UCH-FC
MAG- M

=G
> 2.5

THE RIESZ KOLMOGOROV WEIL
THEOREM FOR ABSTRACT HILBERT
SPACES

Tesis

Entregada A La
Universidad De Chile
En Cumplimiento Parcial De Los Requisitos
Para Optar Al Grado De

Magister en Ciencias Mateméticas
Facultad De Ciencias

Por
Daniel Alejandro Parra Vogel

Agosto, 2013

Director de Tesis: Dr. Marius Miantoiu



FACULTAD DE CIENCIAS

UNIVERSIDAD DE CHILE
INFORME DE APROBACION

TESIS DE MAGISTER

Se informa a la Escuela de Postgrado de la Facultad de Ciencias que la Tesis de
Doctorado presentada por el candidato

Daniel Alejandro Parra Vogel

ha sido aprobada por la comisién de Evaluacion de la tesis como requisito para
optar al grado de Magister en Ciencias Matematicas, en el examen de Defensa de
Tesis rendido el dia 19 de Agosto de 2013.

Director de Tesis: [/l /gm u,'t‘
o

Dr. Marius Mantoiu = e

Comisién de Evaluacion de la Tesis:

Dr. Gonzalo Robledo

Dr. Verdnica Poblete




Agradecimientos

Quiero agradecerle al profesor Marius la confianza que deposité en mi, su de-
dicacion para sostener un trabajo periédico y estimulante, y el apoyo que me
dio, en particular para que la defensa pudiese llevarse a cabo. En ese sentido,
también debo a agradecer a mis correctores, la profesora Verdnica Poblete y el
profesor Gonzalo Robledo, por la vountad de realizar ese trabajo en un plazo
sin duda demasiado corto y en medio del término del semestre. También quiero
agradecer al profesor Eduardo el apoyo desinteresado que me ofreci6 y al profesor
Manuel Pinto por ayudarme a definir mi interés por la investigacién durante la
Licenciatura. Debo también reiterar mis agradecimientos al profesor Gonzalo por
su paciencia durante el trabajo de seminario de Licenciatura.

Quiero agradecerle al Laboratoire d’excellence MILYON que en conjunto con
la Embajada de Francia en Chile me premitieron realizar una estadia en el Institut
Camille Jordan de Lyon. Respecto de la preparacién y realizacién de tal estadia,
asi como del doctorado que voy a realizar en dicha institucién, la ayuda que el
profesor Serge Richard me brindé (y brinda actualmente) excede con creces los
merecimientos que yo pudiese haber realizado.

Quiero agradecerle a mi abuelo Eugenio Vogel el haberme permitido pasar
Jjunto a mi familia los meses en que redacté esta tesis en aquel lugar de ensuefio
que es Malalcahuello, a mi madre por haber intentado decifrar el . tex puliendo
mi rudimentario inglés y a mi padre por su apoyo incondicional.

Quiero agradecer a Giselle y Emilia por confiar en que este proyecto tiene
sentido y su voluntad de acompafiarme en su continuacién allende el océano.

Este trabajo ha sido financiado por el Nucleo Cientifico ICM P07-027-F
“Mathematical Theory of Quantum and Classical Magnetic Systems”.

i



indice general

Agradecimientos
Indice general
Resumen
Abstract
Introduction

1 Classical compactness criteria
1.1 Compactness in spaces of continous functions . . . .. ... ..
1.2 The Kolmogorov Riesz Weil theorem . . . . ... ... .. ...
1.3 Representations and the integrated form . . . . ... ... ...
1.4 Integrated form and compactnessin L%, . . ... ........
1.5 Representation coefficients and compactnessin L2 . . . . . . . .

2 Abstract quantization and compactness
2.1 Theframework .. ... .. .... ... . .. ... ......
22 CompactnessCriterion . . . . . . . v v v v v v v v v e .
2.3 Characterization of bound and scattering states . . . . . .. ...

3 Magnetic compactness
3.1 Thestandard Weylcalculus . . ... ... ............
3.2 The magnetic formalism . . ...................
3.3 Magnetic compactness criterion. . . . . . . ... ... ... ..

4 Compactness in coorbit spaces
4.1 The Alaoglu-Bourbaki Theorem . . . .. ... .........

iii

ii

iii



INDICE GENERAL

4.2 Banach functionspaces . . .. ..........
4.3 The coorbit formalism. . . . ... ........
4.4 Compactnesscriterion. . . . . .. .. ......

5 Compactness in spaces of operators

5.1 Compactnes criterion for C(H) . . . . . ... ..
5.2 Compactness criterion for K(X,co(M)) . . . . .

Bibliography

iv



Resumen

El principal objetivo de esta tesis es reproducir resultados de compacidad presenta-
dos en [DFG02,GI04] en el contexto de [Man]. En particular, damos condiciones
para que un subconjunto de un espacio de Hilbert sea compacto en terminos
de las propiedades de una familia acotada de operadores acotados; el principal
ejemplo es el de la compacidad mégnetica. Finalmente, tomando en consideracién
[DFGO02], presentamos también algunos resultados parciales para espacios de
coorbitas y, motivado por [GI04], consideramos la compacidad en espacios de
operadores compactos.



Abstract

This aim of this thesis is to reproduce the compactness results presented in
[DFGO2, GI04] in the setting of [Manl2]. In particular, we give conditions
for a subset of a Hilbert space to be compact in terms of the properties of
bounded families of bounded operators; the main example is the case of magnetic
compactness. Finally, taking acount [DFG02] we also present some parcial
results considering coorbit spaces and, motivated by [GI04] we also consider
compactness in spaces of compact oprators.



Introduction

The main goal of this thesis is twofold: to expose some compactness criteria,
first presented in [MP13], that generalize the Kolmogorov Riesz Theorem to
abstract Hilbert spaces and Banach spaces defined in terms of generalized con-
tinuous frames; secondly, to give a panorama of several topics that I came to
learn working on this thesis under the supervision of professor Marius M#ntoiu.
The main contribution consist in make available results already present in the
litterature for the classical Weyl calculus for the new magnetic Weyl calculus. In
this introduction we start by presenting the structure of the document and then
rapidly fix some notations.

Several classical compactness criteria are presented in Chapter 1; it is also
shown how these results, presented first in a pure analytical framework, can be
related to group representations. When such a structure is available, our aim is
to relate it to both representations coefficient and the integrated form of such
representation. In chapter 2 we will extend this construction to the case where
a family of bounded operators indexed by a topological space ¥ endowed with
a Radon measure is given; we stress that even when the topological space is
R", there is no need for a relationship between 7(z)n(y) and 7n(z + y). The
framework is the one from [Man12], so it needs to be understood as an abstract
quantization procedure. In chapter 3 we focus on the important example of
the magnetic Weyl calculus. In particular, we generalize the results of [GI04]
which where concerned only with the integrated form approach. In chapter 4 we
study compactness in coorbit spaces, obtained from adding some Banach space
of functions, (see [BS88]) to the data already available; this approach extend
the one presented in [DFGO02]. Finally, in chapter 5, we present the available
results concerning compactness in operators spaces and then relate them with the
previous chapters.
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Conventions and Notations

We begin recalling the basic notions that we shall use throughout this thesis.
Because all the spaces that we will study are metric, our interest will focus on
finding compactness criteria linked to the totally boundedness property. A subset
2 of a metric space is totally bounded if for every e there exists a finite cover of
(2 by sets of a diameter of at most €. Such a cover will be called a e-cover. It is a
known fact that in metric spaces compactness coincides, on closed sets, with total
boundedness.

For a topological space ¥, assumed to be Hausdorff, we note by V(z) the col-
lection of neighborhoods of 2. We say that X is locally compact when for every
x € X we can find a compact set in V(z) . When X has such a topology, we denote
as C'(X) (resp. Co(X), resp. Co(2), resp. Cy(X), resp. C¢(2) ) the set of complex
valued continuous functions (resp. continuous functions with compact support,
resp. continuous functions that vanish at infinity, resp. bounded continuous
functions, resp. bounded and uniformly continuous functions). Unless otherwise
stated, we will always consider the sup norm defined by || f ||lco= sup,es | f(2)].
Note that C.(X) C Co(Z) C CE(Z) C Cy(X) with density in the first inclu-
sion. When U C ¥ we denote the characteristic function over U by xy. By
K(X) we denote the space of a characteristic function over compact sets of X.
The Lebesgue space L2(X; ) = L?(X) will also be used, with scalar product
(w,v)r2(zy =: (u,v)(x). For a measurable set U we denote |U| = fE duxuy .
We say that a sequence of measurable functions f,, converge in measure to f if
for every € > 0 we have lim,, .o u ({z € D : |f. (z) — f (z)| > €}) = 0 for all
D ¢ E with u (D) < 0.

For Banach spaces X', ) we set B(X, )) for the space of linear continuous
operators from A" to ) and use the abbreviation B(X') := B(&, X’). The par-
ticular case &’ := B(X, C) refers to the topological dual of X' . By K(X,))
we denote the compact operators from & to ). We also are going to need the
Bochner space L!(X, X') composed of (equivalent class of) Bochner integrable
functions from a measure space X to a Banach space X'.

If H is a complex separable Hilbert space, and E C H we note by Sp(E)
for the closure of the linear span of E. We denote by 7 the conjugate of H ;
it coincides with H as an additive group but it is endowed with the scalar mul-
tiplication « - u := @u and the scalar product (u,v)’ := (u,v). If u,v € H,
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the rank one operator A, = |v)(u| is given by A, (w) = (w,v)u. H @ H is
the algebraic tensor product of # and 7 ; in that case we denote by HRH the
completion in the Hilbert norm. The two-sided *-ideal of all Hilbert-Schmidt
operators in B(#) is denoted by B,(#); it is a Hilbert space with the scalar
product (S, T)p,(3) := Tr(ST™) .

For real functions we write f, T fif f, — fand f, < f.4+1. We define
analogously |. Given a sequence E,, of subsets of a set U, we say that the limit is
o0 o0

N U E.=:lim,_ E,. We also write

m=1 n=m

E, — ﬁ D E,. (0.1)
m=1n=m

Then 1 (resp. |) is reserved for increasing (resp. decreasing) sequences.



Chapter 1

Classical compactness criteria

In this chapter we introduce some widely known compactness criteria, namely
the Arzela-Ascoli in section 1.1 and the Riesz-Kolmogorov in section 1.2. We
introduce also some basic notions of harmonic analysis and representation theory
in section 1.3 and in section 1.5, in order to show the basic approaches that
motivated this thesis. In section 1.4 we reproduce the result from [GI04] and
in section 1.5 the result from [DFG02] in a way that, at least we expect, should
motivate our latter approach,

1.1 Compactness in spaces of continous functions

The points of departure of most compactness results in spaces of functions
are linked to the classical Arzela-Ascoli theorem that we shall describe now.
This theorem characterizes the compactness of sets of continuous functions over
compact sets. The theorem is built upon the notion of equicontinuity and pointwise
boundedness.

Definition 1.1. Let ¥ be a topological space. A subset §) of C(X) is said to be:

i. pointwise bounded if for every x € X there exists M > 0, such as | f(z)| <
M for every f € Q;

ii. equicontinuous if for every x € ¥ and every € > 0 there exists V, a

neighborhood of x such that | f(x) — f(y)| < € holds for every f € Q and
everyy e V.

With this definition the theorem reads as follows.
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Theorem 1.2 (Arzela-Ascoli). Let T be a compact set. Then, a subset 2 of C'(X)
is totally bounded if and only if the following conditions hold true:

1. §1is pointwise bounded,
2. S is equicontinuous.

Proof. Let ) be a pointwise bounded and equicontinuous subset of C'(X) and
let € be greater than 0. We need to find an e-cover of {2. By compactness
of ¥ and equicontinuity of 2, there exists a finite cover {V;}; of Z, such as
|f(z) — f(y)] < e, whenever z and y belong to the same V;. We choose a
collection {x;}, such that z; € V; for every i = 1,..., N. We consider the
following mapping:

o0 — CV,
f— (f(@1), .., flzn)) -
The pointwise boundedness and the property of each V; implies that ®((2) is

bounded, and hence totally bounded. Taking {R;}/’; a §-cover of ®(Q), we need

only to show that {®~1(R;)}, is an e-cover for 2. That it is a cover follows
from the fact that { R;} is a cover. Furthermore, for f and gin ®~!(R;) andz € &
we have

|f(z) - g(z)| < If(SC) = (ﬂfj)l + £ (x5) — 9(z)| + lg(z;) — 9(2)]

§+3+§=

since x € V; for some j and |f(z;) — g(z;)| <||2(f) — ®(9) |lcv -

(L.1)

To prove the converse we need first to remark that the total boundedness
implies boundedness (i.e. uniform boundedness) which in turn implies pointwise
boundedness.

To prove equicontinuity, let us fix z € {2 and € > 0. From a §-cover {U;}
we choose {g;} C Q, with g; € U, . Because every g; is continuous, there is Vj,
a neighborhood of z, such that |g;(z) — g;(y)| < £ for every y € V. Setting
V = NV}, we obtain a neighborhood of x such that for every y in it and every
f €  we have:

|f(z) = F@W)] < 1f(x) — g5(@)| + |g;(z) — 9;(0)] + 1g;(y) — f(w) <€ (1.2)

because [ needs to belong to some U; . g
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Definition 1.3. A family of functions ) is tight if for every € > 0 there exists a
compact subset K of ¥ such that supscq || fXxe |0 < €.

Using this definition we have the following corollary.

Corollary 1.4. Let X be a topological space. Then, a subset Q) of Cy(Z) is totally
bounded if and only if the following conditions hold true:

1. Q is pointwise bounded;
2. Qis equicontinuous;
3. Qs tight.

Proof. This follows trivially applying Theorem 1.2 to C(K), where K is the
compact set coming from the tightness property. O

We stress that the key part of the proof of Theorem 1.2 is the definition of the
mapping ¢ . This motivates the following lemma (see [HOH10]).

Lemma 1.5. Let X be a metric space. Assume that, for every € > 0 there exists
some & > 0, a metric space W and a mapping ® : X — W, so that ®[X] is
totally bounded and whenever x,y € X is such that d(®(z), ®(y)) < J, then
d(z,y) < €. Then X is totally bounded.

Proof. Letus fix € > 0. We choose an d(¢)-cover of ¢[X], namely Vi, ..., V.. It
is straightforward to check that the inverse images {¢~*[V;]} will form an e-cover
for X. 4

Remark 1.6. It is easy to see that the ® mapping defined in (1.1) fulfills the
assumptions of the lemma with 6 = §. Note also that W = CV really depends
On €.

1.2 The Kolmogorov Riesz Weil theorem

We turn now to study the model for the compactness criteria that we shall present
in this thesis: the Kolmogorov Riesz Weil Theorem. This result was first obtained
in 1931 independently by Kolmogorov and Riesz; it is the version of the latter
that has become the standard one. In this section we prove a generalized version
to locally compact group given by A. Weil ([Wei65]). The reason behind this
choice is to present a result in a greater generality and also because this allows us
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to introduce some key concepts coming from “harmonic analysis”.

We first recall the definition and some properties of the Haar measure (see
[Fol95, Sect. 2.2]). G will always refer to a locally compact group (i.e. a group
equipped with a locally compact topology that is compatible with the group
operations).

Definition 1.7. A Radon measure on a locally compact group is called a Haar
Measure, if it is non zero and left invariant.

A classical result tells us that every locally compact group has one and (up to
multiplication by a factor) only one Haar measure. This enables us to study of
the LP(G), for p > 1 spaces as well as the convolution of functions defined by

Fegls) = f dyf(y)g(y~'z) forallg € L! and fe LP. (1.3)
e

Note that f * g € Cy(G) . For 2 € G we define the left and right translations by
z as [Le¢)(y) = ¢(z'y) and [R,¢](y) := ¢(yz). We will need the following
lemma.

Lemma 1.8. Let ¢ be in LP(G). Let V be a neighborhood of the unity such that
| Lo — ¢||p< € whenever x € V and let || g||1= 1 be a positive function on G
vanishing outside V. Then

1(g*¢) —dl<e. (1.4)

Proof. The result follows from a simple computation:

(LMW*@uJ—Mm=1fgL@mway%0-(L@mw)dﬂ

- /G dy g(y) ( /G deg(y~"z) —¢(w)) :

Since |¢(y~'x) — ¢(z)| < e whenever y lies in the support of g, the proof is
finished. O

If we define j(x) = g(z~!) the convolution can be written as

f*g=/}Rg. (L.5)
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So, whenever f € L” and § € L9, withp ! + ¢~ = 1, we have:

[(f* @)@ <[ /Nl 31l (1.6)

Moreover, for f, g € C.(G), the continuity of f * g can be easily checked from
the strong continuity of R, . A density argument ensures the general result. (1.6)
is usually presented in R™ as Young’s inequality, with 7 = oo. In that context no
mention of § is made because the unimodularity of R™ ensures that whenever g is
in L7, we have g in L9 (see (1.8)). See also [Fol95, Prop. 2.40].

We introduce now the modular function of G . We denote by R, the multi-
plicative group of positive real numbers. Let A be the Haar measure of G. We
remark that for a measurable set £ € G, \;(F) := A(Ex) defines a measure
that is clearly left invariant if A is such. Then it follows from the unicity of the
Haar measure that there exists a positive number, denoted by A(z), such that
Ae(E) = A(z)A(E) . The mapping A : G — Ry is called the modular function
of G. We stress that the measure A and the functional Co(G) > f — [dAf
need to be understood as different realizations of the same object and we shall
exchange the point of view inditferently.

Proposition 1.9. A is a continuous homomorphism from G to Ry . Moreover we
have:

/ dzf(zy) = Ay™) / def(z), (L.7)
/d:cf(a:“’l) = fd:n Alz™H f(x). (1.8)
Proof. For any x,y € GG and for any a Borel set F, we have
A(zy)A(E) = MEzy) = A(y)AEz) = A@)AANE). (1.9
To prove (1.7) we notice that x z(zy) = X g,-1(x) so one can compute
B = MBY) = A NE)= 867 [D@(E) 110
The continuity of A can be now studied as the continuity in y of the Lh.s. of

(1.10). This continuity follows from the uniform continuity of f € C.(G) and a
density argument.
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Finally, we notice that for every left invariant Haar measure ), the relation
p(E) = A(E™!) defines a right-invariant Radon measure. Furthermore, the
computation

f dNz)f(z) Al = Ady) / IN(z) £ (29) A((2)™)

(1.11)

- [ A@f@aE)
shows that f — [ f(z)A(z™!) defines a right-invariant functional so, by unique-
ness, we have cdp(z) = A(z7!)dA(z) for some positive number c. We need to
show that ¢ = 1. Let us suppose ¢ # 1. The continuity of A allows us to choose
a symmetric neighborhood U of the unit element of G, denoted by e, such that
|A(z) — 1] < 3|e — 1] for every z € U . Moreover, because I = U™!, we have
A(U) = p(U) . This allows us to compute

o= 1AW) = leall) - X0)| =| [ [A) 1] dA(x)

<%[c— IAD)

(1.12)

This yields the contradiction and (1.8) is proved. O
We now have all the ingredients to state the Kolmogorov Riesz Weil theorem.

Theorem 1.10. Let {2 be a subset of LP(G), with 1 < p < 00. For Q to be totally
bounded it is necessary and sufficient that the following conditions be fulfilled.

i. $is bounded.

ii. Foreverye > 0 there exists a compact set K C G such that

sup || xre@|l, <e. (1.13)
¢l

iii. For every € > () there exists a neighborhood V' of eg such that for every
y € V we have
sup || Ly¢ — ¢l,< €. (1.14)
pell
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Proof. The necessity follows from the density of C..(G) in L?(G) that allows us
to choose the finite family that approximates (2 in C,.(G) . To prove the converse,
for € > 0, let us fix A(§) and V() as in the hypothesis of the theorem and let M
be the bound of £2. We fix a positive function g, with support in V' and such that
lglli=1. Let ¢ € Q be arbitrary. From (1.13) it follows that || xx¢ — ¢{[,< §
which in turn implies || L,(xx¢) — Ly¢ |[,< £. This, together with (1.14)
shows that || Ly(xx¢) — xx¢ |[p< % whenever y € V. We can now apply
Lemma 1.8 to notice that || g * (xx¢) — (xx @) |,< % which finally shows that
g * (xx®) — ¢||,< €. In order for g(y)(xx¢)(y ') to be different from zero,
we need ¥y € V and y~'x € K. This implies that the support of g * (xx®) is
contained in VK . Note that V K can be assumed to be compact because G is
locally compact. We can then set N := max,cvi A(z™!) and compute:

Ixxell,< N7 || xxé|l,< N#M . (1.15)

This enables us to use (1.6) to state that £ = {g * (xx®) : ¢ € Q} is a bounded
subset of C(V K') with the sup norm. Furthermore we can see that:

Ly (g% (xx$)) — 9% (xx )| = |(Lyg—9)*(xx8)| <l Lyg—9lall xx@llp (1.16)

which also follows from Lemma 1.8. This inequality ensures the equicontinuity
of £, enabling us to extract a finite family that will approximate £ that already
aproximates {2. To construct then a 2e-cover is trivial and the proof is finished.

El

Remark 1.11. In [Wei65] the result is stated as valid for p = oo. This follow
Jrom their definition of L* constructed, by analogy, to other L? spaces, as the
closure of C. in the || - ||o-norm, namely Cy. We stick to the standard definition
of L™ as the spaces of (classes of} essentially bounded functions.

Remark 1.12. It is easy to check that . : L?(G) — Cy(V(5)K(5)) defined by
Q(¢) = g * (xr@) fulfills the assumptions of the Lemma 1.5.

1.3 Representations and the integrated form

We dedicated this section to gather several results in representation theory and
harmonic analysis that will allow us to present a different point of view on The-
orem 1.10. This point of view, linking the compacity in L? with the properties
of some particular representations, is at the basis of the new criteria presented
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below. Moreover, we will stress the link of this approach with several concepts of
quantum mechanics,

Throughout this section, X will denote a locally compact Abelian group; X*
will denote it’s dual group composed of continuous homomorphism from X to
T. In X* we consider the pointwise product and the topology of convergence
on compact sets of X (i.e. {, — & if and only if forevery K C X and e > 0
there exists NV such that n > N = sup,.x [€,(2) — &(z)| < €) defining a locally
compact Abelian structure. For a £ € X¥ also called unitary character, we
set {(z) = (z,&) = (&), the latter when we want to emphasize the duality
(X*)" = X, ensured by the Pontrjagin Duality Theorem (see [Fol95, Sect. 4.3]).

We introduce now the basics of the Fourier analysis over X . Given f € L!(X)
we denote by f the Fourier transform defined by

FN© =1 = [ 6. 1.17)

With a suitable normalization on the Haar measure on X* one can prove the
following Fourier inversion theorem, see [Fol93, Theo. 4.32].

Proposition 1.13. For f € L*(X) such that f € L*(X*) we have

fz) = fA (@87 jorac.z. (L18)

For further use we notice that 7* = F ! is defined by (1.18). The following
technical lemma will be needed further below. It is presented in [GI0O4, Lemma
2.1] but it is a rather standard technique; see also the proof of [Fol95, Prop 4.19].

Lemma 1.14. Let A € V(0x) and € > 0. There is ¢ = Yp, € C.(X?) such
that 0 < 4 € LX), %(0) = fxd$¢ = 1and jAEd,m,b (z) < €. Furthermore,
[¥]lo=1.

Proof. Given a symmetric neighborhood I of the identity in a locally compact
Abelian group we define

Yr = [[lxr* xr- (1.19)
An easy calculation shows that ¢p(z) = EW Then we have ¢r(0) = 1,

0 <yYr<1land 1,/1)‘1: > 0. The last property follows from the symmetry of T'. To
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show that ¥ € LY(X*®) we hrst notice that |I‘|wp = Xr. Again, the symmetry
of I yields the positivity of X7-. We have

Jf dEBR(E) = 1™ | o= 1T flxe o= 1. (1.20)

We have then a general procedure to produce functions that have almost all the
properties needed. Let us fix A € V(0x) and € > 0. For convenience we will
denote ¢p whenT' € V(Ox) and op whenI' € V(Oy) . We can always construct
another symmetric neighbourhood Y of Oy such that Y + Y C A. Then w~ has
support inside A. Furthermore, there exists a compact X C X! such that

oy < % (1.21)
Kz.'

Then we can choose a symmetric neighborhood I'y of 0 x¢ such that
1= [Con(€+Tg)|- Tl < -;- for every £ € K. (1.22)

We claim that ¢, is the function that we are looking for. In fact

/da Yr,(z /dm(l - t,aT(:L))wpo( z) (1.23)
-/d.'IC 1-— y’?r(l))lbpo( ) (1.24)
fdffpr )L =%y (€)) (1.25)
< [dEFH(O)s + [dEFR(E) <e (1.26)
[ [

To go from (1.24) to (1.25) we use that I 1—51:3 = 1= [,, ot and Plancherel. [J

Remark 1.15. The last assertion of Lemma 1.14 was not stated in [GI04], al-

though it was needed for a later argument. See below the proof of Theorem
1.18.
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We now describe a relation between the group theory and the bounded operat-
ors on Hilbert space. Recall that the strong topology in B(#) is defined as the
topology of pointwise convergence; i.e. 1,, — 1" if and only if forevery u € H
onhas || Tou — Tul||y— 0.

Definition 1.16. A unitary representation of G in a Hilbert space H is a strongly
continuous homomorphism = from G to U(H) .= U(B(H)) the groups of unitary
operators on ‘H.

Our aim is to provide a relationship between the Fourier analysis and the re-
presentation theory. In order to do that, we first show that unitary representations
can be lifted to “representations” of L'(G). More precisely, if L' (G) is given
the structure of Banach *-algebra (the product being the convolution defined
in (1.3) and involution given by f*(z) = A(z™!)f(z~1)), for every = unitary
representation of G on H we define a *-representation of L!(G) formally by

II( f) =/def(:c)7r(:c)*. (1.27)

This means that for a vector u € H, II(f)u is uniquely defined by

(II( fYu, v) = /;(dmf(:c)(ﬂ(x)*u,w) foreveryv € H. (1.28)

This *-representation is called the inregrated form of w. In a (only apparent)
different point of view, IT can be seen as a functional calculus on G, II( f) being
the operator assigned to the symbol f. This terminology can be made more
explicit in the following example.

Let us fix X . In certain situations it can be understood as the configura-
tion space of a physical system. In this setting, the phase space is defined as
¥ = X x X", What we shall now do is to show that even in this abstract setting,
the position and momentum operator can arise as the underlying operators of the
integrated form of some particular, and physically significant, unitary representa-
tions.

Let H = L*(X). We define the followings unitary representations of X and
X*:

UAly) = fly—2),  [Vefl) =S fy) =&(-9)fly).  (1.29)
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Let ¢ € Co.(X) and ¥ € C.(X"). We denote by M,, the multiplication operator
by % in L?(X") . The following computations allow us to exhibit the behavior of
the integrated representation. For u, v in C.(X) one has

Ve = [ el

Analogously, we see that

(F*MypFu,v) = [ dép(€)a(€)o(E)

- [ aeue) (| aTegiu) ( [ vt 96 )

=/Xdzc,5(z) fxdyia(ery)m:[Xd?«’@(z)(U:uv'U)-

What this computations show is that, if we denote by M, =: ¢(Q) the operator
multiplication by ¢ and (P) the operator F*M,JF, we have the following
(formal) relations:

@ = [ dp@Ve,  ulp)= [dedE. w0

X
Obviously in this context neither P nor () have a meaning as an operator but
it is the functional calculus associated to the unitary representations that yield
all the significant information. We will come back to this in Chapter 3 when
the translations are conveniently transformed to encode the action of a magnetic

field. In fact this approach can be generalized in the sense that for every unitary
representation 7 the map II : Cy(X*®) — B(H) defined for v € L*(X) by

I(v) = / dei (), (1.31)

X
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is a well-defined morphism of C*-algebras, and hence contractive, The fol-
lowing lemma relates the continuity of the representation at the origin with an
approximation property of the functional calculus on bounded sets.

Lemma 1.17. Let 7 be a unitary representation of X in H. Let Q) C H be a
bounded set. The following assertions are equivalent:

1. for every e > 0 there exists A € V(0x ) such that

sup || (m. — Dul|< €; (1.32)
uef,xeA

2. for every ¢ > 0 there exists 1 € Co(X") with || ¥ ||co= 1 such that
sup || II(¥)u — u||< €. (1.33)
uelfl

Proof. For simplicity we assume {2 to be bounded by 1, i.e. it is contained in the
closed unit ball of H.

1=>2.Lete > 0. From 1 we can choose a A € V(0x) such that || (m,u—u||< £
forevery z € A and u € 2. Thanks to Lemma 1.14 we can choose ¥ € C, (X H2)
such that (0) = 1, [ dz|¢(z)| = 1 and [, dz|d(z)| < £. Then for u € Q we
have:

ITI)u —u|l= (1.34)

f dw(a)(m, — 1)u
X
< /A daeb(@)] || (mou - w) | (1.35)

S[Adzhﬁ(w)}% +fAud:c[f¢@(w)|2 <e. (1.36)

2 = 1. Choose a ¢ corresponding to . Since the support of ¢ is compact, and
hence equicontinuous, we can choose A € V(0x) such that £(z) < § for every
z € A and £ in the support of ¢, Then, for every u € € and z € A we have

| (72 — Dw||< || (me = D(T() — Du|| + || (mp — DITE)ue || (1.37)
<2 —+ || (m — DY) | (1.38)
<=+ sup|((z) - DY(E)] < e, (139)

keXt

finishing the proof. O



CHAPTER 1. CLASSICAL COMPACTNESS CRITERIA 18

1.4 Integrated form and compactness in 2.

With these results at hand we now prove a particular case of Theorem 1.10. Let
p=2and X, X%, U and V as in the previous section. Let us set T+ := 1 — T for
an operator 7", For a bounded subset {2 of L?(X), we need to exhibit a compact
operator that approximates {2 in the sense of Lemma 1.5. For that matter, consider
@ € Cc(X) and ¥ € C(X*) and utilize the results from (1.30) to compute for
u € LX)

P @B(PRI) =o() ( / dmﬁ(m[c;ul(y)) (1.40)
= /X dzp(y)d(z)uly — z) (1.41)
= [ doetuyity - vutz). (1.42)

This show that (Q)(P) is a Hilbert-Schmidt Operator, and hence compact,
with kernel k(z,y) = ¢(y)¥(y — z) . With this result in mind, Theorem 1.10 can
be restated as follows.

Theorem 1.18. Let Q@ C L*(X) be bounded. Then we have the following equi-
valent assertions:

1. Qs relatively compact in L*(X) ;

2. il_l)l’é SUPyeq || Vst — u||= 0 and %li% SUPueq || Veu —u||=0;

3. For every e > 0 there exists ¢ € Co(X) with || ¢ ||lo= 1 and ¢ € C,(X*)
with || ¥ ||lo= 1, such that for every u € L*(X)

(@) ] + |9 (P)ruf<e. (1.43)

Proof. Let € > 0. From the relative compactness of {2 we can choose a finite
family K C Q such that for every u € L*(X)

, €
iy |lu—v|< ik (1.44)

From the strong continuity of I/ and V we can choose A € V(0x) and A € V(0x4)
such that

sup ||U:cv—vj|<E and sup |[|Vev—u< <. (1.45)
veK,zeA 2 vEK €A 2
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Putting together (1.44) and (1.45) we have
Ut = ul| <[ Upte = Ugv || + || Upv — v || + [|v — u| (1.46)

if v is chosen suitably. We have then 1 = 2. 2 = 3 is direct consequence of
Lemma 1.17 when applied to both U and V. Finally we can compute

lv — (@) (Plull= [lu — o(Q)u + o(Q)u — (@)Y (P)ul| (L47)

= [p(@Q) v+ (QU(P) ul (1.48)
< lle@ ull + lellwlp @) ull - (1.49)
Then, the r.h.s. of (1.49) can be made arbitrarily small if one assumes 3. We have
1 because ¢ (Q)y(P) is a compact operator . |

Remark 1.19. We want to stress that the properties used in the proof do not lie in
the homomorphism property of U or V. What is used is the fact that the functional
calculus can properly identify some compact operators that have approximation
properties and the boundness of the representation. This observation will allow
us to reproduce this approach in a more abstract setting.

In a certain sense, in this example we have more structure than is actually
required. To each point in the phase space ¥ := X x X! we assign an operator in
L*(X) by setting W (z,£) = U_,V; . Then W, seen as map from T to A (B(H)),
is no longer a group homomorphism, because

W ((J,,E) + (yﬂ?)) ::U—iU—‘y%%
:g(y)UkLVéU*yVﬁ = @W(;E! f)W(y, 7])

using the fundamental commutation relation U, Ve = {(x)V(£)U(z) . Sucha W
is called a projective representation; nonetheless, this could still be arranged to be
a representation if one considers Hy := X x X* x T with a composition suitably
defined to encode the non commutativity of U and V' instead. Such a group could
be named a abstract Heisenberg group; but, to the best of our knowledge, this
group is mostly studied when X = R"”,

1.5 Representation coefficients and compactness
in L?

We present now the second approach that we shall develop on this thesis: the
representation coefficient approach.
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Definition 1.20. Ler m be a unitary representation of G in H . The representation
coefficient ¢™ : H ® H — Cy(G) is defined by

[@" (u, v)](z) :=< w(x)u,v > (1.50)
Furthermore, we ask a certain isometry condition, namely
167 (w, v) |2 @y=ll Il v ]| - (1.51)

This is called square integrability and is a widely studied concept in representation
theory; in fact, such a representation can be seen as the irreducible subrepresent-
ations of the left regular representation (for f € L?(G), (L. f)(v) := f(z™ y)).
See for instance [Car76].

For every normalized vector v € H, then

(87 (W](-) = [¢7(w, v)]() (1.52)

can be seen as an isometry from H to L?(G) . As done before, the idea is to show
compacity in H via the compactness criteria already known. Recall that every
bounded set of a reflexive Banach space, and hence of a Hilbert space, is compact
when considered with the *-weakly topology; in Chapter 4 we shall present a
more general result known as the Bourbaki-Alaoglu Theorem,

Theorem 1.21. Let G, w, H, v be as above and Q) C H bounded. Equivalent
assertions:

1. $2is relatively compact;
2. ¢7(RY) is tight in L?(G) for every normalized vector (see Definition 1.3);

3. There exists a normalized vector v such that ¢7(2) is tight in L*(G), this
can be restated: for every ¢ > 0, 3L C G compact such that

sup || xze@h (u)|l2< €. (1.53)
ucH

Proof. Again, for simplicity, we shall assume that {2 is contained in the closed
unit ball of H.

1 = 2. Let e > 0. From the relative compactness of {2 we can choose a finite
family K C €2 such that

€
i —zll< =. 1.54
SapTin lu—zll< 3 (1.54)
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Then we can fix L C G compact such that
€
sup || xzedy(2) l|l2< 5 (1.55)
zeK
Using (1.54) and (1.55), together with the isometry property of ¢7 seen as a map
from H to L%(G), the result follows.

2 = 3. Trivial.

3 = 1. By Riesz Theorem and Banach-Alaoglu we know that 2 is weakly
compact. So, for every sequence we can extract a weakly convergent subsequence;
the result will follow if we can show that every weakly convergent sequence in {2
is, in fact, norm convergent.

Let {u,} C € be converging weakly to u. Then

T (¢ (u))(2) = Jim (un,730) = (o) = GI]@)  (156)

i.e. ®T(u,) converge pointwise to ®7(u). If we can improve this convergence
to an L? convergence, the result will follow from the isometry property of ¢7 .
Let L be as in the hypothesis. We assume (1.53) also valid for u. Using Cauchy-
Schwartz inequality we have '

|67 (u — un)](2) <llu—ue[I< 1+ [lufl (1.57)

Let us set C := (1+ ||u||)%. Then |¢~ (u,)|? is bounded by Cxy € L}(G) in L.
We can finally estimate

T [163(u—un) 1< Jim xedfu—un) |+ || xudllu—ua)| - (158

n—oo

The first term of the r.h.s. goes to zero by the Dominated Convergence Theorem,
and the second is less than 2¢ finishing the proof. d

This proof is a mere translation of [DFGO02, Theo. 2] where G is assumed to
be the reduced Heinseberg group H; the following explanation should also bring
light into the comments we made at the end of the previous section.

Definition 1.22. The reduced Heisenberg group is the locally compact space
R?" x T equipped with the operation

(‘T’é-, eQm"r) . (y, n, T’) _ (:L +y.E+m, 62w5(7+7’)62wi(§'?}—n.w) . (1.59)
The Schridinger representation is defined by
m(z, €, e*™) = 2U_, V. (1.60)
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We recall here that the dual of R™ is identified with R® by @, §) = e™2"(=0)
The Heinseberg group plays an important role in different domains of mathemat-
ics, including Signal Analysis and Pseudodifferential Operators. For a thorough
study one should refer to [Fol89, Chp. 1]; see also [Grd01, Chp.9]. One useful
property of the group is that the Haar measure is just the Lebesgue one. In this
context, we can compute the concrete form of the representation coefficient

[(¢7) (w))(z, £, €2™7) = / dt f(t)g(t — x)e 2mHETT) (1.61)
Rn

called Short Time Fourier Transform or Fourier-Wigner Transform. We can see
that g plays here the role of localizing the Fourier transform of f on its support;
that is why one should think of the vector v from (1.52) as a “window” to look
through it, even when dealing with an abstract setting. Taking ™™ = 1, (1.53)
now reads

2. For every € > 0 a compact set K C R?" exists such that

1

2

oup | [dea (G007 | <ce. (162
u€el e

In fact this condition is known to express at the same time condition ii. and
ifi. of Theorem 1.10 because the “equicontinuity” of a family can be related to
the tightness of their Fourier transform; see [Peg85].



Chapter 2

Bounded measurable families of
bounded operators and
compactness criteria in Hilbert
spaces

The idea of this chapter, the most important of this thesis, is to develop a formalism
that englobes the criteria exposed in Chapter 1. The setting, briefly presented in
section 2.1, is the one from [Man12], even if further assumptions will be added
when needed. In section 2.2 we present the compactness criteria and use it in
section 2.3 to describe the pure point and continuous subspaces corresponding to
a self-adjoint operator.

2.1 The framework

The framework can be condensed in the following objects (£, y, 7, H,G). Zisa
Hausdorff locally compact space with a Radon measure x . Indexed by Z, {7 (s)}
is a family of bounded operators acting in a Hilbert space H . G plays no role
until chapter 4 and until then is tacitly assumed to be H . In order to construct a
richer theory we ask 7 : £ — B(#) to be bounded and weakly continuous.

Remark 2.1. A unitary representation is clearly bounded by 1. More interesting
is the fact that at first glance the continuity asked to @ seems to be more general;
in fact both the weak and strong topologies coincide in U(H) implying that every

23
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weakly continuous unitary representation is in fact strong continuous. Note that
even if they coincide in U(H), the respectively closures of U(H) in B(H) doesn’t;
see [Bla06, Sect. 1.3].

We want to formulate concepts that generalize the infegrated form and the
representations coefficients. For that, we first recall the isomorphism A between
H®H, the Hilbert completion of the algebraic tensor product H ® H , and By (H),
the space of Hilbert-Schimdt operators with its natural Hilbert norm given by the
trace. The isomorphism is completely defined by

Alu®v) = (-, v)u. 2.1)

The fact that A is linear and injective is clear; the surjectivity will follow from
the fact that the image contains all the finite ranks operators if we show that it
is an isometry. We recall that || T |13, .= >, | Tes ||3, for every orthonormal
base {e,}. Let us fix an orthonormal basis {e,} of H; then {e, ® ¢;} is an
orthonormal basis of H®H. The isometry of A then follows from the following
computation:

‘A (Z Ap j€n @ ej)

n,J

2

- } DD angleneslen

B (H) i H
2 __
= Z 1@,1,.” = Z Qp.j €n & €
. nJ

Now the fact that A is an isomorphism easily follows from the Bounded Inverse
Theorem.

HEH

Let us come back to our aim of replicating the integrated form and the
representations coefficient in this general framework. The definition of the
representation coefficient needs no change:

" : H@H — Cy(T) defined by [¢™(u, v)](s) := {n(s)u,v). (2.2)
The central assumption of this thesis is the following.

Assumption 2.2. The mapping ¢™ extends to an isometric isomorphism ¢™ :

HROH — LA(X).
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This encodes a square integrability of the form

167 (w,v) 2=l [0, (2.3)

but also a surjectivity condition that was not needed in [Man12].

As one could see in section 1.4, the key part of the proof of Theorem 1.18
consisted in show that for suitable symbols (i.e. functions on the phase space),
the corresponding operator was Hilbert-Schimdt. With that in mind we define

I: L*(Z) = By(H) by M:= Ao g™? (2.4)

What we show now is that II, defined in a rather abstract way, can really be
understood as the integrated form of 7.

Proposition 2.3 ([Man12, Prop. 2.3]). Forany f € L*(X) one has in weak sense

II(f) = { du(s)f(s)n(s)" and (2.5)

>N

() = / d(s) FEm(s). 2.6)

Proof. First we notice that Tr(A(u®wv))= (u,v). Also notice that for T’ € B(H.)
we have
TAu@v) =T v)u) = -, v)Tu=ATu®v).

Then we can compute
{II(f)u, v) =Tr[AIL(f)u @ v)]

)
=Tr[II( f)A{u @ v)]
=Tr[II(F)I(E" (v ® u)*]

—(TI(F), TH@™ (v ® )Yy = (F, 7 (v @ W)y
- f du(s) £ ()0, m(3)w)

/d,u s) u,v).

Then (2.6) follows from (2.5). U
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The following definition generalized the notion of tightness presented in
section 1.1. Assume that the Banach space Y is endowed with a structure of
Banach left module over a normed algebra 4 , meaning that a left module structure
AxY 3 (a,y) — a -y € Yis given and for every a € A and y € ) the relation
la-ylly <llallallylly s satisfied.

Definition 2.4. Let Y be a Banach left module over A and let A C A ; we say
that the bounded set I' C ) is A-tight if for every € > 0 there exists a € A°
withsupyerlla-y —ylly < c.

Tightness in section 1.1 should then read as K(2)-tightness with respect as
the pointwise action of Cy(2) on itself.

2.2 Compactness criterion

Recall that ¢7, : H — L%(Z) given by [¢7],(u)] (s) 1= (m(s)u, w) is well-defined
and isometric for every normalized vector w of the Hilbert space H.

Theorem 2.5, Let  be a bounded subset of H. Consider the following asser-
tions:

1. S is relatively compact.

2. For every normalized w € H the fumily ¢7,(Q) is K(X)-tight in L*(Z).

3. There exists wy € H such that the family ¢7, () is K(X)-tight in L*(Z).

4. For each € > 0 there exists f € C.(X) with sup || II(f)u — ul| < e (i.e. ©
is I1 [C.(2)]-tight) . !

5. One has lim sup ||7(s)*u — 7(sy)*u|| = 0 for every s € Z.
850 4202
6. For every € > 0 and for every sy & 5 there exists g € C.(%) such that
sup || TI(g)u — 7(sp) || < €.
el
Then 1, 2, 3 and 4 are equivalent, they imply 5, which in its turn implies 6. Thus,
if we assume that w(s1)* = 1 for some s, € 31, then all the six assertions are
equivalent.
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Proof. The proof of 1 < 2 < 3 can be obtained along the same lines as the
proof of Theorem 1.21. The only delicate point is the fact that there, the bound of
a unitary representation we used in (1.57) and in the second term of (1.58) was 1,
and here it needs to be made explicit.

1 = 4. Let {2 C H be relatively compact and, for some ¢ > 0, let F be a finite
subset such that for each u € 2 there exists v, € F with ||u — v, || < ¢/4. The
subspace JF generated by F will be finite-dimensional and thus the corresponding
projection P will be a finite-rank operator satisfying Pv = v for every v € F.
Then for every u € {2

[ Pu—u| < | Pu— Pu|l + || Pru — v || + [[ou — 27

L2 u—w| L €/2. 2.
Notice that { II(f) | f € C.(X) } is a dense set of compact operators. To see this,
use the fact that IT : L?(£) — Bo(H) is an isometric isomorphism and that C,.(X)
is dense in L*(X) ; the topology of By(#) is stronger than that of B(# ), while
K(H) is the closure of By(#) in the operator norm. Let now M := sup,,.q ||u]|;
by density there is some f € C.(X) with || P — II( f) ||z < €/2M . From this
and from (2.7) the conclusion follows immediately.

4 = 1. To prove the converse, for € > 0 choose f € C.(X) such that
sup [ TI(f)u —u < e/2.
uEfN

Since II( f) is a compact operator and 2 is bounded, the range I1(f)Q is relatively
compact, so there is a finite set G such that for each u € Q) there is an element
v* € G with | II(f)u — v*|| < ¢/2. Then for u €  one has

v —v*[| < flu = T(Hlull + [T(Fu—v"[| < ¢/2+e/2=¢, (28

so the set 2 is totally bounded.

4= 5. Setting S+ :=1— 5, wecomputeforsp € T, u € Q, f € C,(X) and s
belonging to a neighborhood V' of s; :

I () u—m(s0) ull < || [w(s)" — m(s0) T IL(f)ull+ | [r(s)" —m(s0)"] TI(f) |
< sup [lul[[l[r(s)" = 7(s0) 1TL(S) o) +

2sup || 7(t)" ||szg) sup || I(F) ul|
tev ue)
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The first term is small for s belonging to a suitable neighborhood V/, because 2 is
bounded, 7~ is strongly continuous and this is improved to norm continuity by
multiplication with the compact operator II( f). The second term is also small for
some suitable f , because of the assumption 4 and since || 7*(-) |53 is bounded
on the compact set V' (use the Uniform Boundedness Principle and the strong
continuity of 7).

5 = 6. Compute for any positive g € C,(Z) with [ gdu =1

gy = n(se)"ul=| [ du(s)a(e)irte)u — (oo |
< [ du(s)ato) [ m(e)” = m(so) ]l

and then use 5 and require g to have support inside the convenient neighbourhood
of the point s¢. O

For simplicity, we are always going to assume that ©(s,)* = 1 for some

s1 € . Below Ajyy denotes the closed unit ball of the Banach space &

Corollary 2.6. Let X be a Banach space and S € B(X . H ). The next assertions
are equivalent.

1. S is a compact operator.

2. The set ¢T.(5Xp)) is K(X)-tight in L*(Z) for some (every) w € H.

Writing M - . for the operator of multiplication by the function 1 — xr in
LY5), thS can be restated: for every € > ( there is a compact subset L of
¥ such that || Mle. o ¢ 05 |pary < €.

3. Forevery € > 0 there is some | € Co(Z) such that || {IL(f) — 115 ||mx. 20
< €.

4. Themap =5 s w(s)*S € B(X,H) is norm-continuous.

Proof. This is a simple consequence of Theorem 2.5, since S is a compact oper-
ator if and only if Q 1= SX) is relatively compact in H ; also use || T [|p(x 3=
sup || Tz |y . O

’UEA.}[]}
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2.3 Characterization of bound and scattering
states

We consider now a self-adjoint operator H , not necessarily bounded, acting in
H . We denote by e the strongly continuous evolution group generated by H
and by E the spectral measure associated to it. For a vector v we denote by uj
the measure on R defined in a Borel set J by p(.J) = (u, Ex(J)u) . For such an
operator there are several ways to decompose H in term of his spectral properties;
for our purpose, it suffices to define H,, as the closed linear subspace spanned by
the eigenvalues of /. Then H, := H & H,. An important known fact is that if
u € H,, then for every A € R we have pui({A}) = 0.

We start characterizing #H, for which we need the next Jemma.

Lemma 2.7 ([GI04, Prop. 4.7]). For an u € H the following statements are
equivalent:

1. weH,;
2. €-limy_e0{u, e®u) = 0;
3 wlim, e u=0;

4. w-Lim; ey =0;
5. Limio || Ke®™ul|= 0 for every K € K(H).

Even if we don’t get involved in the full proof of this Lemma, the mere state-
ment of it deserves some comments in order to make the notion understandable
and also because it allows us to present a rather beautiful connection with general
topology. As can be seen from the lemma, the idea of scattering states is that,
if one waits for a sufficiently long time, it get out of every compact set; that is
why a week limit at infinity gets involved. However, the usual notion of Iimit at
infinity, the one from the topology of R, seems not to be enough to characterize
H. correctly; that is why in Ruelle’s original paper [Rue69] a notion of Iimit in
the mean is introduced. For reasons that we dare not to discuss here, but that are
directly connected with a certain stability under translation invariant measures,
this notion seem not to be optimal; we refer to the discussion in [GI04, Sec.
4.3] and the reference cited therein. We will limit ourselves here to exhibit the
concrete definition of both €-lim, the Cesaro convergence, and Lim, the Lorentz
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convergence. In order to compare these convergences, we do not follow the
usual way of defining the former (i.e. by taking limits of the means of the form
T fOT ) but instead we describe them in terms of filters.

Definition 2.8. A filter on a set F is a nonempty collection § of non-empty subsets
of F that satisfy:

1. IfFl,FQESIhenF]ﬂFQEK;
2 fGOFeg, thenGeF.

This definition enables us to define the notion of limit of a function along a
filter.

Definition 2.9. Let F be a set equipped with a filter §. If p is a map of F' into
a topological space Y, one says that p has limit y along § if @ YV for every
V e V(y)

One important example of a filter is V(z). In that case the notion of limit
along V() coincides with the usual notion of limit at . For the case we are
interested in, F = R := RU {oc}, ¥ = C and § = V(oc), formed of sets with
bounded complement, is called the Fréchet filter. The idea is to find filters, finer
than the Fréchet one, that are translation invariant.

Let us describe first the Cesaro convergence.

Definition 2.10. The Cesaro filter, noted by €, is formed by the sets that contain
a Borel set A such that:

AN[=-T,T]| .9

1:
1m
T—oco 2T

We denote by €-lim the convergence along €.
Then 2.8.2 is trivial and 2.8.1 follows easily if one prove it first for intervals.
This was the convergence used by Ruelle; a way to improve his result would be to

identify another filter, coarser than €, but still translation invariant and enabling
us to characterize H. .

Definition 2.11. The Lorentz filter, noted by £, is formed by the sets that contain
a Borel set A such that

— 1
— i

L ANE=T,t+T]]
lim inf
T—ooteR ZT
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We denote by Lim the convergence along £.

Tt is clear that £ C €, but let us show that the inclusion is strict. Let A C R
be defined by A¢ = Uy, [ty — T tn + Tn) . In order to have A € £ we should
have sup,, T, < oc. If not, for every T > 0 we could find 7;, > T and we
would have |A N [tn — T, tn+ T] | = 0. However, we can sce that A defined by
A¢ = Uy, [n* — v/n.n* 4+ y/n]isin €

We can now proove some of the implications of Lemma 2.7.
Partial proof of 2.7. We begin to notice that 4 < 5 is a known property of the
compact operators, and 4 = 2 follows from the previous discussion.

3 = 1. Letu = u, + uy, be defined by the decomposition H = H. & H,
and consider an eigenvector v corresponding to the eigenvalue A. Then we can
compute

e (u,, v) = e (u,v) = (u, e o) = (€ Hu, ).

Since the last term can be made arbitrarily small, we have u, L v and hence the
arbitrariness of v yields f € H..

4 = 3. Suppose 3 is false. For every g € H there is ¢ > 0 such that for
some T > 0 we have |(e®F f g}| > c. Then its clear that the preimage of
{z € C: |z| < c}, being bounded, is not in £. o

Putting together 2.5 and 2.7 we can easily state the following dynamic charac-
terization of H.,.

Corollary 2.12. u € H, if and only if the following condition is fulfilled:
For every f € [C.(X)] we have Simy_,o || TI{f)e™u[=0.

Let us now characterize the pure point subspace; for this we need the following
classical lemma (see [GI04, Lemma 4.8]). For v € H we denote by [u]f the

closure in H of {e"Hu|teR.}; also [u]” the closure of {e™Hu|t € R}.
Lemma 2.13. u € HE{ if and only if the following equivalent assertions hold:
1. [u]" is compact;

H .-
2. lu]} is compact;
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W
(]

3. [w]"” is compact.

Proof. Let us first assume that « € H,,. Then there exists a finite collection of
normalized eigenvectors U := {u,}] corresponding to the eigenvalues A; such
that ||u— Y, a;u; [|< § for some scalars a; . Then, for every ¢ > 0 we can define
@ : [u)? — Sp(U) by ®(ei*Hu) = 3~ a;e" u;. Lt is easy to see that it fulfills the
conditions of Lemma 1.5 with § = £, and hence yields the compacity of [}
1 = 2,3. Trivial.

2,3 = u € H, Letus assume [u]f is compact and write u = u,, -+, in the decom-
position H = H, & H.. Let us fix g € H,, associated to the eigenvalue A; then,
because we assume u, € H,, by condition 3 in 2.7 we have w-lim, , . e*#u. = 0.
Furthermore, because [fu]i] and {up}f are compact, so is [uc]f This means that
limy o0 || €1, ||= 0 which finally implies u, = 0 by unitarity of the evolution
group. O

Combining 2.5 with 2.13 we trivially get:
Corollary 2.14. u € H,, if and only if:
1. (W)™ is tight in L*(Z) ;

2. [£17 is L [CL(T)]-tight.



Chapter 3

A particular case: compactness for
the magnetic Weyl calculus

In this chapter we present an important example of the framework presented in the
previous chapter: the magnetic Weyl calculus. As an introduction, we present in
section 3.1 the well-know formula of the standard Weyl calculus to make it easier
to the reader see the connection with the magnetic one presented in section 3.2. In
section 3.3 we show the magnetic compactness criteria as a corollary of 2.2, but
with more characterizations due to the extra structure presented; the results are
basically a generalization of [GI04] where no magnetic field was considered. The
importance of this chapter lies in the fact that even if the space considered is just
R?", the family of operators indexed by it is no longer a representation, nor even
a projective one. For further examples, for instance for a generalization of the
magnetic formalism for nilpotent Lie groups, we refer to [BB09, BB11, Ped94].

3.1 The standard Weyl calculus

The aim of this section is to present the standard Weyl calculus, as a motivation
for the subsequent presentation of the magnetic one. The setting is the one
from section 1.3, but since for the magnetic case we shall need a differentiable
structure, we assume X = R"™ from the beginning. This is intend to model a
non-relativistic particle moving in the n-dimensional space. The Weyl calculus is
the solution to the problem of associating to a classical observable (i.e. a “suitable”
function on the phase space) a quantum observable (i.e. a self-adjoint operator on

L3
2
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a Hilbert space). For such a quantization to have a meaning, the starting point
is to associate to the coordinate function {gi,... gn,P1....,Pry the operators
{@:,... Qn. P1,..., Py} Thisis motivated by the fact that some relations for
the poisson bracket are still valid when considering the commutator of operators.
Explicitly we have

{g:.q;} = 0= {m. p;}, Qi Q] =0=1[F, P,
{Pa:: Qj} = 5@;@: [Pif QJ] = ‘5%'9‘ )
foralli,j = 1,...,n. Then, for a general symbol, this problem can be seen as

the problem of defining a functional calculus for this family of non-commuting
operators, f(@, P). For a nice exposition of the importance of these commutation
relations, also related with projective relations, we refer to [Anil0].

To exhibit such a functional calculus we turn now to the theory of C*-algebras.
In fact, despite the title of this section, our presentation is not the standard one,
for which we refer the interested reader to [Fol89]. Instead, taking the approach
from [MPROS5] allows us to develop the basics of the C*-algebraic theory that
has been behind several results. We begin with some definitions.

Definition 3.1. A C*-algebra is a complex Banach algebra with an involution

satisfving " )
lo"all=[lall (3.1)

So far, we have meet at least three C*-algebras. First, B(#), wich in fact,
by the GNS-construction, can be seen as the general C*-algebra. Secondly for
3 compact C'(T) is also a C"-algebra with the involution defined by complex
conjugation. In fact this example can also be seen, this time thanks to the Gelfand
theory, as the general Abelian C*-algebra. The third one is the most suggestive
for the aim of this section, but needs some preparations.

Let’s recall that L' (X), with the structure already presented in the discussion
following 1.16 is a Banach *-algebra. However, the L*-norm fails to satisfy (3.1).
As was already pointed out, for each unitary representation of X in H we can
construct a non-degenerate *-representation of L*(X). Taking the supremum
over all such representations we can define a norm that fulfill (3.1); taking the
completion in this norm we get the C*-algebra known as the group C*-algebra of
X anc denoted by C*(X). In fact, using (1.31) we can see that C*(X') = Co(XH).
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Because a quantization procedure needs to involve the whole phase space, a wider
framework is needed.

Definition 3.2. A C*-dynamical system is a triple (A. 6, X') formed by an Abel-
ian C*-algebra and a strongly continuous group morphism 6 : X — Aut(A) of
X into the group of automorphism of A.

Definition 3.3. A covariant representation of the C*-dynamical system (A, 8, X)
is a triple (H,r, ) where v : A — B(H) is a non-degenerate *-representation of
A in H and 7 a strongly continuous unitary representation of X in ‘H, such that
forallz € X and o € A one has Upr(a)U_, = r[f.(a)].

The idea is to produce a C*-algebra that contains both C*(X') and .4 in a way
compatible with the action 6. The first would encode the momentum variable and
the second, if one takes .A composed by functions on X, the position variable.
The Wey! calculus could the be retrieved as a representation of that C*-algebra.

Let us consider the Banach space L*( X, A) with the L!-norm

&1z x.0= /Xdﬂ? () lla -

We define the involution by ¢°(z) = [¢(—x)]* where * stands for the involution
in .A. To get an algebra structure we put '

(@ow)(a) = [ dubuz 6w Bslotz - v). (32)
X
which generalizes the convolution in L' (X') . We have to exhibit a non-degenerate
*-representation of the Banach *-algebra (L*(X, A),+. ¢, | - |[z1x.4),° ) in H
for every covariant representation (#, r, 7) of the C*-dynamical system. This is
given by

(rm)(@) = [ dyrloy (@(a)In(o). (33)
/

Again, we take the supremum over all such *-representations, and complete in
this norm, to endow L'(X, .4) with a C*-algebra structure. This C*-algebra is
denoted by A x X and called the crossed product of A by the action 0 of the
group X. Note that r x 7 extends to a representation of .4 x X . Note also that
CH(X)=CxX.
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Remark 3.4. It may seems that the lower indices of the action in (3.2) and
(3.3) are somehow arbitrary. In fact, this is the case because they rely on the
choice of a particular endomorphism of the group. Here we take 5 to land in
the Weyl calculus, but different choices of this endomorphism will give different
“quantizations  rules.

We now particularize to the quantum mechanical framework. The C*-dy-
namical system is given by X = R", and # is the action by translations on A4,
composed of functions on X. To be suitable for this framework, A should be
translation invariant and composed bounded and uniformly continuous functions,
because this ensures the strong continuity of #. The covariant representation can
be recover setting 7(z) = U_, and r(a) = a(Q) (see section 1.4). Note also that
ad e L'(X, . A) can be seen as a complex valued function on X x X, so a partial
Fourier transform is available. Namely

1Q F: LYX, A) = Co(X!, A)
¢ = [(1®@F))(€) = f dze @V ¢(x)
X

Computing (r x 7)o (1 ® F 1) =: Opfora f € Co(X*, A)andu € L*(X) we
get the standard Weyl calculus:

O8(f)ul(e) = [ dudgete< | s (“";y)} ©Ou). 64

R2n

Several remarks could be made about this construction. First note that the
composition of (3.2) with the partial inverse Fourier transform yields the usual,
and widely studied, Moyal product so part of the theory of pseudodifferential
operators can be seen through the setting of the crossed-products of C*-algebras.
Also we get a good characterization of the regularity, encoded by .4, needed to
achieve the calculus.

3.2 The magnetic formalism

The magnetic pseudodifferential calculus [MP04, IMP07] has as a background
the problem of quantization of a physical system consisting in a spin-less particle
moving in the euclidean space X := R"™ under the influence of a magnetic field,
i.e. a closed 2-form B on X (dB = 0), given by matrix-component functions
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Bjx = —=By; : X = R, 7,k =1,...,n. For convenience, we are going to
assume that the components Bjj, belong to Ci5(X) , the class of smooth functions
on X with polynomial bounds on all the derivatives. The magnetic field can be
written in many ways as the differential B = d A of some 1-form A on X called
vector potential. One has B = dA = dA' iff A" = A + dy for some 0-form ¢
(then they are called equivalent). It is easy to see that the vector potential can also

be chosen of class Cg5(X) ; this will be tacitly assumed.

One would like to develop a symbolic calculus a — Op”*(a) taking the
magnetic field into account. Basic requirements are: (i) it should reduce to the
standard Weyl calculus for A = 0 (compare with (3.4)) and (ii) the operators
Op*(a) and Op?(a) should be unitarily equivalent (independently on the sym-
bol a) if A and A’ are equivalent; this is called gauge covariance and has a
fundamental physical meaning. In this section we leave aside the C'*-algebraic
approach, partially because the theory of twisted cross-product is far beyond
the scope of this thesis, and chose to think of the emerging symbolic calculus
as a functional calculus for the family of non-commuting sel-adjoint operators
(@1, Qn; P, ..., P4)in H := L*(X). Here Q; is again one of the compon-
ents of the position operator, but the momentum P; := —id, is replaced by rhe
magnetic momentum P;‘l = P; — A;(Q) where A;(Q) indicates the operator of
multiplication with the function 4; € C55(X) . Notice the commutation relations

Qs k] =0, [P Q) =65, [P P =Bu@). (3.5)
One defines the magnetic Weyl system
L5 B(H), n'z,€)=expli(z-P4-Q-¢)] (3.6)

and gets in terms of the circulation of the 1-form A through the segment [y, y +
z] :=={y+tz |t € [0,1]} the explicit formula

T

[ @) =D e (<) [ Al wyre). @)

[v.y+x]

These operators depend strongly continuously on (z, £) and satisfy 74(0,0) = 1
and 74(z, €)* = n(z, €)™ = n4(—x, —€) (thus being unitary). However they
do not form a projective representation of & = X x X*, Actually they satisfy

(. &) T (y,n) = F(2,€), (W, m); Qlrt (z + v, E+0),  (3.8)
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where w?[(x, ), (y,7); Q] only depends on the 2-form B and denotes the operator
of multiplication in L*(X) by the function

i y
wP((z,€), (y,m); ] = exp [5 e ~x- n)] exp (—2)] B (3.9)
LR o L o o o T
Here the distinguished factor is constructed with the flux (invariant integration)
of the magnetic field through the triangle defined by the corners z, z + z and

z + x -+ y. A straightforward computation leads to the magnetic Fourier-Wigner
function:

[2*(u® )] (z,€) = [0] (w)] (2,€) = (v*(z, E)u, v)

;—_/ dy e ¥ exp | (—4) / Al uly+z/2)v(y — z/2).
-

ly—=/2,y+z/2)
It can be decomposed into the product of the multiplication by a function with
values in the unit circle, a change of variables with unit jacobian and a partial
Fourier transform. All these are isomorphisms, so @4 : L2(X)ZL*(X) — L* (%)
defines a unitary transformation. Thus we get a formalism which is a particular

case of the previous chapter. Therefore one can apply all the prescriptions and
get the correspondence

f s TIA(S) = f £(2,€) 74 (2, —€) dad. (3.10)

In fact people are interested in the (symplectic) Fourier transformed version
a(Q, PA) = Op?(a) := TTA[F1(a)]. The resulting magnetic Weyl calculus is
given by

[Op*(a)u] (z)=(27)~ /dyfdfe““’ V)€l o[~ilieutly (T:y)u(y) (3.11)

4

An important property of (3.11) is gauge covariance, as hinted above: if
A" = A+ dp defines the same magnetic field as A, then

Opt(a) = € Op“a) e .

By killing the magnetic phase factors in all the formulae above one gets the
defining relations of the usual Weyl calculus.
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Due to the particular structure, one can introduce {U4(z) := 74(z, O) |z €
X} (generalizing the group of translations for A # 0) and {V(€) := 74(0,&) |
£ € X*} (the group generated by the position operator Q). One can also in-
troduce ¢(Q) := Op*(¢ ® 1) and ¥(P4) := Op*(1 ® ¥) for ¢ € L*(X) and
¥ € L*(X*). One checks easily that ¢(Q) is the operator of multiplication by ¢
while for zero magnetic field 4)(P“=%) = «(P) is the operator of convolution by
the Fourier transform of +/. Since ¢ @ 1 and 1 ® ¥ are not L*-functions in both
variables, one needs the results of [MP04, IMPO7] for an easy justification of these
objects. Equivalently, one can use formulas as ¢(P*) := [, dzv(z)U*(z).

The next result is inspired by [GI04, Prop. 2.2] and basically reduces to
[G104, Prop. 2.2) for A = 0. By S(Y') we denote the Schwartz space on the real
finite-dimensional vector space Y .

Proposition 3.5. The C*-algebra K[L*(X)] of compact operators in L*(X)
coincides with the closed vector space € generated in B[L*(X)] by products
Q) (P*) with ¢ € S(X) and v € S(X*).

Proof. Tt is easy to check that (@) (P?) is an integral operator with kernel
given for z,y € X by

Afp(:r:y) = ¢ iz 4 @(a‘)lg(y — ). (3.12)

We assumed the components of A to be C7,;-functions and this immediatly implies
that the magnetic phase factor in (3.12) belonos to O35 (X x X). Therefore, if
¢ € 8(X)and ¢ € §(X), then k3, € S(X x A) C L*(X x X) and thus
©(Q)w(P4) is a Hilbert-Schmidt operator. From this follows K[L?(X)] D €.

Reciprocally, it is enough to show that € contains all the integral operators
with kernel k € L%(X x X) (they are the Hilbert-Schmidt operators and form a
dense set in K[L?(X)]). Pick inside the Schwartz space S(X ) an orthonormal
base {e;|i € N} for L*(X). Setting

Fi'?(:r:.,y) =g w4 ei(z)e;(y—z), Vea,ye X, i,jEN,
we get an orthonormal base {F}} | 4,5 € N} of L*(X x X). Sok =3, ey Ff,
where >, . [y |2 < oo and the sum is convergent in L?(X x X). Then the integral

operator with kernel k coincides with 3, ; cije:(Q)€;(P*). The sum converges
in Bo[L?(X)], thus in B[L?(X)], therefore the operator belongs to €. O
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3.3 Magnetic compactness criterion

We present now the main result of the Chapter.

Theorem 3.6. Ler Q) a bounded subset of H := L*(X). The following state-
ments are equivalent:

1. The set (1 is relatively compact.

2. For some (any) window w € H,, the family ¢2(Q) is K(Z)-tight in L*(Z).

3. For every € > ( there exist f € C.(X) with sup || [DpA(f) - l]u | <e.
uefl

4. One has
lim sup || [WA(:E.Q —1]ul= 0. (3.13)
(2,£)=0 ueQ
5. One has
lim sup || [U%(z) — 1] u||= 0 and lim sup [|[V(€) — 1]u| = 0.
20 46 -0 4eQ
(3.14)
6. For every € > 0 there exist o € S(X) and ¢ € S(X*) with
Sug(!l [o(@) = Tull + || [w(PY) = 1] u||) <e. (3.15)
ue

Proof. 1 < 2 < 3 follow from Theorem 2.5 by particularization, while 4 < 5
is trivial, taking into account the relathionships between UA V and 7. The
implication 3 = 4 also holds, taking s; = 0 in Theorem 2.5 (and replacing s
by —s). A careful examination of (3.8) and (3.9) would even lead to 3 < 4,
restauring the relevant convergence for arbitrary sq := (g, &) , but this will not
be needed. 1 = 5 follows trivially, because 2 can be approximated by finite sets
and U4,V are strongly continuous at the origin.

o = 6 can be obtained along the same lines as the proof of the implica-
tion 4 = 5 in Theorem 2.5, taking also into account the relations (P*) =

[xde B(z)UA(z) and 9(Q) = [xd€ PEV(E).
We finally show 6 = 3. Let us set 7+ := 1 — 7" and compute
[z — (@ (Pull = [ Q) (P*) u+ p(Q) ul|
<l llalle(Ph) ull + (@) ul -
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By using the assumption 6, this can be made arbitrary small uniformly in u € 2
if 0, ¢ are chosen suitably. As in the proof of Proposition 3.5 one sees that
©(Q)(P4) is a Hilbert-Schmidt operator. It can be approximated arbitrarily
in norm by some operator DpA(f) with f € C,(X) and then 3 follows easily
because (2 is bounded. O

Remark 3.7. Many small variations are allowed in the results above. The
Schwartz spaces S(X ) and S(X*) in Proposition 3.5 or at point 6 of Theorem
3.6 can be replaced by other convenient “small” spaces. In Theorem 3.6, at point
3 one could use Dp™(a) with a € S(T) or witha € C*(X).



Chapter 4

Compactness in coorbit spaces
associated to continuous frames

In this chapter we present compactness criteria for Banach spaces constructed in a
way related to a Hilbert space. In section 4.3 we present a way of obtaining such
spaces by means of a tight continuous frame, a more general framework than the
one presented in section 2.1, but having a less rich mathematical structure. That
is why only the representation coefficient approach will be available in section
4.4. As seen above, in that approach both a weakly compaciness and a dominated
convergence theorem were needed. In sections 4.1 and 4.2 we produce this results
in a context that is useful for coorbit spaces.

4.1 The Alaoglu-Bourbaki Theorem

In this section we want to present a well-know result that will allow us 1o extract
a convergent subsequence in section 4.4. In order to do that we need to show
that the dual of a topological vector space has a Heine-Borel type of property.
Obviously this will depend on both what we will consider to be bounded sets and
the topology chosen. This section is mostly based on [Rud91, Theo. 3.15].

Definition 4.1. A topological vector space is a (real or complex) vector space X
endowed with a topology such that:

1. every point of X is closed and

2. the vector spaces operation are CORHNUOUS.

42
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Note that even if we don’t ask X’ to be Hausdorff, it will follows from the
definition. For a topological space A we will denote by &, is dual where o
indicates that we consider on X” the *-weak topology. We also note by K the field
(R or C). By K* we denote the cartesian product of K indexed by & with the
product topology. It can be realize as the set of K-valued functions defined on A’
endowed with the sup-norm. The following lemma is part of the basic theory of
topological vector spaces.

Proposition 4.2. Let v € X and V' € V(Qy ). Then, there exists v € R such that
zerV.

Proof. Let x be arbirary and asume that 1" is open. By continuity of C 3 2 —
2z € X we know that the set of all scalars z with zz € V' is open. Furthermore,
it contains 0 because 0z = 0y € V. So, we can find r small enough such that
rizeV=zeV. O

A set with this property is usually refer as an absorbing set; we show then
that, in a topological vector space, every neighborhood of Oy is absorbing. The
next definition is also standard.

Definition 4.3. For K C X we define the polar of K by
Ke:={ye X' :|(z,y)| <1, forallz € K}
We are ready to state and prove the next theorem.

Theorem 4.4 (Alaoglu Bourbaki). For V' € V(Oy) in a topological vector space
X, V°is *-weak compact.

Proof. For every x € X, let us denote by ~(z) a number such that z € ~(z)V.
We consider

P:={f e K" : |f(z)] < 7(z)}. 4.1)
Clearly P is compact by Tychonoff’s Theorem. We can now see that V° C X NP,
so it inherits two subspace topologies, from A and from P. Let us see that the
topologies coincides in V°. For this, we fix some yg € V° and look for a base of
Vx: (yo) and of Vp(yo). For every finite family § of element of X we put
{Ux;(3:6) :={ye X":[{z,y —yo)| < 6} : 2 € F,0 > 0}

and

{Up(§;6) :={f € K*:|f(z) — (z.%0)| <6} : 2 €F.6>0}.
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Clearly they are bases Viv: (yo) and of Vp(yq) respectively and they coincides in
V° yielding the desired coincidence between both subspace topology. If we can
show that V° is closed in P, the result will follow from the compacity of F.

Let f, be in the closure of V° in P. Let us choose =,y € X, a € K and set
§ = {1, 29,021 + 25}. For € > 0 we consider the neighborhood of f; defined
by
{f e K*:|f(z) — fo(z) < eforall z € F}. 4.2)
We pick an element of this neighborhood lying in V° and we denoted by 3. We
compute:

|folazy + 22) — afo(x1) = folz2)| =|(fo — y)(az1 + 72) — a(fo — y)(z1)
— (fo—y)(z2)]
=(2+ |a|)e.
The arbitrariness of e yields the linearity of f,. To see that f, € V for an arbitrary

x € X we take § = {z} and y in the intersection of this neighborhood (defined
again by (4.2)) and V. Then

|folz)] < [folz) — (2, 0)| + [(z.9)| <1 +e€. (4.3)
Again, taking e arbitrarily small we have f, in V° and this finish the proof. [

Note that we didn’t have to prove the continuity of f; because the boundedness
in V' implies it; one can argue that 4.3 is redundant in the sense that it wasn’t
necessary to assume the continuity of y. We have the following corollary.

Corollary 4.5. Let Q C X’ be equicontinuous. Then S is relatively compact in
the weak-* topology.

Proof. By equicontinuity we can find some V' € V(0x) such that foreveryz € V
we have:

sup|(3:.’y}| = sup[(:n,y)-—{:r()ﬂ S 1 (44)
yeXx’ yeX’
Then 2 C V° and the result follows from 4.4. O

Recall that a Fréchet spaces is a metrizable locally convex complete topolo-
gical vector space. Being locally convex, the topology can be described in terms
of a family of seminorms (actually the are defined as the Minkowski functionals
of a base of neighborhood of 0 formed by convex sets).
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Lemma 4.6. Let S(G) a family of seminorm defining the topology of G. Assume
that Y is a normed space continuously embedded in G, and let (1 C ) be
bounded.

1. Forevery p € &(G) there exists a positive constant Dy, such that

Ku,v)| < Dpllully plv), VYveG uel.

2. Seen as a subset of G, the set () is equicontinuous and (consequently)
relatively compact in the weak-" topology.

Proof. If one assumes that ) is continuously embedded G, , then |{u, -)| is con-
tinuous for every u € ) given the property 1. To prove 2 we can see that a base
of neighborhoods of the origin in G is

{Up;0) :={veGlp(v) <&} |pe&(G),d>0}.

Assume that || u ||y <M forevery u € Q. Lete > Oand p € &(G). Using 1, for
everyu € U (p; 7\;‘-,%—})) and every u € () one gets

(4, 9)] < Dyllullx plv) < DyMp(v) < e,

and this is equicontinuity. The last statement follows from Corollary 4.5. O

4.2 Banach function spaces

In this section we present some facts about the abstract theory of Banach function
spaces; this theory allows us to characterize the spaces of functions over a measure
space in which a version of the Dominated Convergence Theorem is available.
We follow the presentation made in [BS88, Chap. 1] but the older [Lux55] is in
certain aspects better. Throughout this section (¥, i) will denote a measure space
assumed to be o-bounded, R the extended positive line [0, oc], and I+ (resp.
90) the set of R, -valued (resp. R or C-valued) p-measurable functions. We start
with some definitions.

Definition 4.7. A mapping p : M+ — R, is called a Banach function norm if
forall f, g, fn in M, for all constants a > 0 and for all y-measurable subsets
E C L, the following properties hold:
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Pl p(f) =0« f=0p-ae; plaf)=ap(f); p(f+g) <plf)+plg)
P20 fut fuae; = p(jn) T P(f)"
P3 p(E) < 0o = p(xp) < o0;

P4 ((E) < oo = [pduf < Cpplf) for some constant 0 < Cg < o, inde-
pendent of f.

Definition 4.8. The collection M = M(p) of all functions f € I such that
p(|f]) < oc is called a Banach function space with norm

£ [lm= p(171) - (4.5)

The few results that we will need are gathered in the next proposition.
Proposition 4.9. Let be M a Banach function space. Then

1. M is a Banach space;

2. ifg < fu-ae and f € Mthenge M;

3. If uis a Radon measure we have K(X) C M ;

4. If f,, = [ in M then f,, — [ in measure.
Proof. Property 2 follows from P2 and 3 from P3.

4. Let f, — f in M and let E of finite measure. For every ¢ > 0 we fix N such
that p(|f — fn]) < —f% for every n > N using P3 and P4. Then, forn > N

Wz € E:|f(z)] > &) s]d,ue"llf— ful
E
< Cop(lf — fal) < €

1. We prove only the completeness. Consider {f,} € M with 3" || f5 [|m

finite. We set £ := 2% | fol, ty := 300, |fnl. Clearly 0 < ty T tas N — oo,
soby P2 p(tyx) 1 p(t). But

N 00
ptn) D 1l D 1 fallm (4.6)
n=1 n=1
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s0 p(t) < oo and we have ¢,,t € M together with ¢ty — ¢ in M. By 4 we can
show that ¢- — ¢ in measure and hence has a subsequence converging pointwise
tot. So Y fr is well define p-a.e. because _ | f,,| is it (and R or C are complete).

We can set
o0 N
e an and sy = Zfﬂ
n=1 n=1

For every m € N we have that s, — spr — f — sy p-a.e. asn — 00. So

m o0
T inf flom — sl T int 32 Ifallu= D2 nllas
= j=M+1 j=M+1

Because inf,,>, [$m — sar] T |f — sar|, we can use P2 to get

oo}

Pf = snl) = lim inf [Sn — sarf < > M falla -
j=M+1
So f — sy € M, and hence || f — spr||m— 0. O

We said that a sequence E, of measurable sets converges to ) if the set
theoretic limit (see (0.1)) has measure zero. The next definition will allow us to
reobtain the Dominated Convergence Theorem in this ampler setting.

Definition 4.10. A function f in a Banach function space M is said to have
absolutely continuous norm in M if || fxg [|sm— O for every E,, —. The set of
all functions in M with absolutely continuous norm is denoted by M.

Example 4.11. We want ro show that M, can really be a proper subspace. It is
not he case for L for 1 < p < oo but the p = 00 case is interesting. If i is 0
for every singleton, as the Lebesgue measure, then M, = {0} because for every
x € X we could construct sequence of sets E,, of positive measure that converges

to{z}.
We can now state the main result of the section.

Theorem 4.12. f € M, if and only if the followings condition holds: whenever
fn. g are p-measurable functions satisfying |fu| < |f| and f — g p-a.e., then
[ fn —gll— 0.

For the proof we need some propositions.
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Proposition 4.13. f € M, ifand only if || fxg, ||md O for every E,, | 0.

Proof. The “only if” part is trivial and the “if” follows easily if for some arbitrary
sequence F,, we set E, = L)J_ F,.. Then E, | 0 and F,, C E, for every n. Then
m-=n

0 <|l fxr, lm<|l fxE, lla and the middle term, being sandwiched by a null
sequence, goes to zero. |

Proposition 4.14. Let ¢ be greater than 0. If f € M, we can find 6 > 0 such
that W(E) < 6 = fxellm<e

Proof. Let € be greater than zero such that for every é > 0 there exist £ meas-
urable with u(E) < é and || fxg || s> €. Then we can choose E,, such that
w(E,) < 27" and || fxe||lm> € Since pu(|J E,) < 1 we have E,, — Qu-a.e. and
hence f & M,. O

Proposition 4.15. f € M, if and only if for every f, | Opu-a.e. such that
fn < |f|, p-a.e. for every n one has || fn || md 0.

Proof. The “only if” follows by taking f,, = fxg, for an arbitrary null sequence
E,. Suppose now that f € M,. Fix some R, T ¥ composed of sets the
finite measure. Then Y\ R, =: @, | 0 so there exists some N; such that
| fxg. lm< § forevery n > Ny We set then a := § || Xgy, [l and let
E, ={z € X: fo(z) > a}. Since f | O u-a.e., then f — 0 in measure, so we
have u(E,) | 0. By Proposition 4.14 we choose N, such that || fxz, ||m< § for
every n > Ny. Taking N := max{N;, N>} and n > N we have

| Fallm S | frxgn v + 1| FaXE, I + | faXraren M

<t 4 +axr ms
-—2 4 XRn MME‘

O

Proof of 4.12. The “only if” part goes as in the previous Proposition. Suppose
f € Mg and f,, g are as in the hypothesis. We can set h,(z) = sup,, s, | fm(z) —
g(z)|. The hy, is as in 4.15 so we have || A, || s 0. The results then follows from

0 <[ fo— gl M <[[n el 0. 4.7)
H

When M = M, we say that M is a Banach function space with absolutely
CONtiNUoOus norm. ;
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4.3 The coorbit formalism

We recall now the concept of tight continuous frame and the construction of
coorbit spaces, slightly modifying the approach of [FR05, RUI1]. Let us fix a
family W := {w(s)|s € X} C H that is a tight continuous frame; the constant
of the frame is assumed to be 1 by normalizing the measure £ . This means that
the map s — w(s) is assumed weakly continuous and for every w, v € H one has

{(u,v) = /d,u(s){u, w(s))(w(s),v). (4.8)
Jx
Clearly W is total in H and defines an isometric operator
ow  H — L), [ow(w)](s) == {u, w(s)) (4.9)

with adjoint cb;‘,[ . L?(3) — H given (in weak sense) by

¢\1 / du(s)f(s)w(s). (4.10)

The (Gramian) kernel associated to the frame is the function py 1 ¥ x ¥ — C
given by

prw(s,t) 1= (w(t), w(s) = [bw (O] (s) = Bw@E] @), @1

defining a self-adjoint. integral operator Py = Jnt(py ) in L*(X) . One checks
casily that Pyyy = ¢y diy is the final projection of the isometry ¢w, s0 P [L*(Z)]
is a closed subspace of L2(Y). Since ¢!; ¢y = 1, one has the inversion formula

w= [[du(t) [owla)] O w(d), (“.12)

Jeading to the reproducing formula ¢y (u) = Py [ow(u)], e

[%@M@zﬂwmwwwwmwmmw 4.13)

Thus Py () := Py [L*(X)] is a reproducing space with reproducing kernel py;
it is composed of continuous functions on 2.

To extend the setting above beyond the L?-theory, one can supply an extra
space of “test vectors”, denoted by G , assumed to be a Fréchet space continu-
ously and densely embedded in H . Applying Riesz isomorphism we are led to a
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Gelfand triple (G, H, G.,) . The index o refers to the fact that on the topological
dual G’ we consider usually the weak-* topology. In certain circumstances one
takes G to be a Banach space and sometimes it can even be fabricated from the
frame 1" and from some extra ingredients, as below. But very often (think of the
Schwartz space) the auxiliar space & is only Fréchet.

We shall suppose that the family W is contained and total in G and that
X 3 s w(s) € G is a weakly continuous function. Then we extend ¢y to G
by [ow(u)] () := {u, w(s)), where the r.h.s. denotes now the number obtained
by applying u € G’ to w(s) € G and depends continuously on s. By the totality
of the family W in G, this extension is injective. In addition, &y : G’ — C(X) is
continuous if one consider on G’ the weak-* topology and on C'(X) the topology
of pointwise convergence.

As in [FG89, FRO5, RU11] and many other references treating coorbit spaces,
one uses ¢y () to pull back subspaces of functions on X. So let (M, ||+ ||x) be a
normed space of functions on X (more assumptions on M will be imposed when
necessary) and set

cow (M) = co(M) = {u € G |ow(w) € M}, [[uleoirny = & (w) a1 -
(4.14)
Recalling the totality of W in G , one gets a normed space (co(M), | - [|co(rr) and
ow : co(M) — M is an isometry. Without extra assumptions, even when M is a
Banach space, co(M ) might not be complete, so we define co( M) to be the com-
pletion. The canonical (isometric) extension of ¢y to a mapping : co(M) — M
will also be denoted by ¢y . If the norm topology of co(M) happens to be
stronger than the weak-" topology on G, then canonically co(M) < G/ .

In this framework, coorbit spaces were defined and thoroughly investigated
in [FRO5, RU11}; if M is a Banach space then co(AM) is automatically com-
plete. The dependence of these coorbit spaces on the frame W is also studied in
[FROS, RU11]; we are going to assume that the frame W is fixed.

We show now how the formalism present in section 2.1 can be considered as a
particular case of the one described above. This particular case has extra structure
allowing to develop a symbolic calculus and to define and study corresponding
coorbit spaces of functions or “distributions” on ¥ ; we shall only indicate the
facts that are useful for the present paper.
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Let 7 : £ — B(#H) be a map such that for every u, v € ‘H one has

/dﬂ ) = [l o) . 4.15)

We set 7(s)u =: m,(s) and 7(s)*u = 7*(s)u =: 7:(s) for every s € T
and v € H, getting families of functions {7, : ¥ — H | u € H} and
{m: ¥ — H | ue€ H}. One also requires 7. to be continuous for every

For every normalized vector w € H the map ¢7, : H — L*(Z) given by
o (u) 1= ¢™(u, w) is isometric. Fixing w, it is clear that we are in the above

[framework with the tight continuous frame defined by:
W =W(mw) ={w(s) =n(s)"w|s € T} (4.16)

Using existing notations one can write ¢y = ¢, and w(-) = 7, (-) . After intro-
ducing a Fréchet space G continuously embedded in H , one can define coorbit
spaces col (M) := {u € G'| o7 (u) € M} as it was done above.

4.4 Compactness criterion

Let us fix a tight continuous frame W := {w(s) | s € L} contained, total
and bounded in a Fréchet space G that is continuously embedded in the Hilbert
space H . It is assumed that s — (u,w(s)) is continuous for every u € §'.
For any normed space M of functions on £ we have defined the coorbit space
cow (M) = co(M) in (4.14) which will be supposed continuously embedded in
g, .

One considers a bounded subset {2 of co( M) and investigate when this subset
is relatively compact in terms of the canonical mapping ¢y = ¢. We are guided
by [DFGO2, Th. 4], but some preparations were needed due to our general setting.
For instance, we need to apply 4.6 to V = co(M) — G/ . We also assume,
as was done tacitly in [DFGO02], that M is a Banach space of functions with
absolutely continuous norm.



CHAPTER 4. COMPACTNESS IN COORBIT SPACES 52

Theorem 4.16. Let us assume that M is a Banach space of functions on 2 with
absolutely continuous norm. Then the bounded subset () of co(M) is relatively
compact if and only if $(Q) is K(X)-tight in M.

Proof We start with the only if part. By relative compactness of {2, for any € > 0
there is a finite subset F' such that

, Yuel.

[N gt

i - <
Igg};- || u UHCO(M) =

Recalling that & has been assumed o-compact, there is an increasing family
{L, | m € N} of compact subsets of X with Uy, L, = ¥ . Since pointwisely
Iz, 6(0)| < |6(v)| and xz,.0(v) 7%, ¢(v), there is a compact set L C X
with complement L€ such that

[ N2 Ne

max || xzed(v) [ <

Then, for every u € ), using the information above and the fact that ¢ :
co(M) — M is isometric, one gets

2o e < mm (zen(t = ) aa + | xee0(0) a0
€
2

4 €
= min [|u — vlloi) +5 S €

< min || ¢{u —v){lm +
veF

We now prove the converse. Knowing that ¢(€2) is K(X)-tight in M, one needs
to show that every sequence (u,),en C 2 has a convergent subsequence. By
Lemma 4.6 the bounded set ) C co(M) is relatively compact in G, , 80 (2n )nen
has a *-weakly convergent subsequence u; — oo € G':

(uj,v) = (Uso,v) foranyv € G. 4.17)
Putting v := w(s) in (4.17), we get for evefy SEY
(uj, w(s)) = [P(u;)](s) = [B(toe)}(5) = (oo, w(s)) -

Therefore the sequence (¢(u;)); . is pointwise Cauchy. We shall convert this in
the norm convergence

| &(u;) — ¢(ux) [l — O when j,k — oco. (4.18)
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Then the proof would be finished since ¢ : co(M) — M is isometric: (u;)jen
will be Cauchy in co(M ), thus convergent (to u of course). By tightness, pick
a compact subset L C X such that || x () || s < € for every u € (2 then we
get

| xzed(u; —ue) laae <2, Vi keN. (4.19)
Since co(M ) is continuously embedded in G, , for any seminorm p € &(G) there
exist positive constants D, D, such that for every s € &

sup |{u; — w, w(s))| < Dpsup s — ik leotrny Plw(s)] < Dy plu(s)].
J:k I

By our assumption on ¥ and by the Uniform Boundedness Principle the family
{w(s)|s € L} is bounded in G, so we get
[y — )] (5)| < DGz, Vi keN seL.
Anyhow we obtain by Theorem 4.12
| xze(u; — wi) llag— O when 7.k — o0, (4.20)
Putting (4.20) and (4.19) together one gets (4.18) and thus the result. [

Remark 4.17. Let S be an bounded operator from the Banach space X to co(M).
Then S is a compact operator if and only if for every € > ( there exists a compact
set L C X such that

| xzeodw o S |lpamy < €. (4.21)

This follows easily applying Theorem 4.16 to the set () := S (Xm) and using the
explicit form of the operator norm. Here Xjy) denotes the closed unit ball in the
Banach space X .



Chapter 5

Compactness in spaces of operators

In this final chapter we relate the criteria presented in Chapters 2 and 4 to some
general results in the space of compact operators in order to get new criteria
concerning compactness in KX() (section 5.1) and K(X, co(M)) (section 5.2).

5.1 Compactnes criterion for ()

We start by presenting part of the literature concerning compactness in the space
of compact operators. Interestingly, to the best of our knowledge, this literature
is divided in two: a first part developed in the late 60 by Palmer and Anselone
mostly concerned with relating totally boundedness of family of pre-compact
operators with collective compactness of the family and their transpose ; a most
recently second part, use a different characterization of a compact operator to get
characterizations not depend on the transpose family. In this section we present
the classical result from [Pal69] and postpone to the next section the second part
of the discussion. We begin with some definitions. Here A" and ) stand for
Banach spaces (even if the completeness is not really needed) and we recall that
A7y denotes the closed unit ball .

Definition 5.1. Let % be a subset of B(X.,)). It is called:

pointwise collectively compact if % x = Uge# Sz is totally bounded in Y for
every T € Ay,

collectively compact if 2 Xy = Usex» SA&]) is totally bounded in Y.

54



CHAPTER 5. COMPACTNESS IN SPACES OF OPERATORS 53

It is easy to see that if .%#” is totally bounded then it is also collectively compact
because if S;, ..., .S, are such that

min sup || — S, '|IB(XyJ< 5 (5.1)
J=lynge 2

and for each 1 < 7 < n we choose Z 4 such that

min sup ||S;jz— S;z;||x< (5.2)
=1, N(i)pet Xy ” k] ”;V 9 ” Sj “
we have
m_i]nsup | Sz — S;jz;||»< €. (5.3)
Ht oz 8

For J" we set ™ := {5 € B()",X’)}, where S* is the transpose operator
defined foran € )’ by 5*(n) = n o S. Note that # is totally bounded if ¥ * is.

Theorem 5.2 ([Pal69, Theo. 2.1]). A subset ¥ of B(X.)Y) is a totally bounded
set of compact operators if and only if:

1. X is collectively compact and
2. " is pointwise collectively compact.

Proof. The necessity follows from the previous discussion. Let be ¢ greater than 0.
By L% X[l is totally bounded; then J)[l . being weakly compact, when restricted
to Ay is totally bounded. We choose then 7, ..., n, from an {-cover of
ym restricted to £ A}y, By 2., for every 1 < j < n we choose an $-cover
{1, ., Qs } of J{/ 1. Because each (2 is composed of elements of the
form S *nj and furthermore e 571; needs to be in som Q; for every S € ¢, we can
define a cover {Q ...... Q) } of X forevery 1 < j < n.Set ly = max; {(5)
and define ¢ := ﬂ Qﬂ for 1 <1 < ly. Note that for some [ the intersection only
j=1
runs over some j's. It is clear that { %] } i~ forms a cover. Take now S;, S5 € %,
T €Ay,ne Y. Then, we have
(81 = 8s)z| =[n[S1z] — n[Sez]]
=[nS1z] — me[Siz]| + [me[S12] — me[Saz]| + Imi[Saz] — n[Sez]|
=[(n = ne)[S1]| + |[ST(me) — S5 (m)](2)] + |(n — me) [Saz]|
€ € €
—_— -t = =
3T37T37C
if one choose 7. such that |(n — 7 )[Sz]| < £ whenever S € #'. O
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A similar proof yield the following result:

Theorem 5.3 ([Pal69, Theo. 2.2]). A subset & of B(X,Y) is a totally bounded
set of compact operators if and only if:

1. KX is pointwise collectively compact and
2. ™ is collectively compact.

From this two theorems one could expect that a characterization of compact-
ness in terms of pointwise compactness could be available; but this is not the
case. Take for simplicity A = J = H a Hilbert space. Let {¢; | j € N} be an
orthonormal base in H and set P, the projection on the linear span of the first
n vectors of the basis, { P, }nen = { P hnen is pointwise bounded but cannot be
compact being an infinjte discrete set. Combining both theorems we have:

Theorem 5.4. A subset X of B(X,Y) is a totally bounded set of compact
operators if and only if:

1. # is collectively compact and
2. X is collectively compact.

We refer now to the situation explored in Chapter 2, recalling the objects
(7, @7, II) ; for simplicity we only consider the case X = H. We want to
characterize relative compactness of subsets of K(# ), relying on Theorem 2.5
and Theorem 5.4. The setting is that of Chapter 2; it is also assumed that
7(s1)* = 1 for some 5; € .

Corollary 5.5. Let ) be a family of bounded operators in H.. The following
assertions are equivalent:

1. X is a relatively compact family of compact operators.

2. For some (any) w € H the family {¢,(SH)) | S € X UK *} is uniformly
tight in L*(X). This condition means that for every strictly positive € there
exists a compact subset L of ¥ such that

sup || M 0 ¢y 0 S ||pase) < €. (5.4)
Sexux=
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3. Forevery ¢ > 0 there exists | € C.(X) such that

sup_ [T(F) = 118 sz < e (55)

Se X ux=

4. {E3s—7(s)*SeB(H)| S € UKN*} isan equicontinuous family.

5.2 Compactness criterion for (X', co(M))

To study compactness in X(X', co(M)) the previous result is not at hand because
in general we do not know anything about compactness of the subsets of A”. In
[SPDO06] is presented a result that only refers to %" but a definition is needed.
Note that the notion of collectively compact is founded on the idea that the whole
family of operators should behaves as a single compact operator. But a a compact
operator S can also be characterized by the fact there exist a weakly null sequence
& C X' such that | Sz ||< sup,, |(z, &,)| for every z € X. This motivate the
following definition.

Definition 5.6. Ler ¥ be a subset of B(X', V). It is called equicompact if exist a
weakly null sequence &, C X' such that

sup || Sz||< sup|(z,&,.)| foreveryz e X. (5.6)
Sex’ n
What is shown in [SPDO06] is that £ * is collectively compact if and only if
J£ is equicompact. Then 5.4 now reads.

Theorem 5.7. A subset J# of B(X,Y) is a totally bounded set of compact
operators if and only if & is collectively compact and equicompact.

Corollary 5.8. Let us assume that M is a Banach space of functions on %
with absolutely continuous norm, let X be a Banach space and %~ a subset of
B [X,co(M)]. Then ¥ is a compact family of compact operators if and only if

1. For every € >0 there exist a compact set L C ¥, such that

sup || xzeodw © S ||pa.am) < € and
Sex

2. There exists a sequence X' 3 x|, — 0 such that

sup || ow (Sz) || m < |(2),, z)| foreveryz € X .
Sex
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