‘, Opg(a)u = Mult, Conv,

where C‘onv;it is the operator given by Convf(u) =ux*g.

For non-unimodular groups the picture changes dramatically, the main reason
being that the compositions Mult s Convé‘ are no longer Hilbert-Schmidt operators

under the assumption that f,9 € L*(G). In fact one has that
IMult; Convylls, = [|A~4 £ Ak gl

For general non-unimodular groups Mult; Conv, is not even a bounded operator if

f and g are not chosen in a suitable manner.,

One way to fix this is to take functions in an appropriate dense subspace. Chose

f,9 € L*(G) such that the functions A% f, Az g are square integrable, and set

a(z,€) = A} z) f(z)indgl(c).
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Then for u € L*(G) we have that Op(a)u = f - (g *u) for every u € L*(G). Indeed,

[Op(a)u)(z) = [ A@) ™} f(@)Aey™rg(zy™) Aly) Huly) dy

= f(z) fG Aly) " glzy ™ uly) dy

= f(z)(g * u)(z).
Another way to express the relation between symbols of the form a = f ® G and
operators of multiplication and convolution is given in the formulas

Op(f ® §) = Mult; Conv Multa/2 (2.1)

= Multp1/25 Convi‘_u-zg,

Opg(f ® ) = Multy Conv}, (2.2)
here g*(z) = g(z~!). We also note that the left regular representation of G induces
a representation acting on S(G): let a be a symbol and y € G, then A\, Op(a) is a

Hilbert-Schmidt operator. Hence by Proposition 2.3 below there is some symbol y.a

such that
A\, Op(a) = Op(y.a).

It is easy to see that this defines an action of G and that

y.a(z,€) = m(y)aly 'z, ).
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2.3.1 Other convolution operators that appear in the liter-

ature

In [5, §1.2] the author introduces a family of convolution (to the right) operators
given by

Convy u(@) = [ uley)Aly)baly) dy = (ux 7°)(z).
These operators are then used to study the space of left-invariant operators. If we
want to follow this path there are two ways to- study these operators. One consists

of defining
h(z) = A(z) g(z ).

Note that h is absolutely integrable if and only if g is. Then, formally one has

R
g

Opp(f® f’A?) = Multﬂ,%f Conv
The other possibility is to put
Wz) = Alz)2g(@") = 7' ().

In this case, by the definition of 4 and equation (2.2) one gets

- v R
Opg(f & h) = Multy Conv, Mults-1/2 .

2.4 Quantization by a Weyl system

In this section we introduce the notion of a. Weyl system for a general locally com-
pact group. This is then used to define pesudo-differential operators through 7-
quantization for an arbitrary measurable function 7 : G — . The goal in this

section is to make sense of formulas (0.1) and (0.3) in a rigorous way and to clarify
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the role of the required hypothesis. Throughout this section we fix a Plancherel

measure v and a measurable field (7, D;) ¢cg 5 in Theorem 1.3.
We start by defining a family of integral kernels that will turn out to be very

useful for the rest of this section.

Definition 2.1. Given two square integrable functions u,v, we define the 'Weyl

kernel associated to u, v by

Kuu(@,y) = Aly™'2) 2 uly 2)v(z) = v(@)u* (z7ly). (2.3)
We also introduce the 7-Wey1 kernels associated to the pair (u,v) as
KT (2,9) = Kup(r(y™Y) " 2,1), (2.4)
which just amounts to a left translation in the first variable of K.

Remark 2.1. Fubini’s theorem yields

fngIK;U(:c,y)dedy:f /iKu,v(:c,y)sz:cdy
‘f/'” (z™"y) | d dy

= ”UHQHUHQ
Hence K7, is square integrable. On the other hand if we identify L*-functions of two
variables with tensors of the form u ® v € L*(G)! ® L*(G) under the identification
(u®v)(z,y) = vw*(y)v(x), then the adjoint of K™ may be identified with the operator

[(K7)*S)(z,y) = S(r((zy) ")z, zy)

acting on L?(G x G). This operator is injective, hence K7 defines a unitary isomor-
phism

K™ L}G) ® I*(G) — L*(G x G),
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that we will denote by the same letter.
Remark 2.2. Note that u* being integrable is equivalent to A~%y being integrable,
moreover ||A~3ul; = |l By equation (2.3), fo K7 ,(z,y)dz = (v+u*)(y) so, if
v, u” are integrable, then
L L@ ldzdy = [ [ A@)Huly o) dyde
= [ [ A@ Hu)e) dyde

= a7 3ully [[v])s.

W=

Also note that for an arbitrary y € G, by Hélder’s inequality
o
K@ 9)ldo < [ Adulae].

By the previous remarks we see that if u, v belong to an appropriate dense sub-
space, like C,(G) for example, then it makes sense to take the Plancherel transform

of K, in both its first and second variables.

Definition 2.2. Let 7 : G — G be given a measurable function, z € G and a
representation m in the class of &€ € G. For nice enough © € L*G;H,), in a sense

we specify below, define the 7-Weyl System by
1 . L _
(W7 (7, y)0l(z) = Ay™'z)2me(r(y~")2) D¢ (O(y ).

We drop the index 7 in the notation when the choice 7(:) = e is made. It is important

to note that these operators are only defined for elements in
1 1
{6 € L*(G; H) | ©(z) € Dom(Df) p-a.e. and A2DZ6 € L*(G; He)}.

The domain of W7 (7, y) contains the space of vectors of the form 7 ® u, where
z

n € Dom(DZ) and u € Dom(Multsi/z). Here Mult; denotes the operator of multi-

plication by f, so in particular W7 (7, y) is a densely defined operator.
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Iz
Proposition 2.1. Let v be a fired Plancherel measure and let (Tfﬁ,D;)Eeé‘ be a
measurable field as in Theorem 1.3. The operators (W7 (g, y))(g,m)eéxr; form a meaq-
surable field of densely defined closed operators on fg Hedé ® L*(G). If m¢ and L

are unitarily equivalent representations with intertwining operator U, then

W (ne',y) = (U ® Idgy, ) W (me, y) (U™ ® Idy,).

Because of this, once we fix a measurable field of representations and Duflo-

Moore operators, we will just write W7 (£, y) instead of W T(me, y).

Proof. Let (n) ¢cg be a measurable section of | g He d such that n¢ € Dom(D2) for
v-almost everywhere, and let u be a square integrable function such that Al/2y is

also square integrable, then
W (e, y)(ne & u) = me(r(y™") - )DZne © [A, Mult ], (2.5)

is clearly a measurable section of H, @ L*(G) = L*(G;H,). In particular N Ru€E

Dom (W™ (7, y)). Let {(né)geé}iGN be a total subset of fg H, d§ such that v-a.e. each
1 ;

¢ is in the domain of D?, and let {u’};en € C.(G) be a total subset of L(G). Then

{(nf ® w?) ¢cd Higen Is a total subset of j'g He d§ ® L*(G) contained in the domain of

(WT(Wgay))(&x)ngG; and the map
(€9) = (W™ (re,y)(nf ® ), (nf ® w))

is measurable for each i, 7,7/, ' € N. Hence the Weyl system forms a measurable field
of densely defined operators. By equation (2.5), one sees that it is a composition
of closed operators, hence closed for each pair (¢,y) € G x G. Let U be a unitary

operator such that .

g (z) = Ume(a)U”
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for each z € G. Let Dg = UD:U*. By the semi-invariance relation and equation

(1.12), this is the Duflo-Moore operator associated to m;. Then one has
1
W7 (g, y)(ne @ u) = [Ume(r(y™) - )U" D} 2ne] ® [Ay Mult, 3 ]
= [Ume(r(y™"))D2U"ne] @ [A, Mult 3 ]

= (U@ Idy ) W (e, y)(U™ne ® )
and therefore the required relation
W7 (me',2) = (U ® Idy, ) W (7, 2) (U* @ Idy, ).
a

Given two square integrable functions u, v such that A3y € L*(@), and a given

vector ¢ € Dom(Dép). define the operator W[, : L*(@) — L*(G) by

Winl6ws = [ (W (E.1) 19 ¢) (@)(x)do.

We defined this operator on a dense subspace, but it can be extended to a Hilbert-

Schmidt operator (cf. Proposition 2.2 below). Note that
W&o =me(rty™) [ (A%) (r7'2) o(@me() D] ¢ da
= me(r(y™")) Pu(Kuo)(€.) 6
= (PlKg,v) (5, y) Cb

Here P; denotes the Plancherel transform in the first variable. This short remark

leads to the following proposition.
Proposition 2.2. The assignment u® v — W, , extends to a unique unitary map

W™ : I(G) ® LA(G) = S(G) called the Fourier- Wigner 7-transformation.

Proof. Given two square integrable functions u,v such that A%y is also square
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integrable, applying Plancherel theorem one gets

IWialta = [ LI g, dedy

= [ NP )€ I, de dy

= [ LKL (@ y)P dody

= [luli3llv][3,

which shows that W extends to a unitary isomorphism. O

We introduce the Wigner 7-transformation of two functions u,v € L2( G) as
Vi, =PPr'W, , = P,K, € S(G).

More explicitly,

Viul@,6) = [ Ay (™) o) el 2 (v 2)me(y) D dy.
We record for further use the orthogonality relations, valid for u,v/,v,v' € L*(Q)

(Wu._'uz Wu’,v’)s(a) = (’U, UJ) (U»’, u) = (V'u,‘v: Vu’,v'}g((;) g (26)

2.5 Pseudo-differential operators

As before, fix a measurable map 7: G — G. In the next definition we formalize the
7-quantization Op”(a) introduced in equation (0.1). When 7 is the constant function

7(z) = e we drop the superscript in the notation.

Definition 2.3. Let a € S(G) be a symbol with Plancherel transform in both

variables @ = P,P;'a € S(G). Define Op™(a) to be the unique bounded linear
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operator in L*(G) defined by the relation
(Op"(a)u, v) = (@, WZ,u)g(é)-

Or equivalently,

(Op™ (a)u, v) = {8,V )s(0)-
Op™(a) is then called the r-pseudo-differential operator with symbol a, while
the map a ~ Op’(a) will be called the 7-pseudo-differential calculus or 7-

quantization.
Note that

[(Op"(a)u, v} < llallsie)Wuells@ = lals@llulizlivle:

So in particular |[Op”(a)|| < |lalls(c)- By Theorem 1.3, a different choice of Plancherel

measure and tuple (¢, D¢). s gives rise to an equivalent calculus.

We have the following proposition. With only small its proof follows that of [33,

Theorem 3.8].

Proposition 2.3. Let us define
Apo(w) = (w,uv, Vw e L*G),

the rank-one operator associated to the pair (u,v). Then one has
Ay =0p"(VL,), VYu,veL*G).

In particular, the mapping Op™ sends S(G) unitarily onto the Hilbert space of all

Hilbert-Schmidt operators in L*(G).
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Proof. Note that relation (2.6) gives

(OPT(VZ,u)u” v ) (Vt:m V«I’ v’>
= (v, ") (u', u)

= (Auu(v), ),

for all square integrable functions. Hence A,, = Op”(Vy,). Since the rank-one
operators are dense in the space of Hilbert-Schmidt operators, the desired conclusion

holds. B

After working out the formulas and assuming that u, v belong to an appropriate
dense subset, and that for p-almost all z € G the operator a(z,€) satisfies the

hypothesis of Proposition 1.5, one has

(Op"(a)u,v) = (P;la, K0 12(6x6)

—/// ( 2,6)DZr ()" )mdfda:dy.
Thus by making the substitution y — yz and using (2.4)
09" (@)ul(e) = [ [ Te(alr(u™)a, )Ddne(v) ) Aty 2)buty~'a) de dy
“f / Tr( )z, €6)D 'na(wy) ) ()™ 2uy™t) de dy
-/ /aTr(a(r(ya:—l).r,a)DEvrf(yx-l)) Aw)Hu(y) de dy.
Thus, the kernel of Op”(a) is the square integrable function
kerf(z,) = AW)™H [T (a(r(va )2, ODEme(ov ) 6 27
= A(y) "2 [Py a)(r(yz )z, 2y 7). (2.8)

Formula (2.8) shows in another way that Op” is unitary. Indeed by consecutive use
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of Fubini’s theorem,
= y T R S 1+ . 12
L L ke dedy = [ [ a@) [Pria(rey e, oy ) dedy
_ | D=1 (. &
= [ LIPratr ).y dwdy
= “‘IH‘%(G)-

We summarize the most important properties of Op” in the following theorem

(cf. Section 2.6 for the definition of an H*-algebra).
Theorem 2.1. The T-quantization Op” : S(G) — B, (L*(G)) is a unitary isomor-
phism of Hilbert spaces. Additionally Op™ has the following properties
(1) If r(z) = e, then Op™(f ® §) = Mult; Conv, Multa/2.
(it) The integral kernel of Op™(a) is given by
kera(z,9) = A@W) "3 [P5 ] (7(ya ™), 2y ™).

Remark 2.3. Suppose G is unimodular. If 7(z) = e for all z € G, then formula (2.7)
reads

ker,(z,y) = éd;/z Tr (a(r,g)rré(a:y_l)*) d¢ = [Py lal(z, zy™Y).
Remark 2.4. When G = R", under the identification of G with R™ defined by £(z) =

e~2m6%) with Haar measure as the Plancherel measure, and setting De = Id 2w,

we recover the Kohn-Nirenberg calculus (cf. eq. (0.2)).

2.5.1 Relations between different r-quantizations

The choice of measurable function 7 : G — G has to do with ordering issues in

the quantization arising from the non-commutativity of the operators involved. One
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may ask for is the exact relation between the quantizations given by Op and Op™.
Let a € S(G) be a symbol defined on the group, and consider the unitary map
O L*(G x G) = L*(G x @) given by
07S(2,y) = S(r(y) 'z, y).
Then if we consider the symbol
d" =P () P;la,

after successive uses of the changes of variables shown in equation (1.1) we arrive at

the relation between the quantizations
Op(a”) = Op"(a).

"This relation shows how to pass from the quantization where 7(z) = e to an arbitrary

T-quantization. Note that a +— a” is a unitary isomorphism.
Example 2.1. Consider 7(z) = z. Then if a = f ® § we have
Op™(a) = Convé Mult s Multpi/z .

With formula (2.1) in mind one sees that this choice of 7 changes the order in which

the operators of multiplication and convolution are composed.

Example 2.2. We implement a right 7-quantization via the formula

(Opr(aul@) = [, [ Tt (a(r(va~)2,€) DEme(atu) Yuly) de dy.
As in the previous example, if we take 7(z) = z the operator with symbol a = f®§
is

Opk(a) = Conv} Multy .



2.6 Involutive algebras of symbols

The fact that Op” is an isomorphisms allows us to define a product *,, which we

will call the Moyal product, and an involution *= on §(G) by the formula

Op’ (a - b) = Op’(a) Op" (b),
Op (a™") = Op’(a)".

With this extra structure S(G) becomes an H*-algebra [7, Appendix A}, i.e. a
complete Hilbert algebra, which we will denote by H*(G). Being an H~-algebra

means that the following relations hold,
(ax*:b,c)e(q) = (b, 0" *-C) (),
(a,b)m+(c) = (0", 0" )1~y
for all a,b,c € H*(G). These relations follow from Proposition 2.3 and the fact

that the Hilbert-Schmidt operators are a H*-algebra with the usual composition and

invelution.



Chapter 3

Some concrete examples of

non-unimodular groups

In this chapter we work out in detail the representation theory of the affine group
and of Grélaud’s group, two simple examples of non-unimodular groups. Then we

show how quantization works in theses examples.

3.1 A pseudo-differential calculus for the affine
group

In this section we develop a pseudo-differential calculus on the affine group of the
real line. The theory of unitary representations of the affine group is worked out

in [17] or in [12, §6.7]. In this section

G ={(ba) € R*|a # 0},

(]
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denotes the Affine group, with product law
(b,a)- (V,a') = (ab' + b,ad’).

The group G is a Lie group and the connected component of the identity is a simply
connected Lie group; it is also the semi-direct product R x R*, where R* =R \ {0}
is the multiplicative group of R acting on R by multiplication. Since it is also a real

algebraic group, it is type L

Let g = R? be the Lie algebra of G with bracket defined by

(B, @), (B',0/)] = (B’ — o'B,0).

The left Haar measure is |a| =2 da db, and its right Haar measure is given by |a|~'da db.

Hence the modular function is
&b, 8) = |al”1.

The Haar measures of G are a product of a continuous function on G and the
Lebesgue measure of R?. Hence they are strongly equivalent measures. The con-
nected component of the affine group is the only connected simply connected (non-

unimodular) Lie group of dimension 2 with Lie algebra g.

One important fact is that the exponential map exp : g — G is a diffeomorphism
of g onto the connected component of the identity. The exponential and logarithm

maps are given by

exp(f,a) = (— e —1), 6)

log(h, a) = (

with the limit case being used if a = 1.



3.1.1 Representation theory of the Affine group

One of the special properties of G is that its unitary dual consists of a point with
positive Plancherel measure equal to 1 and a v-null set of one-dimensional repre-

sentations (cf. [12, §6.7] where the Mackey machine is used to compute the unitary
dual).
Up to a set of zero measure, G consist of a single representation 7 called the
quasi-regular representation. It acts on H; = L*(R) via
7(b,a)f(z) = |a]*2e™ ™2 f(ag).
We denote the equivalence class of 7 in G by the Greek letter £. This is a square-
integrable irreducible representation since it has positive Plancherel measure.

The Duflo-Moore operator corresponding to the representation £ is given, on

its natural domain, by
Def(z) = |z|f(z).

An explicit calculation of the matrix coefficient functions for f, g € L?(R) shows that

Crofb,0) =1a]'”* | f(&)glaz)e?= da.

Let u,(z) = f(z)g(azx). Then
dbda

lal
5 dbda

lal

[Craly = [ J7a(-5)P
= [ 17 ®)gTad)]

= I £I31D5 3 g)i2,

This is another way of seeing that 7 is a square-integrable representation. The



Plancherel transform is given by

[F©)gl(z) = lal™2 | 70 a)glai) o 0 %0

lal

q 1
= |3:'1/—/Gm}_1f(m, a)g(az) da

- /G rrj}]f (x, «2—) g(a) da.

This is a Hilbert-Schmidt operator with integral kernel

Kj(z,0) = Jx[%}'lf (x %) , (3.1)

|al
where F; denotes the usual Fourier transform on the real line acting in the first

variable. A calculation in [12, §6.7] shows that the Plancherel formula implies

1K = [, s 77 ()
- //Z-ngf1f[mja)|2 d|z|(‘;fa,

= [1£lZ2c)-

2
dz da

So, as required by the general theory, the Plancherel transform implements a unitary
isomorphism

P : L*(G) = By(L*(R)).
Note that the center of the right-hand side von Neumann algebra is C-Id z2(g), so the
Plancherel transform implements a central decomposition of L?(G). In particular,
this calculation shows that the support of the Plancherel measure is {¢€}. There is
not enough room in L?(G) for another representation, hence we identify the unitary

dual of G with the singleton {£}.
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3.1.2 The quantization for the affine group

Let 7(b,a) = (0,1) for all (b,a) € G. For a symbol & formula (0.1) reads

a

[Op(a)u](a,t) = | /R 2 '-(—17'1-37§Tr (a(b, @)D (b _ 2y —)) u(t', ) dv' da’.

a
a a
If we identify symbols on G with functions f € L*(G x G) via the unitary map

defined by equation (3.1) we may think of symbols as integral operators of the form

(oo, ) = [ Kyon ,5)u(s) ds = [Par (2, u(v)

Using formula (2.8) for ker,, formula (0.1) boils down to

Vil |
a

1 a / a / / / r
[Op(a)u](b,a) = f/mz Wf ((b,a,), (b ——=b ;)) w(b',a')db da'.
In particular the map
L*(G x G) 3 f = kerp,; € By(L*(@)),

is a unitary equivalence.

3.1.3 Operators that arise from the representation

Let A= (0,1) and B = (1,0) be the generators of g; they satisfy the commutation

relation [A, B] = B. Then if dn(X)u = $7(e** )u |;—o, denotes the (densely defined)

induced representation of g on the Hilbert space L*(R) we have that
1 ;
[dr(4)fl(z) = 2£(z) + 2 (@),
[dn(B) fl(z) = 2miz f(x).

Clearly [dn(A), dn(B)] = dn(B). Note also that



is the infinitesimal generator of dilations of R, a well-studied operator on R.

3.2 Grélaud’s group

Grélaud’s group is one of the non-unimodular Lie groups that arises from Bianchi’s

classification of 3-dimensional Lie algebras [3]. Let § € R\ {0} and let

== A
i 4

We endow Gy = R x R? with the multiplication law
(s,u) - (s, u) = (s + &, e *4u+u).
Here

A cos(tf)  sin(t)

—sin(td) cos(t8)

Gy is a semi-direct product R x R? with unit e = (0,0) and inverse given by
(5,u)"! = (—s, —e*4u).

The left Haar measure coincides with the Lebesgue measure on R3, but the group is

not unimodular. Indeed, the modular function is given by
A(s,u) =e 2.
The Lie algebra gy of Gy is, as a vector space, R x R? with the Lie bracket
[(o,m), (o', )] = (0,0 A’ — o’ Aps).

Since the commutator [gg, g] is contained in {0} x R?, a commutative subalgebra,

then gy is a two-step solvable Lie algebra. Its exponential map exp : gs — Gy is
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given by

1
exp(o, n) = (a, —;A‘l (e'”A - Id) ,u.) :
The exponential map is clearly a diffeomorphim. In particular Gy is an exponentially
solvable Lie group, connected and simply connected as a topological space. Recall
that exponentially solvable groups are type I. Most of the representation theory of
Grélaud’s group is worked out in detail in [15, §4.4], but we calculate it in Section

3.2.2 to show how Theorem 1.1 works.

3.2.1 Representation theory of Gy

There are two families of representations of G. Let A € R, then

X/\(S? ?.L) — ei/\s

is a one-dimensional unitary representation. Let p € S* be a unit vector in the plane.

Then we have the unitary representation on H, = L*(R)
mo(s,u) f(t) = e TN pt — ),

The following proposition is proven in [15, §4.4]. We also give a proof of this propo-

sition in Section 3.2.2 using Proposition 1.1.

Proposition 3.1. Every irreducible infinite-dimensional unitary representation of
Gy is unitarily equivalent to m, for some p € S*. Moreover the set of classes of these
representations is a v-conull set on Gy, and the Plancherel measure coincides with a

multiple of the Haar measure on the circle.

From now on we identify the Plancherel measure of é;; with the Haar measure

on the unit circle having total measure v(S') = 1. We also identify 7, with p € S*.
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The map F, denotes the usual Fourier transform on R* on the second variable.

The Duflo-Moore operators, applied to a function f lying on a dense subset of

L%(R), are given by
L I
Dpf(t) = 5 e 21(0).

With this in mind, we find that the Plancherel transformation on Gy is given by

[Flp)gl(t) = 7%//“&2 £t — s, u)e e
- 712=~ LBt (t= 5500 D) e o(o) s,

where A" denotes the transpose of the matrix A. Let p(¢) = (cos(¢),sin(¢)). Then

—s5A

tp'“)e‘sg(s) dsdu

Plancherel’s formula reads

L@, dp = 5{; L[|z (t_s,;e-m»p) e sy
T4 fzrf/ (t ge (ﬁ))iQE_QSdtdsd@

s //Rxmzpfgf(t,u)rdtdu
= |I£13,

where the second equality comes from the fact that the Jacobian of the transforma-
tion
_eat | C08(®)

1‘"(5:90) = 5 ) ( )
sin(e

s e 2 /472 ie. e 2dsdyp = dnidu.
3.2.2 Computing the unitary dual

Here we compute the unitary dual of G = Gy using the Mackey machine (Theorem

1.1). Let N = {0} x R? and let H = G/N = R. Note that NV is a type I normal
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closed subgroup of Gy since
(s,2) - (0,v) - (s,u)~" = (0, ™).
We identify an element p € R? with a representation o, € N via
7,,(0,u) = e~

After the above identification, the dual action of G on R? is given by

t
- esA

(s,u).u .

Since [|e*' || = €*||u]l, one can see that the orbits are spirals towards the origin,
and the origin itself. Hence N, /H may be identified with the unit circle S and
a point {0}, which is a countably separated Borel space. Let p € S'. Note that
the stabilizer in G of p is N. Let m, = Ind%(c,) be the induced representation
acting on the space L*(G, N, o, ur), where ug is the Lebesgue measure on R. Thus,

f € L¥G,N,o,, ur) satisfies
f((s,u)- (0,v)) =0,(0,v)" f(x) a.eand /IR]f(S’O)P ds < o0.

Note that the Hilbert space on which m, acts is unitarily isomorphic to L*(R) with
the following unitary isomorphism: identify a function f € L*(R) with the function

fﬂ E LQ(G: Na U,us .U‘R) given by
fols, u) = e f(s).
Abusing notation, 7, is given on L*(R) by

t)A

(s, u) () = e M f 1 — ).
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Having in mind that the modular function coincides with the multiplication by A

one also has that the Duflo-Moore Operators are, up to normalization, given by

D f(8) =& %)

If we start with the orbit of 1 = 0, then the stabilizer of this point is all of the group,
and the trivial representation extends to the‘whole group. Hence the representations
we are looking at are of the form y, = Ind%(1 x o), where oy ((s,u)N) = e=™s g 5
unitary representation of /7, = R for some A € R. It is easy to see that Indg(o,\j is

unitarily equivalent to the one-dimensional representation
X1 (8,u) = g9,
Now we see that
Go={m, |peSYU{x\|)eR} = SLUR.

To use Proposition 1.4 we chose (2 = R? \ {0} as our G-invariant vx-conull subset of
N, then we have the following v-conull subset of G
U {Ind§(o xp) | p€ {0}} = {m, | n € S},
0.€Q/H
Since for each o € 0, the dual of the stabilizer H, consist of only a point, the calcu-
lation of the Plancherel measure amounts to find a pesudo-image of the Plancherel
measure of N = R2 on Q/H = §1 (i.e. the Lebesgue measure on R?). The Haar
measure of the circle is a fine choice of pseudo-image. Hence the Plancherel measure

of Gy is just the Haar measure on the circle.



3.2.3 The quantization

Let a € S(Gy) be a symbol and let 7 : G — G be the map defined by 7(s, u) = (0,0)
for all the elements of the group. Then, the kernel of the pseudo-differential operator
with symbol a is given by
1 ’ ’ !
kerg(u,s,v',8') = _/ Tr (a(s, u, p) Dy (s — &, ey —e " Au')) e dp.
Sl
An the symbol space can be identified with
2 e 2
S(G)=1A0)® [ B(L*(R)) de
= 1%(G) ® L*(G) ® By(L*(R))
> 12(G x %) @ By(I*(R))

=~ L3(R® x [0,1]),

the last space endowed with the Lebesgue measure.
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Chapter 4

Crossed products of C*-algebras

We introduce some tools from the theory of crossed products of C*-algebras, this in
turn shall help us to cover the bigger class of compact operators on L?(G), using

the Schrdédinger representation of a natural crossed product associated to G, namely

C@ (G) x G.

4.1 (*-dynamical systems

Definition 4.1. A C*-dynamical system is a triplet (A, G, &), where G is a locally
compact group, 4 is a C*-algebra and o : G — Aut(A) is a strongly continuous

representation of G.

Let (A, G,a) be a C*-dynamical system, to it which we associate the space

L'(G; A) of all Bochner-integrable functions f : G — A. This space has the structure
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of a Banach *-algebra with convolution and involution laws given by formulas

(Fx9)(@) = [ fwey(oly™)) dy,
F(2) = Alz) e (flzY)") -

The Banach *-algebra L'(G; A) is naturally isomorphic to the projective tensor prod-

uct A ® L'(G). Consider the universal norm on L*(G;.A) given by

[ fllaxc = sngp(f)H,

where the supremum is taken over the set of all non-degenerate *-representations of
A. The crossed product A x G is the enveloping C*-algebra of L!(G;.A), that is,

its completion under the norm ||-|| 4.q.

Example 4.1. Let A be a C*-algebra, take G to be the trivial group and a to
be the trivial representation, then A x G is naturally isomorphic to A. Another
more interesting example is when we have a continuous action of G on a topological
space X. This induces a map o : G — Cop(X) given by a.(f)(p) = f(z7'p). Then
(Co(X).G,a) is a C*-dynamical system and it encapsulates all the information of

the group action.

Definition 4.2. A covariant representation of a C*-dynamical system (A, G, a)
is composed of: a unitary representation = of G and a non-degenerate *-representation

p of A, both acting on a Hilbert space H in such a way that they satisfy the relation
m(z)p(f)m(z)" = p(asf) feAzedG.
We denote this data as the triplet {(p, 7, H).

Example 4.2. Let (Cy(X), G, ) be the C*-dynamical system induced by an action

of G on X. Then a covariant representations of Cy(X) x G is exactly the same as a
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system of imprimitivity (cf. [31] §3.7). In fact there is a one-to-one correspondence
between continuous actions of a group G and C*-dynamical systems (A, G, @) where
the C*-algebra A is an abelian one. This can be easily seen from the fact that every
abelian C*-algebra is of the form Cy(X) for some locally compact space and there is
a correspondence between strongly continuous representations a : G — Aut(Coh (X))
and continuous actions of G on X [43, Proposition 2.7]. In particular, a system of
imprimitivity is the same as a covariant representation of a C*-dynamical system

where the C*-algebra is abelian.

Every covariant representation (p,7, ) of a C*-dynamical system naturally
induces a non-degenerate *-representation p x 7 of the crossed product A x G on A,

which is the unique extension of the representation of L*(G;.A) given by the integral

pxn(f)= [ p(FW) m(y)dy. (1)
This process sets up a bijection between the covariant representations of a (*-
dynamical system and the non-degenerate *-representations of the crossed product

associated to it [45, Proposition 2.40].

4.2 The Schrodinger representation

There is a natural covariant representation associated to any left-invariant C*-algebra

of functions defined on G. We show some of its properties and how it relates to our

quantization.

Let A be a left-invariant C*-subalgebra of the space of bounded left uniformly

continuous functions on GG. For an A-valued function F' on G and elements z,z € G
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we make the convenient identification
F(z)(z) = F(z,x).

The triplet (A, G,a) is a C*-dynamical system when endowed with the action « :
G — Aut(A) given by a.F(z,y) = F(z,z7'y). Then our convolution and involution

laws are given by
(F*G)(z,z) = /G F(z,y) Gly 2,y 'z) dy,
F¥(z,z) = Alz) ' F(z1z,z-1).

Let H denote the space of square integrable functions on G. Then we have a natural

covariant representation of the triplet (A, G, o) given by
Aau(y) = u(z™'y), Multsu(y) = f(y)u(y).

The Schridinger representation is the integrated representation Sch = Mult x A

of A x G. More explicitly for a function F' € L}(G; A),
[Sch(F)u|(z) = /G Fz,y)u(y 'z)dy
= /G F(z,zy™)A(y) " u(y) dy.

The good thing about the Schréodinger representation is that, formally, one gets the

following relation

Op(f ® §) = Sch(f ® g) o Multpi/2 .
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We can estimate the norm
seh(w).v) < [ || Fapuap(e) dy| de
< [ 10 euts )00 dy | o
< [ 11 o * 0 (@)0(2)] dz
< [ fllzvea lull2llvl2.

But much more is true, from the integrated form formula (4.1) one sees that in fact

one has a better estimate of this norm:

ISch()I < [|.f]l.axe-

4.2.1 Interlude on Amenable groups

Let 71, mo be unitary representations of G. Each one lifts to a non-degenerate *-
representation 7, and 7 of the C*-algebra C*(G) of the group. We say that = is

weakly contained in 7, if and only if kerz, C ker;,.

A locally compact group G is called amenable if the trivial representation is

weakly contained in the left regular representation.

We recall some of the equivalent definitions for amenability [7].

Proposition 4.1. The following conditions are all equivalent.

(i) The group G is amenable.

(ii) There is a bounded linear functional L®(G) — R that is positive and left-

invariant.
(iii) All of the irreducible representations of G are weakly contained in the left regular
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representation.

(iv) The support of any Plancherel measure is all of G.

In general a connected Lie group is amenable if and only if it has a closed normal

solvable subgroup such that the quotient is compact.

By Proposition 4.1 non-compact semisimple Lie groups are not amenable.

Example 4.3. Some examples of amenable groups are: finite groups, abelian groups
and connected solvable Lie groups. An extension of an amenable group by another
amenable group is also amenable. Every quotient by a closed normal subgroup and

every closed subgroup of an amenable group is amenable.

Example 4.4. Since Grélaud’s group is a connected solvable Lie group, it is amenable.

Similarly the affine group is an extension of R by R*, hence it is also amenable.

Remark 4.1. In [45, §4.4] it is shown that there is epimorphism of C*-algebras be-
tween the space of compact operators in L*(G) into Cy(G) % G. Part of the result
is that this morphism is an isomorphism if and only if the group is amenable. In
particular, for each f € Cy(G) x G, the operator Sch(f) is a compact operator with
operator norm equal to the universal norm of f. This gives us a way to extend our
quantization so that we cover the more general case of compact operators. In the
general case that G is not amenable, we still have that Sch : Cy(G) x G = Bo(L?(G))

is an onto contraction.
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Chapter 5

Conclusions

There is still much room for more general quantization. For example, one could
drop the type I hypothesis since the non-unimodular Plancherel theorem still works
partially in this setting [8]. Another, more important aspect to improve is the gen-
erality of the symbols involved, and to get an analogue of the Hérmander symbol
classes, for at least connected simply connected Lie groups. This has already been
done for compact and nilpotent connected Lie groups {10,37]. This is particularly
important since almost all the operators that appear in mathematics and physics
are unbounded, and our class only covers the much smaller class of Hilbert-Schmidt
operators. And the usual Kohn-Nirenberg covers a big class of unbounded operators

which are needed for applications.
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