
Uorrc
wtA6- M

Et1',

Tsn Rmsz KoruocoRov Wprl
TTTnoRBM FoR ABsTRAcT HnnERT

SPACES

Ibsis

Entregada A La
Universidad De Chile

En Cumplimlento Parcial De Los Requisitos
Para Optar Al Grado De

Magístcr en Ciencias Matcmriticas
Facultad De Ciencias

Por

Daniel A§andro Parra Vogel
Agostor 2013

Director de Tbsls: Dr. Marius Mántoiu

/{oc aE",i.
zr- .1\
g +iiaro;: Í,< -^^:'" 

' 
FL --* uqn_::gát á

Qr.,ü



FACULTAD DB CIENCIAS

UNIVERSIDAD DE CHILE

INFORME DE APROBACIÓN

TESIS DE MAGISTER

Se informa a la Escuela de Postgrado de la Facultad de Ciencias que la Tesis de

Doctorado presentada por el candidato

Daniel Aleiandro Parra Vogel

ha sido aprobada por la comisíón de Evaluación de la tesis como requisito para

optar al grado de Maglster en Ciencias Matemáticas, en el examen de Defensa de

Tesis rendido e1 día 19 de Agosto de 2013.

Di¡ector de Tesis:

Dr. Marius Mántoiu

Comisión de Evaluación de la Tesis:

Dr. Gonzalo Robledo

Dr Verónica Poblete

lt l¡*

á"..oo N
'tt oze\ C-v§"2
§",.)l



lr'os'.lA0 o\
',,-t 46)x o\
I. l^\/.ft\ fn\s7. ""/Á)\ zc \f..'4 o

§",JP
Agradecimientos

Quiero agradecerle al profesor Ma¡ius Ia confianza que depositó en mi, su de-
ücación para sostener un trabajo periódico y estimulante, y el apoyo que me
dio, en particular para que la defensa pudiese llevarse a cabo. En ese sentido,
también debo a agradecer a mis corectores, la profesora Verónica Poblete y el
profesor Gonzalo Robledo, por Ia vountad de realizar ese trabajo en un plazo
sin duda demasiado corto y en medio del término del semestre. También quiero
agradecer al profesor Eduardo el apoyo desinteresado que me ofreció y al profesor
Manuel Pinto por ayudarme a def,nir mi interés por la investigación durante la
Licenciatura. Debo también reiterar mis agradecimientos al profesor Gonzalo por
su paciencia durante el Eabajo de seminario de Licenciatu¡a.

Quiero agradecerle al Laboratoire d'excellence MILION que en conjunto con
la Embajada de Francia en Chile me premitieron realizar una estadía en el Institut
Caruille Jordan de Lyon. Respecto de la preparación y realización de tal estadía,
asi como del doctorado que voy a realizar en dicha institución, la ayuda que el
profesor Serge Richard me brindó (y brinda actualmente) excede con creces los
merecimientos que yo pudiese haber realizado.

Quiero agradece¡le a mi abuelo Eugenio Vogel el haberme permitido pasar
junto a mi familia los meses en que redacté esta tesis en aquel lugar de ensueño
que es Malalcahuello, a mi madre por haber intentado decifrar el . tex puliendo
mi rudimentario inglés y a mi padre por su apoyo incondicional.

Quiero agradecer a Giselle y Emilia por confiar en que este proyecto tiene
sentido y su voluntad de acompañarme en su continuación allende el océano.

Este trabajo ha sido financiado por el Nucleo Cientifico ICM P07-027-F
" Mathematical Theory of Quantum and Classical Magnetic Systems".

ii



Indice general

Agradecimientos

Índice general

Resumen

Abstract

lntroduction

1 Classical compactness criteria
l l Compactness in spaces of continous functions
1.2 The Kolmogorov Riesz Weil theorem
1.3 Representations and the integrated form
1.4 Integrated form and compactness in .L2

1.5 Representation coefficients and compactness in .L2

Abstract quantization and compactness
2.1 The framework
2.2 Compactress criterion
2.3 Characterization of bound and scattering states

Magnetic compactness
3.I The standard Weyl calculus
3.2 The magnetic formalism
3.3 Magnetic compactness criterion

Compactness in coorbit spaces
4.1 The Alao§lu-Bourbaki Theorem

ii

IIl

1

,

3

6
6
8

t2
l8
t9

23
z3
26
29

33
55

36
40

42
42

1ll



INDICEGENERAL

Banach function spaces

The coorbit formalism . . .

Compactness criterion

5 Compactness in spaces of operators
5.1 Compactnes criterion for K(11)
5.2 Compactness criterion for f (X,co(/vl))

Bibliography

45

49
51

54
54

57

58

/l '1

4.3

^n



Resumen

El principal objetivo de esta tesis es reproducir resultados de compacidad presenta-
dos en [DFG02,GI04] en el contexto de [Man]. En particular, damos condiciones
para que un subconjunto de un espacio de Hilbert sea compacto en terminos
de las propiedades de una familia acotada de operadores acotados; el principal
ejemplo es el de 1a compacidad mágnetica. Finalmente, tomando en consideración

[DFG02], presentamos también algunos resultados parciales para espacios de
coorbitas y, motivado por [GI04], consideramos 1a compacidad en espacios de
operadores compactos.



Abstract

This aim of this thesis is to reproduce the compactness results presented in
[DFG02, GI04] in the setting of [Man12]. In particular, we give conditions
for a subset of a Hilbert space to be compact in terms of the properties of
bounded families of bounded operators; the main example is the case of magnetic
compactness. Finally, taking acount [DFG02] we also present some parcial
results considering coorbit spaces and, motivated by [GIO ] we also conside¡
compactness in spaces of compact oprators.
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Introduction

The main goal of this thesis is twofold: to expose some compactness criteria,
first presented in [MPl3], that generalize the Kolmogorov Riesz Theorem to
abstract Hilbert spaces and Banach spaces defined in terms of generalized con-
tinuous frames; secondl¡ to give a panorama of several topics that I came to
learn working on this thesis under the supervision of professor Marius Mántoiu.
The main contribution consist in make available results already present in the
litterature for the classical Weyl calculus for the new magnetic Weyl calculus. In
this introduction we start by presenting the stxucture of the document and then
rapidly fix some notations.

Several classical compactness criteria are presenled in Chapter 1; it is also
shown how these results, presented first in a pure analytical framework, can be
¡elatod to group representations. When such a structure is available, our aim is
to rclate it to both representations coefficient and f}rre integrated form of such
representation. In chapter 2 we will extend this construction fo the case where
a family of bounded operators indexed by a topological space E endowed with
a Radon measure is given; we stress that even when the topological space is
lR", there is no need for a relationship between r(x)tr(y) and a-(e + y). The
framework is the one from [Manl2], so it needs to be understood as an abstract
quantizatio[ procedure. In chapter 3 we focus on the important example of
the magnetic Weyl calculus. In particular, we generalize the results of [GI04]
which whe¡e concemed only with the integrated form approach. In chapter 4 we
study compactness in coorbit spaces, obtained from adding some Banach space
of functions, (see [BS88]) to the data already available; this approach extend
the one presented in [DFG02]. Finally, in chapter 5, we present the available
results conceming compactness in opemtos spaces and then relate them with the
previous chapters.
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Conventions and Notations

We begin recalling the basic notions that we shall use throughout this thesis.
Because all the spaces that we will study are metric, our interest will focus on
finding compactness criteria linked to tbe totally boundedness properry. A subset
Q of a metric space is totally bounded if for every e there exists a finite cover of
Q by sets of a diameter of at most € . Such a cover will be called a e-couer. It is a
known fact that in metric spaces compactness coincides, on closed sets, with total
boundedness,

For a topological space E, assumed to be Hausdorff, we note by 7(z) the col-
lection of neighborhoods of z . We say that X is locaIly compact when for every
u € » we can find a compact set in V(r) . When E has such a topology, we denote
as C(E) (resp. C"(E), resp. Ce(X), resp. C¿(E), resp. Ci(E) ) the set of complex
valued continuous functions (resp. continuous functions with compact support,
resp. continuous functions that vanish at infinity, resp. bounded continuous
functions, resp. bounded and uniformly continuous functions). Unless otherwise
stated, we will always consider the sup norm defined by ll/ ll*: sup,.¡ l/(z)l .

Note that C.(») c Co(») c Ct@) c C¡(I) with density in the first inclu-
sion. When U c E we denote the characteristic function over U by yy. By
K(») we denote the space of a characteristic function over compact sets of D.
The Lebesgue space L2 (E; ¡"t) : L2(») will also be used, with scalar product
(u,u) up¡ :: (u, u)1»¡ . For a measu¡able set U we denote lUl -- ÍrdpXu .

We say that a sequence of measurable functions /," converge in measure to / if
for every e > 0 we have lim"-* ¡r ({r e D : lf"(r) - / (r)l 2 .}) : 0 for a1l

DeXwithp(D) <oo.

For Banach spaces .8, ) we set IB(.Y, J)) for the space of linear continuous
operators from .{ to } and use the ¿bb¡eviation B(,Y ) :: B(X, X). The par-
ticular case X' :: ts(X,C) refers to the topological dual of ff. BVK(lf,))
we denote the compact operators from .t to J, . We also are going to need the
Bochner space LL (»., X) composed of (equivalent class of) Bochner integrable
functions from a measure space X to a Banach space .t.

lf '17 ís acomplex separable Hilbert space, and E C ?l we note by SF(E)
for the closure of the linear span of E. We denote by 'lt the conjugate of ?l;
it coincides with ?l as an additive group but it is endowed with the scalar mul-
tiplication d . u :: oz and the scalar product \u,ul' :: @$ . lf u,t e '11,
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the rank one operator )"," : la) (ul is given by A*,,(w) :- (w,,u)u . ?l A ?t is
the algebraic tensor product of ?7 and ?t ; in that case we clenote by 116H the
completion in the Hilbert norm. The two-sided *-ideal of all Hilbert-Schmidt
operators in B(71) is denoted by B2(11); it is a Hilbert space with the scalar
product (.9,?)srlr¡ :: Tr(.97-) .

For real functions we write f" t f if f" -+ f and "f" < /,a1. We def,ne
a3alo¿ouslf J. Given a sequence -O" of subsets of a set [/, we say that the limit is

I U E"::lim,¡-+-8,. We also write

oo oo

a+ [-] [J a. (0.1)
nx=L tl=nl

Then f (resp. .1.) is reserved for increasing (resp. decreasing) sequences.



Chapter 1

Classical compactness criteria

In this chapter we introduce some widely known compactness criteria, namely
the Arzelá-Ascoli in section l l and the Riesz-Kolmogorov in section 1.2. We
introduce also some basic notions of harmonic analysis and representation theory
in section 1.3 and in section 1.5, in order to show the basic approaches that
motivated this thesis. In section 1.4 we reproduce the result from [GI04] and
in section 1.5 the result from [DFG02] in a way that, at least we expect, should
motivate our latter approach,

1.1 Compactness in spaces of continous functions

The points of departure of most compactness results in spaces of functions
are linked to the classical Arzelá-Ascoü theorem that we shall describe now
This theorem characterizes the compactness of sets of continuous functions over
compact sets. The theorem is built upon the notion of equicontinuity and pointwise
boundedness.

Definition l,l. Let E be a topological space. A subset Q of C (») ís said to be:

l. pointwise botnded iffor et ery t e E there exists M > 0, such as lf (x)l <
Mforevery f eQ;

ii. equicontinuots if for every il €. E and every e > 0 there exists V, a
neighborhoodof xsuchthat l/(") -/(y)l <e holdsforevery f e Qand
everyy €V.

With this deñnition the theorem reads as follows.
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Theorem 1.2 (Arzelá-Ascoü). kt E be a compact set. Then, a subset Q of C (E)
is totally bounded if and only if the following conditions hold true:

l. Q is pointwise bounded,

2. {l is equicontinuous.

Proof. Let O be a pointwise bounded and equicontinuous subset of C(D) and
let e be greater than 0. We need to find an €-cover of O. By compactness
of X and equicontinuity of O, there exists a finite cover {I{}[, of D, such as

lÍ@) - f (A)l < e, whenever n and A belong to the same %. We choose a
collection {r¡}[, such thaf q €. fi for every i : L,..., N . We consider the
following mapping:

tI¡ .O ------r (-N

"f -+ ("f (¿,),..., 
"f 
("¡)) .

( 1.1)

The pointwise boundedness and the property of-each V¿ implies that Q(O) is
bounded, and hence totally bounded. Taking {.8,}[, a f-cover of iD(O), we need

only to show that iO-l(.Q)][, is an e-cover fo¡ O. That it is a cover follows
from the fact that {&} is a cove¡. Furthermore, for / and g in O-1(&) and z € X
we have

lf @)'s@)l < l/(r) - i@)l+lf@) - s@)l+ls@) - s@)l
€(el=+*+5:.
tJ rJ

since r € Iz¡ for some j andlf @¡) - s@)l f llo(/) - A(g)llc, .

To prove the converse we need first to remark that the total boundedness
implies boundedness (i.e. uniform boundedness) which in turn implies pointwise
boundedness.

To prove equicontinuity, let us fix r € O and e > 0. From a ,s-cover {U¡}
we choose {9j} C 0, with g¡ e [/¡. Because every g¡ is continuous, there is yj,
a neighborhood of r, such that lg¡(t) - g¡(il| < i for every 9 € V7 . Setting
V : nW, we obtain a neighborhood of z such that for every gr in it and every

/eOwehave:

lf @) - f (a)l < l/(o) - s i@)l + ls¡@) - s¡(úl + ls¡(y) - Í (y)l < e (t.z)

because / needs to belong to some (/¡ .
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Deffnition 1.3. A family of functions {l is ttght if for every e > 0 there exists a
compact subset K of E such that s.upÍetr li /X¡<. ll*< e .

Using this definition we have the following corollary.

Corollary 1,4. ktE be a topological space. Then, a subset ll of C¡{E) is totally
bounded if and only if the following conditions hold tnte:

L Q is pointwise bounded;

2. {l is equicontinuous;

3. Q is tight.

Proof. 'Ihts follows trivially applying Theorem l.2to C(K), where .If is the
compact set coming from the tightness properfy. !

We stress that the key part of the proof of Theorem 1.2 is the definition of the
mapping O. This motivates the following lemma (see tHOHlOl).

Lemma 1.5. Let X be a metric space. Assume that, for every e > 0 there exists
some 6 > 0, a metric space W and a mapping O : X -+ W, so that §lXl is
totally bounded and whenever r,y € X is such that d(O(r), O(y)) < 6, then
d(*,y) < e. Then X is totally bounded.

Proof. Lef w fixe > 0. We choose an d(e)-cover of O[X], namely V, ...,W. h
is snaightforward to check that the inverse images {ó-lvl} will form an e-cove¡
forX. tr

Remark L.6. It is easy to see that the @ mapping defined in (l.l) fuffills the
assumptions of the l¿mma with 6 : f,. Note also thatW = CN really depends
on e.

L.2 The Kolmogorov Riesz Weil theorem

We turn now to study the model for the compactness criteria that we shall present
in this thesis: the Kolmogorov Riesz Weil Theorem. This result was first obtained
in 1931 independently by Kolmogorov and Riesz; it is the version of the latter
that has become the standard one. In this section we prove a generalized version
to locally compact group given by A. Weil ([Wei65]). The reason behind this
choice is to present a result in a greater generality and also because this allows us
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to introduce some key concepts coming from "harmonic analysis".

We first recall the definition and some properties of the Haar measure (see

[Fol95, Sect, 2,2]). G wlll always refer to a locally compact group (i.e. a group
equipped with a locally compact topology that is compatible with the group
operations).

Definition 1.7. A Radon tneasure on a locally compact group is called a Haar
Measure, if it is non ryro and brt iwariant.

A classical result tells us that every locally compact group has one and (up to
multiplication by a factor) only one Haar measure. This enables us to study of
the U (G) , for p ) 1 spaces as well as the convolution of functions defined by

r
Í*s@)= ldaÍ@)s(y-rÍ) forallee Lr andf eLr. (1.3)

t^

Note that / x g e Cs(G). For z € G we define the left and right translarions by
r as fl,Ql(y) ,: ó("-ty) and |ft"/l(s) '- ó(Ar).We will need the following
lemma.

Lemma 1.8. Let $ be in U (G) . I¿t V be a neighborhood of the unity such that
ll L*ó - óllo< e, whenever x € V and let llS llr: t be a positive function on G
vanishing outside V Then

ll(g*d) -ólloae .

Prool The result follows from a simple computation:

(1.4)

l.o,r. ó)(r) - ,b@) : 
l"a, l.aa sta),b(a-Lt) - (1"0, n*r) rn
I / r \: 

J"oo 
nlil 

lJuttrot a-tt) - @@ )
Since ly'(y-l2) - O(")l I e wheneve¡ 9 lies in the supporr of g, rhe proof is
finished. tr

If we deñne 9(z) : S("-') the convolution can be written as

J*s [¡n,n (1.5)
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So, whenever f e U añ§ q 70, with p-l * q*' :1, we have:

l(/ * s)(,)l rll / li,lls ll, (1.6)

Moreover, for f ,g e C,(G), the continuity of / * g canbe easily checked from
the strong continuity of fi. . A density argument ensures the general result. (1.6)
is usually presented in IR" as Young's inequality, with r : oo . ln that context no
mention of! is made because the unimodularity of IR" ensures that whenever g is
in Le,wehave § in ¿s (see (L8)). See also [Fo195, Prop. 2.40].

We introduce now the modular function of G. We denote by lRx the mulü-
plicative group of positive real numbers. Let ,\ be the Haar measure of G. We
remark that for a measurable set.E € G, 

^-(E) 
:: l(Ea) defines a measure

that is clearly left invariant if ,\ is such. Then it follows f¡om the unicity ofthe
Haar measu¡e that there exists a positive number, denoted by A(z), such that
x"(E) : A(z))(E) . The mapping A : G -+ IR* is called tfte m odular function
of G. We stress that the measure ) and the functional C"(G) > f -+ ! d\f
need to be understood as different ¡ealizations of the same object and we shall
exchange the point of view indifferently.

Proposition 1.9. L is a contínuous homomorphism from G ,o IR, . Moreover we
have:

10

| ,"torr: A(u-,) I o,tro,

I a,¡6-¡: I a*x¡, ,¡¡¡,1.

Proof. For arry u,3/ € G and for any a Borel set -8, we have

A(zy).\(E) : 
^(Eaa): 

A(s)^(Er) : a(r)A(y).\(E). (l.e)

To prove (1.7) we notice that y¿(ry) : yBr-.'.(a) so one can compute

I at 1*¡ *1ur-') : )(Ey-1 ) : a (y-l).\(E) : rr¡y4¡ | at6¡y(E) (r. r0)

The continuity of A can be now studied as the continuity in y of the l.h.s. of
(1.10). This continuity follows from the uniform continuity of / € C"(G) anda
density argument.

(1.7)

( 1.8)
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Finally, we notice that for every left invariant Haar measure ,\, the rslation
p(E) :: .\(E-1) defines a right-invariant Radon measure. Furthermore, the

11

computation

I as1*¡¡¡,y¡x(,,) : r(y) | as1,¡ ¡ 1,r¡r((,y)-r)

: 
r[ 

ar1,¡¡1,;r1,-'¡

sup jX¡.elll, < e .

d€(¿

shows that / -+ I f @)L(l-l) defines a rightinvariant functional so, by unique-
ness, we have cdp(n) -- A(z-1)il(z) for some positive number c. We need to
show that c = 1. Let us suppose c I 1. The continuity ofA allows us to choose
a symmetric neighborhood L¡ of the unit element of G, denoted by e6r, such that
lA(r) - tl < il" - ll for every z € U. Moreover, because tl : U-l, we haye
),(U) : p(U). This allows us to compute

lc- 1l)(u) : l"p@)-)(u)l : I / tot,-'l - rla.rlx¡l
tJu - | 0.D)

1

<¡lc - tll(U)

This yields the cont¡adiction and (1.8) is proved. n
We now have all the ingredients to state the Kolmogorov Riesz Weil theorem.

Theorem L.10. Let Q be a subset of U(G), with 1 < p < x . For ll to be totally
bounded it is necessary and. suficient that the following conditions be fulfilled.

i. Q is bounded.

ii. For every e> 0 there exists a compact se¡ K CG such that

(1.1r)

(1.13)

iii. For every e > 0 there erists a neighborhood V ofe6 such that for every
y€Vwehave

sup
d€r )

l)Lut!-rbll,,<e. (1.14)
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Proof, The necessity follows from the density of C"(G) in Lt (G) that allows us

to choose the finite family that approximates 0 in C"(G) . To prove the converse,
for e > 0, let us fix 7f([) and V(i) as in the hypothesis of the theorem andlet M
be the bound of Q . Wo fix a posiüve function g, with support in l/ and such that

ll g ll r: t . Let ó e o be arbitrary. From ( 1. I 3) it follows that ll x K ó - ó llp< i
which in tum implies ll Lo6nñ --Luó llr< i. This, together with (1.14)

shows that ll LoQxó) - Xt<ó llo< ff whenever A e V . We can now apply
Lemma 1.8 to notice that ll9 x (f *il - Qxó)llo< ff which finally shows that

ll s * Q"ñ - óllr< e . In order for g (úQ"fi(a-'") to be different from ze¡o,
we need y e V arrd y-tr e K . This implies that the support of g * (yy$) ís
contained in 7K. Note lhaf VK can be assumed to be compact because G is
locally compact. We can then set JV :: max,Ey¡¡ A(r-1) and compute:

ll l;,b l,f rrri 1¡ x,.4; 11,1 ni,lz . (1.1s)

This enables us to use (1.6) to state that ^g 
: {g * QKó) : S e A} is a bounded

subset of C(VK) with the sup norm. Furthe¡more we can see that:

I 
L 

o @ * (x x il) - s x (x x ó)l : l(L u s - s) x (v x ü I <ll L 
s s - s ll qll l;ó lle o. t6)

which also follows from Lemma 1.8. This inequality ensures the equicontinuity
of .§, enabling us to extract a finite family that will approximate .C that already
aproximates O . To construct then a 2e-cover is trivial and the proof is finished.

n

Remark 1.11. In tWei65l the result is stated as valid for ¡t: oo. This follow
from their definition of L* constructed, by analogy, to other U spaces, as the
clnsure of C" in the ll. ll,--norm, namely Cs . We stick to the standard definition
of L* as the spaces of (classes ofl essentially bounded functions.

Remark 1.12. It is easy to check that Q , : U (G) -+ Cs(V (il X (i)) d.efined by
O(ó) : S * Q¡Q) fulfills the assumptions of the Lemma 1.5.

1.3 Representations and the integrated form

We dedicated this section to gather several results in representation theory and
harmonic analysis that will allow us to present a different point of view on The-
orem 1.10. This point of view, linking the compacity in .L2 with the properties
of some particular representations, is at the basis of the new criteria presented
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below. Moreover, we will stress the link ofthis approach with several concepts of
quantum mechanics.

Throughout this section, X will denote a locally compact Abelian group: Xü
will denote it's dual group composed of continuous homomorphism from X to
1l . In Xü we consider the pointwise product and the topology of convergence
on compact sets ofX (i.e. {" -+ { if and only if for every K C X ande > 0
there exists lú such that r¿ > .Iú + sup,.o 16"(") - €(")l < e) defining a locally
compact Abelian structure. For a ( e Xi, also called unitary character, we
set {(o) : (", €) : r((), the latter when we want to emphasize the duality
(XI)[ ry X, ensured by the Pontrjagin Duality Theorem (see [Fol95, Sect. 4.3]).

We introduce now the basics of the Fourier analysis over X . Given / e L1(X)
we denote by f the Fourier transform defined by

( 1.17)

With a suitable normalization on fhe Haar measure on X[ one can prove the
following Fourier inversion theorem, see [Fol95, Theo. 4.32].

Proposition 1.13, For f e LL(X) suchthat i e LI(X§)wehave

f (") - (1.18)

Fo¡ further use we notice that -F* = F-1 is defined by (1.18). The following
technical lemma will be needed fufher below. It is presented in [GI04, Lemma
2.ll but it is a rather standard technique; see also the proof of [Fol95, Prop 4.19].

Lemma 1.14. Let A e )z(0¡) and e 2 0. There is t! = t/.t¡," e C"(Xl) such
that 0 3 ú € Ll(X), {(0) : [*dfi(d : I and L¡d,n^@) < e. Furthermore,
lt^/.
Il Y lloo- r.

Proof. Given a symmetric neighborhood I of the identity in a locally compact
Abelian group we define

{¡ :: lll¡¡ x y¡ . (1.1e)

An easy calculation shows that ,hr@) : Irn(9-+r))l. Then we have ry'¡(0) : f,
0 < ,lrr < L ?frtdñ ) 0. The last propefy follows from the symmetry of f . To

/,1,, ellte I for a.e. t:.

13



CHAPTER 1, CLASSICAL COMPACTNESS CRITERIA 14

show that fr € ¿1(X!) we firsr norice rhar llfi : ii2. Again, the symmetry
of I yields the positivity of fr' . We have

f*,atñcl: lrl-' llñlt,: lrl-' llxrllz: t.

We have then a general procedure to produce functions that have almost all üe
properties needed. Let us fix A € y(0x) and e > 0. For convenience we will
denote ry'r when I e V(O ¡r) and g¡ when I e V (O x). We can always construct
another symmetric neighbourhood T of O¡ such that T + T c A. Then ga has
support inside A. Furthermore, there exists a compact K C Xl such that

t^ €

J t' < r. (1.21)

Kc

Then we can choose a symmetric neighbor.hood 16 of 0.¡¡r such that

1 - ltg n (€ + ro)l . lrol-, < j for every ( e K.

We claim that ry'ro is the function that we are looking for. In fact

f^f
I axfur,¡r¡: I ¿rO - pr("))fri](r)
JJ

^c ^cf-
3 | dr(l- pr@))thr,(x)

Jx
I: / d€ É;(€Xr - úr"(€))

J
XTr.r

< / d{á}(€); + I de 6i(il s,JZJKK"

To go from (1.24) to (1.25) we use thar [xG : 1 :,[*, @] and plancheret. tr
Remark 1.15. The last assertion of Lemma l.l4 was not stated in tGIT4l, al_
though it was needed for a later argument. See below the proof of Theorem
1.18.

(1.20)

(1.22)

(1.23)

(1.24)

(1.2s)

(1.26)
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We now describe a relation between the group theory and the bounded opemt-
ors on Hilbert space. Recall that the süong topology in B(?l) is defined as the
topology of pointwise convergencei i.e. Tn -+ 7 if and only if for every u e 71

on has llll,u -Tully+ 0.

Definition 1.16. A unitary representation of G in a Hilbert space'11 is a strongly
continuous homomorphism r from G to U (11) = U (ts(?l)) the groups of unitary
operators on'11 .

Our aim is to provide a relationship between the Fourier analysis and the re-
presentation theory. In order to do that, we first show that unitary representations
can be lifted to "representations" of Lt(G). More precisely, ff LL (G) is given
the structure of Banach *-algebra (the product being the convolution defined
in (1.3) and i-nvolution given by f.(r) : A(r-i)/(Ff¡, for every a unitary
representation of G or ?1we define a *-representation of tr1(G) formally by

n(/) (t.2'7)

This means that for a vector u e '11 , tl(f)u ís uniquely defined by

(n(/)z, r) - for every u € ?l . (r.28)

This *-representation is called the integrated form of r. ln a (only apparent)
different point of view, fI can be seen as a functional calculus on G, II(/) being
the operator assigned to fhe symbol / . This terminology can be made more
explicit in the following example.

Let us fix X. In certain sinradons it can be understood as the conrtgura-
tion space of a physical system. In this setting, the phase space is defined as

X :: X x X[ . What we shall now do is to show that even in this abstract setting,
the position and momentum operator can arise as the underlying operators of the
integrated form of some particular, and physically significant, unitary representa-
tions.

Let ?1 : I'?(X) . We define the followings unitary representations of X and

Xt:

lu-Í\@) : ffu - r), [vel](v) : fril¡tsl : €(-s)/(s) . (1.2e)

15

: 
I,a,f ¡,¡n¡,¡.

l*a,¡6¡qnq,¡r 
u,,¡



CHAPTER 1. CLASSICAL COMPACTNESS CRITERIA 16

Let 9 e C"(X) and \ú € C.(Xt) . We denote by M,¡ the multiplication operator
by 4) i¡ L2 (Xl). The following computations allow us to exhibit the behavior of
the integrated representaüon. For u, o in C,(X) one has

a(e(()(ri,r. u)

t_
,t(É(( ) I dg€lvJu\a)ula)

dyv(y)"(ü',A: \eu,t) .

Analogousl¡ we see that

I
\7' t\t..Fu.u) = 7 .det r€)u((

\v1il,'ü: I
J xr

: 
1,,

: t.

: Í,* l,d,yQ@ - 
y)ue:)u@)

: 
l*o"ur, l*au,e + y)t\ú : 

1,a",¡¡,tqu;u.,¡ "

)(e

Obviously in this context neither P nor Q have a meaning as an operator but
it is the functional calculus associated to the unitary representations that yield
all the significant information. We will come baik to this in Chapter 3 when
the translations are conveniently transformed to encode the action of a magnetic
field. In fact this approach can be generalized in the sense that for every unitary
representation zr the map tI : Cs(X!) -+ B(?l) defined for ry' e i1(X) by

v@) : l,,ae '¡¡¿1v,, ,i'(n : Ird,r,l,(*)U,. (1.30)

f /t \/r \:/,d(/({r (r/ a., {,.e),,,", : ) lJ ̂
autu 

e\,tat )

What this computations show is that, if we denote by M, :t ó(Q) the operator
multipücaüon by 9 and ú(P) tbe operator F-M"¡F, we have the following
(formal) relations:

tQtT : 
lrar,,i,qa¡n,

(1.31)
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is a well-defined morphism of C*-algebras, and hence contractive. The fol-
lowing lemma relates the continuity of the representafion at the origin with an
approximation property of the functional calculus on bounded sets.

Lemma 1.17. Let r be a unitary representation of X in ?-1. Let Q C ?l be a
bounded set. The following assertions are equivalent:

1. forevery e > 0 there exists Ae V(0¡) such that

ll (zr, * t)'u ll< e ; (1.32)

2. for et'ery e > 0 there exists l) e C,(Xt) with I /, ll-: I such that

sup ll II(;,,)u - ¿, l]< É (1.33)

Proof. For simpiicity we assume 0 to be bounded by 7, i.e. it is contained in the
closed unit ball of 71.

1 =+ 2. Let € > 0. From 1 we can choose ¿r A e V(0¡) such that ll(n-u -u.ll< i
for every z € A andu e O. Thanks toLemma 1.14 we can choose I e C"(Xl)
suchthatrl(0) :1, lxdrlll)@)l :1and J',\tl¡\úQ)l < i. Thenforz € Owe
have:

17

sup
u€f),r€A

ll n(ú)., -,ll:ll,a,,"tt4t*, r)"1

< l*aritl,r) l(zr,"u - u)ll

< l.,a'li 
t,t,', , 1,J., 

utL)12 I e

2 + 1. Choose a ry' corresponding to !. Since the support of ty' is compact, and
hence equicontinuous, we can choose A € y(Ox) such üat {(z) < ! for every
, € A and € in the support of ry', Then, for every u e O and r € A we have

ll (n, - t)u ll< ll (r, - IXII(ú) - t)u ll + ll (r, - t)Il(t/)u ll (1.37)

<2.!+ llzr" - 1)fl(¿.,)l_,1

l; r- supl(i(r)- l)c [)l : , .Z ke-Y¡

(1.34)

(1.35)

(1.36)

(1.38)

(1.3e)

nfinishing the proof.
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1.4 Integrated form and compactness in.L2.

With these results at hand we now prove a particular case of Theorem 1.10. Let
p : 2 and X, Xi, tl afid V as in the previous section. Let us set ?r :: 1 - ? for
an operator 7, For a bounded subset Q of L2(X), we need to exhibit a compact
operator that approximates f) in the sense of l¡mma I .5 . For that matter, conside¡
p e C.(X) and ú e C"(X$) and utilize the results from (1.30) to compute for
u e L2(X):

18

(1.40)

(1.41)

(1.42)

This show that g(Q)t!(P) is a Hilberr-schmidt Operator, and hence compact,
with kernel k(r.y) : p(y)tb(y * r). With this resulr in mind, Theorem 1.10 can
be restated as follows.

Theorem 1,18. LetQ C L'z (X) be bounded. Then we have the following equi-
valent a§sertion§:

1. Q is relatively compact in L2(X) ;

2. linl sup,.r¿ ll¿/,, -,l]:0 and]ir4sul,er¿ lt/Eu-ull:6;

3. Forevery e > 0there exists g € C.(X)with ll ell-: landlt eC.(Xt)
with llt! ll,.: L , such that for every u e L2 (X)

I p(Q)r" ll + ll q4(P)r u ll< e (1.43)

Proof. Let e > 0. From the relative compactness of Q we can choose a ñnite
family K C O such that for every o € L2(X)

millu-oll<!.u€1{"4

From the strong continuity of [/ and V we can choose A e V(0¡) andÁ e V(0¡r)
such that

:yp,. lrU,,, - , l. ; and sup I Yr, - ,ll< Iut ^./e \ . ,c^.6.¡ L

lr \
lp(Q\u( P)ul a) ,otu) 

\J^dt,.,r 
, tlr' ,.r)1il )

I
- JrcltS(!t)t 

rt )u.g - t)
f

- 
J *du(s)uty 

- .r')u(r)

(t.44)

(1.45)
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Puuing together (1.44) and (1.45) we have

llU,u-ulllllu,u-U,ull + llu"o - oll + ll,r., -zll (1.46)

if '¡.r is chosen suitably. We have then 1 =+ 2 . 2 + 3 is direct consequence of
Lemma 1.17 when applied to both U and 7. Finally we can compute

ll" - e@\/,(p)" ll: ll" - e(Q)u + p(Q)u - v(Q),b!)ull 0.47)
: llp(Q)'" + tp(Q)!.,@)tull (1.48)

r lle(Q)a"ll+ llrpll..llri(P)lull . (1.4e)

Then, the r.h.s. of (1.49) can be made arbitrarily small if one assumes 3 . We have
l because p(Q)ú(P) is a compact operator. tr

Remark 1,19. We want to stress th^t the properties usqd in the proof do not lie in
the homomorphism property of U or V . Whnt is used is the fact that the functional
calculus can properly identifu some compact operators that have approimation
properties and the boundness of the representatíon. This observation will allow
us to reproduce this approach in a more abstract setting.

In a certain sense, in this example we have more. structure than is actually
required. To each point in the phase space ! :: X x X! we assign an operator in
L2(X) by setting I/(r, {) : U-,Ve . Then I4l, seen as map from » to U(lE(?l)),
is no longer a group homomorphism, because

w (("'0 + (Y'q))' 

:!r';:.';!; yvn:{@w(il,É)w\y,,1)
using the fundamental conrmutation relation U,Va: {@)V§)t/(r) . Such a W
is called a projective representation; nonetheless, this could still be ananged to be
a representation if one considers lH[¡ :: X x X! x T with a composition suitably
defined to encode the non commutativity of U and 7 instead. Such a group could
be named a aástract Heisenberg group; blt, to the best of our knowledge, this
group is mostly studied when X - IR¿ .

1.5 Representation coefficients and compactness
. -otn L'

We present now the second approach that we shall develop on this thesis: rñe
re p re s e nt at i o n c o ffic i e nt appr oach.

t9
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Definition 1.20. Let n be a unitary representation of G in 74 . The rcpresentation
coefficient @" :'tl @fl. -+ Cb(G) is defined by

lQ" (u,a)l(r) ::< ¡r(t)u,u >

Furthermore, we ask a certain isometry condition, namely

ló"(",r) llr,1c¡:llzl lr' | .

This is called squa re integrability and is a widely studied concept in representation
theory; in fact, such a representation can be seen as the irreducible subrepresent-
ations of the left regular representation (for / e L2 (G), (L, f) (y) :: f (r-L ú).
See for instance [Car76].

For every normalized vector r, € 71, then

ld|(,t,)l (.) :: [/"(u, u)] (') (r.s2)

can be seen as an isometry from 11to L2(G). As done before, the idea is to show
compacity in ?l via the compactness criteria already known. Recall that every
bounded set of a reflexive Banach space, and hence of a Hilbert space, is compact
when conside¡ed with the *-weakly topology; in Chapter 4 we shall present a
more general result known as tho Bourbaki-Alaoglu Theorem.

Theorem 1.21. Let G, ¡,'11, u be as above and Q C ?1 bounded. Equivalent
asserfions:

1. Q is relatively compdct;

2. q(q is fight in L2(G) for every normalized vector (see Definition 1.3);

3. There exists a normalized vector u such that g[(Q) is tight in L2 (G), this
can be restated: for every e > 0, l¿ c G compact such that

sup j1¿./[(tr) I ,< e,
ue'H

(1.53)

Proof. Agun, for simplicity, we shall assume that O is contained in the closed
unit ball of ?1.

1 =+ 2. Let e > 0 . From the relative compactness of O we can choose a finite
farnily K C O such that

20

supurin ilu -. l. I
ü€Q :E^ :

( 1.50)

( 1.51)

(1.s4)
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Then we can frx tr C G compact such that

sup ll x¿.di (z) llz< I .

zeK ¿

Using (1.54) and (1.55), together with the isometry property of /f seen as a map

ftom ?l to ,L2(G), the result follows.

2 + 3. Trivial.

3 + 1. By Riesz Theorem and Banach-Alaoglu we know that Q is weakly
compact, So, for every sequence we can extract a weakly convergent subsequence;

the result will follow if we can show that every weakly convergent sequence in O
is, in fact, norm convergent.
Let {u"} C Q be converging weakly to t¿. Then

jiilol("")1(") : Jgg(,", rJu) : \u,riu) : l,bT,@))(")

i.e. §[(u") converge pointwise to Oi(u). If we can improve this convergence

fo an L2 convergence, the result will fol1ow from the isometry property of /f .

Let Lbe as in the hypothesis. We assume (1.53) also valid for u. Using Cauchy-

Schwartz inequality we have

2T

Let us set C :: (1+ llu ll)' . Then l/;(t¿")12 is bounded by CXL € Lr(G) in L.
We can f,nally estimate

§ lldl("-"")ll< j!1 llxrü("-"")ll+ ,ll*xuff(u-u")ll 
. (1.s8)

The fust term of the r.h.s. goes to zero by the Dominatéd Convergence Theorem,

and the second is less than 2e finishing the proof. tr

This proof is a mere translation of [DFG02, Theo. 2] where G is assumed to
be the reduced Heinseberg group IHI|; the following explanation should also bring
light into the comments we made at the end of the previous section.

Definition L,22. The reduced Heisenberg group is the locally compact §pace

R2" x T equipped with the operation

lLói,(" - u")l(r) <llz - u" l< 1+ llu | .

(r, €, "'"" ) 
. (y, rt, r' ) : (¿ + y, ( + r¡, 

"t"t(' 
+'') 

"2"í(€ 
a-n a) 

.

Tfte Schródinger representation is deJined by,

r(r, q, e2"i') e"''LI-"vq.

(1.55)

(1.56)

(1.57)

(1.se)

(1.60)
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We recall here that the dual of IR" is identified with IR" ¡y @, S : "-%i(a 
f\ .

The Heinseberg group plays an important role in different domains of mathemat-

ics, including Signal Analysis and Pseudodifferential Operators. For a thorcugh

study one should refer to [Fol89, Chp. 1]; sso also [Gró01, Chp.9]. One useful

property of the group is that the Haar measure is just the Lebesgue one. In this

context, we can compute the concfete form of the representation coefficient

l(ÓX)fu))(r,t,"'"\ : Í dtÍQ)iA-ie-21ri'(t't+r)' (1'61)

R¿

called Short Time Fourier Transform or Fourier-Wigner Transform. We can see

that g plays here the role of localizing the Fourier transform of / on its support;

that is why one should think of the vector ¿, from (1.52) as a "window" to look

through it, even when dealing with an abstract setting. Takíng e2"i" : 1, (1.53)

now reads

2. For every e ) 0 a compact set K C B{2n exists such that

::a (/*'e l(pí)(')l(''ol'?)* " (1.62)

In fact this condition is known to exprcss at the same time condition i¡'. and

iii. of Theorem 1.10 because the "equicontinuity" of a family can be ¡elated to
the tightness of their Fouder transform; see [Peg85].

22



Chapter 2

Bounded measurable families of
bounded operators and
compactness criteria in Hilbert
spaces

The idea of this chapter, the most important of this thesis, is to develop a formaüsm
that englobes the criteria exposed in Chapter 1. The setting, briefly presented in
section 2.1, is the one from [Manl2], even if further assumptions will be added
when needed. In section 2.2 we present the compactness criteria and use it in
section 2.3 to describe the pure point and continuous subspaces corresponding to
a self-adj oint operator.

2.L The framework

The framework can be condensed in the following objects (D, ¿r, a, 77,9) . E is a
Hausdorff locally compact space with a Radon measure ¡^r. Indexed by », {r(s)}
is a family of bounded operators acting in a Hilbert space 7l . I plays no role
until chapter 4 and until then is tacitly assumed to be ?l . In order to construct a
richer theory we ask ¡' : » -+ lB(71) to be bounded and weakly continuous.

Remark 2.1.. A unitary representation is clearly bounded by 7 . More interesting
is the fact that at first glance the continuity asked to r seems to be more general;
in fact both the weak and strong topologies coincide inu (14) implying that every
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weakly continuous unitary representation is infact strong continuous. Note that
even if they coincide inU(?l), the respectively closures ofU('l'L) in$(?4) doesn't;
see IBla06, Sect. L3 ].

We want to formulate concepts that generalize the integrated for¡¿ and the

representations coefrcients. For that, we first recall the isomoryhism A between

AOZ, tne ffimert completion of the algebraic tensor product ?ú 87, andts2Q4),
the space of Hilbert-Schimdt operators with its natural Hilbert norm given by the
trace. The isomorphism is completely defined by

A(u I t,) - (..r)" (2.1)

The fact that A is linear and injective is clear; the surjectivity will follow from
the fact that üe image contains all the f,nite ranks operators if we show that it
is an isometry. We recall that llll llfi,,r,= D* ll:t"" llf, for every orthonormal
base {e,} . Let us fix an oúhonormal basis {e*} of 7l; then {", I "¡} 

ir un

orthonormal basis of 1167. The isometry of A then follows from the following
computation:

»» ",. ,\",,",)".1)l'1,

il
) a",.te"@e¡ll
n,t llaAe

Now the fact that A is an isomorphism easily follows from the Bounded Inverse
Theo¡em.

Let us come back to our aim of replicating the integrated form and the
representaüons coefficient in this general framework. The deflnition of the
representation coefftcient needs no change:

{ :118H. -+ Cb(») definedby l["(u,u)](s):: (n(s)u,o) . (2.2)

The central assumption of this thesis is the following.

Assumption 2.2. The mapping So extends fo an isometric isomorphism { :

'¡l@7. -+ L2(»).

:! ln,,,il' -
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This encodes a square integrability of the form

ll ó" (",r) llr-llr llllr l , (2.3)

but also a surjectivity condiüon that was not needed in [Man12].

As one could see in section 1.4, the key part of the proof of Theorem l 18

consisted in show that for suitable symbols (i.e. functions on the phase space),
the corresponding operator was Hilbert-Schimdt. With that in mind we define

II : ¿'z(r) -+ tsz(?l) by lI :: A o lir-r (2.4)

What we show now is that II , defined in a rather abstract way, can really be
understood as the integrated form of zr.

Proposition 2.3 ([Man12, PLop.2.3]). Fordny f € ¿2(X) one has inweaksense

nt¡l : I att"ljt,s)r(s)' and (2.5)
Jt

Il(/)- : / a¡1,; ¡¡,jni"; e.6)
JL

Proof First we notice that 1i(A(u,8Tr)) =- (u, u) . Also notice that for 7 e B(?l)
we have

ZA(u8'u) : 
"(( 

,u)u) - t,..u)Ttt:A(?u8u) .

Then we can sompute

(II(/)u, t) :rr[A(n(/)u o u)]

:Tr[n(/),t (r 8 t,)]
:rr[n(/)I](on(r B u)-]
:(I1(/), il(on(?, E u)));,,i2) : (/, o"(, o.¿¿))r»r

25

r
= 

Jrapt 
st ¡ ls) (u, r(s). u)

: 
J"o 

r(') f t 
'¡(;,r 

(s)'a , u).

trThen (2.6) follows from (2.5).
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The following definition generalized the notion of tightness presented in
section 1.1. Assume that the Banach space / is endowed with a structure of
Banach left module over a normed algebra "4 , meaning that a left module structure

A * y 
= 

(o, y) r+ a. A e y ís given and fbr every a e,A and y € y the relation

llo. ally I llo ll¡ lly lly is satisfied,

Definition 2.4. Let ! be a Banach lej! module over "4 and let ,N C A; we say

r/¿ar the bounded set f C J/ is lo-tight if for every e > 0 there exists a e,40
with suporrll". a - y llv <, .

Tightness in section l l should then read as K(D)+ightness with respect as

the pointwise action of C6(D) on itself.

2.2 Compactnesscriterion

Recall that $[, :'11 -+.12(I1 givcn by lr¡; iu)] (s) :: (zr(s)2, ur) is well-defined
and isometric fbr every nornrtliz,,-il vcctor r1' of üre Hilbert space ?1.

Theorem 2.5, Let Q be a botutilctl sLLbsc¡ t¡f '11. Consíder the following asser-

tions:

1. Q is relatively colnpat l.

2. For every normaLized LL, í'/1 rtte .ltit:ti|y p|(0) is K(»)-tight in L2 (D) .

3. There exists ruo € '11 sLtclt thar the .lilnily ó[," (f1) ls K(»)-tight in L2 (E) 
"

4. For each e >0thereexists f € C,.(») with supll ll(/)u -ull<e (i.e" Q

is illC.(»)liisht).

5. One has lim sup ]ris)-ri " r ls1, i' rr l : Q /rrr ¿r'¿r1 "s 6 D.
s-+§o u€o

6. Forevery e ) 0 and.lor ('r¿l.\ ir) ¡ L there exists g € C"(E) suchthat
supll II(9)z - n(ss)-u I < e.

Then 1,2, 3 and 4 are ecluit,olent, they imply 5, which in its turn implies 6. Thus,

if we assume that r(s1)* : I for sorue sr € », then all the six assertions are
equivalent.
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Proof. The proof of 1 <+ 2 <+ 3 can be obtained along the same lines as the
proof of Theorem 1.21. The on]1, delicate point is the fact that there, the bound of
a unitary representaúon we used in ( I .57) and in the second term of ( I .58) was 1 ,

and here it needs to be made explicit.

1 + 4. Let Q C ?1 be relatively compact and, for some e > 0, let F be a finite
subset such that for each u € O there exists c, € F with ll" - r"l < el4.'fbe
subspace F generated by F will be finite-dimensional and thus the corresponding
prdection P will be a finite-rank operator satisfying Pu : a for every u € -F .

Then for every z € f,)

llPu-ull< llP"- Po"li + llPt:"-u"ll+
<211u - a"ll < el2.

llr"-"il e.j)

Notice that { n(/) 
I / € C"(l) } is a dense set of compact operators. To see rhis,

use the facr that II : 12(l) -+ tsr(?l) is an isometric isomorphism and that C"(l)
is dense in I'?(D) ; the topology of Br(?l) is stronger üan that of IB(?l), while
K(?l) is the closu¡e of Bz(?l) in the operator norm. Let now .41 :: sup,.e ll u | ;

by density there is some / € C"(t) with ll P-il("f) llnir¿t < el2M. From this
and f¡om (2.7) lhe conclusion follows immediately.

4 =+ 1. To prove the conveme, for e ) 0 choose ./ € C"(t) such that

sup llil(/)u - ull ! elz.
U€Q

Since II(/) is a compact operator and O is bounded, the range II(/)O is relativeiy
compact, so there is a flnite set G such that for each u € Q there is an element
e" € G with lln(/)" - u" ll < el2.Then forz € Q one has

ll"-o"ll5llz - n(/)ull - llr](/)¿ -,"11< el2+ el2: e, (2.s)

so the set Q is totally bounded.

4 + 5. Setting,9r :: 1 -,S, we compute for s6 e X, u e Q, / e C"(») and s
belonging to a neighborhood 1,z of s¡ :

ljz'(s).2- zr(s¡)-z ll ! ll [zr(s). r(s6).] II(/)a ll+ ll [zr(s). -n(s6).]n(/)'" I

< sup llu ll ll ["(r)- - zr(s6)-]Ii(/) llslq¡ +
,Ée

2 sup llr(t). llr1l; .,rp ll n(/)'" llLelr u€Q
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The fi¡st term is small for s belonging to a suitable neighborhood V, because Q is

bounded, zr. is strongly continuous and this is improved to norm continuity by
multiplication with the compact operatü n(/) . fne second term is also small for
some suitable /, because of the assumption 4 and since ll"-(') ll*r"; is bounded

on the compact set 7 (use the Uniform Boundedness Principle and fhe strong

continuity of r'*) .

5 + 6. Compute for any positive g € C"(t) with jrgd4t : 1

T1.g,tt-;r 'u -,.[.r,, -g''l:' u '.r, u.

--.1-,,,,."'r -' .:{ --.'o' u

and then use 5 and require g to have suppot inside the convenient neighhourhood

of the point s6 . -

For sitnplicitl', we are alwots goirtg to assume tlTat :r(s1)- : I .for som.e

s1 € !. Below lf¡l denotes the closed unit ball of the Banach space .t .

Corollar¡' 2.6. Let X be a Banach spacc and S e B(k .H.) . The nexf asserlions

atz equiwl.ent.

l. q is a (ompoct operarct

2. Tlrc set <r[. (S.tl1¡) is Ki\)-tísht in L2ll¡.fbr sotne (evett') rr €'11 .

Writfug ),1;r.fbr- the operalor of mttliipl)tatiut by the .funcÍiott ! - ¡¡ in

L2 (t) , rhis can be restated: .for even'e > 0 tlwe is a contpa.ct subset L o.f'

D su.ch that I ,1,/j . pX o ,S I n1;v.r,1 { e .

3. Forevet), e > 0 thete is some f € C.(!) such tlmt ,iil(r') - 1,S]lui,,r.rt
( e .

4. Tlrc r,tap I I s '-l r(.s).S e bi| 11-) is no,\1r-contir'uaus.

Prcof. This is a sim!¡le consequence of Theorem 2.5, since S is a compact oper-

ator if and only if 0 :: .S2l{rl is relatively compact in ?l I also use I I l;'r 1,1:
sq lllrly.

1,C.-Y,r I

n
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2.3 Characterization of bound and scattering
states

We consider now a self-adjoint operator ¡1 , not necessarily bounded, acting in

?l . We denote by ei'H the strongiy continuous evolution group generated by .H

andby E¡7 the spectral measure associated to it. For a vector z we denote by pfi

the measure on R deñned in a Borel set J by p,HQ) : \u, E¡1Q)u) ' For such an

operator there are several ways to decompose ?l in term of his spectral propeÍios;

for our purpose, it suffices to define ?lo as the closed linear subspace spanned by
the eigenvalues of H. Then?7.::'11 A'17p. An important known fact is that if
u e '11., fhen for every ) e lR we have pfl({)}) : 0.

We sta¡t charact eirzír,g H" for which we need the next lemma.

Lemma 2.7 (lcl04, Prop. 4.71). For an u e '11 the following statements are

equivalent:

l. ue '11";

2. CJim¡-*(u, eitu u) : g ;

3. w-fu,-*eitHu: O;

4. w-Lím1-ooeitH u : 0 ;

5. §im¿** llKeitdull:0for nery I{ e K(17).

Even if we don't get involved in the full proof of this Lemm4 the mere state-

ment of it deserves some colnments in order to make fhe notion understa¡dable

and also because it allows us to present a mther beautiful connection with general

topology. As can be seen from the lemma, the idea of scattedng states is that,

if one waits for a sufficiently long time, it get out of every compact set; that is

why a week limit at infinity gets involved. However, the usual notion of limit at

infinity, the one from the topology of R, seoms not to be enough to characterize

lL"conectly; that is why in Ruelle's original paper [Rue69] a notion of limit in
the mean is introduced. For reasons that we dare not to discuss he¡e, but that are

directly connected with a certain stabiüty under translation invariant measures,

this notion seem not to be optimal; we refer to the discussion in [GI04, Sec.

4.31 and the reference cited therein. We will limit ourselves here to exhibit the

concrete definition of both Clim, lhe Ceslro convergence, and "Cim, the Lorentz
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convergence. In order to compare these convergences, we do not follow the

usual way of defining the forrner {i.e. by taking limits of the means of the form

f-L [{ d but instead we describe them in terms of filters.

Definition 2.8. A filter on a set F is a nonempty collection $ of non-empty subsets

of F rhat satisfy:

1. If n,F2€SthenfiñF2e §;
2. IfG)Fe S,thenGeS.

This definition enables us to define the notion of limit of a function along a

filter.

Definition 2.9. Let F be a set equipped with a filter I . If ,p is amap of F into
a topological space Y , one sa)¡s that g has timit g alons 8 if (p-l(V) for every

V e v(y).

One important example of a filte¡ is V(r). In that case the notion of limit
along V(z) coincides with the usual notion of limit at r. For the case we are

interested in, .F : lR :: R u {oo}, Y : C and 3 : y(-), formed of sets with
bounded complement, is called the Fréchet fiite¡. The idea is to f,nd filters, fine¡

than the Fréchet one, that arc transiation invariant.

Let us describe first the Cesefo convergence.

Definition 2,10. The Cesdro rther noted by t, is formed by the sets that contain

a Borel set A such that:

"1 n f -r.71lim ,-,--=:=r : L
f-\ 2l

We denote b¡ CJin the convergence along t.
Then 2.8.2 is trivial and 2.8.1 follows easily if one prove it first for intervals.

This was the convergence used bv Ruelle: a \1av to improve his result v'ould be to

identify another lllter. coarser than C, but stiii fanslation invariant and enabling

us to char acterize ?¿. .

Definition 2.1L. The Lorentz. Jiker, noted l¡v L, is.formed bt' tlle sets tltttf contaitl

a Borel set -1 such tlnt
1-rk-f.r+fl, '-1_

2T
lim i::i

7 +:\r tÉi.:
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We denote by tím the cor»ergence along t .

It is clear that .C C C , but let us show that the inclusion is strict. Let A C lR

be defined by A : l)nlt, * h.,t, + &] . In order to have ,4 e C we should

have sup,,Z, ( oo. Ifnot, for every 7 > 0 we could f,nd 7} > T and we

would have lA lltn - T,tn +Tl | : 0' However, we can see that A defined by

A : t)nfn2 - 1/ñ, n2 * /n] is in C.

We can now proove some of the implications of Lemma?-7 .

Panial proof of 2.7. We begin to notice that 4 e 5 is a known property of the

compact operators, and 4 + 2 follows from the previous discussion.

3 + 1. Let u : 1L.c * u, be defined by the decomposition ?l -- ?1" @'lle
and consider an eigenvector t, corresponding to the eigenvalue ). Then we can

compute

ei'\ \uo, u) : eit^ \u, u) : (u, e-it u) : (eit H u, u)'

Since the last term can be made arbitrarily small, we have zl, I o and hence the

arbit¡ariness of ,r., yields f e ']4".

4 =+ 3. Suppose 3 is false. For every g e 71 fhere is c > 0 such that for
some ? > 0 we have l\""u Í, S)1 > c' Then its clear that the preimage of

{z e C : lr1 < 
"}, 

being bounded, is not in !. n

Putting together 2.5 and 2.7 we can easily state the following dynamic charac-

terizafion of 11".

Corollary 2.12. u € ?1" if and only if the following condition is fuLfi'Iled:

For every / e [C"(»)] we have .Cim¿** llTl(f )e'tH u l: g .

Let us now characterize the pure point subspace; for this we need the follorring
classical lemma (see tciOa, Lemma  .8l). For u e '11 we denote by [z]f Ae

ciosu¡e in H of {eitr{ u felRl}; also lulH the closure of {cttirrr I e 1R.} .

Lemma 2.13. u a HÍ if and onl¡ if the fol.lov'ing equitalent assertiotts h.old:

1. lz]s is cotnpact;

^ , .IL'
.¿. r,ul+ ts (0111l1act'
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3. fu1! x compact.

Proof. Lef us first assume that z € '11r. Tlrcn there exists a finite collection of
normaiized eigenvectors U ': {"¡}f corresponding to the eigenvalues .\j such

that llz - !, a¡u¡ll< i for some scalars a¡ . Then, for every e > 0 we can define

O : [z]F -+ Sp(I/) by Q(eitH u) - \, a¡eit^u¡. It is easy to see that it fuifills the

conditions of Lemma 1.5 with á : f , and hence yields the compacity of l¿]E .

1 .+ 2,3. Trivial.

2,3 + u € ?lp Let us assume [z]f is compact and write u : ?-¿p*u" in the decom-

position 14 :'\'Lp O ?1". Let us fix g e '11, associated to the eigenvalue-l; then,

L""urr" *" ut.r-e u" e 'll",by condition 3 in 2.7 we have w-limr* *eitH'u,": g.

Furthermore, because [u]f and lurll are compact. so is lz"]f . This means that

llml-.o ll eitH u"ll: 0 which finally implies z" : 0 by unitarity of the evolution

group.

Combining 2.5 with 2.13 we trivially get:

Corollary 2.14. u e 71o if and onl! if:

1. ó,{"lH) is tight in L2(») ;

2. lf )H is I] lC"(r)]-rigtur.

n



Chapter 3

A particular case: compactness for
the magnetic Weyl calculus

In this chapter we present an importanf example of the framework presented in t}¡e

previous chapter: the magnetic Weyl calculus. As an introduction, we present in

section 3.1 the well-know formula of the standard Weyl calculus to make it easier

to the reader see the connection with the magnetic one presented in section 3.2. In

section 3.3 we show the magnetic compactness criteria as a corollary of 2.2, bttt
with more characterizations due to the extra structure presented; the results are

basically a generalization of [GI04] where no magnetic field was considered. The

importance of this chapter lies in the fact that even if the space considered is just

1R.2", the family of operators indexed by it is no longer a representation, nor even

a projective one. For further examples, fo¡ instance for a generalization of the

magnetic formalism for nilpotent Lie groups, we refer to [BB09, BB 1 1, Ped94].

3.1 The standard Weyl calculus

The aim of this section is to present the standard Weyl calculus, as a motivation
for the subsequent presentation of the magnetic one. The setting is the one

from section 1.3, but since for the magnelc case we shall need a diffe¡entiable
structure, we assume X : lR" from the beginning. This is intend to model a

non-relativistic particle moving in the n-dimensional space. The Weyi calculus is

the soiution to the problem of associating to a classical observable (1.¿. a "suitable"

function on the phase space) a quantum observable (1.e. a self-adjoint operator on

JJ
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a Hilbert space). For such a quantization to have a meaning, the starting point

is to associate to the coordinate function {qt,. .. qn,pt,. . . ,p"} the operators

{Qr, . . . Q". Pt,. . . ., Pn}. This is motivated by the fact that some reiations for

the poisson bracket are still valid when considering the commutator of operators.

Explicitly we have

{q'-q,}: o: {t, r,:}.
J,. .,.1 - Á
\t'1''1lt - "tl'

for alli,,i :1,...,n. Then, for a general symbol, this problem can be seen as

the problem of defining a functional calculus for this family of non-commuting

operators, f @ , P). For a nice exposition of the importance of these commutation

relations, also related with projective relations, we refer to [Ani 10].

To exhibit such a functional calculus wc turn now to the theory of C*-algebras.

In fact, despite the title ofthis section, our presentation is not the standard one'

for which we refer the intercsted reader to [Fol89]. Instead, taking the approach

from MPROSI allows us to develop the basics of the C--algebraic theory that

has been behind several results. We begin with some definitions'

Definition 3.1. A C. -algebra is a complex Banach algebra with an involution
satisfyíng

lla.a ll: ll cL ll' (31)

So far, we have meet at least three C*-algebras. First, ts(?l), wich in fact,
by the GNS-construction, can be seen as the general C* -algebra. Secondly for
! compact C(X) is also a C*-algeha with the involution defined by complex
conjugation. In fact this example can also be seen, this time thanks to the Gelfand

theory, as the general Abetian C.-algebra. The third one is the most suggestive

for the aim of this section, but needs some preparations.

Let's recall fhaf L|(X), with the structure already presented in fhe discussion

following 1.16 is a Banach *-algebra. However, the -Li-norm fails to satisfy (3.1).

As was already pointed out, for each unitary representation of X in'l1we can

construct a non-degenerate *-representation of Ll(X). Taking the supremum

over aI1 such representations we can define a norm that fulfill (3.1); taking the

completion in this noÍn we get the C*-algebra knowrr as the group C*-algebra af
X and denoted by C- (X).In fact, using (1.31) we can see that C- (X¡ ru Co(Xl).

34

lQ,.c)¡1- o: 14.Pjl
lPi. Qil : 6ú .
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Because a quantization procedure needs to involve the whole phase space, a wider

framework is needed.

Definition 3.2. A C--dynamical system is a triple (A.0 , X) fonned by an Abel-
ian C* -algebra and a strongly continuous group morphism 0 : X -+ Aut(A) of
X into the group of automorphism of 4,.

Definition 3.3. A covariant representation of the C* -dynamical system ("4.0. X)
is a triple (.?1,r,r) where r : A -+ B(11) is a non-degenerate * -representation of
A in'17 and n a strongl¡- continuous unitary representation of X in1L, such that

for all r e X and ct € ,4 one has U,r(a)U -,: rlá,(cr)] .

The idea is to produce a C.-algebra that contains both C-(X) and 
"4 

in a way
compatible with the action d. The first would encode the momentum variable and

the second, if one takes "4 composed by functions on X, the position variable.
The Weyl calculus could the be retrieved as a representation of that C*-algebra.

Let us consider the Banach space I,1(X. -4) with the tr1-norm

L oll r, .^.t,: I a, 1 ,t r t 1,n .

JX

We define the involution by a"(c) : [p(-r)]. where * stands for the involution
in ,4. To get an algebra structure we put

(ó o tp)(r) . (3.2)

which generalizes the convolution in ¿r (X) . We have to exhibit a non-degenerate
*-representation of the Banach *-algebra (Ll(X.A),+,o.ll .llr'1x.t¡," )in 7t
for every covariant representation (11,r,r) of the C*-dynamical systeni. This is
given by

35

= | d!)0,.,[o(u\0y[,tlr - s 1)

x

r(r x n)(g ;: I dyrl?i@k))lr(r)
.1 '
x

(3.3)

Again, we take the supremum over all such .-representations, and complete in
this norm, to endow Lt (X, A) with a C*-algebra structure. This C*-algebra is
denoted by ,4 x X and called the aossed product of A by the action 0 of the
group X. Note that r x ;r extends to a representaüon of ,4 xX. Note also that
C.(x): C x -x.
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Remark 3.4. It may seems that the lower indices of the action in (3.2) and
(3.3) are somehow arbitrary. In fact, this is the case because tltet, relt on the
choice of a particular endomorphism of the group. Here we take 1 to ktnd ín
the Weyl caLculus, bul dffirent clnices of this end.omorphism will give different

" quanti?,ations " rules.

We now particularize to the quantum mechanical framework. The C.-dy-
namical system is given by X : lRN, and d is the action by translations on ,4,
composed of functions on X. To be suitable for this framework. "4 should be
translation invariant and composed bounded and uniformly continuous functions,
because this ensures the strong continuity of á. The covariant represenration can
be recover settinC ¡@) : Li-" and r(a) : a(Q) (see section 1.4). Note also that
a ó € Lt (X. A) can be seen as a complex valued function on X x X, so a partial
Fourier transform is available. Namelv

1 a t : Lt (x, A) -+ co(xt, A)

/ -+ [(i s r)ó](€)

Computing (r x n) o (1 8.F-1) :: Op for a f e Cs(Xr,, "4) and ?.¿ € ,2(X) we
get the slandard Weyl calculus:

r t /" -r-,,\'1
[Dpf/tz]r¡1 : l dudqpia-')§ l / l' .' ] l r6;r1y1. (3.4)' J L"\ 2 ))

R2.

Several remarks could be made about this construction. First note that the
composition of (3.2) with the partial inverse Fourier transform yields the usual,
and widely studied, Moydl product so paxt of the theory of pseudodifferential
operafors can be seen through the setting of the crossed-products of C*-algebras.
Also we get a good characterization of the regularity, encoded by ,4, needed to
achieve the calculus.

3.2 The magnetic formalism

The magneúc pseudodifferential calculus [MP04, IMP07] has as a background
the problem of quantization of a physical system consisting in a spinJess particle
mor.ing in the euclidean space X :: R" under the influence of a magnetic field,
r'. ¿. a closed 2-form B on X (dB : 0), given by matrix-colnponent functions

36
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B¡¡: -Bx¡:X -+ IR, .i,k:1,...,n,. For convenience, we are going to
assume that the components B¡r belong to Cff,(-X) , the class of smooth functions
on X with polynomial bounds on all the derivatives. The magnetic field can be
written in many ways as the differential B : dA of some 1-form .4 on X called
tector potentidL One has B : dA : d,A' iff A' = A + d¡t for some O-form rp

(then they are called equivalent). It is easy to see that the vector potential can also
be chosen of class Cff¡ (X) I this will be tacitly assumed.

One would like to develop a symbolic calculus a r+ DpÁ(a) taking the
magnetic field into account. Basic requirements are: (i) it should reduce to the
standard Weyl calculus for A :0 (compare with (3.4)) and (ii) üe operarors
Dp{a) and OpA'(a) should be unitarily equivalent (independently on ür" ,y*-
bol o) if A and A' are equivalent; this is called gauge covarianc¿ and has a
fundamental physical meaning. In this section we leave aside the C*-aigebraic
approach, partialy because the theory of twisted cross-product is far beyond
the scope of this thesis, and chose to think of rhe emerging symbolic calculus
as a functional calculus for the family of non-commuting sel-adjoint operators
(Qr,...,Q";P{,. .,P}) in11 :: L2(X).HereQ¡ is again oneof thecompon-
ents of the position operator, but the momentum P¡ :: -i0¡ is replaced,by the
magnetic momenfum Pl :: P¡ - A¡(Q) where A¡(Q) indicates the operator of
multiplication with the function Aj e Cfri6). Notice the commutarion relarions

ilQ¡,Qtl- 0, i,lP¡a,Qr,) - 6ir,, \Pi,pll: B¡x(Q) (3.s)

One defines the magtxetic Weyl sltstem

rA : E, -+B(tt), iiA@,€,):: exp [i (r.po - e .<)) (3.6)

and gets in terms of the circulation of the 1-form A through the segmenr [g. g t
xl :: {E + tr I t € [0, 1]] the explicit formula

[nA@, t)u) (v¡ : e-i(u+i)'e .,o u\a + r). (3. t)

These operators depend strongly continuously on (2, () and satisfy ziá10, O¡ : 1

and ziÁ(r, ()- : nA(z, €)-' : rA(-x, -() (thus being unitary). Howet,er tlwt-
do not fonn a projective representatiorz of D: X x -Xt. Actually they satisiy

o4(r.€) tr4la.q) : aBl.(x,€),@,ñ:Q)nA(t + a,€ +d, (3.8)

37
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where c''B[(r, {), (y,n);Qlonly depends on the 2-form B and denotes the operator
of multiplication in L2(X ) by the function

.,'[(,,€). tu.rt\:.]::*plr2(y.€-, nll""pl,-,, i ,l o.s)
L- ' L...,1-,'yrJ

Here the distinguished factor is consftucted with the flux (invariant inregration.)
of the magnetic feld through the triangle defined by the comers z, z * t and
z + r + g. A straightforward computation leads to the magnetic Fourier-Wígner
function'.

[oÁ(u e r)] (r, €) = [Of (")J (2, {) ,: \rA(r, ¿)u. o)

.tt: I ar"-'ur.*o | ,-,, t ^l 
uq - rlzt u¡p - rt».Jx I J I

L L-' 2'Y+¡'21 )
It can be decomposed into tlre product of the multiplication by a function with
values in the unit circle, a change of variables with unit jacobian and a partial
Fourier transform. All these are isomorphisms, so O/ : I'?(X)6 L'(X) -+ L' (»)
defines a unitary transformation. Thus we get a formalism which is a particular
case of the previous chapter Therefore one can apply all the prescriptions and
get the correspondence

f ,+ fi"(Í) ,: lrf {*,t) oo(-r, *€) dad,€.

In fact people are interested in the (symplectic) Fourier transformed version
a(Q, PA ) - Dp'(o) ,: IIÁ[S-'(a)] . The resulüng magnetíc Weyl calculus is
given by

f DpA(o),1 ¡t):(2r)-n [ ¿!) [ d€rt"' v: ¿t"l-il¡./L ( -A F) ¡,r,r rr 1 ] r

Lx 'J^i'' - 
\ : '\) u\c, \J'ttt

An important property of (3. I I ) is gauge covariance, as hinted above: if
A' : A * dp defines the same magnetic field as,4, then

DP/(o) : eol DPA(a)"-u' '

By killing the magnetic phase factors in a1l the formulae above one gets the
defining relations of the usual Weyl calculus.

(3.10)
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Due to the particular structure, one can introduc e {LrA@) :: rA(r,0)b e
-X] (generalizing the group of translations for A l0) and {1,'(() ,: ziÁ(0, () I

€ € -Xr) (the group generated by the position operator Q). One can also in-
troduce gr(Q) ,: OpA(p I 1) and a(PA) :: Op1(1 S, a) for'9 € ¿2(-f) and
tl; e L2(XY). One checks easily that 9r(Q) is the operator of multiplication by rp
while for zero magnetic fieldtll(P/:o) = dr(P) is the operator of convolution by
the Fourier transform of 'q-i. Since p I 1 and 1 I ¿,' are not I,2-functions in both
variables, one needs the ¡esults of [MP04, IMP07] for an easy justification ofthese
objects. Equivatently, one can use formulas as ra(PA) :: Íxdr 0@)UA(r) .

The next result is inspired by [GI04, Prop. 2.2] and basically reduces to

[GI04, Prop. 2.2) for A: 0. By 5(y) we denote the Schwartz space on the real

ñnite-dimensional vector space )t .

Proposition 3.5. The C. -algebra Kl¿'z (X)] of compact operators in L2(X)
coincides with the closed vector space t generated in BjL2 (X)l b7' products

,o(Q)',1,(PA) wirh tp € S(X'¡ and ttt € S(X!) .

Proof. It is easy to check that 9(Q)I!(PA.\ is an integrai operator with kernel
given for z, E e Xby

kt,,r@,y) : s i !¡"'n1A'p@)0@ - r). (3.12)

We assumed the components of á to be Cff,-functions and this immediatiy impiies
that the magnetic phase factor in (3.12) belongs to Cffi(X x X) . Therefore, if
(p € S(X) andt! e "s(X) ,then kj.r, e S(X x X) c L2(X x X) andthus

9 {Q)t'(PA 1 is a Hilben-schmidt operaror. From this follows K[Z2lF ]] I C.

Reciprocally, it is enough to show that e contains all the integral operators
with kernel k e L2(X x X) (they are the Hilbert-Schmidt operators and form a
dense set in K[¿'(X)]). Pick inside the Schwartz space 5(.X) an orthonormal
base ie¡ ll € N) for ¿2(X). Setring

Fi@,y) :: ¿ it6.o1'4 

"r7r)e¡(a - z) , Y r,E € x, i,i € N,

wegetan orthonornalbase {ff lr,f e Iñ} of L2(,X x -X) . So k:lrrq¡F$,
where !,, 1",¡ l' < - and the sum is convergent in -L2(X x,X). Then the integral
operator with kernel k coincides with !¿,¡ c¡¡e¡(Q)e ¡(PA). The sum converges
in Br[I,'z(X)], thus in IE[.L'?(-X)], therefore the operator belongs to C. tr

39
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3.3 Magneticcompactnesscriterion

We present now the main result of the Chapter.

Theorem 3.6. Ler f! a bound-ed subset of ?1 :: L2(X). The following state-

ments are equivaLent:

l. The set Q is relatively compact.

2. For some (any) windout u € 11 , the fami¿y d*(O) is K(U)light in L2(») .

3. Forevery t >0¡hereexist ! e C.¡\¡ wirh.lrp ] fOp"f ft - Ilu | 5 r.
"eh,,L "' I r¡ -

4. One has
lim sup l, l"otr.{) - ll u¡l : 6.

(¡.O-0 u€a
(3.13)

5. One has

1,* ::g llluAlr¡ - 1)ull: 0 and lX ::B lltv(€) - llull: 0.

(3.14)

6. For every e > 0 there exist.p e S(X) and 4, € S(Xr) with

s"3 (llk(a) - rlull + ll [ú(Pa) - r] zll ) < e.

Proof. 1 <+ 2 ++ 3 follow from Theorem 2.5 by particularization, while 4 ++ 5
is trivial, taking into account the relathionships betu,een UA.V and, ¡'4 . Tt,e
implication 3 =+ 4 also holds, taking so : 0 in Theorem 2.5 (and replacing s

by -s). A careful examination of (3.8) and (3.9) would even lead to 3 <+ 4,
restauring the relevant convergence for arbitrary ss :: (16. (6) , but this will not
be needed. 1 + 5 follows trivially, because Q can be approximated by finite sets

and U'4, V are strongly continuous at the origil.I.

5 + 6 can be obtained along the same lines as the proof of the implica-
tion 4 + 5 in Theorem 2.5, taking also into account the relations ú(PA) :
t,ar$¡{uAlr) and p(Q) : ,lr,d€0(€)v(€).

We finaIly show 6 + 3. Let us set Tr :: 1 - 7 and compute

llu, - ,p(Q)at(PA)" ll : llp(Q)u(Pi)ru + p(Q)ru ll

< llp ll-ll',*(P')ru ll + lle(Q)au ll .
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By using the assumption 6 , this can be rnade arbitrary small uniformly in u € Q
if 9, r' are chosen suitably. As in the proof of Proposition 3.5 one sees that
,¡@)t!(PA) is a Hilbert-schmidt operator. It can be approximated arbitrarily
in norm by some operator OpA(i) wltfr / e C"(l) and then 3 follows easily
because Q is bounded. n

Remark 3.7. Manl' small variations are allowed in tlrc results above. The
Schwartz spaces S(X) ands(Xü) in Proposition 3.5 or at point 6 of Theorem.

3.6 can be replaced btt other convenienf "small" spaces. In Theorem 3.6, at point
3 one couV use DpA (a) with a e S(l) or with a € Cf (I) .
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Chapter 4

Compactness in coorbit sPaces

associated to continuous frames

In this chapter we present compactness criteria for Banach spaces constructed in a

way related to a Hilbert space. In section 4'3 we present a way of obtaining such

.pu""s by ."um of a tight continuous frame, a more general framework than the

á" pr"ránt"o in section 2.1, but having a less rich mathematical structure. Thar

is wiry only the representation coefficient approach will be available in section

4.4. As seen above, in that approach both a weakly compactness and a dominated

convergenee theorem were needed. In sections 4' i and 4'2 we produce this resuits

in a context that is useful for coo¡bit spaces'

4.L The Alao§lu'Bourbaki Theorem

In this section we want to present a well-know result that will allow us to extract

a convergent subsequencá in section 4.4' In order to do that we need to show

that the áual of a topological vector space has a Heine-Borel tlpe of property'

Obviously this witt Oepend on both what we wiil consider to be bounded sets and

the topolágy cho."n. ihit section is mostly based on [Rud91, Theo' 3' 15]'

Definition 4.1. A topological vector space is a (real or complex) vector space X
endowed wíth a to7ologY such thltt:

1. every point ofX is closed and

2. the vector spaces operation are contittuous'
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Note that even if we don't ask .{ to be Hausdorff, it will follows from the

definition. For a topologicat space .t we will denote by X! is dual where o
indicates that we consider on ,f' ths .-weak topology. We also note by K the field

@ or C). By Kx we denote the cartesian product of K indexed by ,y with the
product topology. It can be realize as the set of K-valued functions defined on ff
endowed with the sup-norm. The following lemma is part of the basic theory of
topological vectof spaces.

Proposition 4,2. Letr e X and V € y(0¡¡) . Then, there exists r €Rsuchthat
? e rr.
Proof. Let r be arbi¡ary and asume that 1./ is open. By continuity of C I z -+
zx e X we know that the set of all scala¡s : with zn e V'is open. Furthermore,
it contains 0 because 0r : 0x € i¡. So, we can find r small enough such that
r-l¡ € I- => ¡ e :V. tr

A set with this property is usually refer as an absorbing set; we show then
that, in a topologicai vector space, every neighborhood of O¿ is absorbing. The
next definition is also standard.

Deflnition 4.3. For K C X we define the polar of K by

I{' :: {'s e X' : l\r.s)l < 1, for alt r € K}

We are ready to state and prove the next theorem.

Theorem 4.4 (Alao§lu Bourbaki). For V e V (O x) in a topological vecror space

X , V' is * -tt,eak compact.

Prcof. For every r € .T, let us denote by 1(r) a number such that z e :(z)1'.
We consider

p :: {f e Kz : l/(r)l S r(r)}. (4.1 )

Clearly P is compact by Tychonoff's Theorem. \\'e can now see thar\,¡" C N:aP,
so it inherits two subspace topologies, from XI and from P. Let us see that the
topologies coincides in Vo. For this, we fix some ge € V' and look fo¡ a base of
Y¡¿(g6) and of lp(y6). For every finite family § of element of X we put

{UrtG ;d) ;: {y e x' :l@,a - so)l< ó} : r € &.ó > 0}

and
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Clearly they are bases V,y¡(;yo) and of Vp(.r;6) respectively and they coincides in
Vo yielding the desired coincidence between both subspace topology. If we can

show that V' is closed in P, the result will follow from the compacity of P.

Let /6 be in the closure of V' in P. Let us choose r:. y € X, a e K and set

3: {x1.r2,aq+u2}. For¿ > 0 we consider the neighborhood of /6 defined
by

{/ e Kr: lf @) - fr@)l < e for all r € S}. @.2)

We pick an element of this neighborhood lying in i/' and we denoted by g. We
compute:

lfo(ox, + u) - afo@t) * fo@)l :ljo - y)(o", ¡ rr) - a(fo - y)(rt)

- (/o - s)(rz)l
:(z + lal)e .

The arbitrariness of e yields the iinearity of /s. To see that ,fo € V for an arbitrary
r. e X we take $ : {r} and g in the intersecüon of this neighborhood (defined
again by (4.2)) and V. Then

l/o(")lS lfo@)- (r,s)l+ l(o,s)l< 1+e . (4.3)

Again, taking e arbitrarily small we have f o in V' and this finish the proof. tr
Note that we didn't have to prove the continuity of /s because the boundedness

in V implies iU one can argue that 4.3 is redundant in the sense that it wasn't
necessary to assume the continuity of g. We have the following corollary.

Corollary 4.5. Let Q c X' be equícontinuous. Th.en {1 is relatively compact in
the weak-* topology.

Proof. By eqticontinuity we can find some V e V(.1x) such that for every z € V'
we have:

sup l(r.'s)l : sup l(r, ?) - (r, 0)l ! t (4.4)
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Then Q c Iz-' and the result follows from 4.4. n
Recall that a Fréchet spaces is a metdzable locally convex complete topolo-

gical vectff space. Being locally convex, the topology can be described in terms
of a family of seminorms (actually the are defined as the Minkowski functionals
of a base of neighborhood of 0 formed by convex sets).
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Lemma 4.6. Let 6(9) a family of seminorm defining fhe topologl, of 9. Assumc

that ! is a normed space continuously embedded in Q', and M A C y be

bounded.

l. For every p e G(9) there exists a positive constant D, such that

l(",n)ll D,llull,* p(a), Vue 0,ue !.
2. Seen as a subset of Q', the set Q is equicontinuous and (consequent\,)

relatively compact in the weak-* topology.

Proof. If ore assumes that J, is continuously embedded 9[,then l(u, .)] is con-
tinuous for every u € ) given the property l. To prove 2 we can see that a base

of neighborhoods of the origin in § is

{U(p;,r) :: {a e glp(u) < ó} lp € s(S),á > 0}.

Assume that l] zl]¡,,<.A1 forevery?r€Q.Lete>0andp€6(S) . Using 1, for

every z € ¿ (p, r=) andevery u e Q one gets
" \. ^rLP./

l(".r)l < Doll"ll"p@)<DoMp(u)<e ,

and this is equicontinuity. The last statement follows from Corollary 4.5. n

4.2 Banach function spaces

In this section we present some facts about the abstract theory of Banach function
spaces; this theory al1ows us to characterize the spaces offunctions over a measue
space in which a version of the Dominated Convergence Theorem is available.
We follow the presentation made in [BS88, Chap. 1] but the older [Lux55] is in
cefain aspects better. Throughout this section (I- p) will denote a measure space

assumed to be a-bounded, R+ the extended positive line [0, m], and i]Jt+ (resp.

Dt) the set of ñ..-valued (resp. R or e-valued) p-measurable functions. We stan
with some definitions.

Definition 4.7. A mappütg p : !Jl* -+ Ñ-. is called a Banach function norm f
for all f , g. f " 

in lÍ+, for all cotxstants a ) 0 and for all ¡,t-measurable subsets

E c D, the following propertíes hold.:
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Pt p(f):0<+/ :0t-L-a.e.; p(af) : "p(f); pff + s) < p(f)+ pb);

PZ 0 < Í"t Í p-a.e.; + p(f,) t pU);

P3 p,(E) < oc + p(¡¿) < cc,'

PA p.@) < oc + Iudpf < C¿p(f) for some constdnt O < Ce < x:, inde-
pendent oJ .f .

Definition 4.8- The collection 
^a 

: Mb) of all functions f e ÍJl such that
p(l/l) < cx:: is called a Banach function space with norm

ll/ ll.u: p(l/l) . (4.5)

The few results that we will need are gathered in the next proposition.

Proposition 4.9. Let be M a Banach function space. Then

l. M is a Banach space;

2.tfS<f ¡t-a.e. and.f e Mthenge M;
3. If p is a Radon measure we have K(D) C .M ;

4. If f" -+ f in M then f " 
-+ f in measure.

Proof. Property 2 follows from P2 and 3 from P3.

4.Lelfn-+ f inM andlet.Eof finite measure. Forevery e > 0 we fix ll such
that p(l/ - /,1) < $ for 

"rery 
n. ) N using P3 andP4. Then, for n ) N",,,, _ LE

1. We prove only the completeness. Consider {f"} C ,M with D[, ll/" ll¡z
finite. we set r :: DLr l.f"l, ¿, ,: »il:, i/"] . Clearly 0 < ¿¡¿ t n as ly' -+ oo,
so by P2 p(t¡) f p(ú). But

Nco
p(úN)< I Itr"ll-< I llr"il- @.6)

n=1 n=l
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so p(f ) < oo and we have t.,t € .M fogether with ú¡ -+ f in M. By 4 we can

show that t¡ -+ t in measue and hence has a subsequence converging pointwise

to f. So » /, is well define p-a.e. because I l/"] is it (and R or C are complete).
We can set

41

f ::»f" and ,r,= !,f,
For every m € N we have thal sn - s NJ --+ f - s ¡t l.¿-a.e. as n -+ oo. So

m@

]p^¡u_ llr_ - ,¡r ll"nrs _ri- itf_ I il ¿ il¡l: ! llr,ll¡,rn')(btn>n n"+cxcm Zn ¡=-tÍ*l ¡!ru+t

Because inf-¡,, ]s- - s¡¿l t ]/ - su¿|, we can use P2 to get

011¡ - 'rl): Jl**gf" lS* - s¡rl !
3

So / - s¡a € "M, and hence ll f - "n l]¡r-+ O. tr

We said that a sequence -8, of measurable sets converges to 0 if the set

theoretic limit (see (0.1)) has measure zero. The next definition will allow us to
reobtain the Dominated Convergence Theorem in this ampler setting.

Definition 4.10- A function f in a Baruch function space M is said to have

absolutely continuous norm in M ¡f ]l f Xtllu-+ 0 for every En -+. The set of
all functions in ,tt4 with absolutelr- continuous notm is denoted by M".

Example 4.11. We want to sl1.ov) that M" can really be a proper subspace. It is
not he case for Uforl < p < a but the p : 5e case is intercstittg. If ¡tis0
for every singleton, as the Lebesgue measute, then. Mo: {0} because.for every
r € D we could construct sequence of sets En of positive measure flxat converges
to {r}.

We can now state the main result of the seclion.

Theorem 4.12. f e Jt4" if and onlT' if tlrc follot"-íngs condítion holds: wlrcnever

f n, g are ¡1,-measurable functiotxs satisfyínC lÍ"1 < \f I and f -+ g p-a.e., tlrcn

ll/"-gll-+0.
For the proof we need some propositions.

\-
lJ llÍ"ll-
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Proposition 4.13. .f e M, if and only if ll f Xe,,ll¡11 0 for ever¡ E" t A.

Proof. The "only if'part is trivial and the "if'follows easily iffor some arbitrary
sequence I) we set E" : ,E,F-.Then 

E" I 0 and Fi" C E, fo¡ every ¿. Then

0 <ll .fx"" ll-Sll fxr- ll¡,1 and the middle term, being sandwiched by a null
sequence, goes to zero. n

Proposition 4.14. Let e be greater than 0. If f e M, we canfind.6 > 0 such

rhat ¡L(E) < á = ll /r. ll¡, < .

Proof. Let e be greater than zero such that for every ó > 0 there exist E meas-

urable with p(E) < 5 and ll /x¿ ll.q> e. Then we can choose E such that
p(E") < 2-" and ll f yB ll¡¿> e . Since p(U E") < 1 we have E. -+ Ap,-a.e. and
bence f (M,. n

Proposition 4.15, f e Mo if and onllt if for every fn ). 0 p,-a.e. such that

f" < Lfl. p-a.e. for every n one has ll f"ll¡at 0.

Proof. Tbe "only if" follows by taking f": fXd" for an arbitrary null sequence

-8,. Suppose now that f e M,. Fix some R^ ¡ E composed of sets the
f.nite measure. Then D\R" :: Q* t 0 so there exists some -\i such that

ll /ro" ll-< ! for every n > 
^i. 

We set üen o ,: Í ll xa¡, ll¡a and let
En:: {r €D: f"(r) > a}. Since f t0 p-a.e.,then / -+ 0 in measure, sowe
have ¡-t(E") j 0. By Proposition 4.14 we choose Ar'u such that l] /1¿" ll.nal i for
every n > Nz. Taking N :: max{I/r, A2} and n > A- we have

l1Í"Jl¡,,S ll f"xq"llu + ll .f"xa" ll¡z + ll /"rn r¡" ll.rz
€e<i* i* a llxR" ll.v< 6.

tr

Ptoofof4.12. The "only if" part goes as in the previous Proposition. Suppose

f e M"and fn, g are as in the hypothesis. We can set fu"(r) : süpmln lf^@) -
g(z)1. The h,, is as in 4.15 so we have llh"llut 0. The results then follows from

o <ll/" - gll M <llh"llul"o. (4;7)

tr

When ,/tl : Mowe say thaf M is a Banach function space wíth absolutely
corttinuous nonn.
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4.3 The coorbit formalism

We recall now fhe concept of tight continuous frame and the construction of
coorbit spaces, slightly modifying the approach of [FR05, RUil]. Let us fix a

family I4r;: {u(s) ls e I} c'l4thaf is a tight continuous frame; the constant

of the frame is assumed to be 1 by normalizing the measure p . This means that

the map s -+ Tl(s) is assumed weakly continuous and for every r.i,, o € 7l one has

' ' 
:.[-a' ''I r/ u'5 

'i 's t'

Clearly I4r is total in 7l and defines an isometric operator

ó\1 :'11 + L2 (t) . [qr¡'(u)1 (s; :: (2. t¿'(s))

with adjoint cr{.,. : Z2J!) -+ ?l given (in weak sense) by

(4.10)

The (Gramian) kemel associated to the frame is the function p¡,v : I x X -+ C
given by

pr¡-(-s, i) :: (tr,(t). u:(-")\ : lóu (ur(¿))l (s) : fo¡.(u(s))l (t) . (4.1 I )

ói.,.(/) : / ar1,¡¡1,¡,1,1 .

defining a self-adjoint integral operator fir :111110^ ) in Z2lI) . One checks

easilythar P¡¡z -- ówA+w isthefinal projection oi the isometry ow. so Pw lI2(I l]

is a closed subspace of tr2(!) . Since ól¡ró* : 1 . one has the inversion formula

u: Irl¡,,,1 f,.¡ 1u7 1/ r,,./;.
J|.

leading to the reproducing fomrula p¡.(u) : Pr¡'Io¡,r.(z)] , i e.

!o,,'(z)l(s) - l.ar¡r1t,u'r,tt 
u(s)) lor¡.(u)l (¿).

(4.8)

(.4.e)

{.4.12)

(1.1 .3)

Ttus ?¡y(E) :: fiy lL'z(»)l is a reproducing space with reproducing kernel p¡z;

it is composed of continuous functions on E .

To extend the setting above beyond tbe L2-theory, one can supply an extra
space of "test vectors", denoted by L assumed to be a Fréchet space continu-
ously and densely embedded in 7l . Applying Riesz isomorphism we are led to a
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Gelfand tnple (.9,11, qi) .fh" index a refers to the fact that on the topological
dual 9'we consider usual'ly the weak-- topology. In certain circumstances one
takes I to be a Banach space and sometimes it can even be fabricated from the
frame 14/ and from some extra ingredients, as below. But very often (think of the
Schwartz space) the auxiliar space 9 is only Fréchet.

We shall suppose that the ;fami\, V' is contained and total in Q and that
X ) s '+ u(s) e g is a weakly continuous function. Then we extend óu, fo 8t
by lr¡0. (")] (s) :: (u, ur(s)) , where the r.h.s. denotes now the number obtained
by applying u € 9t fo u(s) e g and depends continuously on s. By the totality
of the family W in 0 , this extension is injective. In addition, é1a., : Q' -+ C(!) is
continuous if one consider on 9' t}re weak-* topology and on C(D) the topology
of pointwise convergence.

As in [FG89, FR05, RUI i] and many other references treating coorbit spaces,
one uses dy,.(.)topull back subspaces of functionsonX. So let(.M,11. 1]¡r)be a

normed space of functions on X (more assumptions on M will be imposed when
necessary) and set

cov.(M) : co(M) :: {u e g' laü,(u) e M}. llz ll-t"rzr :: ll qr.¡-(u) ll.nz
(4.14)

Recalling the totality of I4,'in 9, one gets a normed space (co("M),I ll*r¡¿l) an¿

ó1a, : co(M) -+ M is an isometry. Without extra assumptions, even when .M is a
Banach space, co(,M) might not be complete, so we deflne óó(,M) to be the com-
pletion. The canonical (isometric) extension of óy.. to a mapping : eo(M) -+ "M
will also be denoted by py,. If the norm topology of co(M) happens to be
sfonger than the weak-* topology on 9', then canonically lo(M) -+ Q,.

In this framework, coorbit spaces were defined and thoroughly investigated
in [FR05, RUl1]; if "M is a Banach space then co(.M) is automatically com-
plete. The dependence of these coorbit spaces on the frame l,tr/ is also studied in
[FR05, RU11]; we are going to assume that the frame I4l is fixed.

We show now how the fo¡malism present in section 2.1 can be considered as a
particular case of the one desc¡ibed above. This pañicular case has extra structure
allowing to develop a symbolic calculus and to def,ne and study corresponding
coorbit spaces of functions o¡ "distributions" on D; we shall only indicate the
facts that are useful for the present paper.
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Let ,T : t -+ B(7¿) be a map such that for every u.a e ?l one has

(.4.1s)

We set z (s)z :: r"(s) and n(s).2 : ¡r- (s)u :: ,,-;(s) for every s € D
and ¿ € 74, getting families of functions {tr.: D -+ '11 | u e 71) and

{zr} : X -+ 11 | u e ?l}. One also requires ri to be continuous for every
u.

For every normalized vector ¿, e 11 the map (f; : 11 -+ L2 (») given by
óL@) :: E" @,w) is isometric. Fixing u, it is clear that we are in the above

.framework with the tighf conti]luous frame d.efined by:

W :I4r(1T,u): {to(s) :: r(s)-r¡ls e X} (4.16)

Using existing notations one can write óu, : Ei and ar(.) : ñi,(.) After intro-
ducing a Fréchet space I continuously embedded in'11 , one can define coorbit
spaces co[,(,M) 7 {u, e g' óT"@) e M} asit was done above.

4.4 Compactnesscriterion

Let us fix a tight continuous frame 14r ;: {w(s) s € X} contained, total
and bounded in a Fréchet space I that is continuously embedded in the Hilbert
space ?l . It is assumed that s r+ (z ur(s)) is continuous for every u e 8' .

For any normed space M of functions on t we have defined the coorbit space
coq.(M) = co(/r4) in (4.14) which will be supposed continuously embedded in
S'" '

One considers a bounded subset O of co(,tl) and investigate when this subset
is relatively compact in terms of the canonjcal mapping ów = é. We are guided
by [DFG02, Th. 4]. but some preparations were needed due to our general setting.
For instance, we need to apply 4.6 to y : co(M) . + Q', . We also assume,
as was done tacitly in [DFG02], that M is a Banach space of functions with
absolulelf' conf ínuous norm.
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Theorem 4.16. Let us assume that M is a Banach space of functions onE with

absolutely continuous notm. Then the bounded subset A of co(M) is relatively

compact if and only if ó(9) is K(D)'tight in M.

Proof. We stafi with the atxl) if part.By relatle compactness of 0, forany e > 0

there is a finite subset .F, such that

*,F ll"-'ll*t-¡51, Vz € Cr'

Recalling that ! has been assumed o-compact, there is an increasing family

{L*l* e NI} of compact subsets of X with l^L^ : I. Since pointwisely

lx"^ó(ül < ld(r)l and a¡.^Q(a) v1 O(o), there is a compact set ¿ c »
with complement ¿' such that

Lf lllL"e{o; lt.<i
Then, for every u a f), using the information above and the fact that Q :

co(M) -+ "Al is isometric, one gets

jrr.o(r) l.,tz I mr4 (iLxr"o-," (" - o) I ¡¡ - lll¿.o('"-) | .aa)

: lii,o '' "-' u-i
rniu u t.^- .l-a..,-t '2-

We now proye tl, con\)erse. Knowing that o(Q) is tr(I)-tight in ,M , one needs

to show that every sequence 1u,),=a C Q has a conYergent subsequence. B)'

Lernma 4.6 the bounded set 0 c co(,{4) is relativel¡'cornpact in 9!, so (u,)".*
has a *-weakly convergent subsequence ui -+ u.o e 9' :

(u.¡, 'u) -+ (uo. tr) for any 1) e g . (4.17)

Putting r, :: u(s) in (.f.i7), we get for every s € !

(u7, u,(s)) - lo(u:)l(s) -+ fqr(u-)i(s) : (u-, u:(s)) .

Therefore the sequence (o(27))¡¡,s is pointwise Cauchy. We shall convert this in

the norm convergence

I "(r, ) - Q(u¡,) .u -+ 0 u hen .i, A -r oc . (4. 18)
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Then the proof would be finished since d : co(M) -+,[Z is isometric: (z¡)¡6s

will be Cauchy in co(M), thus convergent (to z- of course). By tightness' pick

a compact subset ¿ C t such that ll x¡,"Ó(") llna < e for every ?-¿ € O; then we

get

llxr"ó("¡-u¡)ll¡a<ze, Vj,k€NI . (4'19)

Since co(,M) is continuously embedded in 9!, for any seminofln p € 6(9) there

exist positive constants Dp Df such that for every s € E

sup l(23 - u¡, tu(s)) | ( D, sup llu¡ - un li-1.v¡ p[tr(s)] < n'onlw(s)) .

j,k j,k

By our assumption on W and by the Uniform Boundedness Principle the family

{Tu(s) ls e .L} is bounded in (, so we get

lló("¡ - ur)l (s)l 3 D'rC¡, vj, A, e N. s e tr.

Anyhow we obtain by Theorem 4.12

llx"ó("¡ - uillu -+ 0 when j,k -+ cn . (4.20)

Putting (4.20) and (4.19) togother one gets (4.18) and thus the result. n

Remark 4.17. Let S be an bounded operator from the Banach space X to co(M).
Then S is a compact operator if and only if for every e > 0 there exists a compact

set L cDsuchthat
I I."oói.,'o S lrr.,r.¡z) { e . (4.21)

This follows easily applying Theorem 4.16 to the setQ ': S(/frl) andusing the

explicít form of the operator norm . Hetz X¡4 denotes the closed unit ball in the

Banach space X .
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Chapter 5

Compactness in spaces of operators

In this final chapter we relate the criteria presented in Chapters 2 and 4 to some

general results in the space of compact operators in order to get new criteria
concerning compactness in K(11) (section 5.1) nd K(X 

' 
co(M)) (section 5.2).

5.1 Compactnes criterion for K(71")

We start by presenting part of the literature conceming compactness in the space

of compact operators. Interestingly, to the best of our knowledge, this literature

is divided in two: a first part developed in the late 60' by Palmer and Anselone

mostly concerned with relating totally boundedness of family of pre-compact

operators with collective corupactness of the family and their transpose ; a most

recently second part, use a different characteizalion of a compact operator to get

characfeizatiors not depend on the transpose family. In this section we present

the classical result from [PaI69] and postpone to the next section the second part

of the discussion. We begin with some definitions. Here Z and ]l stand for
Banach spaces (even if the completeness is not really needed) and we recall that

.{¡11 denotes the closed unit ball .

Deflnition 5.1. l.et "l be a subsef of B(.T, lr). It is called:

pointwise collectively compact if .lr:: UsaySr is totally bounded ín! for
every r e Xg1,

collectively compact if ,f X¡4 :: Us¿y S X¡1 is fotally bounded in U .

</1
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(5. 1)

we have

15 ?t

(s.3)

It is easy to see fhat if .tr is totally bounded then it is also collectively compact
because if 51. . . . , S,, are such that

rnin sup ltS - S, llrr*,y,1 IL_r.....nse,¡ z

and for each 7 < j < n, we choose rj¿ such that

,= Tll,,, ;lPu, 
lls,r - S;r;rrl"< ;f 

¡

iir.,lf llSr - ,9¡r,, ll.tl e

For .f we sef ,l* :: {.9. € lE(}',,-1i')}, where ,g- is the rranspose operator
defined for a q e y'by S.(q) : r/ o .9. Note that.Y is rotally bounded if ,t{- is.

Theorem 5.2 ([Pal69, Theo. 2. l ]). A subset,l' of B (X . )¡) is a totally- boun ded
set of compact operators if and only if:

1. J{ is collectively compact and

2. ,f. is poinwise collectivel¡ compact.

Proof. Tt,e necessity follows from the previous discussion. Let be r greater than 0.
By 1. ,f X¡t1is totally bounded; then )i,,, being weakly compact, when restricted
to J{ X¡11is totally bounded. We chóóse then 41 , . . . ,4, from an i-cover of
}ir, restricted to ,ff X¡t. By 2., for every 1 ( j < n we choose á f-cover
{Q¡r, . . ,Qy¡¡} of .l.n¡. Because each f)¡l is composed of elements of the
form S-4¡, and furthermore ^9.4¡ needs to be in som e¡¿ for every S € ,j{ , we can
define a cover {O¡r, ...,Q¡X¡} of .ff for every 1 ( j < n.Set t¡: mat;¡ l(j)
and define .fi ,: O Q¡ fo¡ 1 ( I < J6. Note that for some I the intersection onlyj:t
runs over some j's. It is clear that {,fi}!l=, torms a cover. Take now 51, 52 e ,_l¡,
r € X¡r1,4 € )11¡.Then, we have

l,i(S' - Sr)rl :lqlSrr] - nlszxll
: 

I a[S1 c] - nxLS .rll + l,ir [S,r] - q t ls r"ll + lrtt lSrrl - nlszrll
:l(n - n*.)[S,r| + I lsi (qo) -,si (ar )] (") I + lOt - n ilsz¡lleee

-_:eoo.)
if one choose rl¡ such rhat l(n - ,tu)ls")l < f whenever S e J( . tr
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A similar proof yield the following result:

Theorem 5.3 ([Pal69, Theo. 2.2]). A subset ,f of B(X , y^') is a totally bounded
set of compact operators if and on\, if:

1, J{ is pointwise collectively compact and

2. .Y. is collectivef, compact.

From this two theorems one could expect that a cha¡acterization of compact-
ness in terms of pointwise compactness could be available; but this is not the
case. Take for simplicity X : y : ?l a Hilbert space. Ler {"¡ I j e N} be an
orthonormal base in ?l and set P, the projection on the linear span of the first
n vectors of the basis, {P"}',.^ : {P,i}".* is pointwise bounded but cannot be
compact being an infinite discrete set. Combining both theorems we have:

Theorem 5.4. A subset .l of B(X.)t) ¡s a totally bounded set of compact
opetators if and only if:

l, -i{ is collectively compacf and

2. .l* is collectively compact.

We refer now to the situation explored in Chapter 2, recalling the objects
(.",4r[,.T1); for simplicity we oniy consider the case X : jl . We want to
characterize relative compactness of subsets of K(?l) , relying on Theorem 2.5
and Theorem 5.4. The setting is thar of Chapter 2; it is also assumed that
r(s1). : 1 for some s1 € I.
Corollary 5.5. Iot .-Y be a family of bounded operators in'\l . The foltowing
assertions are equivalent:

1, .l is a. rclatit,ely compact fttmily of compact opera.tors.

2. For some (any) u e '17 the family 1¡¡*(5117)15 € "Y lJ j{-} is unifunnly
ilghr in L¿l»). TIis condition nxeans that for every strictly positive € fhere
exists a compact subset L of D suclt tlmt

sup Ll ¡ljod,oSlnrr¿.¿"rle. (5.4)
S€ )t ).{.
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3. For ever¡ e > 0 there exists J e C"(D) such that

sup ll lil(i) - 1lS lJ61s1 I e .

S€.YU.tr'

5'7

(5.5)

4. {» > s *+ r(s)-S € B(?l) I S € :l a.l-} is an equicontinuous famil-t.

5.2 Compactness criterion for K(X,co(M))
To study compactness in K(.8, co("A4)) the previous result is not at hand because

in general we do not know anything about compactness of the subsets of .tr|'. In
tSPD06l is presented a ¡esult that only refers to .{ but a definition is needed.
Note that the notion of collectively compact is founded on the idea that the whole
family of operators should behaves as a single compact operator. But a a compact
operator S can also be characterized by the fact there exist a weakly null sequence

€" c X' such that l] S, l]< sup" l(r. {")] for every r € .f. This motivate üe
following deflnition.

Definition 5.6. Let -Y be a subset ofts(X. y^'). It is called equicompact if exist a
weakl.y null sequence {n C Xt suclt that

sup ll .9rllS supl(r,{")l fornery r e X.
S€.f n

(s.6)

What is shown in [SPD06] is tha¡ .f * is collectively compact if and only if
.,Y is equicompact. Then 5.4 now reads.

Theorem 5,7. A subset .{ of B(X,!) is a totally bounded set of compact
operators if and onl-t if .f is collectively compact and equicompact.

Corollary 5.8. Let us assume that M is a Banach space of functions on D
with absolutely continuous norm, let X be a Banach space and ,f a subset of
B [.2. co(,,V)] . Tlrcn ff is a compact fantily of compact operators if and only if

L For every e>0 there exist a compact set L C t such that

sup ll ¡¿" o /¡a, o S ll6¡¡,¡n¡ < e and
se.l

2. There exists a sequence X' > r'. -+ 0 such that

sup
S€.tr

lló". (Sr) ll- < l@", ")l for every c € X .
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