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Lower bound for the discriminant of octic
number fields having six real places

Matias Atria *

Abstract

We improve on the known bounds for the discriminant D of an octic
field with 6 real places, from |D| > 8.97% to |D| > 9.05%. The methods
shown here should apply to other signatures.

1 Introduction
In this thesis we prove the following

Theorem 1 If K is a number field of degree 8 having exactly siz real places,
then its discriminant Dy satisfies |Dg| > 9.05%.

The best previously known bound was |Dk| > 8.9749% [Ma, DyD]. Assuming
the Generalized Riemann Hypothesis' (GRH), Odlyzko obtained |Dr| >
9.26% [Ma, Od4]. The point of this thesis is to introduce analytic techniques
allowing us to improve the known bounds without assuming the GRH.

The main reason for studying these octic fields, is that for number fields
of degree seven or less, or for totally real or totally complex octic fields,
the minimal discriminants have been found through exhaustive computer

*We are grateful for the financial support provided by Fondecyt grants 194-0353 and
196-0867 and European Community-CONICY'T grant CI1*-CT93-0353. We are also grate-
ful to H. Cohen and collaborators, at Université Bordeaux ., for the development of PARI,
without which this work would have been impossible.

1The GRH states that all the zeros of the Dedekind zeta function (x of K within the
critical strip 0 < Re(s) < 1 actually lie on the critical line defined by Re(s) = 3.



searches [Ma, Od4]. The methods presented here make no use of any com-
puter searches of number fields and are expected to provide improved bounds
for other degrees as well.?

The interest in finding lower bounds for the discriminant began when
Kronecker conjectured that [Dg| > 1 for all number fields K # Q. This
was first proved by Minkowski [Mi], who also proved a lower bound for |D]|
growing exponentially with n = [K : Q]. Until the mid 1970’s, most of the
work on this subject still used Minkowski’s geometry of numbers. The best
of these results is the lower bound, due to Rogers [Ro] and Mulholland [Mul],

|Dk|® > (32.561...) % (15.775..) % + o(1),
as n — oo, where r; (resp., ry) denotes the number of real (resp., complex)
places of K.

Following a suggestion of H. Stark [St], Odlyzko introduced in 1976 a
new analytic method for obtaining lower bounds for discriminants [Od1-3].
He was able to improve noticeably on the previously obtained bounds of
Rogers and Mulholland. Further improvements came from the introduction
by Serre [Se] of the explicit formulas of Guinand [Gui] and Weil [Wel, We2] to
discriminant bounds under the GRH. Odlyzko extended the ideas of Serre to
obtain unconditional bounds (i.e., bounds that are valid without the GRH),
the best known one being

2r.

|Dx|* > (60.8395...) 7 (22.3816...) % + o(1),

as n — o0o. On the other hand, assuming the GRH, Odlyzko and Serre
obtained the far better bound

IDk|* > (215.3325...) % (44.7632...) % + o(1),

as n — o00. To understand these results, we must look at Weil’s explicit
formulas more closely. This formula states that if F' : R — R is a real even
function, normalized so that F'(0) = 1 and satisfying some simple conditions
which insure convergence of certain series and integrals, then [Po, Wel]

1 1 log N
~log|Dx| = Cr + — 3 Re(®5(p)) + E Og) S F(mlog Np), (1)
P

2Theorem 1 is also used in a recent paper [Chi] where the arithmetic hyperbolic 3-
manifold of smallest volume is found.



where the “archimedean” term Cp depends only on F, n and r, the first
sum is taken over the non-trivial zeros p of (i, and in the second sum p and
m run over the prime ideals of K and the positive integers, respectively. The
transform ®r is defined by

Qp(s) = fw c(’_%)mF(m)d;n.
As long as we want a lower bound depending only on the signature of ', we
cannot use any information on the distribution of zeros of (x or the prime
ideals of /(. Thus, we would like to get from (1) an expression involving only
Cp. This can be done if we take I so that the sums in (1) are non-negative,
obtaining the lower bound

1
—log|Dx| 2 Cr. (2)

For the sum over the prime ideals, it is enough to take F' non-negative.
For the sum over the zeros, the condition on F varies according to whether
we assume the GRH or not. In the first case, all the zeros lie on the line
Re(s) = 1, so we must insure that Re(®F) is non-negative on this line, which
is equivalent to requiring that the Fourier transform F(t) be non-negative
for all real ¢. If we do not assume the GRH, Re(®r) must be non-negative
on the full critical strip, but as Re(®p) is harmonic, and symmetric respect
to the line Re(s) = 1, it is enough to have Re(®r(1 + it)) > 0 for all real
t. This is the usual approach to get unconditional bounds. Note that if we
do not impose this last condition, the bound (2) is still valid as long as the
only violations of the GRH are in the region where Re(®x(s)) > 0. In this
thesis we exploit this idea, using the hypothetical presence of zeros outside
the critical line to get an additional contribution to (2) that suffices to prove
theorem 1.

We start with a function H such that Cy gives the best bound for |Dk|
under the GRH. Namely, take y = 0.25495 and let H to be the even function
on [—1/y,1/y] defined on [0,1/y] by

H(z) = (1 — yz) cos(myz) + %sin(fry:a:),

and vanishing for |z| > 1/y. Then we form H = §H, + (1 — §)H, where H,

is a function carefully chosen so that Re(®) is negative in a region as small
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as possible, and § > 0 is chosen small enough as to give Cz > log(9.207).
Thus, if there is no zero in the region where Re(®5) is negative, we get an
even better bound than the one given in theorem 1. Therefore, we can and
do assume that there is at least one zero in this region. Then, using other
auxiliary functions, we exploit the presence of this zero to obtain the desired
bound.

A natural question arising at this point is how close can the unconditional
bound get to that obtained under the GRH. It is certainly far harder to obtain
unconditional bounds, as one has to account for the many possible positions
of a zero that could violate the GRH. Nevertheless, theorem 1 suggests that
there is no reason to think that the unconditional bounds are intrinsically
weaker than those assuming the GRH.

Another natural question is how close the bounds obtained under the
GRH are to being optimal. Martinet [Ma] gives tables comparing the small-
est known values of |Dg|# for 2 < n < 8 with both the unconditional and
GRH bounds. Similar tables can be found in [Od4] and [DyD]. It is worth
noting how small in general the discrepancies between the GRH bounds and
the minimal values of |D| are, and how far from optimal the current un-
conditional bounds remain, especially as n grows.

We now describe the organization of this thesis. In §2 we state Weil’s
formula in detail, and give the proof of theorem 1. We explain in §3 the
method used to construct the auxiliary functions used in §2. In §4 we give
the tedious details that are needed to insure that the numerical results given
at each step are indeed correct to the precision claimed.

2 Proof of theorem 1

We keep the notation of section 1. K is a number field with discriminant
D = Dg, having r; and r, real and complex places, respectively, n = ry+2r,.
If F:R — R is an even function, we set

Dp(s) = /0:0 exp((s — 1/2)z) F(z)dz,



whenever this integral converges. Then, ®p(s) = ®p(1—s) and Dp(3+it) =
F(t) is the Fourier transform of F', defined by

Fit) = I_O:O e F(z)dz.

To simplify the formulas, we will introduce the functions

1 ™ 1
2 sinh(z/2) + n 2 cosh(x/2)

k() =
and ; ;
™
hzg) = ——+ ———5—-
(=) sinh(z) + n 2 cosh?(x/2)
Now we are in position to state Weil’s formula [Wel, Po]

Theorem 2 (Weil) Let F': R — R be a real even function, with F(0) =
and satisfying the following conditions:

1. There exists § > L such that F(x)exp(éz) is Lebesgue integrable.

= B

2. There exists § > L such that F(z)exp(8z) is of bounded varialion and
its value at each point is the mean of its lateral limits.

3. The function (1 — F(zx))/z is of bounded variation.
Then, the limit
> ®p(p) = lim Z dr(p),
P

T—»oo 2)<T

where p runs over the non-trivial zeros ofg;(, exists and we have the equality

il ? 2 1
log|Dk| = -+ log(8m) + 5= — @r(1) + 1 3 @r(p) -
log Np
/(; (1 — F(x))k ; Np)m/2) F(mlog Np) (3)

where v = 0.57721566... is Euler’s constant, and p and m run over the prime
ideals of K and the positive integers respectively.



Remarks
1. Multiple zeros p in the sum are repeated according to their multiplicity.

2. If p is a non-trivial zero of (i, then so are p, 1 — p and 1 — p, so the
contribution to (3) is 2 Re(®x(p)) if Re(p) = 1/2 or Im(p) = 0, and
2 Re(®p(p)) if not.

3. If the function F' is positive, the sum over the prime ideals is also
positive, so we can drop it from (3) and get the lower bound

1
~log [Dx| 2 7+log(8r)+¥+ ZRe(q)F (5)) =

Zap(1) - [7(1 = F(a)k(e)da (4)
This is the bound we will use in the proof of theorem 1.
4. If we put F(z) = f(z)/ cosh(z/2), with f non-negative, then
Re(®p(1 +1t)) = f(1),

so the requirement of Re(®r) being non-negative on this line is equiv-
alent to f(t) > 0 for all real ¢. If we make this assumption, and keep
only the zeros p in the sum satisfying | Im(p)| < L, for some L > 0, the
formula (4) takes the form

1 1
log]Dk| > 7+log47r+ += Y r(p) -
T T ()<L

= 7 p@de — [0 - faph@)iz ()

which is obtained by direct substitution. The only term that deserves
some attention is the integral involving k(z) in (3)

[ 0= FPa)k(z)iz = | 0= 1)h(z)yin+ ]O " (cosh( g)—-! )h(z)dz.

This last integral can be easily evaluated to be log2 + 2& At — &, This

modification to (4) will be specially useful for numerical calculatlons

6



5. The constant Cr appearing in (1) is given by

: 2
Cp = +log 87 + —— — —®p(1) = I,
n n
where I = [ (1 — F(x))k(z)dz.

We now begin the proof of theorem 1. Throughout the proof we use the
numerical value n = 8 and r; = 6. Suppose that theorem 1 is false, i.e.,
|Dk|5 < 9.05. For y > 0, and real a and x, let

_ 14 cos(ax) )

T lim)= 2 cosh(x/2)

where
(sin(zx) — x cos(z))?

x8 '
The function #(z), introduced by L. Tartar [Po], just fails to satisfy the
first hypothesis of theorem 2, since § = L, but inequality (5) still holds
[Po, Prop. 5]. We let ®,, = ®,,. In the next section we prove that
Re(®,.(s)) = 0 for all s in the critical strip. Take F' = Tiszs20 1n in-
equality (5), and assume for the moment that there are N > 1 zeros p with
0 < Im(p) < 2.77 and 1 < Re(p) < 1. By evaluating the minimum of the
harmonic function Re(®7(p)) in this rectangle, we obtain

4N
CT2<52932,0 + T_? ® Re(¢2.5‘2982,0(p)) = log 905,

i) = ¢

so we can assume that there is at most one zero p of (x in the region 0 <
Im(p) < 2.77 and 1 < Re(p) < 1.
Now let. H, as in §1, be the even function on [—1/y, 1/y] defined on [0,1/y]

by

1

H(z) = (1 = yx) cos(myz) + — sin(wyz),

T
with y = 0.25495 and vanishing outside [—1/y,1/y]. This function clearly
satisfies the hypothesis of theorem 2, since it is continuous and has compact
support. This was the function used by Odlyzko to get his GRH bounds.
One can obtain, after an elementary calculation, the formula
472 cosh(w) + 1

Cp(s) = (72 + w?)? ’



where w = (s — 1/2)/y. Let

H(z) = 0.995190385 H (2) + 0.00103 Pyy(= ):b To.28284,0:(T)5

=1

where
G_Clzl

cosh(z/2) ’

and the parameters a;, b; and for 1 < i <5, are given in the following table.

P.(z) =

bi a;
0.00280436622 | 3.8305
0.00062013984 | 5.4870
0.00021474837 | 7.1170
0.00009329940 | 8.7361
0.00004706117 | 10.3497

cnl | ool bo| =] .

As explained in the introduction, the function H is chosen close to the GRH
optimal H, but so that Re(<I> 7) = 0 for [Im(s)} > 2.6 and 0 < Re(s) < 1.

Also, Cg > log9.207 and ; Re(®(p)) > log 9. 05—log 9.207 for 3 < Re(p) <

1 and Im( ) 2> 0, as long as p lies outs1de the region shaded in ﬁgure 1 (we give
in the next two sections the proof of this claim, and of analogous numerical
statementq below). As we saw above, there is at most one zero p in the region
1 < Re(s) < 1 and 0 < Im(s) < 2.6. In view of inequality (4) and Remark
2 preceding it, we conclude that if |Dg| < 9. 058, then (x(s) has exactly one



zero in the shaded region of figure 1.

1 1
a.82 .84 8,86 e.88 e.9 o932 e.94 0.96 e.98 1

Figure 1: Region containing a hypothetical zero p of (x(s)

Now, and henceforth, we assume that p lies inside the region shaded in figure
1. If we take F = TI.SIGG,O) we find that (YTLMGS,O + %Re(@LSlSG,O(,f))) >
log 9.05, except for p in the region shaded in figure 2. Next we repeat this
process with the function F' = T os301,0.24, assuming that the zero lies in the
region shaded in figure 2, obtaining the region of figure 3. Again, taking
F = Tos1sr9,2.27 we obtain that the zero must be in the shaded region of
figure 4. The final region is obtained with F' = Tj s567s,2.3, and is shown in
figure 5.
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To exploit a zero in the region shaded in figure 5, we use the following
function. Let & = 0.0575 = 2.3/40, and g, be the even simple function on
[—2.3,2.3], defined on [0,2.3] as

10
ge(z) = Y cixil)
1=1
where y; is the characteristic function of the interval [(i —1}A, ih], 1 <1 <40,

and Y% ¢? = 1. We take the convolution

]
Ge(z) = 57

2h(g“ * go) (@),

and Fy(z) = G.(z)/ cosh(z/2) in (5), where ¢ = (¢1, ..., cn) is given by

& ) c;
0.205343795727 || 21 | 0.169342818146
0.205354559903 || 22 | 0.163005723531
0.205368887355 || 23 | 0.156094679777
0.205372541340 || 24 | 0.148630446879
0.205344576053 || 25 | 0.140643038736
0.205257818499 || 26 | 0.132171622316
0.205079495678 || 27 | 0.123264273056
0.204771994407 || 28 | 0.113977599470
0.204293738353 || 29 | 0.104376256111
10 | 0.203600164563 || 30 | 0.094532371825
11 ] 0.202644779715 || 31 | 0.084524930960
12 1 0.201380274779 || 32 | 0.0744391614338
13 | 0.199759675578 || 33 | 0.064366010597
14 | 0.197737506095 || 34 | 0.054401839319
15 | 0.195270941161 || 35 | 0.044648565072
16 | 0.192320925429 || 36 | 0.035214710178
17 | 0.188853236340 || 37 | 0.026218395361
18 | 0.184839470019 || 38 | 0.017795157477
19 | 0.180257930755 || 39 | 0.01G121443481
20 | 0.175094406846 || 40 | 0.003525971673

| ool =1 S| T | W D] ] e

1



Note that F.(0) = ;¢? = 1. This function was found by searching for the
¢; > 0, subject to ¥; ¢? = 1, that maximize

4
(ch + ;q)Fc(pO)'J

where py = 0.92 4+ 2.33 ¢ i is near the lower vertex of the region shaded in
figure 5. It turns out that

4
Cr. + —®r.(p) > log9.051
n

for p in the region shaded in figure 5. As Re(®z.(s)) > 0 for all s in the
critical strip, this implies that |Dg| > 9.05°, which proves theorem 1.

3 Auxiliary functions

Here we discuss the auxiliary functions used in the proof of theorem 1. We
keep the notation of the previous sections.

3.1 Construction of H

The transform @, of the function T,y can be calculated explicitly on the
line Re(s) = 1, and is given by

lox 97 (1:
vy 8y \y

Re(@yo(1 +in) =180 = 2w (1), (wem)
where w is the even function on [-2,2| defined on [0,2] by

w(z) = —L(w‘q — 2023 + 402* — 32) = ml(:n — 2)%(z* + 62 + 4)
30 30

and w(z) = 0 for z > 2. This function has its maximum at x = 0 and

decreases monotonically for z € [0,2]. Note that Re(®,0(s)) > 0, as it is

harmonic and symmetric with respect to the line Re(s) = 1.

For the function P, appearing in ﬁ, the transform ®p_ is given by [P-B-M]

Pp.(s) =2{B(s+c)+ H(l = s+c)}

13



where B(s) = ¥((s + 1)/2) — ¥(s/2), and ¥(s) = I"(s)/T'(s). For Re(s) =1
this expression simplifies to
) 2c
(I)PC(I -+ ?;f) = m

On the other hand, for T, . we have the following identity

1 1 ; 1 )
Qy,a(S) = 5@%0(5) -{* Z(I)y’o(S + ?,ﬂ'.) "|" z‘:q)y’o(S s ?JO'J) (6)
which, for s = 1 4+ #t, has its maximum near { = a. Thus, on the line

Re(s) = 1, the effect of using Ty, instead of Tartar’s Ty, is to move the
maximum of Re(®) to a point near 1 + ¢a. In defining H, we chose the a;
near the first few local minima of Re(®y(1 + it)) for ¢t > 2.4. The b; were
chosen to just cancel the negative contribution from Re(®y(1 +7t)) at these
minima, and the Pj, was chosen so as to cancel the remaining minima for
to= 1l

The result is a function Re(®5) close to Re(®y), but which is negative
only in a small region of the critical strip. This region is contained in the
region | Im(s)| < 2.6.

3.2 Construction of F.

To produce the function F., we fix an interval [—A, A] and a number N of
subdivisions of [0, A]. Define the even and piecewise constant function g. as
in the previous section, where we took A = 2.3, N = 40. Let h = A/N. Note

that "
Re(0r,(1 + ir) = Gi(x) = or-:(x)"
s0 Re(®r.(s)) > 0 for all s in the critical strip. Also, the support of F¢ is

[-2A,2A] and we have

. 41 o0 N
CF‘C = ¥ log 81+ 7‘—11 — ——i + f .Ii(l’,‘)d"l} -+ Z CiC,'b,'j
2n n h e

where b;; = b;; and

bi: = ]h 1 h — 7."{3 L\ ;
Y h cosh{x/2) (.’E) T+ Izia

14




and, for z < j,

bij = Tipj1 + 1=
with _ .
1 pha) (B -z = hj|)k(x)
2k Ju(i-1) cosh(z/2)
Also, ®¢, (s) can be written as a quadratic form c'pe, where ¢ = (¢i;(s))-
As a result, we can write the bound (4) given by this function, with a given
zero p in the interior of the critical strip as

I de.  (j>1)

K, + "M (p)e

where _ i
K=~ +logsr+ 20 _ 2% 4 7 k(2)da,

2n n h

and M(p) = (M;;(p)), with

4
Mi;(p) = bij — —¢iilp)-

Here we used ¥ ;¢? = 1, so @ (1) = h. Thus, we sought to maximize the
quadratic form ¢!M(p)c, under the constraints 3 ;¢ = 1, and ¢ > 0, to
insure the positivity of G;. The maximum of this form subject to 3, ¢? = 1
is given by the maximum eigenvalue of the matrix M(p), and the vector ¢
is its associated eigenvector. Experimentally, we found that taking 4 = 2.3
and N = 40, the restriction ¢; > 0 is satisfied automatically.

A major disadvantage of this method is that when we increase A (as we

would like)’ we find positive and negative entries in the eigenvector c.

4 Numerical calculations

This section is devoted to the justification of the numerical results which
involve numerical integration and showing that, for various functions F,
Re(®p(s)) stays above a certain value in some regions inside the critical
strip. All the calculations we are about to describe were done in a Sun
SPARCstation 20, using PARI version 1.39.03.

Throughout this section, we fix the precision of our final results to 6
decimals.



Consider first F' = Ty.a- By Remark 4, we need to compute the integral

L(y,a) = /000(1 — cos(ax)t,(x))h(x)dzx

since .

[0 -2 e = Liy, 0+ Ligo)

0 2 2 2
We calculate L(y, a) using Simpson’s rule. We split this integral in the in-
tervals [0,1], [1, N] and [N, oo], where N is chosen so that, in this last ipn-
terval, each integral is negligible to 6 places. In the interval [, N], we use
Simpson’s rule, estimating the fourth derivative of (I — cos(az)t,(z))h(z).
This is used to choose the grid for the sample points. Let E(y,a) be the
integral defining L(y,a) taken in the interval [0,1]. Fix a and y, and let
g = 1= cos(az)t,(z). We compute I, by expanding r(z) in its Taylor

series W —_—
~ 2% TEM(0) o
HE] = a4 —— 2,2
EI (2M)! ’
where 0 <0 <z < 1. Using the Fourier transform of ty, we get a bound Ry,
for the M-th derivative of r. Then we have

M-1 " )
L(y,a) = Z gk + iﬂzk} + Ry
=1
where
1 :L‘2k p ; 1 m'zk p
itk = o sinh(z) " P = fo cosh(z/2)2 *

and Ry < (2M)!'Rpg(agns + anP2m). The integrals ay and By can be
calculated in terms of Bernoulli and Euler polynomials, which have known
bounds [Ab]. Thus, we choose M such that

R r
ﬁ?(QZM + ,‘2—;,621;4) < 1078,

To calculate @, ,(s), we use (6). Thus, we only need ®,. for a = 0. In
this case, using Parseval’s formula

) ; O P w(afy)
T 8§ —=)zr)dr = — ORIt or L oy 2
-[_oo vo(T) exp((s 2)‘7) T 8y [,2/,, cosh(m(z 4 z)) 5

16



where z = —i(s — }). Here we used the Fourier transform of 1/ cosh(z/2).
This integral converges for Re(s) < 1. In practice, it was used for 1 <
Re(s) < 0.99 and is easily calculated, for the values of y used here, with
the Trapezoid rule. For 0.99 < Re(s) < 1, we compute the integral directly
using Simpson’s method. In this case we estimate the fourth derivative of
T,po using its Fourier transform, and obtain a crude upper bound for the
fourth derivative of Ty o(x) exp((s — 1)) using Leibniz’s rule.

For the function H, the only numerical integral is (1 — H(z))k(z), since
Oy is given explicitly. We write this integral as

"t~ M e = I ki W1-H@), L
[) (L — Hz))k(z)dz m./;/y ke )da ~ Qn/ coqh(r/‘Z) 2
where y = 0.25495, and

/v 1 — H(x)
1= [V
o sinh(z/2)
/v 1 — cos(myz) 1y gy cos(myx) 1 Vv sin(ryx)
= . e —/ ———dx.
fo sinh(z/2) d£+.[) sinh(z/2) =¥ o sinh(z/2) ’

and calculate these integrals in the intervals [0,1] and [I,1/y], using the
Taylor’s series and the Trapezoid rule respectively, with estimations similar
to those for L(y,a).

Finally, for P., we only need to compute

) 00 _l _ eMca“ 7_1 7-1 o0 6—C1‘
f (L= Y] dor= o sinh(z) o n * 2n Jo cosh(z/2)? i

The last integral is calculated explicitly as the Laplace transform of cosh(z/2)~2,
and for the first we proceed as for L(y,a).

To obtain the regions shown in §2, we proceed as follows. As Re(®F) is
harmonic, to insure that it stays above a certain value m in regions inside the
critical strip it is enough to check that Re(®p(s)) > m for s on the border
of these regions. By using polygons to approximate these borders, we are
reduced to showing that Re(®r) > m is satisfied in the segment joining 2
points z; and 2z;. To do this, let p(t) =tz + (1 —t)2z;, with 0 <t < 1, be a
point in this segment, and ¢(¢) = Re(®y(p(t))). We put

2
P(t) = 9(0) +15'(0) + 5" (D),

i



where 0 < { < t. Then, with an estimate of ¢"(#), it is enough to take z
and z, close enough to get ¢(t) > m.

The actual points used to approximate the regions, as well as the pro-
grams used to do all the calculations described here, are available upon re-

quest.
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