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RESUMEN

A mediados de los afios 70, Y. Morita y J. Diamond definieron dos funciones p-
adicas distintas, ambas andlogas a la funcién log I'(z) cldsica. Estas funciones comparten
propiedades similares, pero ninguna de ellas tiene a todo C, como su dominio. Definimos
un andlogo p-ddico de la funcién logI'(z), que tiene a C, como dominio, y demostramos
que las funciones de Morita y Diamond son casos particulares sobre ciertos subdominios.
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ABSTRACT

Two different analogues of the classical log T'(z) function were defined in the mid 1970’s
by Y. Morita and J. Diamond. Although they share similar properties, neither of them
has the whole of C, as its domain. We define a p-adic analogue of log I'(z), with C, as
its domain, and show that it specializes to Morita and Diamond’s functions on certain

sub-domains.
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1. INTRODUCTION

In the mid 1970’s, two different (but not that different) p-adic analogues of the classical
logI'(z) function were defined by Yasuo Morita [Mo] and Jack Diamond [Di]. We recall
that logI'(z) is the logarithm of the classical I'(z) function, and that it satisfics the
difference equation

logT'(z+ 1) —logT{z) = logx (x > 0) (1)

and the integral formula

/Olllog<%t—))dt=mloga:~x (o 3= @), (2)

discovered by Joseph Ludwig Raabe in the 1840’s [Ral, §2] [Ra2, §1] [Ni, §34]. Also,
logI'(x) satisfies a characterization theorem. Namely, it is the unique convex function
defined on (0, 0o) satisfying logT'(1) = 0 and the difference equation (1).

In Morita’s paper [Mo], he defines a p-adic analogue of T'(z), that we will call Ty, which
has Z,, as its domain and takes values in Z;.l For positive integers n. 'y is defined as

FM(T?,) = (-ul)n H _j'

Morita proves that this function is continuous over N (with the p-adic topology) and
extends to a continuous function on Z,. He also shows that Ty : Z, —» Z,, satisfies the
functional equation

Tm(z) -1 ifzepZ,.
Since I'y is continuous on Z,, it is completely characterized by its value Iy(l) = -1

and by (3). The function I'y also satisfies an analoguc of the well known formula for the
classical I'-function [Ni, p. 14]

m

I(1—a)(z) = = 310

sin 7

lpor p a prime number, we let Z,, @, and C, denote, respectively, the ring of p-adic numbers, the

field of fractions of Z,, and the completion of the algebraic closure of Qp. If A is a commutative ring
with identity, A* will denote the group of units of A.
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Namely, if p is an odd prime? and z € Zp, then [GK, p. 572, Lemma 2.3]
Tyl = z) Pu(z) = (-1)° (z € Zy), (4)

where £ is the unique integer with 1 </ < p and £ =z (mod pZ,).
To prove analytic properties of his function, Morita actually works with the Twasawa
p-adic logarithm log, of T’y [Ro, §V.4.5] [Sc, §45]. We will write this function Logly, i.e.,

Logl'm(z) := log, Ty (z) (o € Zp).
Taking the Iwasawa logarithm on both sides of (3), we find that Logly satisfies the
difference equation

log,, if x € Zy,

Loglvi(z + 1) — Loglu(z) = (5)

0 il 2 s
in analogy to (1). It is then immediate that Logly is uniquely determined by the value
Logly(1) = 0 and by the difference equation (5). Also, by taking the logarithm on both
sides of (4), we find that Logly satisfics the reflection formula

Logl'v(1 — ) + Logly(z) =0 (z € Zy). (6)
Morita’s Logl'y; function can be given by the integral formula [Sc, §58]
TLoglilal] == f (z+8)(logy(z +1) ~ Vxge+t)dt  (zeZ,), ()
Zp #

where Xz denotes the characteristic function of Zy,, and where the integral on the right
is the Volkenborn integral.® Henri Cohen and Eduardo Friedman [CF, p. 370, Prop. 2.4]
showed that LogT'y; satisfies a Raabe-type formula, similar to formula (2) for the classic
log I'(z) function. Namely, we have the integro-differential equation

/ Logl'm(z +t) dt = (z — 1) Logl'y/'(z) — z + (%} (z € Zy), (8)

ZP
2For p=2, equation (4) takes the form TM(1 —2)Im(z) = (=1) ! where 2 = ag + ;2 + @222 + - - -

is the expansion of z € Zy such that a; € {0, 1} for ¢ > 0 [Se, p. 111, Prop. 37.2].
3¢ g : Zp — C, we say that g is Volkenborn integrable if the limit

1B
fz glt)di = lim =3 g(j)
p J=0

exists, and we will call it the Volkenborn integral of g [Ro, §V.5] [Sc, §55).
2



where | — | is the p-adic limit of the usual integer ceiling function [—ﬂ as T, — « through

Ty € Z, and where the integral on the left is again the Volkenborn integral.

Another important property of LogI'y is that this function is locally analytic on pZ,
in the sense that it has a power series expansion around 0, convergent for all z € Plp.
Namely [Sc, p. 177, Lemma 58.1], for all z € pZ, we have the identity

n+ )\n _
LUgFM = )\1 T+ Z . 111*1 9

where
A :=/ ng(t) log, tdt, An :=/ Xz;(t) 1" dt (n € N).
Z, Zp
Actually, this power series defines an analytic function on the open unit ball
B(0;17) :={z € Cp| |z|, < 1}
of C, [Se, p. 177, Lemma 58.2]. Hence, we can extend the domain of LogI'y to B(0; 17)UZ,
by defining

[ore} (71)72,—1 )\'rH—l

Pl a D1
(£ 1) z (x € B(0;17)),

LDgFM(iC) = )\13‘3 +

=1

but it can be shown that with this extended definition, Logl'y; is no longer the Iwasawa

logarithm of a p-adic function.

Diamond [Di] defines his p-adic analogue of the classical log'(z) function, which we
will write Logl'p, by the Volkenborn integral

/(z+1‘ gz +t)—1)dt  (z€Cy\Z,). (9)

Diamond showed that his function is locally analytic on z Cp \ Zy, takes values in C,,
and that it satisfies the difference equation [Di, p. 326, Theorem 5]

Logl'p(z + 1) — Logl'n(x) = log, x (z € Cy\ Zy), (10)
and the reflection formula [Di, p. 327, Theorem §]

Logl'n(1 — z) + Logl'p(z) =0 (x € C,\Zy). (11)
3



The fimetion Loglp also satisfies a Raabe-type formula like (2) and (8), and a charac-
terization theorem [CF, p. 364]. Namely, Logl'p satisfies
' 1
/ Loglo(z+8)dt = (o~ DLogln'(@) — o+ 3 (2€C\Z), (12
ZP
and it is the only locally analytic function f : C, \ Z, — C, satisfying the difference
equation

fl@+1) - f(z) = log, (z € G\ Z,)
and the Volkenborn integro-differential equation
1
/ fle+t)d = (@~ 1)f (@)~ 2+ (z € C,\Z,).
Zip

Comparing formulas (7) and (9), we notice that Logl'y and Logl'p have very similar
expressions involving a Volkenborn integral. Equations (6) and (11) shows that Logl'y
and Logl'p have identical reflection formulas, and (5), (10), (8) and (12) show that these
functions satisfy similar difference and integro-differential equations. Also, notice that
the domains of Logl'y and Logl'p are disjoint and complementary in C,. Finally, we
mention that if we would like to extend Logl'p to C,, then the difference equation forces
LogI'p to be discontinuous on either the positive integers or the negative integers. Since
both these sets are dense in Z,, Logl'p cannot be extended continuously at any point of
Ly .

The aim of this thesis will be to define a new p-adic log-gamma function, with C, as
its domain. We will define a new p-adic log-gamma function Logl', : C, — C, by the
Volkenborn integral

Logl,(z) := / (z +1t)(log,(z +t) — 1) ya(z + 1) dt,
ZP
where x; the characteristic function of the complement of the open unit ball BOI~f =

{zeC, |z, > 1}." This function will be proved to be locally analytic on C,, and to

satisfy the difference equation (Proposition 3.2)

Logl'p(z + 1) — Logly(z) = x1(z) log, = (z € Cp),
as well as the reflection formula (Proposition 3.6)
Logl'y(1 — ) + LogT'p(z) = 0 (x € C,).

4Actually, our definition (Definition 3.1) will be somewhat more general, but the one given above is

sufficient for the case. What we now call Loglp (), will be the special case LogTy{z|1).
4



On certain sub-domains of C,, Logl',(z) coincides with Morita’s function, on other
with Diamond’s. Namely

Logl'p(z) = LogTy(z) (x € Zy),

LogT'y(z) = Logl'p(z) (z €Cy, ||, > 1),
as we will show in §4. These identities will also help us compute the local power series
for Logl'y(z) (Theorem 4.8).

The function Logl',(x) satisfies a Raabe-type formula and a characterization theorem
similar to the one satisfied by Logl'n(z). Namely (Theorem 3.3),

/Z Logly(z +t)dt = (z — 1) Logly'(z) — Rp(z) (2 €C,),

P

where I, : C, — C, is the function defined by the Volkenborn integral
Rya) = [ @+ e+ dr,
ZP

which we calculate explicitly in Proposition 3.4.
Moreover, Logl'y(z) is the unique locally analytic function f : C, — C, satisfying the
difference equation

fl+1) = f(z) = xa(z) log, (z € Cp)

and the Volkenborn integro-differential equation

/? flz+t)dt = (@ - Df'(0)— Ro(z) (z€C,).

2. SOME PRELIMINARY RESULTS

2.1. Residue field and a partition of C,. For z € C,, |z|, will denote the p-adic
absolute value of z normalized by |p| b= p~ L Forr€R, r >0, we will write

B(z;r)={y€Cp| |z - yl, <r}and B(z;r)={yeCp| |z - yl, <r}
for the open and closed ball, respectively, centered at = with radius .5 Also, let
Z, = B(0;1) and M = B(0;17)

be the ring of integers of C, and the maximal ideal of Z,, respectively. Then the quotient
Z,/M is a field, called the residue field of C,, and it is isomorphic to F,, the algebraic

°For a brief review of the basic properties of | |, and of open and closed balls see [Ro, pp. 73, 77].
)



closure of the finite field with p elements F,.6 If z € Z, then we will write Z for its natural
image in [F,,.

Now, let a € C;. If |z, < |al,, or equivalently, if z € B(0; lal,), then za~' € B(0;1) =
Z,, s0 it makes sense to write za=1. For 0 < ¢ < p — 1, define the sets

Sae = {z € B(0;al,) | za-T =7}, (13)

where £ € F, € F, as £ € Z. Actually, we can define the sets S, ¢ for all £ € Z, and it is
easy to show that we have S,y = S, if £,k € Z with £ = k (mod p). Also, define the
sets

Saco = {z € B(0;]al,) |xa™1 ¢ Fp} and T, := {z € G, | |z|, > |al, }. (14)

Definition 2.1. Let a € C; and write aZ, := {at |t € Z,}. We will say that an arbitrary
subset D C C, is aZy-invariant, if for all z € D and for all t € Z, we have t +at € D.

Trivial examples of aZy-invariant subsets of C, are C,, aZ, and C, \ aZ,. Later we
will need the following lemma

Lemma 2.2. With the above notation, we have

p=1
(i) |J Sa = {z € B(0;]al,) | za~T € F,}.
£=0 i
(ii) Let S, := U Sae. Then S, is aZy-invariant.
£=0

(ili) For0 <€ <p-1, S ={z€C,pl |z - all, < |a|p} = B(at;|al, ), so that the
sets Sy, ¢ are open balls.

(iv) The sets T, and S, are open and closed in C,.

(v) The sets T, and Sa o are aZy-invariant, hence Ty U Sy o0 is aZy-invariant.

Proof.

(i) Clear since F, = {0,...,p—1}.

(ii) Suppose = € S,; for some 0 <7 < p—1, and let ¢t € Z,. Then 7 = § for some
0<j<p-1, and we deduce that za=1 +t =7+ j = k for some 0 < E<p-1.
Thus, z + at € S, x, and the result follows.

(iii) The second equality is just the definition of B(af; lal,, ). For the first equality, let
z € Cp. Then z € B(at;lal,) <= |z -al], < la|, <= |za™" - £’|p <1 =
za~l={f & £ € Suy.

6See [Se, p. 25, Definition 11.2] and [Se, p. 45, Corollary 17.2].
6



(iv) Since the closed ball B(0; |al,) is open and closed, its complement T, is open and
closed. Also, by (iii) we have that the set S, is open and closed, thus T, U S, is
open and closed, and then its complement S,  is open and closed.

(v) Let t € Z,. Then, in particular, |t|, < 1 and |at|, < |af,. If € T,, then
|z|, > lal, > |at|,, so that |z + at|, = |z|, > |a|,, which means that z + at € T,.
Now, if y € Sg0, then |y +at|, < max { |y|,,|at|, } < |al,, hence (y+at)a~lis
defined. Suppose that (y +at)a~' = ya~1 +t € F,, so that y + at ¢ S, . Since
[, is a subfield of F, and € Fp, then ya ! = ya~ '+t -t =ya '+t -1 € I,
contradicting y € S oc-

]

Notice that, by (i), (iii), (iv) and by its definitions, the sets Sy0,..., Sap-1, Saec and
T, are open, mutually disjoint, and its union is C,. Hence, we have a partition of C, into
open subsets.

2.2. Locally analytic functions. Let D be an open or closed ball in C, with center
y € D and with positive radius. We will call a function f : D — C, analytic on D if f
can be represented by a power series

fz)=> an@—y)" (15)
n=0
convergent on D, where a, € C, for all n € Np."

Now, let A be any subset of C,. We will call a function f : A — C, locally analytic
on A if for each a € A there is an open ball D C A with positive radius, that contains a,
such that f is analytic on D. It is easily seen that we may replace the word open for the
word closed in this definition.

Now we state a result due to Diamond [Di] that will allow us to define a new p-adic
log I'-function.

Proposition 2.3. Let f : C, — C, be a locally analytic function on Cp, and let a € C,
be fized. Then, for all b € N, the limit

bp"—1
1
F(z) := lim — flx+aj 16
(@)= Jim g 3 fla+a) (16

"We will use the convention Ny = N U {0}.



exists and 1s independent of b. Moreover, F(x) defines a locally analytic function on
and we have the identity

bp"—1
Proof. The existence of (16) is a special case of [Di, p. 324, Corollary|, and the identity
(17) follows immediately from [Di, p. 325, Theorem 3].
O

We can restate Proposition 2.3 using the Volkenborn integral [Ro, §V.5] [Sc, §55].

Lemma 2.4. Let f : C, — C, be a locally analytic function on Cp, and let a € C;, be
fized. Then the Volkenborn integral
F(z):= | flz+at)dt (18)
ZP
exists and F'(z) defines a locally analytic function on C,. Moreover, we can differentiate
under the integral sign, that is
Flz)= | f(z+at)dt. (19)
Zl)
Proof. This follows immediately from the definition of the Volkenborn integral, letting

b =1 in Proposition 2.3.
U

Remark. The Volkenborn integral is usually defined for strictly differentiable functions
[Ro, §V.1.1][Sc, §27]. Let X be any non empty subset of C, with no isolated points and
let f: X — C,. We say that f is strictly differentiable® at a point o € X if

i M (20)

(z,y)—{(a,a) r—yy

exists, where we take the limit over x,y € X such that z # y. We say that f is strictly
differentiable on X, or that f € CY(X), if f is strictly differentiable for all a € X. If
f € CYZy,), then the Volkenborn integral

p*—1
dt = lim —
épf(t) b=l ;f@)

8Schikhot call such functions coutinuously differentiable.
8



of [ exists [Ro, §V.5.1][Sc, §55]. All the properties of the Volkenborn integral that we
will mention from [CF], [Ro] and [Sc] are proved there for strictly differentiable functions.
Since any locally analytic function on an open set X C C, is actually strictly differentiable
on X [Sc, p. 91, Corollary 29.11, these properties hold for locally analytic functions on
X.

Perhaps the simplest non trivial property of a function F defined by (18) is that it
satisties the difference equation [Di, p. 325, Theorem 4] [Sc, p. 168, Prop. 55.5]

F(z +a)— F(») = af'(z) (z € Cp). (21)

The proof is simple since by definition we have

]
1

Flz+a)~ F(z)= lim — > (f(z+a(j +1)) - f(z + aj))

J=0

= T = (flz+ ap™) — f(z)) telescoping sum]

n—co Pt

=a lim j;(f(l? + ap™ ) — flz)) la # 0]

n—00 (1p
= af'{z).
Finally, we will use the following result [CF, p. 369, Lemma 2.2).

Lemma 2.5. Let f and F be as in Lemma 2.4, and let a € C,. Then we have the identity

/Z F(z +at)dt = F(z) + (z — o) F'(z) - /Z (z + at)f'(z + at) dt (22)

valid for all z € C, .
Proof. Let w(z) :== F(z+a)—F(x) = af'(z), by equation (21). Then w is locally analytic
on C,, and we have the telescoping sum

Flz +aj) = +Zwr+ak (7 € Ny).

Hence,

T

5 P pt—1 j—1
1

1
— Flz+a Flx w(z + ak)
=Y Fata) = F@) + 5 3 S ul

3=0 j=0 k=0

—

] Hes
. Z(p —1—kjw(z + ak)
g,

9

= F(zx) +



pr-1
—F@@) + = Y (5" — 1 - K)w(z + ak)
» k=0

-1 =1
= F(z) + 3 wlo+ak) - ;% S (kb + w(a + ak).
k=0 k=0

Since w is locally analytic, we have

p=1 1 p"—1
lim Z w(z + ak) = (llim p") ( lim — w(z + ak)) =},

n—+00
k=0

Thus,

f Flz+at)dt=F(z)— | (t+Dw(z+at)dt
Zp Zp

= F@) - [ (at+a)fa+at)d
Zp
= P(z) + (2~ a) / Pt = f il oot &t
Z, Z,

= F(z)+ (¢ — a)F'(z) — / (z + at) f'(x + at) dt .

Zp

3. A NEW p-ADIC LOG-GAMMA FUNCTION

In this section we define a new version of the p-adic log-gamma function and prove
some of its properties.
For a fixed a € C; let us define the function h: C, — C, by

0 if ||, <lal, ,

h{x) = hizle) 1= (23)

zlog,z —x  if ||, >|al, .
If we call y, the characteristic function of the set B(0;|a|,)® = {z eC,| |z|, > |al, },
we can write
h(z|a) = z(log,x — 1)xa(z). (24)
Since the open ball B(0;|al,) is also closed, its complement in C, is open, so in (23)
we have defined h by its restriction to disjoint open sets. Now, the null function is
trivially analytic on Cp, and so is the identity function. Also, log, z is locally analytic on

B(0;]al, )¢, in fact on C; [Sc, p. 131, Prop. 45.7]. Thus the function zlog,z — z is also
10



locally analytic on the open set B(0; lal, ). Hence, the function % is locally analytic on
C,. Therefore, by Lemma 2.4, the following definition makes sense.

Definition 3.1. For a € C; fized, define the locally analytic® funtion Logl', : C, = C,
by the Volkenborn integral

1
Logly(z]a) := 2t h(z + at|a) dt (25)

where X, is the characteristic function of the set B(0; lal;)¢ = {z € C, | |z, > |al, },
and where h(z|a) = z(log,x — 1)x.(x).

Hence, we can write

il
Logl'y(z]a) = - /? (z + at)(log,(x + at) — 1) xu(z + at) dt .

The simplest property of Logl', is the following difference equation.®
Proposition 3.2. For all z € C, we have the difference equation
Logl'y(z + ala) — Loglp(zla) = xa(z) log, ., (26)
where y, 18 as in Definition 3.1.
Proof. This follows from (21), noticing that
W (ala) = xo(x) log, s. (21)
O]

The function Logl', satisfies a Raabe-type formula and a characterization theorem
similar to the one satisfied by Logl'p [CF, p. 364].

Theorem 3.3. The function Logl', satisfies

1
/ Logl'p(z + at|a) dt = (z — a) Logl,'(z|a) — - R,(z|a) (zxeC,p), (28)
Zp

where R, : C, — C, is defined by the Volkenborn integral

Ry(ala) = / (a4 aBsln + uf) ., (29)

P

9Also by Lemma 2.4, Logl'y is locally analytic on C,. We will give its local power series in §4.
Pyom now on, we will write LogD'y, for the function Logly( - |a) when a € C; is fixed.
11



Moreover, for a fired a € €, LogTy, is the unique locally analytic function f : C—-C,
satisfying the difference equation

f(z+a) = f(z) = Xa()log, = (30)
and the Volkenborn integro-differential equation
; 1
[ fa+ait =z — 0 - = Ry(zla). (31)

Proof. First we prove formula (28). Using (22) and (27) we have

/ Logl'y(z + at|a) dt = Logl',(z]a) + (z — a) LogI'y'(z|a)
Zy

i
- / (z + at) log,(z + at) xa(z + at) dt

Zp

= Logl'y(z]a) + (z — a) Logl',/(z]a)
— Lol (#]a) — é f (& + at)xa( + at) dt
Zp
1
= (z - a) Logl',/(z]a) — ERP(:L'ICL) ;
To prove the uniqueness we follow [CF]. Suppose f : Cp — C, is a locally analytic
function satisfying (30) and (31), and let g(z) := Logl',(z|a) — f(z). From equations (26)

and (30) it is easily seen that g(z+a)-g(x) = 0. Inductively, we have that g(z+aj) = g(z)
for all 7 € Ny, and then

p"—1 -1
1
/g(.r—i—at t-—11m—Zg'1:+a] 11m—~Zg(a:)=g(;n).
z

" n—oo Pt n—oo Pt £ -0
On the other hand, from formulas (28) and (31), we have the equality

/ 9(z + at)dt = (z — a)g'(xz).

Zp

Since g(z + ap”) = g(z) for all n € Ny, it is clear that ¢/(z) = 0 for all z € C,. Hence

g(z) =/Z gz +at)dt=0.

We now compute the function R, defined by (29).
12



Proposition 3.4. For » € C,, we have the explicit expression

¢ 4
x—f—f—g—--a[—] zf]:ca‘l—fj <1forsame€€Z,
Bfely={ P P lp ’

T — 3 otherwise,

where [c] is the usual integer ceiling function force Q.
A consequence of the proposition is that

- R p(%la) = By(za™"[1). (32)

One checks that lza—? < €| < 1 implies that =], < la| , and that % _ a V] only
p p ¥y p p
depends on ¢ modulo p.

Proof. We begin the proof with the easy case, which is when |z, > |a|,. Then |z + at|, =
||, > lal,. Thus, y,(z +at)=1for all t € N, and

Rp(:cfa):/ (% + at)Xa(z + at) dt

Zyp

= lim — Z(m+a3)ya (z + aj)

n—oo p

-1

=l 3w e L ZJ

" -1

=r—+a lim P
n—0C

= 5

Now, suppose that |2 < |a|, and write u = za™t, so Ju < 1. Then
p P D

By(zla) = f (z + at)xo(z + at) dt

Zp

= lim ] Z (:c+aj))(a(:c+aj)

n—roo it B
1 ;
= lim = Z (z + aj)

O<j<pm™
le+aj lp=lal,
13



0<j<p™
lu+4l, <1

In the last sum above, the condition |u + j |p < 1 is equivalent to |:m‘1 -+ j|p < 1 and
hence, if such j does not exist, this sum is 0. Then, in this case, we also have

Ry(zla) =z — =.
2
The remaining case is when ||, < |a|, and |za™" — ¢ [p < 1 for some integer ¢, which
we may choose to satisfy 0 < £ < p — 1. Thus |u—£|, < 1. Then, in the sum in (33),
the condition |u + j|, < 1 is equivalent, by the strong triangle inequality, to |£ + < 1s
Since £ + j € Ny, this is also equivalent to the simpler condition p | (¢ + 7). Hence we
have

D (i)=Y (u—t+0+7)

0<j<p” 0<j<p™
[utj], <1 pl(£+7)
= E (u—247)
£<i<b4p™
pld

= Y (u—l+pj)
£<jctpnmt
= ), (u—t+p
AENDITS

= ) (u—ﬁ+pj+p[ﬂ)

0<j<pn1
14



n— L ‘g -
=p" Nu—0+p [nﬂﬂv Y, i

OSJ <pn-— 1

Replacing this in (33) we obtain

; 1
Rp(:cla)za:—% _anli:vnoloi;g E | (u+3)
0<i<p™
[u+jl,<1

w  al £ 1
=$%§—ﬂ+iair—]—aﬁm = Z J
p P Bl e ptt g

The next result reduces the calculation of Logl,(z]a) to the case @ = 1.
Proposition 3.5. For all a € C, and z € C,, we have the identity
Logl'(z]a) = Logly(za™'|1) + Ry(za™|1) log,a. (34)
Proof. By definition we have

17
Logl'y(z|a) = 2/, (z + at)(log,(z + at) — 1) xa(z + at) dt
P
== fz (za™t + 1) (log,(za ™t +1) — 1+ log,a)x1(za™ +1) dt
P

= Loglp(za 1) + log,pa,/ (za™ ' + t)x1(za™t + 1) dt

Ly

log
= Loglp(za™'|1) + %/ (x + at)xq.(z + at) dt,
z

P

and the result follows by (29) and (32).

Finally, we give a reflection formmla, for Logl', .
Proposition 3.6. For all v € C, we have the reflection Jormula

Logl'y(a — z|a) + Logly(z|a) = 0. (35)
15



Proof. To prove this, following [CF], we will use the characterization of LogI', given in
Theorem 3.3. Write f(z) = — Logl,(a — z|a). We will show that f satisfies (30) and
(31).
The difference equation (30) is easy, since hy (26), we have
f(z+a) — f(z) = Logly(—x + ala) — Loglp(—=|a) (36)
= Xa.(_LE) 1ng(‘m’;l:)
= Xa(z) log, x,
where in the last equality we used the fact that x,(z) and log, © are even functions.

To show that f also satisfies the integro-differential equation (31) we will use the identity
[Sc, p. 169, Prop. 55.7]

/ fetat)di= [ Flz+a(-1—1)dt. (37)
Z J 2,
Replacing the definition of f in (37), we have
flz + at)dt = —f Logl'y(2a — z + atla) dt .
Z Zp

Applying formula (28) to the right hand side, we obtain
, 1
f f(z +at)dt = (z — a) Logl,' (2a — z|a) + - R,(2a — z|a) .
Zp

One easily sees, using the derivative of formula (26), that

LogTy'(2a — x|a) = Logly'(a — z|a) — Xa;fl — )
; — a4
- fle) - 2el2—2)

r—a

y

and thus ‘
[ f@+adt =@~ a)f @)~ xala— )+ 2 Byf2a—ala).

Hence, we need to show that for all z € C,, we have
1 1
" Rp(zla) = —xala —z) + p Ry(2a — zla). (38)
By (32), equation (38) is equivalent to

—Rp(za™M1) = —xo(l —za™") + Rp(2 — za™ 1) (39)
16



Reordering and writing u = 1 — za™! in (39), we obtain that (38) is also equivalent to
showing that for all u € C,, we have

x1(u) = Bp(1 = ull) + Ry(1 +ul1), (40)
thus reducing us to the case where a = 1.
Let 51,¢,.51,00 and Tj be the subsets of C, defined by replacing e = 1 in (13) and (14). If

U € 51,00UTY, since by (v) in Lemma 2.2 this set is Z,-invariant, then 1—u, 14+u € B, el T
Also, since u € S} oo U T, then x;(x) = 1. Thus, by Proposition 3.4, we obtain

&U—UH)h&ﬂ+ﬂﬂﬁzﬂ—u-%y+ﬂ+uﬁ%)m1=xﬂm.

Now, let u € S}, for some integer ¢, which we may choose to satisfy 1 < £ < p. Then
l1—u€ Sy ¢and 14+ u € Sy 4y, and by Proposition 3.4,

1—u+(1—m_[1—q

Ry(l1—ul)+ R(1+u|l)=1—u—

p p P
+1+”*1+u+(1+®‘{1+q
p P P
mQA[i—g]—{l+gl. (1)
b p

1-¢
Since 1 < ¢ < p, then 1 — p<1-{£<0, and we have that |——| = 0. Also since

P
L < £ < p, we have that x;(u) = 0 if and only if £ = p. By this and by (41), we obtain
that (40) is equivalent to showing that

5 [Hﬂq 1 ifl1<i<p-1,
p 0 ife=p,

b

which is immediate. Since Co=81,UTT U U 514, we have covered all cases, and the
£=1

proposition follows.

]
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4. RELATION WITH THE FUNCTIONS OF MORITA AND DIAMOND

We now take a look at the relation of Logl', with Morita’s and Diamond’s functions.
We also compute the power series expansion for Logl',. We use of the notation given in
§2.1.

Let us start with Diamond’s function,

Logl'p(z) :=/7 (z+t)(log,(z+1t) — 1) dt (x € Co \Z,).

This function satisfies a characterization theorem [CF, p. 364] that states that if D
Cp \ Z, is any nonempty Z,-invariant subset, then Logl'p is the only locally analytic
function f: D — C, satisfying the difference equation

flz+1) — f(z) =log, = (z e D) (42)

and the Volkenborn integro-differential equation
1

/% fla+)dt = (= 1)f(c) ~ 2+ 5 (z € D). (43)

Actually, the original statement is for D = Cp\ Zy, but it is easily seen that its proof in
[CF] is valid for any nonempty Z,-invariant subset D. Thus, we can take D = T} | 5
(see (14)) since, from (i) in Lemma 2.2 and from the remark after the same lemma, we have
that 73 US100 € C,\ Z,. Also, from (v) in Lemma 2.2, the set T U S oo 18 Zgp-invariant.

Similarly, Theorem 3.3 can be extended to conclude that LogI',(z|1) is the only locally
analytic function on 77 U S} ., satisfying both

fle+1) ~ flz) = xa(z) log, = (zeT1US100)
and
/ fle+t)dt = (z - 1)f'(z) — Ry(z|1) (x € T1U 81 00)-
Jz;
Since z € T1 U S} o, by Proposition 3.4 and by its proof, we immediately see that
1
xi(z)=1 and  Ry(z|]l)=2z-— 3 (x € ThUS 00)

We deduce that Logl',(x[1) is a locally analytic function on Ty U S; . satisfying both (42)
and (43). By uniqueness, we deduce

Proposition 4.1. Forz € Stec UTy, where Sy o and T} are defined by replacing a = 1
in (14), we have

Logl'y{z]1) = Logl'p(z) (x € S1c UTY). (44)
18



More generally, since by Proposition 3.4, Ry(zla) = x—a/2 for z € S, UT,, replacing
this value and (44) in equation (34), we obtain

Logl'p(z|a) = Loglp(za™) + (g - —;—) log,a (2 € S,0UT,). (45)

Equation (45) is uscful because of the following. By Lemma 2.4, Logl'y is locally
analytic on C,, and hence, it is also locally analytic on the open subset Sec0 UT;. We
will use (45) to compute the power series expansion for Logl',. The power series expansion
for Logl'p is known [Sc, p. 183, Theorem 60.2] and runs as follows. Let Y € C, \ Z, and
p=plyo) := 1nf { |¥ — %o, }- Then we have the power series expansion

( 1n+1

LogI'n(y) = Logl'n(yo) + 1(y — %) + Z ) T w0 (46)
n=1

valid for all y € B(ye; p~), where

Ty == / log,(yo +t)dl, They:i= / (yo+1t)™"dt (n €N).

Z, JLp

Now, let x5 € S, 0 UT, and write yo = zga~!. Then Yo € S1,0 UTy C Cp\ Zy, and a
simple calculation shows that in this case p = |Toa™|, > 1. Hence, if z € B(xy; |ol, ),
or equivalently, if za™' € B(y; %ol ), replacing in (46) we obtain

Logl'p(za™") = Logl'p(zga™) + —-(3: —xp) + Z —:iﬁil— (z — z0)" ™! (47)
; n(n + 1) a*+!

with the 7,, defined as above with yo = zga™. With the help of identity (45), we deduce
the following.

Proposition 4.2. Let z, € Sa,00 UTs, where Sq o and T, are defined in (14). Then we
have the power series expansion

1)11*1

Logl'y(z]a) = Loglp(2ola) + 71 (z — z0) + Z m Tn+1

(z — )™ (48)

valid for all © € B(zo; |zo|,), where

- 1 - 1
) = —f log,(zo +at)dt, Tnyi:= —/ (xo + at) ™" dt (n € N).
a Zs a Zy

19



Proof. Using (45) and (47), and setting yo = zoa ™', we arrive at

: _ (z — zo) (z — o) e e K . vned
Logls(z]a) = Logly(@g|a) + — log 8+——41+ HZ:; m(z )

(n+1)

For n € N, it is easily seen that 7,1 = a~ Tnt1- Also, since [ 1dt =1,

Zp

7 +log,a = / 1ng($gtl_l +t)dt + / log, adt
% Jz,

=/ log,(zo +at)dt = aT;.

Zp

O

We now consider the relation of Logl', with Morita’s function Logl'y . Recall that
Logl'y is defined by the Volkenborn integral

LogTy(z) = f (@+1)(log(x +1) — Dxgle+O)dt  (z€).
Zp ¥

The direct relation between Logl', and Logl'y is casy since Logl'v(z) is actually
Logl'p(z|1) restricted to Z,. To see this, let us go back to the function h defined at
the beginning of §3. We have
0 if <y
h(z|1) = if Jal,

Tlog,z —z if |z}, > 1,
and if we restrict ourselves to « € Z,, then
{z€Zy| ||, <1} =pZ, and {z €Zp| |z], > 1} = Z;,

Hence we have

Logl'y(z|1) = j; Xz;,(“f +t)(z +t)(log,(z +t) — 1) dt (z € Zy),

and this is exactly Morita’s function Logly.
An important property of Logl'y is that it has a power series expansion around 0, valid
for all z € pZ,. Namely [Sc, p. 177, Lemma 58.1], for all « € pZ, we have the identity

Logly(z) = Mx + Z e +’}”+1 "+ (49)



where
Xy 2= / Xz:(t) logytdt, Apyq = / Xz (1)t dt (n €N).
% Z,

2

Moreover, the right side of (49) defines an analytic function on the open unit ball
B(0;17) € C, [Sc, p. 177, Lemma 58.2]. Hence, we extend the domain of Logl'y to
B(0;17) UZ, by defining!!

( 1) L /\n+1 4 7 i
gl = g z € B0:17)). (
Loglu(z) := Az + g A - (z € B(0;17)) (50)

We notice here that if n € N is odd, then the function t — Xz*(t) t" is an odd function,
and then [Ro, p. 269, Corollary]*? implies that

iy, L@ N
An,wg_l == ‘/Z\p XZ;;(t)t fit = "“2‘ Eng(t)t = (.

t=0

Thus, we could rewrite the sum in the right of (50) as a sum over even n, but we prefer

to leave it like that because of the resemblance with the expansion (46) of the function
Logl'p.

Now, we will see the deeper relation hetween Logl'y and Morita’s function Logl'y. We

already computed the power series expansion for Logl', at each point of the open set

Saec U T, , and now we will compute it at each point of the open set S, := U Sae (see

f=
(13)), i.e., on the complement of S, o, U T, in C,. We will show that the expansions of
Logl'v(z) and Logl'y(z|1) are identical for z € Sy o = B(0;17).13
First we need the following lemmas.

Lemma 4.3. Letz,y € Spp={z € C, | |z - at|, <lal, } for some 0 < ¢ <p—1. Then
Xa(Z + at) = Xo(y + at) for allt € Z,.

Proof. By (iii) in Lemma 2.2 we know that S,, = B(a/; lal, ). Since every point in an
open ball is also its center, we have that B(a; lal,) = B(z;lal,) = B(y; |lal,). Hence,
T,y € Sg e implies |z — y] < |a| Now, suppose that t € Z, and that y,(x+at) = 0, i.e.,
|z + at|, < |a|,. Then ly—}—af] ly —z+z+at], < max{ ly —zl,, |z +at], } < lal,,

U1t can be shown that with this extended definition LogTy is no longer the Iwasawa logarithm of a
p-adic function.
F §
0
12\Tameh when f is an odd function, then / fl&)dt = —%l.
BThis equality is actually a simple consequence of p-adic analytic continuation, but to stay in the

spirit of this exposition we will give a direct proof.
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and thus, x.(y + at) = 0. By symmetry, x.(y + at) = 0 implies v,(z + at) = 0, and the
desired equality follows.
O

Lemma 4.4. Let z,y € S0 = {m €Cpl| |z —af[p <& Ialp} for some 0 <€ <p-—1, and
suppose Xa(y + at) =1 for some t € Z,. Then

T+ al
y—+at

e ]

% 1.
p

Proof. Rewrite the above inequality as

=1
Y+ at

P

But |z —y|, < l|a|, as z,y € S, 4, and |y + at| > |a|_as y.(y + at) = 1, by assumption.
b2 P ! P P
O

Lemma 4.5. For all a € C} we have the special value Logl',(0la) = 0.

Proof. Replacing z = 0 in equations (26) and (35), we sce that Logl'y(ala) — Logl'y(0a) =
0 and Logl'p(ala) + Logly(0la) = 0. Hence, Logl'y(0la) = Logl,(ala) = 0.
O

Proposition 4.6. Let 2y € S,p = {x € C, | |z —af], < |a|,} for some 0 < £ < p—1.
Then we have the power series expansion

- 20 —1)yn+t N
LOng(TIG,) - IJOng(xD,ﬂ) + A}_(’E = IO) -+ Z é‘(#) A.n+1($ — -I:O)n' 1 (51)
n=1

1

valid for all © € B(wo; |al, ) = Blal;|al,) = Saz, where

~ 1 : 1
Ay = E/ log, (zo+at)x.(zo+at) dt, Apiy = 5/ (zo+at) "xo(zo+at)dt (n€N).
Ly 'S Lp

Proof. Let xg,z € S, . Then, by Lemma 4.3,
1
LogI'p(z]a) = - / (z + at) (log,(z + at) — 1) xa{2zo + at) dt .
Zp

Subtracting the same expression with z replaced by , after some reordering we have
22



a Logl'p(z|a) — aLogl'y(zola) = (z — ) / log,(zo + at)xa(zo + at) dt
Jz,
—(z — 3:0)/ XolTo + at) dt
Zip
+ f (z + at)(log,(z + at) — log,(z + at)) xe(zo + at) dt
Z

p

= a(r —20) A — (z — @) | xalzo + at) dt

Zp
+ [Zp (z + at) log, (ﬁ)xa(mg + at) dt . (52)
For convenience, define
(*) := aLogly(z|a) — aLogl,(zola) — a(z — @o)A; . (53)
Then we have
(%) = /zp ( —z+zo + (z + at)log, (ﬁ))xa(% + at) dt . (54)

By Lemma 4.4, in (54) we can replace the logarithm by its power series [Se, p. 131,
Prop. 45.7] to obtain

(x):[7 ($+mo+($+at)§: (=) ($+at —l)n)xa(:ﬁg—}—at)dt

o n To + at
o0 (Ll)n_'_l T — .':E[) n
_— = i a t d't
/ﬁp( :c+.c0+(x+at)n§=:1 - (m0+at) Xa(Zo + at)
oo ( l)n+l & — Ty w 1
/ Xoloo tat)a ~20) Yot (Co) (s (0)],  (59)

n=1
where in the last step we used the identity [Ro, p. 377]

o9 ( 1)n+1 n n+1 +1

B s 56
(#H”V); o Z:: n+ 1 (lul, < vl,) (56)
with pp =2 —x¢ and v = zy +at .

Now, an immediate consequence of the proof of [Di, p. 324, Theorem 2], is that we can

interchange the Volkenborn integral with the summation in (55), since the function inside
23



is analytic. Thus we obtain

oo (%1)71,—?—1 i _
()= < (z—20)"" [ xalzo + at)(zo + at) " dt
nln(n+1) Zp (G )(0 )

o ﬂ-r‘l
Dl R
- n( n+1 (z = 2)"™ @Anss

The proposition follows from (52) and (53).
Cl

The following corollary relates Logl, (z]1) and Logly(z). Recall that the power series
(50) naturally extends the domain of Logl'y from Z, to Z, U B(0;17).

Corollary 4.7. For all v € Z, U B(0;17) we have Logl,(z|1) = Logly(x) .

Proof. We already showed that if x € Z, then Logl,(z|1) = Logl'y(z). Now, since
0 € B(0;17), we can choose o = 0 in Proposition 4.6. Then, for € B(0;17) we have

1 n+1
Logl',(z]1) = LogT,(0]1) + fcf x1(t) log, tdt + Z ﬁ$n+l / xi(t)t " dt.

By Lemma 4.5, Logl',(0[1) = 0. Also, if t € Z,, then x;(t) = XZ;(t). Hence, replacing
this in the above equation, we obtain for z € B(0;17)

ik n+1 B o
Logl', (z|1) =:c/ XZ,,(t) Iogptdt+2—(—z—rT)fc”‘1/Z ng(t)t dt

= Logly(z) [see (50)].

We can summarize Propositions 4.2 and 4.6 in a single theorem.

Theorem 4.8. Let zp € Cp and a € C, and let 0 = max { |zy],,lal, }. Then we have
the convergent power series expansion
l)n-i—l o

nn+1)"" +1(z — )" (&7

Logl'y(zla) = Logl', (zola) + Ailm— zo) + Z

valid for all x € B(xo; 07 ), where

- 1 1
Aj b= —(;f log, (xo+at)xa(zo+at) dt, Ipep = a/ (zo+at) "xalzo+at)dt (n € N).
Zp Zp
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p—1
Proof. If zg € S, = U S, then ¢ = |a|,, and the proof is immediate by comparing
=0
with Proposition 4.6. Now, if 2y € Sy U Ty, then 0 = )x0|p. Also, we obtain that
Xa(Zo+at) = 1 for all t € Z,, and the result follows hy comparing coefficients in (48) and
(57).
U
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