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Abstract

Near a bifurcation the behaviour of any physical system is universal
(i.e. not depend of its specific details) and is described by a universal
equation called normal form. These equations are universality classes,
and very different dynamical systems (near to a given bifurcation) will
be described for the same normal form. Although this is mathemati-
cally strictly true infinitesimally near of the bifurcation, it occurs often
that the qualitative aspects of the behaviour of the system is still given
by the normal form even outside of the infinitesimal neighbourhood of
the bifurcation point. In this work we will show that the electrical
dynamics of a single neuron is a beautiful example of this fact.

At the present time, to describe neuronal dynamics for different
types of neurons there exist an overwhelming diversity of thousands of
high dimensional nonlinear models. These class of models are called
conductance based models (CB models) and are considered the most
biophysically realistic models. Despite the huge diversity of types of
neurons and models, they display a universal dynamics generically cap-
tured by phenomenological models of two variables (for spiking dy-
namics), and in non generic cases by three variables (for bursting dy-
namics). But the mathematical mechanisms by which single neurans
display this universal behaviour are still not clear.

We analytically show that a OB models that meet the biophysi-
cal conditions for spiking are generically in the neighbourhood of the
Bogdanov-Takens bifurcation. We numerically confirm that the dy-
namics displayed by spiking CB models is qualitatively described by the
subcritical Bogdanov-Takens normal form (a two variable equation).
Furthermore, we found an analytic method to reduce, or transform in
the two variable cases, either CB or phenomenological models to an
equation with the same form of the subcritical Bogdanov-Takens nor-
mal form. We analytically and numerically show that the reduced most
famous CB and phenomenological models (Morris-Lecar, Hodgkin and
Huxley and generalised FitzHugh-Nagumo model) are actually equiv-
alent to the subcritical Bogdanov-Takens normal form and retain all
the qualitative dynamics of the original equations.

We also show that the Triple Zero bifurcation is not generic for
CB models, but if these models meet the biophysical conditions for
bursting, then they will be in its neighbourhood. Furthermore, we
analytically show that the Hindmarsh-Rose model —the most famous
phenomenoclogical model for neuronal bursting— can be transformed
by a trivial change of variable in almost the Triple Zero normal form.

This results make an advance toward an universal description of
single neuron dynamics. Moreover the relevant experimental quan-
tities measured in experiments have a clear link with the proposed
mathematical description.
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Foreword

We shall start this Introduction to our work presenting our point of view
on the way to approach the problem of neuron dynamics of a single neuron.
We can do this from the very beginning and without even entering in any
details concerning the biophysics involved since we shall adopt a dynamical
systems approach and the idea that what one has to look for is a robust
behaviour related to the experimental facts and construct from this analysis
the simplest possible model satisfying the requirements. The fact is that
the robust behaviour of the electrical activity of a single neuron is known
and it consists in the presence of global bifurcations of codimension one
which lead to the appearance of a limit cycle. These global bifurcations
are two dimensional and then we can immediately state that our simplest
possible model will have two variables. This is what the geometry tells
us. Furthermore it is well known that the Bogdanov-Takens normal form
has two variables and has these behaviours. On the other hand one knows
through experience that normal forms are almost always easier to analyze
than an arbitrary equation and if we can modelize a problem with a normal
form it is a good idea to do it. This is exactly what we shall try to do here.
First we remark that in codimension one we have only the Andronov-Hopf
local bifurcations with two variables but its normal form does not present
the global bifurcations. We go then to codimension two and there the only
bifurcation with two variables is Bogdanov-Takens. Therefore our guess is
that in some sense all models that describe the dynamics of a single neuron
must be in the conditions in which the robust behaviour is observed, i.e. near
a Bogdanov-Takens bifurcation, and this is exactly what we prove. Since in
the experimental setup one moves only the external current one can expect
that the two Bogdanov-Takens conditions must be related and then that in
the class of models describing neurons this instability arises in some sense
with codimension one. We shall see that this is exactly what happens and
find that the necessary conditions for the occurrence of this instability are
two conditions sindicated as the mechanisms of the excitability. These two
conditions are the existence of two time scales (an indication of two variables)
and the existence of amplifying and resonant variables. One can of course
ask the question of why should one try to do this program since one knows
and it is discussed in detail in the literature that the minimal models have
two variables. The answer is that proceeding as we propose we can relate
the two variables in our two dimensional model to the physical variables
of any model with any quantity of variables, although we restrict ourselves
here to the conductance based (CB) models since it is widely accepted by

12



the community of neuroscientists that they give a complete description of
the problem. Ome can also ask if this reduction to two variables is not a
consequence of an adiabatic elimination of variables, and the answer is yes in
the sense we shall explain in detail in the section devoted to model reduction
where we show that we can eliminate adiabatically the fast variables, but not
the slow ones, a fact which is corroborated by direct numerical simulation.
The result of this last procedure is once again a Bogdanov-Takens type
second order equation in the Arnold form. Although the Bogdanov-Takens
instability is seldom mentioned in the literature (He et al., 2012) it has
always been considered in special cases and not in the sense of heing the
general mechanism underlying the behaviour of a single neuron. What we
have described here is our program. The rest of this thesis is its practical
implementation and the proof that our program is a good and successful
attempt to understand the universal behaviour of single neuron dynamics.
Then to work.

13



1 Biophysics of single neuron dynamics

In this section we will introduce some fundamental concepts of neuronal
biophysics that are necessary to understand the text. Because this is an in-
terdisciplinary work, we will try to reduce the technical biophysical concepts

to the minimum which is necessary for our purpose which is to reach a wide

audience!.

All the living cells have an electrical potential difference between their
inside and the outside which is called the membrane potential (v}. Neurons
(a type of cell) have the special feature to respond to certain magnitude
of electrical stimulus by a rapid and sharp change of their membrane po-
tential —phenomenon called membrane action potential (see Figure 3)— or
(and) having sustained autonomous electrical activity (e.g. pacemaker neu-
rons). The electrical activity in neurons is produced by ionic currents (the
four most common ionic species in neurons are: Nat, KT, Ca?* and C17)
through neuron membranes. The cell membrane is a lipid bilayer which by
itself is a poor conductor. But embedded in the neuronal membrane are
pore-forming membrane proteins called ionic channels. The ionic channels
allow the passage of the ions involved in the electrical activity in neurons
and turn then the cell permeable to ions. They selectively allow to pass
certain ion species (e.g. Na't ionic channels) or more than one type of ion,
generating the flux (an actual electrical current) of specific ions through
the membrane. The ionic channels involved in the generation of the action
potential (called voltage gated ionic channels) change their permeability de-
pending on the membrane voltage, and this dependence with the voltage is
nonlinear. In addition to this, a delicate molecular mechanism in which ionic
pumps and the hydrolysis of ATP (energy spending) by the cell are involved,
maintains constant the difference of each ion species between the inside and
the outside of a cell, thus creating electrochemical gradients. These gradi-
ents generate an actual electrical potential difference (Hille, 2001) for each
ionic species (e.g. Uynt, Ugts Voat+ and vg-) called the Nernst potential,
and these are the driving forces of neural activity. Therefore, when a neuron
is electrically stimulated (by the experimentalist or by the electrical activ-
ity of other neurons via synapses) the membrane potential changes and the
permeability of the ionic channels vary nonlinearly with the change of the
membrane potential. This may cause a time dependent influx or outflux of

11f some reader is interested in understand more in deep some aspects of the biophysics
or neurophysiology of neurons we recommend the excellent books: Foundations of Cellular
Neurophysiology (Johnston and Wu, 1994), lon Channels of Excitable Membranes (Hille,
2001) and the spanish book Biofisica y Fisiologia Celular (Latorre, 1996).

14



the membrane action potential. Some of these concepts are schematised in
the figure 1.

8L > y, Membrane

l -+ Extracellular

Figure 1: Scheme of a conductance based model. At the top, from left to right:
an sketched neuron, a cartoon of the molecular structure of the cell membrane and
a picture of a detailed molecular simulation of a ionic channel embedded in the cell
membrane. At the bottom: a diagram of a conductance based model, where the
cell membrane is represented as a capacitor in parallel to a potential dependent
resistance in series with batteries. The resistance represents the conductance of the
ionic channels and the different batteries represent the different reversal potentials.

1.1 Conductance based models

The development of a mathematical description for the electrical dynamics
of a single neuron? begun with the seminal work of Hodgkin and Huxley?

2Single neuron it refer to a neuron without synaptic connection with other neurons.
This imply that their electrical dynamics will be the result of its intrinsic biophysical
properties.

3GSee appendix E.1 for the Hodgkin and Huxley model.
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(Hodgkin and Huxley, 1952). These authors were the first to show exper-
imentally that the electrical dynamics of neurons can be described by a
class of mathematical models called conductance based models (CB mod-
els). In these models the electrical properties of the neuron are represented
by an equivalent circuit. The circuit consists of three components: (1) con-
ductors in parallel, representing the different ionic channels; (2) batteries,
representing the Nernst potential* of each ionic species; and (3) a capacitor,
representing the ability of the membrane to store charge. An scheme of the
equivalent circuit of a CB model is shown at the bottom of the Figure 1.
This physical model leads to both an intuitive and a quantitative under-
standing of how electrical signals are generated in neurons. The differential
equation that describes mathematically this kind of circuit is:

This equation physically means that the total current across the mem-
brane (I) is equal to the current stored in the membrane as a capacitor (C %’;—’
plus the sum of the current of the ionic channels (3 _; I). By Ohm’s law
each ionic channel current is Iy = Gg(v — v), where G}, is the average con-
ductance of each ionic channel, and vy is the Nerst potential of each ionic
species. In a microscopic level ionic channels are pore-forming membrane
proteins that are closed or open with certain kinetics. Because ionic chan-
nels are complex macromolecules, the probability of a ionic channel to be
open depends on the fact that different subunits of the ionic channel can
be activated and not yet inactivated® at a certain time. The dynamical
variables which represent the probability that subunits are activated and
not inactivated are called gating variables (m;(t)). Then the probability
of a ionic channel to be open can be mathematically represented by the
product of the probability of each subunit to be active or not inactive (
Hj m;(t)P4, e.g. in the Hodgkin and Huxley model the probability of the
potassium ionic channel to be open is n*, where n is the corresponding
gating variable ). Each gating variable has its own kinetics which depends
on the stationary probability to be activated (m3°(v)) and the relaxation
time of this stationary probability (;(v)), and both quantities are nonlinear
functions of the membrane voltage. Therefore in a macroscopic level, if we

4Also often called reversal potential.

5There are certain subunits that can inactivate a ion channel to be open. One example
is the gating variable h of the sodium ion channel in the Hodgkin and Huxley. Where h
represent the probability of a certain subunit not inactivate the sodium ion channel.

16



suppose that each subunit is independent, the average conductance for the
ionic channel % is obtained by the product of the maximal conductance 9k
of this ionic channel with the probability of this ionic channel to be open,
te. Gr = gp[];m;(t)?/. Then the electrical dynamics of a single neuron
can be described by a set of N +1 non linear ordinary differential equations
(ODEs), the first for the potential ( which is just the Kirchhoff law for the
equivalent circuit) and then N equations for the N gating variables):

) 1 n
& =g I—Zngmft(v—Uj)
i=1 IG‘LUJ:
mz°(v) —m;
oy - g 1)y i=1,2...N
7j(v)

where wj is a set of indices labelling the gating variables of the 4 ionic
channel.

In the past decades this class of models has been largely validated ex-
perimentally and theoretically (Johnston and Wu, 1994). This models are
considered by the scientific community as the more realistic models, in the
sense that they describe the electrical dynamics of a single neuron using a
mathematical description which has a solid biophysical and thermodynam-
ical ground (Hille, 2001).

An experimentally important characteristic time constant is the mem-
brane time. The neurophysiologist define the membrane time as the time
relaxation for an small step like electrical stimulus to a neuron in the limit
when the neuron has a linear ohmic behaviour. If we consider a CB model
for long times and very negative potentials, which in fact is the limit of a
linear ohmic behaviour, all the gating variables have relaxed to their station-
ary state and the stationary probability functions are either 0 or 1. Then
the equivalent circuit becomes a simple RC circuit with a capacitance equal
to C. If we consider that a set of n; gating variables will have a stationary
probability equal to 1 for very negative voltages, then the resistance of this
circuit willbe R =1/3",  gi. Hence, the membrane time is theoretically
defined as Tmembrane = C/ Zanl G-

1.2 Amplifying and Resonant gating variables

To understand the core of the dynamical mechanism through which ionic
channels shape the dynamics of the membrane action potential we will in-
troduce the concepts of amplifying and resonant gating variable (Izhikevich,

17



2010). The amplifying gating variable amplifies voltage changes via a posi-
tive feedback loop and the resonant gating variable resists to voltage changes
via a negative feedback loop. For a gating variable the property of being
amplifying or resonant depends only on the relation between its stationary
probability and the sign of the current® of the respective ionic channel at a
given membrane potential, i.e. if is an outward or an inward current.

In the case of the amplifying gating variable a small depolarizating per-
turbation will augment the increase of the membrane voltage causing a pos-
itive feedback. There are only two possible mechanisms for this positive
feedback and they are illustrated in grey boxes in Figure 2: 1) A gating
variable with an increasing-with-the-voltage stationary probability and an
inward ionic channel current at that voltage (the sign of v — VReverse is neg-
ative) will be such that a depolarization stimuli will increase the inward
current causing the increase of the membrane potential; and 2) A gating
variable with a decreasing-with-the-voltage stationary probability and with
an outward ionic channel current at that voltage (the sign of v — VReverse
is positive), will be such that a depolarization stimulus will decrease the
outward current causing the increase of the membrane potential.

In the case of the resonant gating variable one has a resistance to voltage
changes in the membrane potential. There are also only two possible mech-
anisms for this negative feedback and they are illustrated in white boxes in
Figure 2: 1) A gating variable with an increasing-with-the-voltage station-
ary probability and an outward ionic channel current at that voltage (the
sign of v — UReverse 18 positive), is such that a depolarization stimulus will
increase the outward current causing the decrease of the membrane poten-
tial; and 2) A gating variable with a decreasing-with-the-voltage stationary
probability and with an inward ionic channel current at that voltage (the
sign of v — UReverse 1S Negative), is such that a depolarization stimulus will
decrease the inward current causing the decrease of the membrane potential.
The explanation for an hyperpolarization stimulus is similar.

The membrane action potential is an interplay between amplifying and
resonant gaiting variables. To get an spike we need a fast amplifying gat-
ing variable (e.g. m in the case of the Hodgkin and Huxley model) which
produces a positive feedback that rapidly increases the membrane poten-
tial and a slower resonant gating variable {(e.g. n and A in the Hodgkin
and Huxley model) which generates a negative feedback to restore the po-

8The convention is that an inward current is negative and depolarize (increase) the
membrane potential and an outward current hyperpolarize (decrease) the membrane po-
tential.
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tential value. This fast positive feedback/slow negative feedback generate
oscillations called tonic spiking. Indeed, a fast inward current that rapidly
depolarizes the membrane potential (which implies a fast amplifying gating
variable) and a slow outward current (which implies a slow resonant gat-
ing variable) which hyperpolarizes the membrane potential, is considered
experimentally (Johnston and Wu, 1994; Latorre, 1996) and theoretically
(Izhikevich, 2010) the core mechanism of the action potential in the ex-
citable cells, and sometimes as the minimal necessary conditions to have an
excitable behaviour.
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Figure 2: Scheme of how amplifying or resonant gating variables depend on the
stationary probability function and the reversal potential. Adapted from the book
Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting
(Izhikevich, 2010).

2 Diversity of conductances and universality of
the dynamics

In the last decades, the detailed electrophysiological and biophysical descrip-
tion of the wide diversity of conductances (Ranjan et al., 2011) led scientists
to the possibility of building detailed CB model of almost any neuronal type
studied (Carnevale and Hines, 2006). Each different CB model —built using
adjustements of parameters with the experimental data— has usually more
than twenty nonlinear equations. Different CB models may vary the number
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of equations, the specific functions for the stationary probability (m$°(u)) or
the relaxation time (7;(u)) and the value of the parameters. This has gen-
erated in the last decades a massive production of different CB models for
different type of neurons or experimental situations, and the development
of databases of thousands of different CB models (Peterson et al., 1996).
Furthermore, each CB model, depending on the values of the parameters,
can produce different firing” patterns and there exist databases of up to a
million combinations of parameters for a same CB model (Prinz et al., 2003).

2.1 Class I and Class II neurons

Although there exists a huge diversity of type of neurons (and CB models)
there is a robust dynamics observed experimentally (and numerically) in
almost all of them. This distinctive electrical dynamics observed in neurons
is called the ezcitable behaviour of neurons. In 1948 it was Hodgkin who

classify this excitable behaviour observed in neurons in two major groups
(Hodgkin, 1948):

e Class 1 neural excitability. Action potentials can be generated with
arbitrarily low frequency, depending on the strength of the applied
current. See left of the Figure 3.

e Class 2 neural excitability. Action potentials are generated in a certain
frequency band that is relatively insensitive to changes in the strength
of the applied current. See right of the Figure 3.

Rinzel and Ermentrout were the first to note the connection between
this classification and bifurcation theory (Rinzel and Ermentrout, 1998).
They note that class 1 neural excitability is consistent with a Saddle-node
homoclinic bifurcation (see Figure 4). On the other hand, they also note that
class 2 neural excitability may be consistent with a subecritical Andronov-
Hopf bifurcation with a narrow range of bistability®. Now many authors
which classify membrane properties as class I or class II really mean Saddle-
node homoclinic bifurcation and Hopf bifurcation, respectively (Ermentrout
and Terman, 2010). It is important to mention that it was shown that the
classification is consistent with other (global) bifurcations such as the Saddle
homoclinic bifurcation (see Figure 5) or the Big homoclinic bifurcation (see
Figure 6)(Izhikevich, 2010; Kuznetsov, 2005).

"When a neuron present an action potential the neuroscientist say that it fire or spike.
®In fact, in this thesis we will show that this is a more complicated scenario when a
big homoclinic bifurcation may led to homocline bifurcations of a heterocline separatrix.
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Figure 3: Class 1 and Class 2 excitability. An electrophysiological current clamp
experiment where pyramidal neuron (left) and primary visual cortex neurons (right)
are subjected to a protocol of steps of DC current. On the bottom we have the
corresponding frequency-current (F-I) relations. Adapted from the book Dynamical
Systems in Neuroscience: The Geometry of Excitability and Bursting (Izhikevich,
2010).
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Figure 4: Typical Saddle-node homoclinic bifurcation in a single neuron model.
This bifurcation is also called Saddle-node on an invariant circle (SNIC). Adapted
from the book Dynamical Systems in Neuroscience: The Geometry of Excitability
and Bursting (Izhikevich, 2010).

Figure 5: Typical Saddle homoclinic bifurcation in single neuron model. Note
that for the bifurcation scenario one needs the saddle fixed point and the homoclinic
conuection, but in single neuron models there are often involved a node point and
an unstable focus as the figure shows. Adapted from the book Dynamical Systems
in Neuroscience: The Geometry of Excitability and Bursting (Izhikevich, 2010).
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pochinic orbit

Figure 6: Typical Big homoclinic bifurcation in a single neuron model, the basin of
attraction of the stable focus is in grey. Note that the bifurcation scenario occurs
when the unstable manifold and the stable manifold connect in the same orbit
and the homoclinic orbit formed traps the other ends of the unstable and stable
manifolds of the saddle. In single neuron models there are often involved a stable
focus and an unstable focus within the homoclinic connection as the figure shows.
It also happens often in single neuron models, that after the homoclinic connection
appears an heteroclinic separatrix which connects the stable manifold of the saddle
point with the unstable focus forms a closed figure which separates the limit cycle
and the stable focus, as is showed in the figure. Adapted from the book Dynamical

Systems in Neuroscience: The Geometry of Excitability and Bursting (Izhikevich,
2010).

2.2 Minimal models

It is interesting that although there is a zoology of firing patterns, with the
exception of the very particular dynamics observed in a few neurons called
bursting, the dynamics observed in general can be reproduced with models
of two differential equations. The literature refer to this models as the min-
imal models for neuronal dynamics because they are the models with the
minimal number of variables that reproduce the dynamics observed in neu-
rons. These can be phenomenological models® or reduced CB model. Some
of the most famous two variable phenomenological models are the FitzHugh-
Nagumo model (FitzHugh, 1961), the generalized FitzHugh-Nagumo model
(Hindmarsh and Rose, 1982) or the minimal model of Izhikevich (Izhike-
vich, 2010). On the other hand, the CB models can reduce their dimensions
(the number of equations) by different procedures. (Kepler et al., 1992;
Izhikevich, 2010) The most common is the adiabatic elimination (Van Kam-
pen, 1985). In fact, there exists also a zoology of two variables reduced CB
models, but the most famous is the Morris-Lecar model (Morris and Lecar,

9A mathematical phenomenological model is a model that reproduce a phenomena
observed in nature but which not have mechanistic ground that correlate the dynamics
observed with the physical world.
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1981), Appendix D.

3 Motivation and objectives

3.1 Motivation

There is a fundamental theoretical question still not answered: which are
the mathematical mechanisms by which neurons (described by CB
models) display an universal'’ dynamics? To address this question is
in some sense to extract the mathematical essence of single neurons dynamics
from the detailed biophysics (mathematically described by the CB models),
and build a theoretical bridge between both.

3.2 Objectives
3.3 General objective

Our general objective is to understand the mathematical mechanisms by
which neurons (described by CB models) display their robust dynamics and
then to build a universal mathematical description for single neuron dynam-
ics, relating phenomenological models with biophysical detailed CB models.

3.4 Specific objectives

e To study the mathematical structure of CB models. Study the ap-
pearance and disappearance of fixed points and the structure of the
linear system around them.

e Answer the question: Is there a local bifurcation in CB models which
can explain the universal planar dynamics observed in neurons? If
yes then the objective is to study the mechanism through which this
bifurcation appears naturally and to relate it to the mathematical
structure of CB models.

e To study the dynamics of the normal form of this bifurcation and to
relate it with the dynamics observed in CB models.

0Tn nonlinear dynamics an universal dynamics is a dynamic appear invariantly in na-
ture under certain circumstances not matter the specific system. As discussed later this
universality occur when a system is near to bifurcation.
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¢ 'To build an interactive software specially costumed for the numerical
study the original CB models, the normal form and the theoretical
approximations simultaneously and in real time.

e To study how exceptions to this universal planar dynamics, which are
not often observed in neurons, such as the bursting dynamics and
chaos, can arise in CB models.

e To make biophysical interpretations of our theoretical results.

4 Thesis structure

This part (Part I) has introduced the necessary concepts of biophysics and
neurophysiology to understand this thesis. In parts II, IIl and IV we present
the results of this thesis. In Part II we characterize the mathematical struc-
ture of CB models and obtain an analytical expression for the characteristic
polynomial of the linear matrix around a given fixed point. In the part
IIT we use this previous result to show that CB models are generically in
the unfolding of the Bogdanov-Takens instability, and show analytically and
numerically that the suberitical Bogdanov-Takens normal form successfully
describes the ezcitable behaviour observed in neurons. In Part IV we show
that a CB model under the necessary biophysical conditions for bursting
dynamics is in the unfolding of the Triple Zero bifurcation, and also show
that the most famous model for bursting can be transformed to almost the
Triple-Zero normal form. In Part V we present the conclusions and per-
spectives. In the appendices we give the detail of the calculations and the
mathematical proofs.

In order to make this thesis more pedagogic, specially for readers of other
backgrounds than physics or mathematics, we recall the most important
mathematical results of a section within this frame:
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We also present the particular mathematical expressions of our approach
for the Morris-Lecar and Hodgkin and Huxley CB models within this frame:
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Part 11

Discovering the Mathematical

Structure of Conductance Based
Models
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In this part we will show new general results obtained regarding the
mathematical structure of the conductance based model. This results will

be key to show our main results regarding these universal feature of single
neuron dynamics.

5 The conductance based models

As we explain in the previous section, the dynamics of the membrane po-
tential and the different ionic currents across the neuronal membrane is
represented by a set of equations called conductance based models or CB
models. As also discussed in the introduction this equations have strong
biophysical and experimental substrate and reproduce the dynamics mea-
sured in any type of neuron of the nervous system. The CB models are a
set of ODEs with N + 1 independent variables. One of the variables rep-
resent the membrane voltage u (more precisely v = wi, — Ug Where u;y, is
the potential inside the cell and u,y: the potential outside), and the other
N variables represent the ionic channels gating variables m;. This kind of
systems can be written in a dimensionless form scaling the time and the
variables. In this thesis we will refer to these models assuming that this has
been done. In order to obtain general results applicable to all conductance
based models, we will write the most general form for this set of models.
Therefore, a CB model can be written in a general form as follows:

u =I—G(u,7ﬁ,ﬁT)
o0 =\ v
PO G k. NP (5.1)
J
75 (u, &)

As was explained in the section 1, the function m3°(u,&;) represent the
stationary probability of a gating variable m; to be activated, and 7;(u, d;)
is its relaxation time to this stationary probability. Typically m3° (u, ;) and
7;(u, &;) depend on the potential and also on the same parameters &;. The
parameter I represents the injected current to the neuron and the function
G(u,m, &) represents the total ionic current. This last function depends on
the parameters &y and has the general form:

G(u,m, ) EZIj=Egj H mi (u — uj) (5.2)
g=i1

=1 lew;
Each I; represents a ionic current of a generic CB model. The ionic
current I; associated to a ionic conductance j can be written in general as:
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L =g [T mi(u—w) (5.3)
lew;

where g; is the maximal conductance and u; is the reversal potential
associated with the j** current. Is important to note that for a given current
I; one has a set of gating variables Wi={my,l € w;}, where w; is a set of
indices. Because each gating variable m; represents the probability of a
specific sub-unit of a given ionic channel j to be open, one cannot have
the same gating variable in two different ionic currents. This restriction
is based in the very nature of the ionic channels biophysics: the activity
of one ionic channel does not directly affect the activity of another ionic
channel (indirectly it does through the coupling with the potential ) since
their mechanisms of opening and closing are not physically connected (Hille,
2001). This mathematically means that if one has n different ionic channels
in a CB model then Wy N W N .- N W,_1 N W,, = ¢. This mathematical
expression of a physical consideration will have a key importance to obtain
further analytical results. One example of that is the Hodgkin and Huxley
model where G(u, m,n, h) = gnam3h(u—una) +grxn*(v—ur) +gr(u—ur),
and where it is clear that the variables for the sodium current m and h are
not involved in the potassium current that have n as their unique gating

variable.

5.1 CB model in standard form

We will introduce another form to write the CB models that we shall
call standard form. If we do the following nonsingular translation m =
m*>(u,d) + & the equation 5.1 becomes:

v =1I-Gu,m>*+Z,r)
- - — U
7i(u, &) du

z; = 4=1,2...N (5.4)

Using the definition 5.2 the total ionic current reads:

n b
Gui+ 550 =3 g [T 3 ()t pm1 =) (69

i=l  lew; k=0

If we consider long times such that all the gating variables have relaxed
(Z = 0), the ionic current written as 5.5 becomes stationary and will be
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the same as the well-known I-v curve studied in electrophysiology (Latorre,
1996). We shall call f(u,d7) this ionic current. It is given by:

f(w,Gr) = Gu,m™®(u,07),6r) = Y g [[ @™ 1" (u—vw;) (5.6)

=1 lew®

Some examples of this function in well-known models are:

MOl'l‘lS-

f(u) glmm(u)(u - w1) + gan™ (u)(u—u2)-+_ga(u'—*a3)

1253;&1 in the’appe_ndlx Dl

Hodgkm Huxley model calculatmn 5.1

f () = = 1m®™ (u)°h™ (u) i m) + g2ﬂ°° (’w)4(u —ug) + ga(u U3)

Detalls in the append1x E. 1

Note that because all the gating variables have relaxed the function f(u)
only depends on the potential u. Now if we define K (u, &, ) as the part of
the total current which depends on u and Z, i.e. K(u,&,dr) =G(u,m>™ +
Z,dr) — f(u,d7), one has:

pr—1
Kz =Y o3 (p‘)m“ M) ) (57)
j=1 lew; k=

In the models above one has:
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Details in the appendix D.1 -

sl

~

oRB N i

K(wwn,02,25) = g1 {ades +3eim*(w)es + deim™ w)ms +
- +aih®(w) + 3eim > (W)h(w) + 8erm™(u)*h% ()} (u — w)+
g2 {ad+ 4in(u) + 6230 (w)? + dosn®(w)*} (u-w)

=

\ Details in the appénd_ix E.1

ok e I g ol

Note that the function f(u,&r) and the function K (u,Z,d'r) depend on
the same set of parameters 6. We define:

- amw(u’&')
Bi(u, ;) = —J—auj—

Due to the form of m}?"(u, &;) which is a strictly incrteasing (or decreas-
ing) function of u one has that 8;(u, ;) is strictly positive (or negative).
The equation 5.4 reads now:

(5.8)

u =1I- f(u,0r) — K(u,Z,67)

T :
Zﬁj =—m+ﬁj(u,5j)ﬂ i :1,2...N (5.9)
This last equation is a CB model written in its standard form. In this
form the reader can see that the dynamics of each gating variable m; is
a exponential decay to its stationary value (which corresponds to z; = 0)
plus a perturbation that is the derivative of the potential weighted by the
derivative with respect to u of the stationary function. The fixed points
{w*,&;} of this equation are:
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= f(u*aa:T)
£ =10 (5.10)

and they have a very intuitive physical interpretation: a fixed point
in a CB model occurs when all the gating variables have relaxed to their
stationary value and when there is no net flux of current through the neuron
membrane. It is important to note that mathematically the location of the
fixed point as functions of the parameters depends only on the function
f(u*,&7). Therefore, in the CB models very important events from the
point of view of bifurcation theory as the appearance or disappearance of
fixed points depend exclusively of the function f(u*,dr).

In the figure 7 the lector can see the functions 7(u), m*(u), B(u) and
f(u) for the Morris-Lecar and Hodgkin and Huxley model. The functions
7(u), m™(u), B(u) will be qualitatively the same for all CB models or sim-
plified versions of them (Izhikevich, 2010). The function f(u) will have the
same shape for very negative or very positive large values for all CB models.
In both cases it approximates asymptotically a straight line as it can be
seen in figure 7. This is because the functions m®(u) take values of 0 or 1
asymptotically and consequently the function f(u) for u — +o0o will approx-
imate to a straight line whos slope will be the sum the conductances of the
currents that do not have a gating variable which goes to zero probability.
But it is in a central interval ( i.e. between the two asymptotic behaviors)
of the variation of u where the function f(u) can have different shapes for
different models leading to one, three, or in peculiar cases five roots, of the
equation I — f(u*, &) = 0.

The standard forms of the previous models are:

oy

Morrls-Lecar model calculatlon 5 3. Mcu‘rls-Lecar model in :
thelr Standa.rd form:

= - K

= ()+ﬁ(u)u e

Deta.ﬂs in the append:x D.1

&
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_ I(' }(u) K(u,:rh-"cz,zs)

i 1,1 = Tm( )-%-ﬁl(u)u

\Detéij;s in the appendix E1l

6 On the linear structure around a fixed point

In this section we shall study the linear system, specifically the structure
of the linear matrix, of a CB model in its standard form around a stable
fixed point. As Elphick-Tirapegui-Brachet-Coullet-Iooss theorem stated in
their famous 1987 paper (Elphick et al., 1987; Haragus and Iooss, 2011;
Wiggins, 2003), that the form of all the non linear terms arising in the
normal form of any local bifurcation of a stable fixed point is determined by
the linear critical part of the system. More explicitly one has to study the
system linearized around the fixed point and then study the linear matrix
to determine when the fixed point will loose its stability through variation
of the parameters. When this happens one says that one is in a critical
situation and the number of critical variables is determined by the dimension
of the linearly unstable space. The linear matrix restricted to this space
completely determines the nonlinear resonant terms which can come in the
normal form. The first step then in the reduction to the normal form is to
calculate the coefficients of this nonlinear terms since their form is already
known. The reduction to the normal form involves a reduction of the number
of variables of the original problem to the critical values which are in general
quite less (the dimension of the critical space) and one then has to express
all the original physical variables in terms of the new critical variables: the
functions realizing this are called the ansatz, i. e. the explicit expression of
the old physical variables in terms of the critical values which are the ones
appearing in the normal form. Normally the linear part of the ansatz, which
is determined by the eigenvectors of the critical linear part of the system,
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(left) and the Hodgkin and Huxley model (right).
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gives the relevant physical information relating the physical variables to the
ones of the standard normal form, and in that sense one can say that all
the specific physical content of the problem is contained in the “ansatz”.
Once all this has been done the next step is to move away from the critical
point varying slightly the parameters around their critical values: this is
called the unfolding and it is here that the codimension of the bifurcations
appears in a transparent way since it is just the number of independent
parameters needed to move away from the critical point in the space of
parameters. Therefore is of capital importance in this work — in order to
find the universal equations or normal form that reproduce the dynamics
observed in neurons— to characterise the linear system of a CB model.

We have shown in the previous section that the fixed points must satisfy
# =0 and I = f(u,dr). This equation for conductance based models has
at least one root because the function f(u,&r) for v — +oo can only have
negative slope (because the conductances g; are always positive quantities)
but generically more than one (see figure 7). As also discussed in the previous
section, the existence or disappearance of fixed points depends only on the
equation I = f(u,dr). Moreover, this fact enables us to choose a root
u of this equation as a continuos parameter of bifurcation instead of the
parameter I as long as we stay in the same branch of the solution. Taking
the last point into account, we will consider a fixed point (u*, 6) were [* =
f(u*,&7). Thus, by doing the standard translations in the neighborhood of
the fixed point (7 = 0+ Z and u = u* 4+ @) we find that the linear matrix
has the form:

L=Ao [fo i’ (6.1)
Where

0 0 0

0 w7 - 0
A(u',0r)=— ’ (6.2)

; ' 1

0 0 S
3
ams® (u,61)

Bu*,&r) = — ; (6.3)

om$ (u,dn)
5’% u=u*
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Bﬂu,&'qwl

Sy
9G( 'u.,:? 91)

M(ut, ET) = . (6.4)
G ( u,-:b‘,ﬁN!
TN u=u*;7=0
defining:
M. (u* & ) _ 8G(u, TT‘E, C_"'T) _ BK(’U., f, ET)
B e — = ———————
’ oms u=u* =M (u*,07) Oz u=u* =0
(6.5)
which gives

Ms = —g;Ds H [ml(u*)oo]m—&,s (ul _ uj)
lew;

In our models we obtain:
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(8 'U-* 5: e
ot J) TS(H*>5j)

(6.6)

We shall call the matrices which have the form 6.1 neuronal matrices.
The neuronal matrices have the form of the direct sum of two matrices: a
diagonal matrix A (A;; = a;0;;) plus a matrix C = [ﬁ ® M T] which results

from the tensorial product of a column vector 3 of components §; and a
row vector M of components M; ( Cyj = M;3;). In the next section we will
prove an important theorem which allows us to find an explicit analytical
expression for all the coefficients of the characteristic polynomial of this kind
of matrices and consequently for all CB models.

Remark 6.1. The linear matrix of any CB model can be written
as:

L:A@[ﬁ@ﬂZT]

Where A, E and M are defined in 6.2, 6.3 and 6.4 respectively.

7 Neuronal matrices and their properties

Here we shall study the properties of the neuronal matrices. In particular
we shall find explicit analytical expressions for the coefficients of the char-
acteristic polynomial of these matrices. This result will be fundamental in
our argumentation to find a universal equation which describes the generic
features of neuronal dynamics, but it has of course an interest per se. The
following steps are completely general and depend only on the particular
structure of these special matrices.

Definition of Neuronal Matrices 7.1. Given a n x n diagonal matrix A
and two vectors E and M of n components a Neuronal Matrix N is defined
as:

N=A® [E@ MT] (7.1)

which can be written in an explicit form as:
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a1 + f1M; B1 My s B My,

Ba M, ap + folMy ... Ba My,

N= (7.2)

BrnM: Bn Mo cee Qp+ BrMy,

We shall call the matrix A the self-interaction matrix and their diagonal
components «; the self-interaction terms. We will called the vector 3 the
bias vector and its components 3; the bias terms. We will called the vector
M the interaction vector and their components M; the interaction terms.

Physical note 7.1. In figure 8 we show an example of the graph representa-
tion of a 3 x 3 neuronal matrix. In this graph representation we note that
each ¢ node interact with the other nodes by the terms M; weighted by
its own f3; coefficient. The term f; is a bias term in the sense that its sign
depends on the kind of interaction with the other nodes, and its value deter-
mines the strength of the interaction with all the nodes of the system. This
is the reason why we called M; the interaction terms and §; the bias term.
In the case of CB models this can be interpreted physically saying that at
linear order the interaction between a variable z; with all the variables zj is
via M}, —which qualitatively represents the current associated with the kt*
ionic channel — weighted by the derivative of their own stationary function
Bi. This means that the sign of §; and its current value is very important in
the interaction of the i*® gating variable with the complete system. It is also
important to note that each node interacts with itself through the a; plus
its own M; weighted by its own ;. In the case of neurons the o; interaction
is the inverse of the time of the exponential decay to the stationary value
(—1/7;) and the M; represents the interaction associated with its own ionic
current activity wighted by the term —%5%&.

Theorem 7.1. Let N be an n x n Neuronal Matriz with self-interaction
mairiz A , bias vector B and interaction vector M. Its determinant is given
by:

Det(N) = [J oy +>_ B [ ] e (7.3)
=1 ’

=1 s#1

The proof is in the section A.1

Corollary 7.1. The characteristic polynomial P()) is given by the general
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Figure 8: Graph representation the neuronal matrices and their Adjacency matrix.

formula:
PO = [Jle; =N+ > 8iMi [J(es = N) (7.4)
j=1 i=1 874

Proof. Using the expression for the determinant of a neuronal matrix proved
in the theorem 7.1 and doing the translation o — o — A we trivially obtain
the characteristic polynomial. (]

Corollary 7.2. Fach coefficient a; of the characteristic polynomial P(\) =
E?:o a;N of a neural matriz is given by:

n n

a;=(-17 > Jlet+d 8M, > [ « (7.5)

Ly #l; il 5=0 bl 1 #s il 1#s

Proof. Using the expression for the characteristic polynomial 7.4 it is easy
to verify the previous expression 7.5 for a;. O
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Remark 7.1. The characteristic polynomial of a n x n Neuronal
Matrix with: A their self-interaction matrix, 8 their bias vector
and M their interaction vector is given by:

(a5 = A+ > BiM; [ J (e = N)

1 i=1 s#i

P(A) =

J

n

8 First and second coefficients for the character-
istic polynomial of CB models

As we discussed in section 6 the linear matrix (L) of any CB model can be
written as:

ap + FoMo Bo M s BoMy
BiMy  oa+piM; ... B My L
b= - : . . =ae [fo "]
Bn My My ... an+BynMy
(8.1)
with:
I (u,3;
)80 = 1 ﬁ_’] = = m,ZBF:' UJ) _
@ = 0 aj = o (8.2)
— g af('u:&T) i e 3G| u,f,&r!
MO B e u=u" MJ dz; u=u* ;.77:':6

Then, using expression 7.4 the characteristic polynomial for any CB
model can be written as:

N N N N

P(A) ==X [ JJ(es =2+ > 8:M, [J(w = M) | +BoMo [ [(eu =) (8:3)
j=1 s=1 I#s 1=1

Writing the characteristic polynomial in the form P()A) = ZkN:Ol At

we obtain for ag
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0
ap = ﬁoMOHaz fn —-—f(; »31)
1=1 H

-
lowm 69

W=

and for a;

1 j#s i=1 k#i

I:HC\!E'*‘ZJBSM HGJ+,80MOZHQFC:I _-( 1)N+1HT¢ u 0':)

+ (—I)NZ[)’S(u* Fo)M,(u* aT)H
.??éﬂ

ZHTk A (8.5)

75 (u* aJ)

1 0f(u, Gr)

_1\N+
+ (—1) —

Remark 8.1. The characteristic polynomial of any conductance
base model can be written as:

N

P()) = —A {H =)+ ZﬁsMs H(az - +50M0H (ca=2)

j=1 s=1 l#s

With «, 8 and M defined in 8.2.
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Part III
Toward a Universal Description for
Single Neuron Dynamics
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9 The Bogdanov-Takens Bifurcation

Since the Bogdanov-Takens bifurcation (Bogdanov, 1975; Takens, 1974) will
play a central role in what follows we shall make here some general consider-
ations about its principal characteristics. It is a codimension two bifurcation
which means that one has to move two parameters of the dynamical system
in order to put the system described by the dynamical system at the insta-
bility. This instability of an stable fixed point arises as follows: 1) First we
are in a situation where the fixed point of interest is stable, i.e. when one
linearize around this fixed point and considers the linear terms one has that
the matrix defined by the linearization has all its eigenvalues with negative
real parts; 2) We move in the space of parameters of the system. Then the
eigenvalues of the matrix which are functions of the parameters move and we
look for a situation where two eigenvalues go to zero generating in the char-
acteristic polynomial of the matrix an eigenvalue zero of multiplicity two.
In order to achieve this one has to impose two conditions on the parameters
(codimension two) and generically one will have only one eigenvector, i.e. a
Jordan block of order two. However one has to check this last fact separately
since in a defined problem the linear matrix can have particular character-
istics which can change the scenario. In the case of the conductance based
(CB) models which are studied in this thesis we have studied this carefully
and we have explicitly calculated the basis vectors which generate the Jor-
dan block. The point in the space of parameters where the double zero is
realised is what we call the critical point and when we write the dynamical
system for the values of the parameters corresponding to this point we speak
of the critical equation (there can be of course a manifold of critical points
but this does not change the essential points we want to explain here); 3)
The next step is to see what happens around the critical point, i.e. what
happens when one in a loose sense crosses the critical point in the space
of parameters and when one expects that the eigenvalues which were zero
create a positive real part and generate modes which are now linearly unsta-
ble. These modes become new variables which are what we call the critical
variables and have to be saturated by nonlinear terms and when one is in
this region around the critical point one says that one is in the unfolding
if the bifurcation; 4) The behaviour of the system in terms of the critical
variables in a neighbourhood of the critical point, i.e. is in the unfolding, is
what is described by the normal form of the bifurcation, which is the a set
of differential equations for the critical variables, in this case two variables.
In the normal form we can see how the unstable modes are saturated by
nonlinear terms and this balance is precisely what tells us the polynomial
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order where we have to stop the nonlinear terms, this of course is seen in the
normal form with its unfolding terms. It is also important to remark that
we can study in the normal form the appearance of secondary instabilities
and the occurrence of global bifurcations and check the self-consistence of
what we are discovering. Although the normal form is strictly valid only
in a small neighbourhood of the critical point one can expect that it will
continue to be valid qualitatively in a much bigger domain of the space of
parameters, in fact the region in which no new instability not contained in
the normal form appears.
All these characteristics will be used extensively in this thesis.

10 The Bogdanov-Takens normal form

When any dynamical system undergoes a local bifurcation, we can write
analytically an equation that describes asymptotically for large times the
dynamics of the system in the neighbourhood of the bifurcation, this equa-
tion is called normal form and it is a universal equation which depends only
on the type of local bifurcation. The specific physical case one is studying
only determines the values of the coefficients of the terms in the normal form
which are monomials of different degrees. The variables of the normal form
(the critical variables) are usually much less than the original variables. The
original variables are expressed in terms of the variables of the normal form
in a formal series which starts with linear terms, when one is in the critical
point, followed by quadratic terms, cubic terms, etc. When one moves away
from the critical point in the space of parameters, i.e. when one considers
the unfolding of the singularity, new correction terms appear in the expres-
sions of the physical variables in terms of the critical variables. Usually the
linear terms are the essential ones and most the physics of the problem is
there since they give explicitly, at the dominant order, the original physical
variables in terms of the variables of the normal form (Elphick et al., 1987;
Haragus and Iooss, 2011). Then, very different dynamical systems (near to
a given bifurcation) will be described for the same normal form. Although
this result is strictly true infinitesimally near of the bifurcation, which is a
point in the space of parameters, it occurs often that the qualitative aspects
of the behavior of the system is still given by the normal form even if one
is outside of the small neighborhood of the bifiurcation point. This just
reflects the fact that the qualitative behavior of the system does not change
until one finds a new critical point in the space of parameters, i.e. a new
bifurcation point. Therefore, we can use this method to understand and
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describe qualitatively the dynamics of a particular physical systems when
are not strictly in the neighborhood of a particular bifurcation but in certain
range of parameters near the critical point.

10.1 The resonant terms

As showed in their famous paper Elphick et al. (1987), using the inner
product that the authors define, we can write the adjoint of the homologic
operator (A(J9) of any dynamical system as the homologic operator of the
adjoint of the critical linear matrix, i.e. (A(Je)t = A([39]") ). Therefore,
using this inner product and knowing the form of the linear matrix operator
in a given basis projected in the critical subspace (j]c) we can find all the
terms of the normal form of a given bifurcation. When one works in the basis
in which the original critical linear matrix is in Jordan form the homologic
operator has the form:

A(J°) = Jgﬁcﬁ% —Je (10.1)

And the the adjoint of the homologic operator A(jlc) is:
Tc * 0 T
AT = W) cagg — I (10.2)

Where c,, are the variables of the normal form. In the case of Bogdanov-
Takens the operator J¢ has the form:

TR
JF= [ 00 (10.3)
Then the adjoint of the homologic operator reads:
s 10 0 00
e\t — — —
A(J)f[o 1}618@ [1 0} (10.4)
Therefore, if the vector x(ct1,c2)= ( ;;EZ;E% ) is an element of the

kernel of the adjoint of the homologic operator, then:

Oxaleres) _
dea =0

":18—)@%1_’Cﬁ —x1(cl,¢2) =0

c2
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Is straightforward to show that at order m in the components (ci,cz)
the vector x(c1, c2) has the form:

xiler,e2) = ™ V(e)
xa(er,2) = ™ D(cr) + ™)

where (™) (c;) is a monomial in ¢; of order m and ¥(™=1)(¢;) is a mono-
mial in ¢; of order m — 1. Therefore, the Kernel of the homologic operator
for the Bogdanov-Takens bifurcation written in the Jordan basis is:

Kemelgr [4@)] = {v e (2 )0 ()} 09

To obtain the normal form we must impose the general solubility con-
dition for linear equations of the form AF = b where A is a linear oper-
ator in a finite-dimensional vector space (a matrix), & the unknown vec-
tor and b a given vector. This condition (Fredholm alternative) is that b
must be orthogonal to the adjoint A* of A in any nondegenerate scalar
product defined in the vector space. In our case we have two critical vari-
ables (c1,c2) and the original physical variables of the CB models V =
(u,@1,29,...,2y) are expressed in terms of (c1,c2) in a series of the form
V= Qm(cl,cz) + _Ulm(cl,CQ) +L_tr[3] (Cl,CQ) + ... where _U_[r](C]_,CQ) is a vec-
tor whose components are polynomials of order » in the variables (¢, c2),
and at each polynomial order r we have to solve the homological equation
.A(jlc)Q[r](cl,cz) = L[’"](cl,cz) - _f_[Tl(cl,cz), r =1,2,... where im(cl,cz)
is a known vector determined by the previous orders and i["] (c1,¢2) =

ety )
f%,_]( ; ) are unknown and in fact they determine the r** polyno-
2 C1, C2

mial order in the differntial equations of the normal form which are

ey = fM(er, e2) + P (er, e0) + Fer, e0) + . ..

Oic2 = él} (c1,¢2) + f2[2](01,62) * féal(cl,cz) +...
I and f [ have the form:

Il — (lt))c? £ "(1)1 e R + "5.11 16165 ‘*‘ Uélv)zcz
L= 5
(22)61 +°'£1)11C1 e +U§11 sercgt t{)r)acz
1 1
Finl — o, ())C’f 2 Vn 1161 Tleg 4 i Viﬁ, eyt + Uéz,zcg
- 1(12()1‘31 + VT(LZ)I -5 LRLEEE + Vf,r};—lclcz i Vlg r)aCZ



. 1,2 2 . .
With 0&_’ j?j and yfi j?j coefficients of the monomial in ¢; and ¢e. The func-

tions ( fl[m] (e1,c2), fém](cl,cz)) are determined by the soulubility condition
applied to the linear homological equation through the equations

@W—fwwWWm(q)>=o (10.6)

C2

<ﬂm—fmwmmw(?)> =0 (10.7)

We obtain using the inner product described in Elphick et al. (1987) that
for any order we must have:

n(gial,()} - Vgc))) + (0'521,1 - V1(1221,1) =0 (10.8)
07{32’()) - VT(E()) = # (10.9)

These two last equations can be satisfied in more than one way and
we shall use this freedom. Apart from this general feature this two last
equations leave an inherent freedom to incorporate to the normal from i(m)
elements that do not belong to the Kernel of the adjoint of the homologic
operator, a freedom which exists in any normal form. In the Bogdanov-
Takens bifurcation we have two extreme choices to write the normal form:
The Arnold choice and The Takens choice. In the Arnold choice 0',,(:()) = 0 and

07(1221,1 = nvfi‘% 4 V,?_}Ll and 0,512’(), = ,,(f% and the normal form can be written

as a perturbed hamiltonian system (Elphick et al., 1987). The other extreme
choice is the Takens choice with 0%, ; = 0 and o)~ = v | /n+ vy,

(2

and Un,% = vr(f(),. Because in the Arnold choice we gain all the Hamiltonian
intuition, in this work we will use the Arnold form for the Bogdanov-
Takens normal form.

10.2 Arnold form: the subcritical scaling

As we showed in the sections 10.1 the Bogdanov-Takens normal form is
written in their Arnold form as:

it = F (u, ) — A (u, B) (10.10)

We will call the function F(u,«) the force and the function A(u, ) the
friction (we have written explicitly the two unfolding parameters (o, f3))
using the obvious analogy with mechanics. Explicitly:
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F(u,0) = a+vu®+yud+yul+ - (10.11)
Aw,B) = B+ Au+dou’ + Agu’ + - (10.12)

We recall that the unfolding parameters, represent the fact that the
normal form has to be written for values of the original parameters in a small
neighborhood of the critical point in the space of parameters, in other words
« and B are functions of the variation of the original parameters around
their values in the critical point, and their number, here two, represents the
codimension of the bifurcation. Due to their meaning the values of («, 3)
are small since they determine the domain in which we expect the normal
form to give not only a qualitative description of the behavior of the system
but also a quantitative description. We can define a potential V (u, ) such
that the force F (u, ) is given by:

_ V(y,aq)
F(u,a) =— P (10.13)
Where:
V(u,a)=—au— s By s ... (10.14)

3 1 5
Then we can define the energy of the Bogdanov-Takens normal form as:

E(u,a) = %az +V (u, @) (10.15)

If we multiply equation 10.10 by % we obtain after a direct calculation:
d

B o) = —42\(u, B) (10.16)

This equation shows that the Bogdanov-Takens normal form does not
conserve the energy. Something which is expected since this equation is
characterized by a nonconservative dynamics due to the friction term. The
reader should note that the Bogdanov-Takens normal form can undergo an
injection or dissipation of energy depending of the sign of A(u,3), and this
sign can of course change when u changes.

Because the dynamics of the neurons is bounded in the sense that the
physical values do not go to infinity in the relevant range of parameters, we
want to have the same bounded dynamics in the normal form in order to
reproduce with this equation the observed dynamics of the neurons. As it
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is discussed in the literature the supercritical normal form of the Bogdanov-
Takens is not bounded in the complete phase space and in the whole space
of parameters and also does not contain the distinctive global bifurcations
observed in neurons as the saddle-node homoclinic bifurcation or the saddle-
homoclinic bifurcation (Guckenheimer and Holmes, 2002; Kuznetsov, 2004).
This supereritical scaling has a linear friction (with A(u, 8) = £ + Au). It
is clear in the figure 9 that if —% < u the energy of the system can grow
without bound in the zone where there is only injection of energy. No matter
what is the sign of 5 or Ay, there will always exist a range of u between —-)%
and oo, were the energy will grow with a rate that increases lineary with
u. This is shown with an example in the figure 9, left graph. Then this
scaling forbid the feature that we are looking for: a bounded dynamics in
all phase space. Therefore we will look for another scaling where the friction
stops the unlimited growth of the variables of the system.

Now, if we consider a quadratic friction (with A(u, 8) = B+ Aju + Aou?)
and impose that (0 < Az). As is showed in the figure 9 right graph, is

clear that for values —21— ; P a2 W there will be only
injection of energy and is easy to analytically show that one cannot have
an stable fixed point in this area. Therefore all the orbits will scape from
this region but the orbits will not go to infinity, because as soon as they

. X A= —M— /A=) .
reach the regions M <wuoru< — e 2% the system will

dissipate energy quadratically with the variable u, and the dynamics will be
bounded to a certain region of phase space.

Hence, an scaling of the Bogdanov-Takens normal form which allows a
quadratic friction A(u,3) with a coefficient Ap implying a dissipative be-
haviour when u goes to +oo (that is 0 < Ag), will always present a bounded
dynamics. Also Kuznetsov show that the Bogdanov-Takens normal form
with a quadratic friction presents several global bifurcations, some of which
are characteristic of neuron dynamics (Kuznetsov, 2005).

The reader can check that if we try to find the most general scaling:
u~ e, u~e', a~e and B ~ € such that the no term of the equation
is of greater order than the quadratic term of the friction wu? (which must
be there due to the dissipative dynamics we need in +00) the result is that
n = 3s, r = bs and ¢ = 2s. Then the subecritical Bogdanov-Takens normal
form is:

i = o+ you? + vaud + yaut + y5® — 4 (8 + Mu + Au?) (10.17)

5

The coefficients are of order: a ~ €7, vo ~ €3, v3 ~ €2, 74 ~ €, 75 ~ 1,
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Alu, B) = B+ Mu AMu,B) =8+ Mu+ Aou?

AMu, B) A(u, B)
iE( ) <0 d d
P ;EE{u,a) <0 d—iE(u,a) <0
U u
d
VRV, vk e Kl S YRR/
= > .
[ injection of energy zone [C] pissipation of energy zone

Figure 9: The left graphic shows in green a linear friction curve. The right graphic
shows in red a quadratic friction curve with 0 < As. The arrow indicates the points
where the friction changes the sign in both cases. In pale red we indicated the region
where the system undergoes an injection of energy 0 < %E(u, «) and in pale blue
the region where the system undergoes a dissipation of energy %E(u, a) < 0.

Br~e Al ~¢€ and Ay ~ 1.

Even though the force of the Bogdanov-Takens normal form with a sub-
critical scaling is quintic as we have shown 10.17 , we will see that in practice
in most of the cases a cubic force will be enough to describe the neuronal
dynamics. Only peculiar cases, when for example neurons have more than
one stable rest potential (Heyward et al., 2001), the dynamics of a single
neuron needs a description with a quintic potential.
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Remark 10.1. The subcritical Bogdanov-Takens normal form
written in the Arnold form reads:

i = a4+ you® +y3u® + yaut +5u® — @ (8 + Au + Aou?) (10.18)

with the scaling u ~ €, &2 ~ €%, & ~ €% and 3 ~ €2 and the equation
is of order €°.

10.3 Global bifurcations in the subcritical Bogdanov-Takens
normal form

We simulate the subcritical Bogdanov-Takens normal form using the scaling
of the coefficients showed in the previous section, with s = 1 and ¢ = 0.1.
We found all the typical global bifurcations mentioned in the literature for
neuron models (Ermentrout and Terman, 2010; Izhikevich, 2010) which are
the Saddle-node homoclinic bifurcation, the Saddle-homoclinic bifurcation
and the Big homoclinic bifurcation (see section 2).

For the simulations we used our objective-c/COCOA software specially
developed by us to deal with neuron models from the point of view of non
linear dynamics and normal form theory (see appendix I). In the simulations
we calculate analytically and in real time the fixed points (which is a u* such
that F (u*,a) = 0 and @ = 0) and the eigenvalues and eigenvectors of the
critical matrix. For the visualization we symbolize with squares the nodes
and saddle fixed points and with a circle the focus fixed points. The stable
fixed points are purple, the unstable fixed points red and the saddle fixed
points dark yellow. The linear stable manifold was coloured blue and the
linear unstable manifold coloured yellow. We also show in phase space the
force F(u,a) in blue and the friction A(u, ) in red. The phase space of the
Bogdanov-Takens normal form is naturally the plane u-u plane.

The figure 10 shows the Saddle-node homoclinic scenario. Before the
bifurcation we have three fixed points: an stable node, a saddle and an
unstable focus. As it is shown numerically if we follow the orbits in green
these two fixed points have an heteroclinic connection. The unstable focus
is inside the heteroclinic connection. When we move the parameter o these
fixed points collide and the heteroclinc connection becomes a limit cycle,
this is the point where the Saddle-node homoclinic bifurcation occurs. The
unstable focus remain inside the limit cycle. This scenario was explained in
the section 2 as a distinctive bifurcation of class 1 neurons and is the generic

ol



scenario found in the Hodgkin and Huxley model.

Refore the bifurcation In the hifurcation After the bifurcation
| | | /_\“ ;i;
| [ <

o~
chy

o

Figure 10: This figure shows the Saddle-node homoclinic bifurcation scenario
in the subcritical Bogdanov-Takens normal form. On the upper part we show the
phase space before the bifurcation, in the bifurcation and after the bifurcation. In
the middle we show the graphic of u versus time for long times corresponding to
the case above. On the bottom of the figure the brown arrow indicates that the
parameter « is increasing.

The figure 11 shows the Saddle-homoclinic scenario in the subecritical
Bogdanov-Takens normal form. We have again three fixed points: an stable
node, a saddle and an unstable focus. When we move the parameter 3
the unstable manifold of the saddle fixed point returns getting closer from
the stable manifold. When the unstable manifold and the stable manifold
connect by the same orbit the Saddle-homoclinic bifurcation occurs, and
then the homoclinic connection becomes a limit cycle. The unstable focus
stay inside the limit cycle. For the Bogdanov-Takens normal form and for the
neuron models also (Ermentrout and Terman, 2010; Izhikevich, 2010), after
the bifurcation the limit cycle (marked with 1 in the figure) and the stable
node (marked with 2 in the figure) are separated by the stable manifold of
the saddle point. Therefore as its shown in the third graph of the figure 11
we have bistability between these two attractors. The Saddle-Homoclinic
bifurcation is not necessary to have this bistable scenario, but in the case of
the Bogdanov-Takens normal form and in the neuron models this scenario
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generically occurs.

Before the bifurcation In the bifurcation After the bifurcation
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Figure 11: This figure shows the Saddle-homoclinic bifurcation scenario in
the suberitical Bogdanov-Takens normal form. On the top we show the phase space
before the bifurcation, in the bifurcation and after the bifurcation. In the middle we
show the graphics of u versus time for long times corresponding with the situations
above. On the bottom of the figure the brown arrow indicates that the parameter
3 is increasing. The two attractors that appear after the bifurcation are marked
with the number 1 and 2 in the phase space and in the u versus t graphic.

The figure 12 shows the Big homoclinic scenario in the subcritical Bogdanov-

Takens normal form. As in the other two scenarios we have three fixed
points: an stable node, a saddle and an unstable focus. When we move the
parameter 3 the unstable manifold of the saddle fixed point returns getting
closer to the stable manifold. When the unstable manifold and the stable
manifold connects by the same orbit and the homoclinic orbit formed traps
the other ends of the unstable and stable manifolds of the saddle, then the
Big homoclinic bifurcation occurs. This homoclinic connection becomes a
limit cycle with the three fixed point inside. The limit cycle is separated
of the unstable focus by an heteroclinic separatrix as is shown in the third
graphic of the figure 12 in black. The separatrix connect the stable mani-
fold of the saddle point with the unstable focus forming a closed figure. This
connection is generic (codimension 0) because it connects an stable manifold
(dimension 1) with the unstable manifold (dimension 2) of the focus and in
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the mathematical sense it is analogous to the intersection of a line with a
plane. This separatrix may suffer a Saddle-homoclinic bifurcation and we
finally have: a big limit cycle, a stable focus and a limit cycle separatrix
in between. Then moving the parameters this limit cycle could collide and
disappear (simulations performed but not shown). Interestingly we found
that the big homoclinic scenario showed in the figure 12 led to the other last

scenarios described. Together these scenarios are distinctive of the class II
neurons.

Before the bifurcation Inthe bifurcation After the bifurcation

2
=

=~
+y

B

Figure 12: This figure show the Big homoclinic bifurcation scenario in the
suberitical Bogdanov-Takens normal form. On the top we have the phase space
before the bifurcation, in the bifurcation and after the bifurcation. In the middle we
show the graphic of u versus time for long times corresponding with each situation.
On the bottom of the figure the brown arrow indicates the decrease of the parameter
3. The two attractors which appear after the bifurcation are marked with numbers
1 and 2 in the phase space and in the u versus t graphics. The heteroclinic separatrix
between these two attractors (simulated using negative time) is showed in black.

11 The Bogdanov-Takens bifurcation in CB mod-
els

As we discussed in the previous section to have the codimension two Bogdanov-

Takens bifurcation in a dynamical system we must impose that two eigen-
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values of the linear matrix must be zero and a Jordan block should arise.
As we discussed in the section 6, to find the linear matrix we consider
a fixed point (u*,ﬁ), were I* = f(u*,&) and £ = 0. Thus, by doing the
standard translations in the neighbourhood of the fixed point (Z = 0+7 and
u = u* + u) we find that the linear matrix has the form 8.1. In this section
we will show that by moving two parameters & we can reach generically the
Bogdanov-Takens bifurcation with the critical matrix L¢(u*, o¢).

11.1 The double zero eigenvalue

In order to have a zero eigenvalue with multiplicity two in the linear matrix,
we must impose that the constant term (ag) and the linear term (a;) of the
characteristic polynomial (P(\) = 3‘=0 a;jA’) must be zero, and then the
characteristic polynomial can be written as P(A) = A% (32}, ayA'2).

Using the general expressions 8.4 and 8.5 for the coefficients of the char-
acteristic polynomial, the two general conditions to have two zero eigenvalue
are:

I
o

N
Bo H Q; = Qo
i=1

N N N
Hai+2ﬁijHa; =a;= 0
i=1 j=1 1]

Is very important to notice that the second equations means that the
determinant of the N x N submatrix Ly« y below must vanish, i.e.

ay + 1My B1Mo e BLMy
Ba M- as + BoMs ... BaM N
Det(Lyxn) = : ' : : . ; =0 {11.1)
Bn My ByM: ... an+ BNMy

Therefore the two conditions in terms of the functions of the conductance
based model are:

n

1

u=u* j_q Ti(”'*75)

n
[ =
TI(U*’J)

u=u*;F=0 I3]

of (u, )
ou
oK (u, %, &)
BCEj

ﬁ 1 i Im (u, )
Ti(u*, &) ou

i=1 j=1

u=u*

55



Since the functions 7;(u, &) are strictly positive the two condition for a zero
eigenvalue with multiplicity two become:

9f(u,3) 0 (11.2)
Ou u=u* ‘
" Omo® AT T.0
3 &m] wa)|  9Gw&3) n(u &) = 1 (113)
= M e 9% limwees

This last result is very important: it is the general condition
under which a conductance based model undergoes a double zero
bifurcation. If a CB model meets these two conditions we will refer to the
linear matrix as the critical linear matrix IL°.

11.2 A Jordan block always arise

We will proof that in the conductance based equations if you have a double
zero bifurcation, a Jordan block always will arise and therefore one has a
Bogdanov-Takens bifurcation. If we meet the double zero eigenvalue condi-
tion for CB models 11.2 and 11.3 the critical linear matrix is written:

0 BoM =y BoMn
o 0 au+51M; ... BLMy
0 BwnM ... an+BnMpy

It is immediate to see that the vector K(O) below is an eigenvector for the
eigenvalue 0:

As we remarked in the previous section, the second condition 11.3 is
equivalent to impose that the submatrix L$,, , has a determinant equal to
zero. If this holds, using a basic linear algebra theorem, there always exists
an N component vector X(l) = (%1,%2...,%ZN-1,%Zn) such that:

foNX(l) =0
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Then if we consider the vector ( v is arbitrary):

v

w-__ 1 5
Bo E;\r:l M;Z;

1]

% with veR

N

it is easy to see that this vector _}g(l) is the second vector of the Jordan
basis of the critical matrix L as the following equation trivially shows:

0 BoM; BoMy v
ch(i} _ 0 o+ ,BIM]. e B1 My | _ B E?f:l ]ij.’fj
= : : : : Bo Z}N:l M;i;

0 ByM1 ... an+fnMy En

We have then proved that the critical matrix of a generic double zero
bifurcation in CB models will always have two vectors such that:

Lex® =0
Lex@® = (0

which is the definition of a Jordan block for a double zero bifurcation.
Therefore, we proved that when any CB model undergoes a double zero
bifurcation this bifurcation always will be a Bogdanov-Takens bi-
furcation.

Surprisingly we can found an analytical expression for all the
vectors of the Jordan basis for any CB model that undergoes a
Bogdanov-Takens bifurcation. In appendix B we give these expressions
explicitly. This last result is very powerful from two different points of views.
Mathematically this result allow us to compute the Bogdanov-Takens normal
form analytically for a generic CB model, i.e. for any CB model. Physically
these analytical expressions enable us to do important biophysics interpreta-
tion, since they determine the dominant contribution to the formulas giving
the physical original variables in terms of the variables of the normal form.
This point will be discussed in the last section of this part.
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Remark 11.1. The general conditions for any CB model to have
a Bogdanov-Takens bifurcation are:

0f(u, )
Ou

u=u*

i om(u,d) AK (u, &, &)

™ Ti(u", )

j=1 u=u*

8$j

An analytical expression for the complete Jordan basis of the crit-
ical matrix (IL°) is given in the appendix B.

12 Invariants

It is clear that for any n variables dynamical system evolving with time ¢ the
eigenvalues of the linear matrix £ have dimension [1/¢]. Then the charac-
teristic polynomial P(A) = Det(L—A+1) = by A" +b, 1 AP L4 -+ by A+ by,
with b, = (—1)", has dimension [1/t"] and the coefficients of the poly-
nomial (bo, by, . .., by) have dimension of [1/tN], [1/t¥~1] ..., [1/4],[1] re-
spectively. Therefore for any given N variables dynamical system with a
dimensionless time ¢ and with a time scaling £, i.e. ¢ = ¢, the dimensionless
eigenvalues of the linear matrix (5\1,:\2, . .,S\N) are related to the eigen-
values (A1,A2,...,An) of the system with dimensions by 5\3- =t \; with
J =1,...n. Hence, each coefficient of the dimensionless characteristic poly-
nomial P(A) = ()™ P(A) = bu(A)" + -+« + by A + by depend as a power law
on the time scaling in the form E;j = tN=Jp;, j=0,1,...,n. This shows
that physical considerations such as being near to a bifurcation is equivalent
to A < 1 depends on the election of the time scaling and in particular
in our case the statement near to Bogdanov-Takens expressed in the form
Eo < 1 and 51 < 1 also depend on the time scaling. On the ther hand
the physics cannot depend of the time scaling, and since in a dynamical
system the notion of absolute time has not physical sense we must com-
pare characteristic times of the system in order to obtain physical
conclusions (e.j. something is fast of slow compared with what). To take
into account this fact in our analysis we will introduce mathematical quan-
tities associated with each coefficient of the characteristic polynomial of the
critical linear matrix (ao,au,-..,a,) which will be invariant with respect
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to changes in the time scaling. We shall call these quantities invariants.
These invariants are quotients of characteristic times of the system or pow-
ers of them, and therefore have a deep physical meaning in the sense of
dynamical systems. The introduction of this mathematical tools will be of
great importance in the analysis of the necessary mathematical conditions
for the occurrence of a Bogdanov-Takens instability, and then will be crucial
to show our main physical result: that CB models are generically near to
Bogdanov-Takens.

Is important that the reader notice that since these quantities will be
invariant under time scaling and under the scalings leading to adimensional
variables, and consequently these quantities can be use to compare
quantitatively different CB models. The introduction of invariants
in this problem is inspired by old physical scaling ideas (Barenblatt, 1996;
Sedov, 1993) the physics of a given system (in our case the dynamics of a
single neuron) cannot change with any non-singular change of variables (such
as the nondimensionalization and the time scaling in our case). In fact the
previous statement underlies the first formulations of the renormalization
group in field theory (Tirapegui, 1975) and it will play an important role in
our understanding of the single neuron dynamics as it is presented here.

12.1 Invariant associated with ag

In this section we will obtain the invariant associated with the coefficient
ap. Let us consider the expression 8.4. By the definition 5.6 the function
f(u) is given by the following expression:

Fw) =" gi [T ()™ (u - )

J=1 tij

Is important to mention that the derivative of this function for very neg-
ative values of the potential (v — —o0) is the inverse of the nondimensional
membrane time constant (see section 1). This is because, as we discussed in
the section 5, the function f(u) is actually the nondimensional version of the
I-v curve. Hence, if we take into account the time scaling is straightforward
to arrive that in fact is the inverse of the nondimensional membrane time
constant' (Frembrane)- 1If we study carefully the expression %(ui)\ using

5.6, we obtain: u=u

af(w)
du

1
117: ~
hnlu"‘—)—oo [ 'l = Tmembrane:
uUu=u
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9f(u)

Z 9j H [ (u™)>

0u |y = ey
o0\ Pr— rt aml *
Zgg doo | I] Imew*)™] | (W)
lew; rEW; u=u*

Let put our attention in the second term inside the brackets, if we com-
pare with 6.5, we obtain:

S0 gim I I (u)eppr=on %ﬁ’_"

J=1lew() rew(d)

N
(u' =) = D My (u")Br(u")
r=1

u=u*

and if we define the first term as:

=3 T mtey=p

j=1 =1
we obtain:

1
'7'0 (u*

9f (u)
du

+Zﬂ;(u )M (u*) (12.1)

u=u*

and the coefficient ag can be written as:

= (=N +H H — (u*) [m oyt Zﬁg(u*)Mt(u ) (12.2)

Therefore the invariant associated with the coefficient ag can be defined
as:

/ (~ 1N+1HT oy = 1+7o(ux) Y Bi(u)Mi(u*) (12.3)

=1

du
due physical considerations the maximal conductances (g;) and also the

stationary probabilities (m§°(u*)) are always positive. Then 7o(u*) will al-
ways be positive and finite. Furthermore, for very negative values of u*
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the function 79(u*) will be exactly the nondimensional membrane time con-
t!2. On the other hand the 7; are always positive because there are

relaxation times. Therefore [(—I)N H_‘;V:O L] will never be zero. Then the

Tj

stan

coefficient ag will be equal to zero if and only if only if its associated invari-

ant %5 vanishes.

In figure 13 we show the typical shape of the invariant “—-—Mgﬁ

m
function of u. Because the functions (u) are decreasing exponentials tend-
ing to zero in the limit v — Zoo, the value of the invariant tends to 1
(limy—s 00 H%{:H = 1). This means that the slope of the function f(u) will

be constant for very negative or very large values of the injected current.
In some central interval between very large negative and very large positive

values of u the invariant typically is convex. When the invariant ” %ﬂuﬂ is

zero the function f(u) has slope zero. Therefore, the zeros of this invariant
are the values of u corresponding to certain values of the injected current
(via I* = f(u*)) where a saddle-node bifurcation occurs.

Remark 12.1. The invariant associated with the coefficient ag is
defined as:

N
“g—iﬂ =1+7y BM, (12.4)

=1
The coefficient of the characteristic polynomial a¢ will be
equal to zero if and only if when its associated invariant

<] .
” 51{ ” 1S Zero.

2Because  limy«——co B;(u") = 0, is straightforward to show that:
—1
nondimensional membrane time constant = limy* o — oo [%&Lﬁ ] E—
u=u*

Limy = — oo 7o (1),
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~ Morris-lecar || Hodgkin and Huxley

15

| ) e de(u)

du

Figure 13: The f(u) function is in blue, the derivative 8'25:) is in solid purple

lines and the invariant H a—({ﬁln is in dashed purple lines. The figure on the left is
the graphic of the invariant for the Morris-Lecar model for relevant values of the

parameters. The figure on the right is the graphic of the invariant for the Hodgkin
and Huxley model.

12.2 Imvariant associated with a,

In this section we will obtain the invariant associated with the coefficient
aj. Using the expression 8.5 a; can be written as:

=¥ K. X 1)N-1 n(u*
o = — [I,,j(u)*) > Bi )M(mH(T(L H(T(u ZT;((Z*))

j=1 145 r=1 I=

Therefore the invariant associated with the coefficient a; can be defined
as:

(~1)N+1 i 71 (u*)
leq ]| Eal/[n jl = 1‘2 u”)M; (U*)TJ(U*)+Z o(u*)
i=1 j

(12.9)

Note that when % = 0 (which implies a9 = 0) the coefficient a; is

exactly the determinant of the N x N sub-matrix of the linear matrix written

explicitly in equation 11.1 . We can define the invariant associated with the
determinant of the sub-matrix Ly as
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-
[IDetLavsnll =1 =Y Bj(u*)M;(u*)r;(u*) (12.10)

§=1
Where:
oy + B M, B1 M3 BiMn N
Bo M ag + BoMy ... BaMn
Det(Lyxn) = : : N : =[] o IDetLaxn|l
: : i : e
Bn M By M, .. an+BNMy

Therefore the invariant associated with the coeflicient a; can be written

of
du

N oo
TI\U
llar]l = [|DetLyxnll + > () (12.11)
=1

= 0 (u* )

Because all the 7; are positive since they are relaxation times, one has

that [(—I)N H;v: i %] will never be zero for finite values of the parameters.
Therefore, the coefficient of the characteristic polynomial a; will be equal
to zero if and only if only if its associated invariant ||a;|| is zero.

Remark 12.2. The invariant associated with the coefficient a; is
defined as:

N
loall = [DetLxnll + || 2L : (12.12)

ou
I=1
The coefficient of the characteristic polynomial a; will be
equal to zero if and only if when its associated invariant
lla1]] is zero.
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%orrls-Lecar model calculatlon 12.2- The mvanant assom-
ated w1th s (llDetlLNxNII ) is given by;

mg'?—i’f‘l = u0)

 lu=ur

||Dethlel =1- ‘f1 (U*)91

Hodgkm & ‘model calculatlon o 2 The mvanant
‘ _ (E”DetLNxN” is glven by

(u —ui)
; ?+=“."" _

..... ou
3 3h (u)

o “DetlLNxNH --1+31'1(u*)glm (u *)2h°°( *) ______Bmm(u )

-+ qima(u )m™ (« )

i M_{_ Zi‘gnga(u*)ﬂoo(u*)s an ('LL)

12.3 Gating Invariants

We will define the gating invariant of a gating variable m; as

]]m5,|| = Tjﬂ/fj,@j ‘I (12.15)
This invariant quantity eztracts very important features of the impact
of a single gating variable in the dynamics of a CB model. First, is easy
to notice that if the gating invariant is negative then the gating
variable acts as an amplifier, and if it is positive it acts as resonant
(see section 1.2). This leads us naturally to a sign criteria to designate an
amplifier or a resonant gating variable that did not exist until now. An
example of a amplifier gating invariant ||m| for the Hodgkin and Huxley
model is showed in the figure 15.
But the gating invariant not only indicates if a gating variable is am-
plifier or resonant, the magnitude of the gating invariant is tightly related
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to the contribution of this gating variable to the dynamics of a certain CB
model. In the next sections we will show that the invariant ||DetLyx /|
will be key in the Bogdanov-Takens condition and appears explicitly in the
general Andronov form reduction of CB models (see section 15.2). Then,
if a gating variable is large or small compare to 1 (as shows the equation
12.13) this is related with the contribution of this gating variable to the
invariant ||DetLyyn||, and therefore to the dynamics of a CB model. This
can be seen intuitively taking into account that the magnitude of the gating
invariant depends on its three components 7;, 3; and M; (see as an exam-
ple the figure 15). If the invariant is large due to a large 5;(u), then the
function m3°(u) will be in the u-interval of maximum slope as shown in the
figure 15. In this interval, and if the relaxation time is not very fast, an
slight change in u will led to abrupt changes of the gating variable m; and
will have a noticeable impact in the dynamics of a CB model. If the invari-
ant is small due to a small M;(u), this will be because stationary functions
(mj(u)*®) involved in M;(u) have values near to zero, therefore a change in
the value of m; will not have a noticeable influence in the dynamics of the
CB model. Finally, if the invariant is large because the function 7; is large,
this leds to a persistent (slow) effect of m; in the dynamics. In contrast, if
it is small due to a small 7; this generates a transient (very fast) effect of
m; in the dynamics of the CB model. Hence, if the m; gating invariant
is large in magnitude this gating variable will have a persistent
noticeable effect in the dynamics while if it is small the effect will
be a transient not noticeable for long times.

The fact that these gating invariants (as their name indicates) are invari-
ant under scalings of time and of variables allow us to compare quantitatively
different gating variables or CB models. This comparison can determine, for
example, that one gating variable is more resonant (negative and larger in
magnitude) than other, or if one CB model has more amplifier contributions
(the sum of amplifier gating variables) than another.

13 Existence of Bogdanov-Takens in CB models

In this section we shall use the invariants defined in the previous section
to study the necessary relations that must fulfill the functions 7;, ; and
M; in a CB model to have a Bogdanov-Takens bifurcation. Since these
functions are directly related with the biophysics of the ion channels of
the CB models, we shall obtain the features and relations between the ion
channels which are necessary to have a Bogdanov-Takens bifurcation. We
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M1 (’LL)

Figure 15: Dependence on u of the m invariant of the Hodgkin and Huxley model
and of the different functions on which it depends. In red the invariant ||m]|, in
brown the stationary probability m°(u), in blue the relaxation time 7, (u), in
orange the function M;(u) and in purple the function 3;(u). The black rectangle
shows a zoom of the graphics. Note that ||m/|| is a resonant gating invariant (i.e.
negative) for all the values of w.
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will also find invariant quantities that are easily interpretable in terms of the
biophysics of a single neuron, finding a deep biophysical interpretation to our
mathematical expressions. This analysis led us to a remarkable conclusion:
the conditions that both experimentalists and theoreticians designate as the
minimal necessary conditions to have an excitable behaviour (see section
1.2) are the same to have the Bogdanov-Takens bifurcation in a CB model.
This conclusion can be considered our main result in this section. In the
next section we shall give our arguments to support the following statement:
neurons are generically near to a Bogdanov-Takens Bifurcation.

Remark 13.1. From equations 12.4 and 12.12, the two condi-
tions that must fulfill a CB model to undergo a Bogdanov-Takens
bifurcation written in terms of their invariants are:

af i
‘5};“ =1 +T0§51M1

N
IDetLaxnll =1 - BiMjms
j=1

13.1 Time scale separation

Using the invariants we will show that one necessary condition to have a
Bogdanov-Takens bifurcation in a CB model is to have a time scale sepa-
ration between at least two sets of characteristics times of the CB models,
which are the gating variables relaxation times and the membrane charac-
teristic time. This means physically that there must exist at least one
set of fast variables and another set of slow variables. We recall
that in order to have a Bogdanov-Takens bifurcation the invariants of a CB
model must satisfy equations 13.1. Let us assume that we have only one
time scale 7. This physically means that all ionic channels and 7p relax with
time scales of the same order. Therefore:

"T'NTJ'NTO 3=1,2.N

Then the conditions for the Bogdanov-Takens bifurcation (equation 13.1)
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read:

Haf“ —1+¢Zﬁ;M; =0

|DetLyxn| =1 — TZ;aij = 0
j=1

and then we must have:

A 1
ZﬁzMz =
lN=1

> BiM; =
j=1

These two equations cannot be satisfied simultaneously. However it is
clear that equations 13.1 can hold if we have two or more characteristics
times (thats it at least ; # 7, 4,k € [0,N] with j # k) and then the
Bogdanov-Takens conditions may be fulfilled. We have then shown that to
have a Bogdanov-Takens bifurcation in a CB model it is necessary to have
at least two time scales. Thats means in practice that one must have dif-
ferent orders of magnitude for at least two groups of characteristics times,
for example differences between the relaxation times of two different gat-
ing variables (for example 7; > 7). The necessity of different time scales
to have a Bogdanov-Takens bifurcation coincides with one of the two nec-
essary conditions that all the literature suggests for excitable behaviour as
explained in section 1. In fact it is widely accepted that the fast inward
currents (in general sodium cwrrents) are responsible for the initiation of
the action action potential and therefore it is almost obvious for the neuro-
physiologist that the time scales separations is something essential for the
excitable behaviour. But this is our first step to show the tight relation
between the ezcitable behaviour and the Bogdanov-Takens dynamics. To
exemplify this we show in figure 16 that this conditions is fulfilled in the
Hodgkin and Huxley model (the condition is automatically fulfilled in the
Morris-Lecar model since there one assumes that one of the gating variables
is very fast and can the be replaced by its stationary value, see Morris and
Lecar in 1981).

S =
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Figure 16: Gating variables relaxation times and 7y for the Hodgkin and Huxley
model. The grey dashed line with the tag B.T. is centered in the interval of u where
the system often undergoes the Bogdanov-Takens bifurcation for several values of
the parameters.

67



13.2 Resonant and Amplifying Variables

As we explain in the section 1.2, we can define amplifying and resonant
gating variables, and we showed in section 12.3 that this notion was trans-
parently interpreted in terms of the gating invariants. In this section we
will show that the second necessary condition to have a Bogdanov-
Takens bifurcation in a CB model — in addition to time scale
separation — is to have at least one resonant and one amplifying
gating variable. Let us assume that in the range of interest for the param-
eters the system has only one kind of gating variables, i.e. all the variables
are either resonant or amplifying. This means mathematically :

Sign (ﬁij) =1 or Sign (ﬁij) =-1 VieN

If this is true, then the Bogdanov-Takens conditions written in 13.1 be-
come:

af N
H-a—t;” =14 Sign(ﬁ’ij)ToZ 1BiM = 0

i=1

N
I DetLyxn|l =1 - Sign (8;M;) > |B;Mjl7; = 0
j=1

Then to have a Bogdanov-Takens bifurcation we must have:

1
Sign (ﬂj]\/fj) = e
Sign (To %l lﬁlel)
1
Sign (8;M;)
Sign (Zjil |B; M| Tj)
ie.
Sign (8;M;) = -1

Sign (8;M;) = 1

These two equations cannot hold simultaneously. Nevertheless it is clear
by looking the equations in 13.1 that having at least one resonant and one
amplifying gating variable (thats it at least Sign (3;M;) # Sign (Bx M) j,k €
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[0, N] with j # k) the Bogdanov-Takens conditions may be fulfilled.
Therefore we have shown that to have a Bogdanov-Takens bifurcation in
a CB model — in addition to time scale separation — it is necessary to
have at least one amplifying and one resonant variable. Is very interesting
that, as in the previous section, this second necessary condition to have a
Bogdanov-Takens bifurcation in a CB model, also corresponds to the the
second necessary condition that all the literature suggests for excitable be-
haviour as explained in section 1. As it was explained in this section, it is
widely accepted that the fast inward currents (in general sodium currents)
that drive a positive feedback, are responsible for the initiation of the ac-
tion potential and involve amplifying gating variables. On the other hand,
it is also widely accepted that the outward currents responsible for the re-
polarization phase of the action potential (for example potassium currents)
involve primarily resonant gating variables. In fact, it is also almost obvious
(and widely accepted for the neurophysiologist and also for dynamical sys-
tem theoretician) that the coexistence of a positive and negative feedback
— which means at least an amplifying and a resonant gating variable — is
directly related to the oscillating behaviour of neurons and is therefore a nec-
essary condition for excitable behaviour. This is our second step to show the
tight relation between the excitable behaviour and the Bogdanov-Takens dy-
namics. Figure 14 exemplifies this result in the Hodgkin and Huxley model
which has one amplifying gating invariant (||m|| in red) and two resonant
gating invariants (||k|| in brown and ||n|| in blue).

As a corollary of this result we see that a CB model with one gating
variable cannot undergo a Bogdanov-Takens bifurcation.
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Remark 13.2. The two necessary conditions for a CB model to
undergo a Bogdanov-Takens bifurcation are:

e There must exist time scale separation. This mathe-
matically means:

3j,k€[0,N] with j#k suchthat: 7; #7%

e There must exist at least one resonant and one am-
plifying gating variable. This mathematically means:

dj,k € [0,N] with j#k such that:
Sign (8;M;) # Sign (B My,)

Although the Morris-Lecar model in its usual formulation is described
by two dynamical variables (v and z), this model represents the dynamics
of a neuron with two gating variables but one of them with a very fast
relaxation (Morris and Lecar, 1981). Taking this into account that, in both
Morris-Lecar and Hodgkin and Huxley model the two necessary conditions
to undergo a Bogdanov-Takens bifurcation (see remark 13.2) are fulfilled.
An example of one of the possibilities in the space of parameters to reach
the Bogdanov-Takens bifurcation is shown in figure 17 (Morris-Lecar model)
and figure 18 (Hodgkin and Huxley model).

13.3 Two time scales gating variables

In this section we will analyse the scenario when the necessary condition
exposed in the section 13.1 are fulfilled with two time scales for the gating
variables. As a first step we want to prove the statement: if the two time
scales gating variables condition holds, then the sum of the fast
invariants must be amplifying and the sum of the slow invariants
must be resonant.

Let us assume that we have two sets of gating variables in a CB model:
the fast gating variables with relaxation times of the order of 7¢ (set of
variables F) and the slow gating variables with relaxation times of the order
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Figure 17: A Bogdanov-Takens bifurcation in the Morris-Lecar model. The
“ 8_{3%1 invariant is shown in purple. The ||DetLy v || invariant is shown in green.

The graphics in black frames show the eigenvalues of the linear matrix L{u, &%)
in the complex plane. The tags 1-3 tags indicate the corresponding values of the
variable u. The graphic in a red dashed frame shows the eigenvalues of the linear

matrix L(u,d5%) in the complex plane when the system undergoes a Bogdanov-
Takens bifurcation.
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Figure 18: A Bogdanov-Takens bifurcation in the Hodgkin and Huxley model.
The “MJ‘;’:L “ invariant is shown in purple. The ||Detlyx || invariant is shown in

green. The graphics in the black frames show the eigenvalues of the linear matrix
L(u, &%) in the complex plane. We omit the most negative eigenvalue (far to the
left) in order to better visualize the two critical ones. The tags 1-3 indicate the
corresponding values of the variable u. The graphic in a red dashed frame show
the eigenvalues of the linear matrix L(u, &%) in the complex plane when the system

undergoes a Bogdanov-Takens bifurcation.
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of T (set of variables S). We have then:

T ~TE ke F
m~Ts les
with %«1

(13.2)

Hence, the Bogdanov-Takens conditions in the equation 13.1 are written:

170 | D AMi+ ) BMi| =0

les keF
1~ TsZﬁ’zMz ~TFZﬂkMk =0
les keF

If we define:

BMs = ) fiM
les

BMp = Y BiMy
keF

the equations 13.5 and 13.6 become:

1+ 79[BMs+ BMp] =0
1—-Ts¢BMg—1pBMp =10

Then, after some algebra:

e

BMg = — 0
Ts1— 3£

T

1 1-{--:“L
By~
P Ts1-F

Since 77 /Ts < 1 we can conclude that

BMg >0
BMp <0

77

(13.3)

(13.4)

(13.5)
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This means that if we have two time scales for the gating variables the
sum of fast invariants must be amplifying and the sum of the slow
invariants must be resonant. This is a generic situation widely observed
experimentally in neurons and which has been also discussed theoretically
(Johnston and Wu, 1994; Izhikevich, 2010). This happens in the Morris-
Lecar and in the Hodgkin and Huxley models as shown in figure 14 where
the fast gating invariants are amplifying (||m| in the Hodgkin and Huxley
model) and the slow gating invariants are resonant (||m|| in the Hodgkin and
Huxley and Morris-Lecar model). With further calculations (see appendix
C) we can show that the most generic case for a CB model is that 7 and
the slow time scale are of the same order (79 ~ Ts). The figure 16 shows
that within the range v where the Hodgkin and Huxley model undergoes the
bifurcation (indicated with a dashed line) this condition holds (the figure
shows that 7,(u) /79 ~ m(u)/m70 ~ 1).

14 CM models are in the neighborhood of Bogdanov-
Takens

In the previous section we showed that the necessary conditions to have a
Bogdanov-Takens instability in a CB model are two: 1) at least two time
scales 2) at least one amplifying and one resonant gating variable. As a
corollary of this we proved that a CB model with only one gating variable
cannot undergo a Bogdanov-Takens bifurcation. We also show that if these
two conditions are fulfilled with two sets of fast and slow gating variables,
then the sum of the fast invariants must be amplifying and the sum of the
slow invariants must be resonant. This last analysis also suggested that
the order of magnitude of the membrane time constant is generically of
the order of the slow gating variables. Surprisingly all these conditions are
pointed out in the literature as fundamental conditions and sometimes as
the mechanisms for the excitable behaviour observed in neurons (see section
1). In this section we will show that indeed the ezcitable behaviour and the
Bogdanov-Takens dynamics are two sides of the same coin. Therefore, at the
end of this section it will be very clear that the Bogdanov-Takens behavior is
the key mathematical mechanism which gives rise to the observed dynamics
of single neurons.

Since the Bogdanov-Takens bifurcation is of codimesion 2, one has to
reach a point in a two dimensional space of parameters as it is seen in figure
19, and this means that experimentally one has to tune two knobs in specific
points to realize this bifurcation. This scenario does not look likely for single
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Figure 19: Codimension 2 bifurcation in the space of parameters. The curves
glo1,02) = 0 and f(oy,02) = 0 are two conditions for two different codimension
1 bifurcations. The intersection in the space of parameters is a codimension 2
bifurcation point.

neuron dynamics where in one of the usual experiments where varying only
the magnitude of the injected current it is possible to observe the excitable
behaviour. One has then the impression that the observed dynamics depends
on a codimension 1 mechanism (mathematically a bifurcation) rather a codi-
mension 2 bifurcation such as the Bogdanov-Takens instability. But a the
local codimension 1 bifurcation (as Saddle-node and Hopf bifurcation) and
their normal forms fail to explain all the phenomenology of the excitable
behaviour characterised by global bifurcations. Hence, there is a seeming
contradiction between the codimension 2 Bogdanov-Takens bifurcation and
the apparent codimension 1 mechanism observed experimentally in neurons.

Using our previous results we reconcile this apparent paradox showing
that the CB equations are generically near to the Bogdanov-Takens bi-
furcation. In fact their mathematical structure makes —if the necessary
conditions for Bogdanov-Takens in remark 13.2 hold— that the first two
coefficients of the characteristics polynomial will be very small (ap < 1 and
a; < 1). This then leds to the conclusion that generically CB models will
be placed in the neighbourhood of a Bogdanov-Takens bifurcation.

In order to show these results let us consider the coefficients ag and a3
of the characteristic polynomial (equation 12.3 and 12.9):
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N

= (=1)Nt! 12t 14.1

agp ( ) ‘gTj au ( )
¥.q

ay = (*1)N+1H;||a1” (14.2)
j=1 "t

We assume thet the necessary condition of having at least two time scales
for the gating variables is fulfilled. Let us assume k fast gating variables with
a time scale 7 and m slow gating variables with a time scale T, then we can
write the equations 14.1 and 14.2 as:

1 af
_ (_1\N+1 aof
a0 = (-1) ToTET™ || Ou
1
a = (e

we remind the reader that 7 and 7" are nondimensional characteristic
times. As discussed in the section 12 the physics of a system cannot depend
of the time scaling, but in order to do physical comparisons (saying for
example that a coefficient is small) we must choose a characteristic time to
nondimensionalize. This time should be a relevant time of the system, to
give physical sense to the words fast or slow. In this case it is quite obvious
that a good choice of the time scale to nondimensionalize is the fast variable
7, then something very fast will have times smallest than 1 and slow things
will have times greater than 1. Then, if we consider times with a tilde as
times with dimensions, the equations become:

~k+m+1 8 ~ F m 8
o = s lwml - e (5) (B) 15
R Fy™
o = Il = ()% (Z)

We recall that a necessary conditions for Bogdanov-Takens in a CB
model is:

Bl L ay
I T/

.}"..
T
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and we consider also a membrane relaxation time of the order of the
slowest variables (179 ~ T's). We define

€= % <1
Then
af
— (1) N+1gm+1 || OF
“e (=1) ¢ ou
a1 = (=)™ |lay||

Then if ”gﬁ“ is does not diverge one concludes that

lag] < 1
laa] <« 1

The functions 3;(u) are always finite and decay exponentially for u —
Fo0 and the functions M;(u) can increase or decrease at most linearly when
| u |—> c0. Then because 7 < T and 19 ~ T, we have

s ml = 1
T
g flaf) = 1+EE2 @y
u—rtoo T0

We see then that the invariants as functions of v are both of order one for
very large negative and very large positive values of v and in some central
interval they take finite values and can vanish. This is shown for the Morris-
Lecar and Hodgkin and Huxley models in the figures 13 and 14. It is then
in the central interval where the invariants can change of sign. Since it is
not experimentally seen and physiological plausible that the functions B(u)
have maximums at large negative values we can expect that the invariants
will go monotonically from 1 to zero as it seen in the figures referenced.
Hence, from very large negative values of u to the critical value where the

invariant is zero (uf for the H%H and u§ for ||a1]|) both invariant will be of

order 1 as it is shown in the figures 17 and 18. Therefore, in the interval
u € [—oo,u§] the coefficients ag will be of order €™ and in the interval
u € [—o0,uf] the coefficient a; will be of order €™*!. The reader may note
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that the invariants are zero in two point. But because we are following the
stable fixed point root (the positive u fixed point is generically unstable),
we only have Bogdanov-Takens for negative values of u.

Since the invariants are finite and remain of order 1 near to the Bogdanov-
Takens point and since the products 3;(u)M;(u) and the functions 7;(u) will
not change abruptly (as they do) as we discuss in the appendix C, the co-
efficients remain small ( ap ~ €™ and a; ~ ¢™*! ) in an interval between u§
and u§.

Our analysis shows that if we have two time scales for the gating vari-
ables the coefficients ag and a; will be generically very small. This is a
very powerful result: this physically means that if a CB model satisfies the
necessary condition for the existence of a Bogdanov-Takens instability then
the system is automatically in the neighbourhood of the Bogdanov-Takens
bifurcation (near as is shown in the figure 19), i.e. in its unfolding. Because
the structure of the CB equations, the necessary conditions for the ex-
istence of the Bogdanov-Takens bifurcation becomes sufficient to
be in the unfolding of Bogdanov-Takens. Although mathematically
we have a codimension 2 bifurcation, if the conditions of the existence of
Bogdanov-Takens holds, it is not necessary to move any parameter to stay
in neighbourhood, and the CB models will behave as in the unfolding of the
Bogdanov-Takens normal form.

In the next section we clearly show analytically and numerically that if
CB models meet the necessary conditions in the remark 13.2, its dynamics
are described by the Bogdanov-Takens normal form.

Remark 14.1. If a CB model satisfies the two necessary condi-
tions for the existence of Bogdanov-Takens as described in Remark
12.1 with two time scales for the gating variables this CB model
is in the unfolding of Bogdanov-Takens, that is:

|a01 < 1
|a1| < 1

It is important to note that the previous arguments do not apply to
instabilities of higher codimension. We shall see in appendix G that the
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triple zero bifurcation (which will have chaotic behavior) is not generic in
the sense discussed here for CB models, and in order to have this instability
the CB models must fulfill a very specific conditions. We also study carefully
the coefficients as and aj of the characteristic polynomial and show that they
are bigger than ag and a;.

15 CB model reduction

In this section we will explain a method developed to transform any CB
model in almost the Bogdanov-Takens normal form in their Arnold form.
We say almost because this equation will have the form of a perturbed
Hamiltonian and will fulfill the subcritical scaling in the relevant range of
parameters, but the force and the friction will be written in terms of tran-
scendental functions. This reduced equation will be written in terms of the
two variables u and #%. Is important to note that using the analytical expres-
sion for the Jordan basis in section 11.2 and in appendix B it is easy to show
that these two variables (the potential v and the derivative of the potential @
of the CB model) are actually the critical variables of the Bogdanov-Takens
normal form.

In addition to this remarkable fact, we will say that the reduced equation
preserves the linear structure. This is not strictly true, because in this
method we reduced the number of variables from NV 4+ 1 to 2, therefore we
will change the linear matrix and furthermore an ad hoc change of variables
will break the “neuronal matrix” structure of the linear system. But we
preserve two fundamental features of the original CB model that we have
shown in the previous sections and which are the key for the ezcitability
behaviour: 1) the reduced form will maintain the fixed point condition of
the original CB model given by I* = f(u*,&7), therefore the appearance
or disappearance of fixed points with respect to the parameters will be the
same in both the original CB model and their reduced form, 2) the reduced
form also preserves the Bogdanov-Takens points of the original equation

(thats it Hg&n =0 and ||DetLyxn| = 0).
To do this reduction we will use three assumptions:

1. The difference between the gating variable and its stationary proba-
bility is small (|z;| < 1).

2. There exists a separation of time scales which leds to two sets of gating
variables: the slow set with constant time relaxation Tg and the fast
set with constant time relaxation 7F.
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3. The CB model is near to the Bogdanov-Takens bifurcation in the sense
that we can use the scaling in the remark 10.1 and then neglect higher
order terms with respect to that scaling. In fact, we show in the
previous section 14 that if the assumption 2 is fulfilled then we are in
the unfolding of the Bogdanov-Takens instability.

In the next section we will show numerically that this reduced equation has
the same form and behaviour as the subecritical Bogdanov-Takens normal
form with a cubic-like force and a quadratic-like friction in the relevant
range of parameters. But most importantly we will show that this reduced
equation has qualitatively the same dynamics of the original CB model,
confirming that the dynamics of CB models is qualitatively described by
the subcritical Bogdanov-Takens normal form.

15.1 Two time scales model reduction

Consider the most general CB model written in its standard form (see section
5.1):

u =1I- f(u,ér) — K(u,%,0r)
. z; o :
£ =———7-—+4 8i(u,0;)u = -
J 75 (u3 C"'j) ﬁj‘( J) J
Since |z;| < 1 for every j, we shall neglect the higher orders in these vari-
ables. Then if we expand K (u, Z, &r) around the fixed point (u = u*, ¥ = 0)
we keep only the linear orders in #, and using the definitions 6.4 the last
equation becomes:

N
@ o= I-fu)+) M)z
Jj=1
. Zj . .
#j = ——+Bjw)h j=1...N
T

Now we use the assumption 2): the fast gating variables will have re-
laxation times of the order of 77 (set of variables F') and the slow gating
variables will have relaxation times of the order of Ts (set of variables S),
e
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Te(u) ~ 7 ke F

Tg(’u.) ~Tg leS
with ;—s <1

For simplicity we shall use the subindices F' and S for the functions 3;(u)
and M;(u) which are related to the fast and slow gating variables, respec-
tively. Therefore the equations can be written (using an obvious notation)

@ = I— f(u)+ Mr(u)-Zr + Ms(u) - s (15.1)

ip = —2£ 4 Bp(u)u (15.2)
TF

Fs = %ﬁ + Bs(u)a (15.3)
S

If we take the derivative with respect to time of these equations 15.1 we
obtain:

. Of(w). oM o . 0N, 2 eit 4 I 7
i = J;EL) ai;,(u) - Zpu+ Mp(u) - TF + ai(u) T+ Ms(u) - Ts

(15.4)
where the sign - is the usual euclidean scalar product. Then using the
equations 15.2 and 15.8 in 15.4 we obtain:

oo Ofw),  9Mr(w) _ B 3
b=——5- 50 i+ Mp(u) - [——;_; + ﬁp(u)u]
+ Mgi(u) st + Mg (u) - [“% + Es(u)ﬂ]

We can eliminate adiabatically (Van Kampen, 1985) the fast variables
assuming that they are instantaneous. Then we put

Zp ~ 0= &F = urpfr(u) (15.5)

and we obtain:

ON aMpcu)
== ,8 (u)tp u? +

¢ 8S(u) st + Ms(u) - [—% + ﬁs(u)ﬁ]

(15.6)
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If we consider now equation 15.1 we can obtain the expression:

Ws(u) - &5 = i [1 = redle(u) - Br(w)] = (1 = f(w)

If we replace this expression in equation 15.6 we obtain:

i = {_—%;_(_Q -0 (%‘Q + TLS {1 — TsMs(u) - Bs(w) — 7pMp(u) - EF(U)})
+ [——Lﬁgi(u) 'EF(u)] Tpi? + %i(m -fs} U

and using the definitions of the invariants in 12.4 and 12.10 the equation
becomes:

I /f1]lo 1
i = % — U (;E —% + —175‘ ||Det]LN><N(U)“)
+ {aﬁgi(u) B’F(U)} Tpl'l.z e ?_%%_(w . 53] U

Then the CB model becomes:

. 5:%(_”1 4 (Tlo %%‘l + Tl; ||DetLNxN(u)n)
5 laﬂgl(u) 'EF(U)} il + {a_MgSu(_”’)fS] i (15.7)
Tg = —% + Bs(u)i i)

15.2 CB model in Andronov form

Using the fact that we are near to Bogdanov-Takens we can neglect the
term:

[31\7-’1:*(”) _

50 EF(“):‘ TRU®

Using the subcritical scaling (see remark 10.1) we realise that this term
is smaller than the order terms of the Bogdanov-Takens normal form:
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[—-—-—-—-—-aﬂf;i(u) . EF(U)] TF'&2 ~ TFGGS & €

Then the equations becomes:

. I=flu) 0f () OMs(u) _ | .
u= __j:,s-'“ - U ('To au + — ||Det]LNxN(u)||) |: Bi. . ms} U

. B A
s = TS+[3S(U)U

Now the term [g—%ﬁ -:E'S] @ is the only term which links together the

ng+2 equations ( ng is the number of slow variables S). This is a non linear
term and will only affect nonlinearly the dynamics of the first equation.
Furthermore if we are near to Bogdanov-Takens and we use the ansatz (the
expression of the physical variables in terms of the critical variables) at linear
order (see section 11.2 and the appendix B) we can write

Fs ~ uTsfs(u)

and:

[——aﬂgi(“) .fs] i~ [WS(“) Bs(u )] T ~ Tse™ < €

Therefore is fair to neglect this term. Actually in the Morris-Lecar model
we have obtained an analytical expression for this term (we can do that in
any two gating variable CB model) as a function of » and % (see equation
D.23) and we have shown numerically that this term qualitatively does not
change the dynamics (see section 16.1). Hence, finally, the reduced form of
any CB model is:

_I-fv) (1
- Ts u('ro

Note that this equation has the form of the Bogdanov-Takens normal
form in the Andronov form. The force and the friction are:

af (u)
du

+ i;; HDetILNxN(u)H) (15.9)
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Py = 1218 “TJ; ()
df (u)

A(u) 50

1 1
s + Ts | DetLy < v ()|

16 Numerical Results

In the appendices D and E we reduce (transform in the case of Morris-
Lecar model since in that case it is just a nonlinear change of variables)
the two most famous conductance based models —the Morris-Lecar model
and the Hodgkin and Huxley model— to the form in 15.9 using the method
developed in the previous section. In the appendix F we show, doing a
change of variables, that one of the most famous phenomenological models
used to describe the single neuron electrical dynamics, called the generalised
Fitzhugh-Nagumo model, (Hindmarsh and Rose, 1982), is actually the sub-
critical Bogdanov-Takens normal form!3.

In this section we present numerical results which show that this reduced
equation has the same qualitative behaviour as the subcritical Bogdanov-
Takens normal form with a cubic-like force and quadratic-like friction in the
relevant range of parameters in the case of Morris-Lecar and Hodgkin and
Huxley models (because in the case of the generalised Fitzhugh-Nagumo
model the result is exact). We will show —as the theory predicts— that the
dynamics of this reduced equation has the same local and global bifurcations
as the subcritical Bogdanov-Takens normal form studied in section 10.3. We
will also numerically show that this reduced equation has qualitatively the
same dynamics of the original CB model, confirming that the dynamics of
CB models is qualitatively described by the subcritical Bogdanov-Takens
normal form.

For the simulations we used our objective-c/COCOA software specially
developed by us to deal with neuron models from the point of view of non
linear dynamics and normal form theory (see section I).

16.1 The Morris-Lecar model

We simulated simultaneously the Morris-Lecar model (equation D.19), the
Morris-Lecar model without the kinetic energy term (equation D.23) and

13Note in the appendix F that this model is not the most general form of the subcritical
Bogdanov-Takens normal form.
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the reduced form of the Morris-Lecar model (equation D.24). With our
software we can visualize and perturb interactively the orbits in the same
phase space (the u-u plane). We use green colour to draw the orbits of the
original Morris-Lecar model, yellow for the Morris-Lecar without the term
in (2)? and purple for the Reduced form. Because the three equation have
the same fixed points and the same linear matrices when they are linearised
around the fixed points, in the software we calculate analytically and in
real time the fixed points (thats is a u* where I* = f(u*) and % = 0) and
the eigenvalues and eigenvectors only once. The symbology used for the
different classes of fixed points and stable and unstable manifolds is the
same that was used in section 10.3. The force (I;fu;‘ ) is the same for the
three equations and we plot it in the phase plane in blue. The friction curve
will be different for the three models (the original Morris-Lecar model, the
Morris-Lecar without the term in (%) and the reduced model in which we

neglect also the term — %}_f-éi—‘l?l which will always vanish when it is evaluated
at a fixed point u* which is such that I* = f(u*)). For Morris-Lecar and
Morris-Lecar without the term in (%)% we plot the friction curve in red and
for the reduced model we use magenta.

As the figures 20, 21 and 21 show the forces have a cubic shape (also
consistent with a quintic shape) and the friction in both cases (with and
without the —ilz;f—glﬁ) has a quadratic shape with slight differences between
the two friction curves. As the theory predicts, we found the same global
bifurcation scenarios as in the subcritical Bogdanov-Takens normal form (see
section 10.3). Interestingly —and also as our general theory predicts— we
show numerically that the dynamics does not change qualitatively between
the three equations. The figures show how quantitative features such as
the specific value of the nondimensional injected current / when homocline
or heteroclinc bifurcation occur, the shape and period of the limit cycles,
the shape of the separatrices change when the parameters vary in the three
equations (and must change since in the global bifurcations the nonlinearities
play a role). But the simulations show that the qualitative features —as the
kind of bifurcations— are the same in the three equations, i.e. they are
robust.

The figure 20 shows the Saddle-node homoclinic scenario. Before the
bifurcation we have three fixed points: an stable node, a saddle and an un-
stable focus. We move the nondimensional injected current I and the stable
fixed point collides with the saddle and the heteroclinc connection becomes
a limit cycle. As it is shown in the third plot of the figure the shape of the
three limit cycles are different and have different periods. But because the
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Before the bifurcation In the bifurcation After the bifurcation

Figure 20: This figure shows the Saddle-node homoclinic bifurcation scenario
in the Morris-Lecar model (green orbits), the Morris-Lecar model without the (i)
term (yellow orbits) and the reduced form of the Morris-Lecar model (purple orbits).
On the top we show the phase space before the bifurcation, in the bifurcation and
after the bifurcation. In the middle we sow the graphic of u versus time for long
times corresponding to each situation. The period of the oscillations is indicated for
the three models using with a coloured bar with the previous colour code. On the
bottom of the figure the brown arrow indicates the increase of the nondimensional
injected current I.

86



bifurcation is locally a saddle-node bifurcation, and this bifurcation depends
locally of the linear system. the Saddle-node homoclinic bifurcation occurs
in the same bifurcation point for the three equations.

Before the bifurcation In the bifurcation After the bifurcation

Periods =

o~
oy

Figure 21: This figure shows the Saddle-homoclinic bifurcation scenario in the
Morris-Lecar model (green orbits), the Morris-Lecar model without the (1)? term
(vellow orbits) and the reduced form of the Morris-Lecar model (purple orbits). On
the top we show the phase space before the bifurcation, in the bifurcation and after
the bifurcation. In the middle we show the graphics of u versus time for long times
corresponding with each situation. On the bottom of the figure the brown arrow
indicates the increase of the nondimensional injected current I. The two attractors
that appear after the bifurcation are marked with the number 1 and 2 in the phase
space and in the u versus t graphic.

The figure 21 shows the Saddle-homoclinic scenario. There exist three
fixed points: an stable node, a saddle and an unstable focus. When we
move the nondimensional injected current I the unstable manifold of the
saddle fixed point returns getting closer to the stable manifold. When the
unstable manifold and the stable manifold connect in the same homolinic
orbit the Saddle-homoclinic bifurcation occurs, and then the homoclinic
connection becomes a limit cycle. Because the Saddle-homoclinic is a global
bifurcation the specific bifurcation point depends on the nonlinearities and
the equations have different bifurcation points (the figure shows that the
original Morris-Lecar model bifurcate before the other two). Although the
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shape of the limit cycles of the three equations are different we can see that
after the bifurcation the same qualitative scenario appears: a limit cycle
(marked with 1 in the figure) and the stable focus (marked with 2 in the
figure) separated by the stable manifold of the saddle point. Therefore, as it
is shown in the third plot of the figure 21, after the bifurcation in the three
equations there exists bistability between two attractors.

Before the bifurcation In the bifurcation After the bifurcation
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Figure 22: This figure shows the Big homoclinic bifurcation scenario in the
Morris-Lecar model (green orbits), the Morris-Lecar model without the (i)? term
(vellow orbits) and the reduced form of the Morris-Lecar model (purple orbits).
On the top we show the phase space before the bifurcation, in the bifurcation and
after the bifurcation. In the middle we show the graphics of u versus time for long
times corresponding with each situation. On the bottom of the figure the brown
arrow indicates the increase of the nondimensional injected current I. The two
attractors that appear after the bifurcation are marked with the numbers 1 and 2
in the phase space and in the u versus t graphics. The heteroclinic separatrices of
the three equations between the two attractors (simulated using negative time) are
showed in black.

The figure 22 shows the Big homoclinic scenario. As it is shown in the
figure 22 the three equations undergo qualitatively the same scenario de-
scribed in section 10.3. Interestingly — as the theory predicts— we also
found that in the three equations, that moving the parameters the big ho-
moclinic scenario lead to the other scenarios distinctives of class 2 neurons.
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Not surprisingly for us, is clear that the dynamics of class 2 neurons is not
explained merely by an Andronov-Hopf bifurcation as many authors propose
(Ermentrout and Terman, 2010), but by the big homoclinic scenario which
led to other homocline bifurcations of the sparatrices.

This results are remarkable by itself: we numerically confirm that the
Morris-Lecar model is in fact equivalent to the subcritical Bogdanov-Takens
normal form. But must importantly, this simulations consistently supports
our theoretical results showing that the dynamics observed in the original
CB model is explained by the subcritical Bogdanov-Takens normal form.

16.2 The Hodgkin and Huxley model

We have simulated simultaneously the Hodgkin and Huxley model (equa-
tions E.17, E.18, E.19 and E.20 ), the Hodgkin and Huxley model after
linearisation of the gating variables (equations E.32, E.33, E.34 and E.35)
and the reduced form of the Hodgkin and Huxley model (equation E.46).
With our software we can visualize and perturb interactively the orbits in
a projection of the phase space (the z1-u plane) and —in the case of the
reduced model— in a transformation of the 4-u phase plane using the rela-
tion E.37. Therefore, in this simulations we visualise in the same z;-u plane
the Hodgkin and Huxley model, the model with linearisation of the gat-
ing variables (a four variables ODEs) and the reduced form of the Hodgkin
and Huxley model (a two variables ODE). We use green to draw the orbits
of the original Hodgkin and Huxley model, yellow for the model with lin-
earisation and purple for the reduced form. The three equations have the
same fixed points because the fixed points only depend on the I* = f(u*)
relation. The Hodgkin and Huxley model and the linearised Hodgkin and
Huxley model have the same linear matrices and the same eigenvalues and
eigenvectors around the fixed points. But in the reduced model the eigen-
vectors and eigenvalues are not equal to the other models. In practice the
nearest to zero eigenvalues will be approximately equal to the nearest to
zero eigenvalues of other two models. Hence, in this simulations we will plot
the eigenvectors and eigenvalues only for the reduced model. We used the
same previous colour and shape symbology for the different classes of fixed
points, the stable and unstable manifolds and for the force and the friction
functions.

The figure 23 shows that the shape of the limit cycles is quite differ-
ent for the three equations and also their periods, but the dynamics does
not changes qualitatively, and the the three equations undergo a Saddle-
node Homoclinic bifurcation. Because the bifurcation is locally a saddle-
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Before the bifurcation In the hifurcation After the bifurcation
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Figure 23: This figure show the Saddle-node homoclinic bifurcation scenario
in the Hodgkin and Huxley model (green orbits), the linearised Hodgkin and Huxley
model (yellow orbits) and the reduced form of the Hodgkin and Huxley model
(purple orbits). On the top we show the phase plane before the bifurcation, in the
bifurcation and after the bifurcation. In the top left of each phase plane we present
in an edge dashed box a zoom of the phase plane. In the middle we show the
graphics of u versus time for long times corresponding to each situation. With a
coloured bar is we indicate the period of the oscillations for the three models using
the same colour code. On the bottom of the figure the brown arrow indicates the
increase of the nondimensional injected current I.
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node bifurcation, and this bifurcation depends locally on the I* = f(u*)
curve, the Saddle-node homoclinic bifurcation occurs in the same bifurca-
tion point for the three equations. The fact that the three models have the
same qualitative behaviour is a beautiful example the Elphick-Tirapegui-
Brachet-Coullet-looss theorem (Elphick et al., 1987; Haragus and looss,
2011; Wiggins, 2003). This theorem states that the relevant nonlineari-
ties which shapes the qualitative dynamics of a given nonlinear dynamical
system only depends of the structure of the linear system. Our numerical
result strongly supports the statement because the three systems maintain
the same linear structure and have the same qualitative dynamics.

16.3 The generalised Fitzhugh-Nagumo model

For completeness we show one example of the simulations performed in
the generalised Fitzhugh-Nagumo model. The figure 24 shows the Saddle-
node Homoclinic bifurcation scenario using the same symbols and colour
codes of the previous simulations. Because (as we showed in the appendix
F) this equation is almost the subcritical Bogdanov-Takens normal form
(it is in fact less general than the normal form since there is a relation
between the coefficient of the highest order nonlinear term in the force and
the coefficient of the quadratic term of the friction) this equation will present
all the bifurcation scenarios shown in section 10.3.

17 Biophysical interpretations

In this section we pretend to give an outline and a brief discussion of some
biophysical interpretations which we found relevant. These interpretations
are by no means unique and maybe they are not the most relevant of our
theoretical work. We expect that the discussion with the reviewers of this
thesis will enrich and open other possible interpretations and experimental
applications.

One interesting outbreak interpretation comes from the very nature of
the normal form approach. As we have previously discussed the qualitative
dynamics of any dynamical system near a bifurcation is given by the normal
form, but the connection with the real world is given by what we call the
ansatz which is just the set of expressions through which the original phys-
ical variables are expressed in terms of the variables of the normal form. In
this sense one can say that the physical content of a particular problem is
in the ansatz which varies from one physical situation to another in con-
trast to the normal form which has a universal nature. Our ansatz shows
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Before the bifurcation In the bifurcation After the bifurcation

Figure 24: This figure shows the Saddle-node homoclinic bifurcation scenario
in the generalised Fitzhugh-Nagumo model (green orbits). On the top we show the
phase plane before the bifurcation, in the bifurcation and after the bifurcation. In
the middle we show the graphics of u versus time for long times corresponding with
each situation. On the bottom of the figure the brown arrow indicates the increase

of the parameter I.
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a very interesting feature of CB models, namely that the critical variables,
i.e. the variables of the normal form, are the potential u and its derivative
with respect to time v which have to be considered as independent variables
since the normal form is a set of two first order differantial equations. This
is very surprising because the variable u is actually the observable measured
in the current experiments and # is often calculated through widely used
data analysis in electrophysiology (Khaliq and Bean, 2008; Yu et al., 2008;
Fernandez and White, 2010). Hence, a first important observation is that
the variables of the normal form are the experimentally relevant variables,
something that does not happen very often. As the theory predicts, because
the CB models are generically in the neighbourhood of a Bogdanov-Takens
bifurcation, the N gating variables of the CB models (my,ma,...,my) will
be slaved by the critical variables w and %. Since we are able to calcu-
late analytically the Jordan basis we have the analytical relation between
the gating variables (m1,ma,...,my) and the critical variables (u and )
at the dominant linear order in the critical variables for any CB model.
Explicitly, using expression B.3 and the definitions 6.3 and 6.6 we obtain
(1=12,...,N)

;= % (a) ~ Bm;?"(u)
L du

These equations mean that the gating variables are following the sta-
tionary probabilities m3°(u). The magnitude of the difference between a
gating variable and its stationary probability will depend on the magnitude
of the associated relaxation time, the variation of the stationary functions
m3°(u) on the potential u and the magnitude of the time variations % of the
potential. The previous equations allow then a clear interpretation which is
full of biophysical sense and —as our theory predict— will be approximately
true for CB models.

As we mention in the previous sections, the model reduction method
captures the qualitative features of the CB models. In that sense it is not a
biophysical accurate description but a gualitative cartoon of the CB models
which captures the essential features of their dynamics. Hence, the reduced
equations exhibit the essential biophysical elements needed for the ezcitable
behaviour observed in neurons. The interpretation of this equation provides
us with a bridge between the excitable dynamics described by the subcritical
Bogdanov-Takens normal form and the minimal biophysical elements of a
CB model and the relations needed for this ezcitable behaviour.

As it can be seen in the reduced equation 15.9 the force is proportional
to the difference between the injected current and the stationary current.

7 (u)u {17.1)
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Then our theory suggests that the stationary current actually acts as a
hamaltonian like force, and zero force means zero net current through the
neuron.

But most surprisingly for us is the physical interpretation which can be
given to the friction. In the hamiltonian dynamics the friction is key to
transform a conservative (reversible) system in an out of equilibrium (irre-
versible) system. It is known that this breaks the ¢ — —t symmetry, a fact
that is a fundamental feature shared by all biological systems (Prigogine,

1981). The friction in the equation 15.9 is composed by two terms: the
‘ 3fa( u)
(3

in section 5 the derivative respect to the voltage of the function f(u) can
be interpreted as the stationary resistance of the neuron membrane for long
times. The resistance in electrodynamics is the analog of the friction in clas-
sical mechanics since the dissipated energy is proportional to the resistance

and the friction, respectively. For large values of the potential (u — 400)

both terms (qu”—) and TLS |IDetLyxn(u)||) are positive and act as a fric-

tion that dissipates energy. In fact it is known that in this conditions the
membrane is actually dissipating energy and acting as an ohmic resistance
(Latorre, 1996). On the other hand, to maintain the proper constant con-
centration of ions inside the neuron (concentration that changes in time due
to the activity of the ionic channels that selectively permeate the ions inward
or outward of the neuron) and maintaining constant the Nernst potentiall4
of each different ion, the cells use an active mechanism. By ionic pumps
that use ATP (the energy quanta in biology) the cell actually uses energy
to maintain the ionic homeostasis (Alberts et al., 2007). By maintaining
the reversal potentials is given a determined sign for the functions M;(u)
for » above or below the reversal potential. This energy consumption will
be responsible of the zero and negative resistance of neuronal membranes
(in a neuronal membrane a very small current can produce a huge change
in the potential) characteristic of the active membranes and of the ezcitable
behaviour.

This energy consumption of the cell can be represented mechanically
in the reduced CB model by the zone where the friction is negative (the
injection of energy region in our mechanical interpretation). Interestingly
the necessary conditions to have Bogdanov-Takens in CB models (see remark
13.2) will ensure a bounded energy injection region of values of u surrounded

term T—t = Q{;%‘l and the term —Tlg [|DetLyxn(u)| . As we we explain

“The u; parameters are nerst potentials or linear combinations of nerst potential of
different ion channel. This parameters are also called the reversion potential or the driving
force of each ion channel.
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by a dissipation energy zone extending to infinity in the reduced CB model if
the system is not very far from Bogdanov-Takens'®. Therefore there exists
a beautiful consistence between the bionergetics'® behind the excitability
behaviour of neurons and the mechanical energy analysis of the reduced CB
model (model that we have shown is equivalent to the subcritical Bogdanov-
Takens normal form).

SConsider that the invariants have the value of 1 for u — £occ and the Bogdanov-
Takens necessary condition imposes a sign change in both invariants. If this change of
sign not happened to far in u the friction will change the sign.

16Tt refer to the field of science that concerns of the energy flow through living systems.
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Part IV

Bursting, Chaos and Triple Zero
Bifurcation in Conductance Based
Models
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18 Triple Zero bifurcation in CB models

In the previous section we showed that neurons are poised generically in the
neighbourhood of Bogdanov-Takens. Therefore —as we confirmed theoret-
ically and numerically— the single neuron dynamics will be qualitatively
described by the subcritical Bogdanov-Takens normal form. An amazing
theoretical consequence of this is that this normal form is a two dimensional
dynamical system which will not have chaotic behaviour in spite of the fact
that the CB models are a set of very non linear coupled equation with more
than three degrees of freedom (often between 4 to 30 equations) that should
led generically to chaotic behaviour (Strogatz, 2001). Therefore, a theoret-
ical prediction of our results is that the observation in single neurons of a
chaotic behaviour will be very rare. In fact a chaotic dynamics is rarely
observed experimentally in single neurons. But in some occasions it has
been reported (Hayashi and Ishizuka, 1992; Makarenko and Llinds, 1998)
and also reproduced numerically (Canavier et al., 1990; Innocenti et al.,
2007; Laudanski et al., 2010).

On the other hand, the bursting dynamics is a phenomenon observed
in single neurons that, in the last decades, attracted a lot of attention of
many theoreticians (Coombes and Bressloff, 2005; Izhikevich, 2010; Ermen-
trout and Terman, 2010). It is characterized by an oscillatory dynamics
where two or more spikes are followed by a quiescence period, and where
one can see an interplay of fast and a slow oscillations. Although this is
not the most generic behaviour, it is observed in some neurons, and can
be only be theoretically reproduced with models of at least three dynamic
variables (Izhikevich, 2010). Because the subcritical Bogdanov-Takens nor-
mal form is a two dimensional dynamical system it fails to capture the
bursting phenomenon. Interestingly, it was shown that chaotic dynamics
may arise during the transition between the tonic spiking (explained by the
Bogdanov-Takens normal form) and the bursting dynamics (Innocenti et al.,
2007; Terman, 1991, 1992).

To understand how this non generic dynamics (that may lead to chaos)
arises in some particular cases from CB models, we have further investigated
the mathematical structure of CB models. In appendix G we showed that
the Triple Zero bifurcation (Arneodo et al., 1985) is not a generic bifurcation
for CB models. But if a CB model meet the necessary biophysical conditions
for bursting (Izhikevich, 2010) thats is: 1) a third very slow gating variable
(order of magnitude slowest than Ts), 2) a high threshold gating variable,
and this in addition to the necessary conditions for spiking, then the CB
model will undergo a Triple Zero bifurcation if there exists three zero eigen-

101



values. Furthermore, using the calculations in the appendix G and with
a similar analysis of the one given in section 14, one can show that if one
has this third slow gating variable (in addition to the fast set 7 and slow
set T's of gating variables) the three first coefficients of the characteristic
polynomial will be very small:

|ao| < 1
|a1[<< 1
las| < 1

and we shall have a Jordan block of order 3. This result shows that,
if a CB model meet the necessary biophysical conditions for the bursting
dynamics, the system is mathematically within the unfolding of the Triple
Zero bifurcation. Therefore in this conditions, the CB model will present
all the complex phenomenology contained in the Triple Zero normal form,
which consists in three critical variables which give rise to a rich phenomenol-
ogy that includes chaotic dynamics, and where the Bogdanov-Takens nor-
mal form is contained (Arneodo et al., 1985). In addition to this, we re-
cently showed that with a change of variable the Hindmarsh-Rose model
(Hindmarsh and Rose, 1984) —the most famous phenomenological model
for neuronal bursting— is actually almost the Triple Zero normal form (see
appendix H).

This results strongly suggest that the Triple Zero bifurcation explain
the bursting dynamics observed in neurons and the transition to chaos in
CB models. But because this are preliminary results, we think that we
need more theoretical calculations (e.g. to study the invariant to obtain the
necessary conditions for the Triple Zero bifurcation in CB models, and also
to study with more detail the Hindmarsh-Rose model) and more numerical
simulations in order to give a definitive answer. But if our hypothesis is true,
we shall be able to say that we can understand all the observed dynamics
in neurons with a theory that connects the biophysics of single neurons (in
the CB models) with their mathematical essence (bifurcations and normal
form theory).
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Part V
Conclusions and Perspectives
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19 Conclusions

Our aim in this work has been to give a unified mathematical description of
the behaviour of neuron dynamics as it is observed in current experiments.
Since this behaviour is well characterised experimentally our conviction was
since the beginning that such a description should exist. This conviction
was supported by numerous comments and observations going in that sense
in the literature such as the existence of minimal models or the reduction of
models.

Our starting point has been the conductance based (CB) models which
are universally accepted as models which give an excellent description of
what is going on. The problem is of course that we have a huge quantity
of these models which differ on the assumptions one makes for a definite
situation. The models can differ in the number of variables one uses which
depends on how many gating variables one considers important and in the
characteristics of each ionic channel. The essential variable that is mea-
sured is the potential of the membrane of the cell which can be stationary,
can make excursions around a rest stationary state or can have a periodic
behaviour.

One of the most common electrophysiological experiments (current clamp
experiments) are done varying the electrical current I injected in the neuron
and observing what happens to the rest state of the potential. The behaviour
which one observes in this procedure is what we call the “generic behaviour
of neuron dynamics”. Other behaviours, such as bursting, need some kind
of “forcing” of the system in the sense that one has to impose conditions on
the parameters of the model which put the system in very special conditions
which are difficult to observe (they can be found in some special type of neu-
rons). It had been noted by many authors that the generic behaviour can
be essentially reproduced by a planar dynamics, i.e. by a dynamical system
involving two variables, and many planar models have been constructed and
studied.

Our central conclusion here is that the description of the experiments
performed as explained in the previous paragraph can be done by a two
variables dynamical system: the subcritical normal form of the Bogdanov-
Takens bifurcation (0? in the notation of Arnold). This certainly looks
contradictory since the Bogdanov-Takens bifurcation is codimension two,
which means that we have to fix two parameters, and this does not seems
to be the case in the description of the experiments we have given. But we
have very strong arguments to sustain our conclusion which we shall now
summarize:
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1. A very complete theoretical discussion of the very special nature of the
CB models has led us to the conclusion that when the usual qualitative
assumptions accepted to observe the generic behaviour of neurons are
satified, namely the existence of two different time scales and two
different types of gating variables (one amplifying and one resonant),
then the dynamical system, whatever is its dimension, is always in
the unfolding of the Bogdanov-Takens (BT) bifurcation and is thus
described by the corresponding normal form;

2. A reduction method which can be applied to any CB model satisfying
the above mentioned conditions led in a very natural way to a reduced
model which is “almost”, in a sense that is made precise in the text,
the normal form of the subcritical BT bifurcation.

3. We have constructed a special numerical simulator with high interac-
tivity and specially adapted to this problem in all possible ways. In
particular we are able to see in the same window and in real time the
simultaneous behaviours of the original CB model, the reduced model
and the subcritical BT normal form. Moreover we can exhibit the
fixed points of the three systems together with their stability and also
the linear part of the stable and unstable manifolds of the fixed point,
all this in real time. Our numerical simulations support completely our
conclusion and we can then say that indeed our arguments are correct
and the universal description of the generic dynamics of neurons is
given by the subcritical BT normal form.

4. When we write the normal form in the Arnold form we have a sec-
ond order differential equation with a direct mechanical interpretation
since it is a Hamiltonian system with non linear friction. We see then
in this form the appeareance of two important functions: a nonlinear
force (with its corresponding mechanical potential) and a non linear
friction. This allows us to discuss the behaviour of neurons in terms
of mechanical analogues which are highly intuitive and of direct inter-
pretation.

Finally we have explored the “forcing” of the system and we have con-
cluded that when the conditions given in the literature to have the “non
generic” bursting behaviour are satisfied the system is in the unfolding of
the triple zero 0° bifurcation which has chaotic behaviour as it has been
observed experimentally.
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A Neuronal matrices proves and calculations

A.1 Proof of the theorem 7.1

Proof. We will proof it by induction. For n = 1 it is trivial, for n = 2 the
equation 7.3 reads:

2 2 2
[Tes+> 8 [] s = ara2 + BiMias + foMaey
j=1 i=1 s

On the other hand the Neuronal Matrix for n = 2 reads:

N — ( o1+ /My BiM> )
Ba My ag + B Mo

and its determinant is:

Det(N) = ayas + 1 Miag + BaMoon

Therefore the theorem holds for n = 2. Let us assume that the theorem
holds for the Neuronal Matrices of n x n and calculate the determinant of
the n4+1xn+1 Neuronal Matrix. We use the Laplace cofactor expansion for
matrices and expand in the minors of the first column (C; 1) of the Neuronal
Matrix. Thus we can write determinant of a n 4+ 1 x n + 1 Neuronal Matrix
as:

n+1

Det(Npt1xn+1) = (@1 + f1M;)Ch1 + My Z(—l)HlﬁiC‘i,l
i=2

Using the hypothesis for n x n neuronal matrix

n+1 n+1 n+1
Cri=[Joy+>_ BMi]] e
j=2 i=2 s#i
we obtain
n+1 n+1 n+1 n+1 n+1
(o1 + B1M1)Cra = [[ o+ D B:Mi [ ] as + B1M: > BiM; [] e
j=1 i=1 s#4 i=2 871

Hence, to prove that
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n+1 n+1 n+1

Det(Npti1xn+1) = H a; + Z BiM; H g
j=1 i=1 s
We must prove now that always

n+1 . n+1 n+1
MY (—1)BiCia = —piMy Y Bib; [ ] e
i=2 i=2 shi

If we use matrix row operations and their determinant properties, moving

the first raw to the i — 1 raw of each minor, we get the following expression
for each minor

agz + B2 M> BaM;—y B2 M; BaMiy1
_ BiMp v o1+ BiaMiy Bia M Bi—1 M
Cii=(-1) BM ... 1M,y B1M; B1 Mty
BiviMa ... Bi+1M;-1 Bit1M; iy + Biv1Miv1
ﬁnﬁ/ﬁ! e ﬁan’—l ,BnM'L' ﬁnMi+1

It is straightforward to note that we can use 7.3 for each n X n minor
obtaining

n
Ci,1=ﬁ1MiHaj i=2...n+1
J#
Thus, using this expression we obtain

n+1 . n+1 n
My Z(_l)z-l_lﬂici,l =-Mp Y _ BiM; Haj
i=2 i=2 G
QE.D. o
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B  Analytical expression for the Jordan basis
In section 11.2 we show that the first vector of the Jordan basis is:

1

0
X9=| . (B.1)

0
Therefore, the equation that must be solved to find explicitly the second
vector of the Jordan basis is:

Lex® = x©

Then, the explicit linear equations reads:

BoMzy +  foMazot+ .- e +BoMnzN
(a1 + BiMy)zy +  PiMozot - +/1 MyzN
B My, +  BiMazat - (aj+ BiMj)x;--- +8iMnzn
: + : : :
By Mz + ByMszat+ .- +(an + BNMN)zNn
(B.2)

Let us number these N + 1 equations beginning with the first equations
as the equation 0 and the last one as equation N. If we perform the following
operation with the equations:

7) % o —0) x B;
‘We find that

a;fox; = —p;

Because neither «; .y or §; are singular

_ B

a;Bo
And if we choose v = (0 we find that the second vector of the Jordan

basis, which we call K(l), also belongs to the two dimensional Jordan block
subspace and is given by:

;=
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m__1
X Bo

. SMBIEDO

(B.3)
By
an
Is important to notice that if we plug-in the expression (B.3) in the
original linear equations (B.2) the equations are fulfilled and are written
in terms of the second condition to be in the Bogdanov-Takens Bifurcation
11.3.
Now we have a analytical expression for the two vectors _)g(o) and K(l)
and they belong to the Jordan block subspace. To find the other N — 1
vectors of the Jordan base, let us suppose the most generic case when all

the rest of the N — 1 eigenvalues ({A\2, A3...An}) are different. Therefore,
the general equation for the N — 1 vectors is (1 =2,3,...,N):

LCK(Z) = )\tx(”

Then the equations are:

—xad + o)+ - +ooMyey
(o1 + 1My — A:)wﬁ”+ e +.81MN$S€I)
,Bleicgl)-i- s (O:j + Bij — )\;).’L‘fp +6jMNa:S\?
ﬁNMl-T(f)+ S § +(an + BNMpy — )E,g):c%r)
B4

Doing the following operation with the equations:

7)Bo —0) * B;
we find that

ow_B_ N
T, = —= x
4 Boh—ay ®

Then we find that
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1
él
,\g—ﬂq

)\g.’.cg) B2

X(I) = A—az (B.5)

= Bo .
By
Al—an

Where :c((,” is a free parameter. Similar to the previous case, if we plug-in
the expression (B.5) in the original linear equations (B.4) the equations are
fulfilled. But now the expression that arise is written in therms of the ana-
lytical general expression of the characteristic polynomial of a conductance

based model given in equation (7.5).
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C Estimation of the order of 7,

We will estimate the order of 7y assuming the conditions given in section
13.3 . That is assuming that we are in the Bogdanov-Takens point and
7r/Ts < 1. Using the last assumption in the equations 13.7 and 13.8 we
can approximate:

g 24
1 Ts
BMFN_T_S (1+T—0) (02)

We analyze equation C.2. If Ts/m > 1 then BMp must be large and
—due the features of the functions 3;(u) and M;(u)— very narrow. This is
a singularity for the functions 3;(u) and in the CB models generically will
not happen. But in section 18 we will show that in this peculiar case (which
is unlikely to happen experimentally) the CB models generically undergo a
triple-zero 0% bifurcation ( i.e. an eigenvalue zero with multilicity three and
a Jordan block of order 3). Analogously, if 77/70 > 1, then using the same
argument but with BMg we conclude that this case must not be generic
either. Now, if we consider the case 7p/m ~ 1, equation C.2 becomes

1 T
BMp~ —— (1 + —S)
Ts TF

and take into account that 77/Ts < 1 we see that BMp must be large
and this case will not be generic. Now if we consider the case Ts/m < 1,
then approximately:

1
BMg =~ Ts
BMp ~ 1
And the invariants read
ou TS TS

77 Ts TF
DetLL Hl4b == = —
” © NXN” + TS TS TS
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This result shows that if this case holds then the system will be far from
Bogdanov-Takens (since H%” ~ 1), in contradiction with the assumption
used in this analysis (we assumed that the system is in the Bogdanov-Takens
point). This can be interpreted saying that if the system is in this case, the

parameters must be forced (in the sense of taking extreme values) to undergo
the bifurcation. Finally if Ts/79 ~ 1, we can write approximately:

1
Mg~ —
BMg s
2

And the invariants:

af 70 27'()
) P R e S B
H Ou “ " (TS Ts) ¢
Te 27p 27

DetLyyy||m1- (== - 2E) ~ 27F
|DetLayx| (TS TS) L3

Using our first assumption that 7p/Ts < 1 the last equations shows that
the approximations done in this case (T's/7p ~ 1) do not deviate much the
invariants from the Bogdanov-Takens point (the other assumption for this
analysis).

This rough analysis suggest that the only case where we do not need
to force the parameters to put the functions 8 or M in extreme values
(very large or very small) to undergo Bogdanov-Takens in CB models is
when Ts/79 ~ 1. Hence, this must be the generic physical scenario for
a realistic CB model that undergo the Bogdanov-Takens bifurcation. The
figure 16 shows that within the range u where the Hodgkin and Huxley model
undergoes this bifurcation (indicated with a dashed line) this condition hold
(the figure shows that 74(u)/79 ~ Tn(u)/m0 ~ 1). If we take into account
that 7y is of the order of the adimensional membrane time constant, then in
general the experimental data supports this theoretical estimation.
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D The Morris-Lecar Model
D.1 The Model

One of the simplest and well known conductance based model for the gen-
eration of action potentials is a model proposed by Kathleen Morris and
Harold Lecar (Morris and Lecar, 1981). The model has three channels: a
potassium channel, a calcium channel, and a leak. In the simplest version
of the model, the calcium current depends instantaneously on the voltage.
The Morris-Lecar is representative of the conductance based models that
have excitability class 1 and Class 2 (Ermentrout and Terman, 2010) and
the global and local bifurcations characteristics of this kind of neuronal
dynamics (Tsumoto et al., 2006). The mathematical formulation of the
Morris-Lecar model is

1

v = & [ ~grn(v - Ex) - gcam™(v)(v - Eca) - gr(v — EL)D.1)
. n®(v) —n D.2
b o (D.2)
with:

m>®) = % (1 + tanh 2 ;;/1) (D.3)

n®(v) = % (1 + tanh - ;Ziﬂ) (D.4)

1

rv) = m (D.5)

To transform the equations to dimensionless equations we can use the
scaling:

I 91 g2 g3 ul up u3 ¢ ai b1 az

I a E E 9L _ -
grlEr| %f_ g@% 1 Eﬁ I—E%j 1 ¢Cﬁn |ELVV4 Vs/Va |EL|/Ve

Table 1: Dimensionless parameters for the Morris-Lecar model.

We scale time as

_ Cm;
gL

t
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and the variable v as

v

U= —
|EL|

Then the new equations are

u = I-gin(u—u)—gam™(u)(u—uz)—gs(u—uz) (D.6)

. n®u)—n
with
m®(u) = —;— [1 + tanh (agu + bs)] (D.8)
n®(u) = % [1 + tanh (aju + b1)] (D.9)
) R — (D.10)

cosh (21tb)

Then with a non singular change of variables the equations get a struc-
ture that has an important and general interpretation in all models of neu-
rons. We write

z=n-—n"(u) (D.11)
and define

fu) = gin® (u)(u — ug) + gam™ (u)(u — u2) + g3(u — u3) (D.12)

Then doing the proper calculations that we do for a generic conductance
based model in section 5 we obtain

4 = I—f(u)—giz(u—u) (D.13)
. i on°
& = —u (@) — gre(u — w1)] (D.14)

And with the definition 5.8:

on>® 1
Bu) = —-—g—u- = —Ealsechz(alu +by)
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the equations finally take the form:

@ = I-f(u) - golu—u) (D.15)
b o= _;-%5 + Blu)i (D.16)

D.2 Morris-Lecar to Andronov

We will reproduce the method developed in section 15.1 in this particular
model. Since the Morris-Lecar is a two variables model this will be a change
of variable rather than a process of model reduction. In fact, this calculation
is very instructive in relation to the general calculations that was performed
in 15.1. We begun by doing the time derivative of D.15:

i=— 3f( )u g1E(u — uy) — g1xU (D.17)

Then using equation D.16 in D.18 we obtain

i = af( )u == gl =g {—% + ﬁ(u)a} — gz (D.18)

If we use equation D.15 we have

_d=flw) U
B gi(u—u1)  g1(u—w)
and if we plug this expression in equation D.18 and if we consider the
definitions of the invariants in sections 12 and E.40 we finally obtain:

CI—f@) . (I-f() 0] R IRTTE i
(D.19)
with
1
i) = [g1m> () + gan(u) + g3] R
S R e R A R L I
(D.21)
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and

Om™(u
|DetL(x)|| = 1 — 7(u)g1 maa(U) (- w) (D.22)
Then following the steps of section 15 we can neglect the term ufi“

obtaining

L
7(u)

g L= f) _ﬁ(wa(u) ) ”%Lu) 3

7(u) u—u

HDetlL(u)n) (D.23)

Using the same arguments of section 15.2 we can neglect the term % (———(-—Hf = )

u—au
to obtain finally the reduced form of the Morris-Lecar model

1
e ||DetL(u)||) (D.24)

- s (o
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E Hodgkin and Huxley Model
E.1 The Hodgkin and Huxley Model

The Hodgkin-Huxley model is the first conductance based model proposed
by Alan Lloyd Hodgkin and Andrew Huxley in 1952 to explain the ionic
mechanisms underlying the initiation and propagation of action potentials
in the squid giant axon (Hodgkin and Huxley, 1952). They received the 1963
Nobel Prize in Physiology or Medicine for this work. It is widely accepted
that this model contain the key biophysical mechanism which give rise to the
excitability behaviour of most of the neurons. The mathematical formulation
of the model is

: 1 .=
Vo= c {I - gNam3h(v — Eng) — gKn4(v — Er) — QL(U - EL)}(EI)

m>(v) —m

™= TR s
;. h®w)—h

"SR (E:3)
. n®w)—-n

no = —-———-?n(v) (E.4)

To transform these equations to a dimensionless form we can use the
scaling:

I g1 g2 g3 u1 Us ug

1 gNa gK g1 En Fyx i
(gr+ar)|Erl  grtgx  grtgrx gLtk Erl |EL]

Table 2: Relation between the the original and the dimensionless parameters.

The new time scale is

[
t=—"—t
gL + 9K

and we scale the potential variable v as

v

BE

We also consider dimensionless parameters for m® (u), h*(u) and n®(u),
as written in tables 3, 4 and 5, respectively. Then these functions read

U
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Aam Bam Aﬁm Bﬁm Cﬁm

E E 7
—gr 32 _l_m%i —'Ei—s 4

Table 3: Dimensionless parameters for m® (u) and 7 (u).

Aay Bf-wl Cah Aﬁh Bg,

“Ed 46 7 _IEd ¢
20 20 100 10 2

Table 4: Dimensionless parameters for A% (u) and 7, (u).

As, Ba, Ap, Bs, Cp,

1o E 26
Bl 36 Bl g8 0125

Table 5: Dimensionless parameters for n(u) and 7, (u).

Aamt + Ba,,
am(u) = - Aamu"i;m)_l (E.5)
Bm(u) = Cg, e(Asmu+Bon) (E.6)
an(u) = CoyelAanttBar) (E.7)
Bn(u) = ! (E.8)

0.1 (Aq,u+ Ba,)

an(u) = 2(Aant+Boy) — 1 (Eg)
Ba(u) = Cp,elAonttPon) (E.10)
and finally
) am(u)
m™>(u) ST+ Bl (E.11)
ory) = —onl)
) = B VS
o] _ O‘n(u’)
n®(u) = an(0) + Bal®) (E.13)

The dimensionless relaxation time of the gating variables (without tilde)
are
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9L + g9k

m(u) = Clom(@) + B)] (E.14)
_ gL + 9k

Th(u) = & am(@) + A (E.15)

Ta(u) = L4 9% (E.16)

Clan(u) + B (u)]

Thus the new equations will be

U = I-gm3h(u-— u3) — gon*(u — ug) — 93(u — ug)
m*®(u) —m
Tm(u)
h®(u) —h
7h(u)
n®(u) —n
n(u)
By doing the calculations explained in section 5 to transform a generic
CB model in its standard form we obtain

n =

U = I—f(u)HK(u,xl,mg,m) (E.l?)

& = HT“:(lu)wl(uJa (E.18)

Ba = ——2_ 4 B(w)a (E.19)
Th(u)

¥y = —T:Z‘L 5+ Ba(u)i (E.20)

with

flu) = glmw(u)3h°°(u)(u —uz) + ggnw(u)‘l(u —uz) +g3(u —u3) (E.21)

and

K(u,21,22,23) = g {adz; + 3zIm™ (u)zy + 3z1m™ (u) s + m™(u)3z, + 3R> (u)+
323m™ (u)h® (u) + 3z1m® (u)?h™ (u)} (u — uy) + go {25 + 423n>®(u) + 623n°° (u)?+

4w3n°°(u)3} (u — ug)
(E.22)
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and where we have used the definition 5.8:

Balu) = —ah:éﬁ) B
aw = -5,
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(E.24)
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with
om*(u)
ou

Uu=u

AagetamutBam (A, utB A
(Aam’u + Bam) (— (eAﬂtm“+B°€m _1)2 am) -}~ T u-f_m_-HBam = + A‘Bmc'smeAﬁmu'FBﬁm

A u+ B 2
(E_AQTR'U:"I"BQ-,R _ 1) (e T g T +C‘ﬁ, 6A5mu+BBm)

+ =2
Acpptt-Bam — Aoy ut-B A B
e 1) (ezof;m am—1 T Cpme P 8+ S
3 Ay, efam®tBam (A, 4+ B, ) (E.26)
AamutBam — 1)2 [ Aam¥tBan A B '
(8 = 1) (eAamu+Ba:1—1 +cﬁme Bm et Bpm
BR® ()
aﬁ' a=u
Ag u+B
Ag e"Bn Bp
L eAeputBay, [ A (1 gAaputBa, _ L84
h (] « u
h h (eA'ah +B'Bh.+1)
- 2
C eAahﬂ-i-Bah 1 )
( Qp + ezﬁhu+85h+1
A
- Any, Coy e+ e (E.27)
C eAc‘hu"'B"‘h + 1 *
“Ag, utBg, .
i R e
In®>(u)

ou |-

U=u

0.1An, etenvtBan(A  yu+ Bay, 0.144, A
O'l(Aanu + Ban) (_ - (eAanu+fon—132 ) + e‘(anu+ﬁa“—l + Aﬁn05ne ﬂnu+Bﬂn

3
(eAanu+Bon — 1) (% n C‘BﬂeAﬁnu-l-Bgn)
0.14,,

+
(eAuﬂu+Bc.n _ 1) (0.1!iaun+utfinli + CﬁueAﬁﬂu+Bﬁn)

e

0.14,, eden¥+Ban (A, u+ Ba,)

- 1(A
(Pt Baa.— 1)2 (0 anau:ngis = CﬁneAB"u+Bﬁn)

(E.28)

€

E.2 Hodgkin and Huxley model reduction

We will reproduce the method developed in section 15.1. Let us suppose
that 1,23, 23 < 1, then:

126



K(u,z1,z2,23) = —Mi(u)x1 — Ma(u)ze — M3(u)zs

where:

Mi(u) = —3gm™(u)*h®(u)(u—u) (E.29)
My(u) = —gm™(w)*(u—w) (E.30)
My(u) = —4gan™(u)*(u — up) (E.31)

As its clear in the figure 16 in the Hogkin and Huxley model we have
one fast gating variable (x; corresponding to the m variable) and two slow
gating variables (z and x3 corresponding to h and n respectively). We will
consider that 7,,,(u) is of the order of some 77 and consider 7, and 7, of the
order of some Ty, and perform all the calculations described in general in
section 15.1. It will be not qualitatively important how to approximate the
specific values of 77 and Ty, for example we can approximate its values by
doing the average in an interval of u of 7, (u) for 77 and of 7, and 7, for
Ts. But the important matter is —as it actually happens in the Hodgkin
and Huxley model— that there must exist two sets of gating variables with
differents time scales 7, (u) ~ 7p and 7,,(u) ~ 7 (u) ~ Ts, that meet the
condition 77/Ts > 1. Then the Hodgkin and Huxley model becomes

@ = I—f(u)+ Mi(w)z1 + Ma(u)xs + Ma(u)zs (E.32)

T = —f—;%—ﬁl(u)’fﬂ (E.33)
gy = *%+ﬁ2(u)ﬁ (E.34)
gy = —%-}-ﬁg(u)ﬂ (E.35)

If we take the time derivative of equation E.32 we obtain

9 _ OM . . aM. . .
= — '(I;SL)H + :U1———-allfu)u + My (u)z1 + z2 ;u(u)u + Ma(u)z2
+ M3(u)z3 + z3 Mg?;fu) u (E.36)

Because z1 is a fast variable we can do an adiabatic elimination supposing
that z; is instantaneous
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gp ~ 0= 21 = UTrfm(u) (E.37)

Then equation becomes

it o) 2 2 4 20 2 4 by )

OM3s(u) .
du ?

Using equations E.34 and E.35 we obtain

_9f ().
ou

+ M3(u)xs + x3 (E.38)

i = =2t 7 ()2 a2 4 2, P2y ay () {22 4 o)
+ Ms(u) {—T—Z + ﬁs(u)a} + z3 81’\/:;1@)& (E.39)

From equation E.32 we have

Mo(u)xs + Ma(u)rs =~ [I — f(u)] = Te M1 (u)Br(u)d

and using this last equation in E.38 we obtain

U=

I - f(u) il (aJ;S»L) + TLS [1 _ TFMl('U-)lBl(u) s TSMQ(U,),BQ(U)

ITs
OMs(u) OMs3(u)
du T ou }
(E.40)

—~TsM3(u)B3(u)]) + 7rB1 (u)gﬂng(wﬂ2 + 4 {wz

If we consider the definitions of the invariants in section 12 the equation
E.40 becomes

L I—fw) (1 |3f(w) 1 M)
w= T o (22 et ) + s g
+ 1 {9:2 aﬂgi(“) + a3 3‘1/‘;5“) } (E41)

Finally the Hodgkin and Huxley model is written as
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eI (et
oot )
gy = —% + Ba(u)i
%3 = —% + Ba(u)i

with the constraint

My(u)ze + Ms(u)zs =0 — [I — f(u)] — 7 My (u)B1(u)i

E.3 Hodgkin and Huxley to Andronov

T

+ 2 l]DetIL(u)[[) + 1551 (u)%”—)az
3 (7

(E.42)
(E.43)

(E.44)

(E.45)

Fallowing the same steps as in 15.1 we finally arrive to the reduced form of

the Hodgkin and Huxley model:

W CEYE

Ts 7o(u)

9f (u)

du
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F Generalised Fitzhugh-Nagumo Model

The generalized FitzHugh-Nagumo model proposed in Hindmarsh and Rose
(1982) can be written as:

z = I+ flz)—y (F.1)
) = g(z)—y (F.2)
with:
flu) = —az®+ ba? (F.3)
g(x) = —-c+dz® (F.4)

Taking the derivative with respect to time of the first equation

. df(@),

°= dz Y
and using equation F.2 we obtain
_df(z) .

We use now equation F.2 to obtain

y=I+f(z)—=

Therefore the generalized FitzHugh-Nagumo model becomes

j:f—[g(m)—f(ﬂi)}—i{l"jd(mi)}

and using F.3 and F.4 we have
&=1I—[-c+dz* - (—az® +bz®)] — & {1 - (—3az® + 2b2)}
which can finally be written in the form

:'i:=I+c—[am3+(d—-b)m2]—:&{3a:n2—2ba:+1}

and if we define I = I + ¢ the equations reads
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& =1~ [az® + (d - b)2?) — & {3az® — 2bz + 1}

This equation has the form of the subcritical Bogdanov-Takens normal
form in its Andronov form with a cubic force and a linear friction (see
remark 10.1). Note that because we have 5 parameters instead of the six of
the subcritical Bogdanov-Takens normal from (three in the force and three
in the friction), this model is not the most general form of the subcritical
Bogdanov-Takens normal form.
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G  Triple Zero conditions in CB models

In this appendix we will show that the triple zero bifurcation is not generic
in CB models. But under certain conditions that the literature claim are the
minimal necessary conditions for bursting (a third very slow time scale with
a sharp stationary probability) a CB model actually will undergo the Triple
Zero bifurcation. Using the general expression 8.3 for the characteristic
polynomial we obtained that the three zero eigenvalues conditions are:

N
ay = 60Ha1- =0 (G.].)
i=1
N N N
a; = HOA§+ZﬁijHa[=U (G?)
i=1 j=1 1]
N N N N N
ay = Y Jles+> 8:M;> J] au=0 (G.3)
=1 1#q j=1 T#J IEINFEr

But in addition to the three zero eigenvalues we need to have a Jordan
block with multiplicity three:

Lx® = 0 (G.4)
Ly® = y©
Loy® = xO

Where L€ is the critical matrix of a CB model and _X(O), _)g(l) and E(z)
the critical vectors of the Jordan basis.

Theorem G.1. If in a CB model the characteristic polynomial has an eigen-
value zero of multiplicity three (conditions G.1, G.2, G.3) we need a new
condition in order to have the 03 bifurcation.

Proof. The critical matrix is of the form

0 BoM, BoMz ... BoMn
0 M Ms ... M

=] a1+€1 1 ﬁl' 2 : 62-_N (G5)
0 ByMy  ByMy ... any+BnMy
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In section 11.2 we show that the first vector of the Jordan basis of this
matrix is:

X =1 . (G.6)

Therefore, to find the second vector of the Jordan basis
Lex®) = 5@

we must satisfy the equations (where (ac((]l),:r:g}), — ms\l,)) are the compo-
nents of _)Q(l))

oMz +  foMaa)+ - +BoMyzy 1

(a1 + M)z +  BoMazs )+ - By My D 3

Bi M+ BiMaz+ - (aj+ﬁij)$§'1)”' +8;Myz'Y = {j

BvMic)+  ByMaal+ - +(ay + ByMy)e) =0
(@.7)

Let us number the N + 1 equations with 0 for the first one and N for
the last one. If we perform the following operation with the equations

3) % Bo—0) x B

we find that
1

a;ﬁwﬁ- ) = —B;
Since neither a; or By are singular we obtain (j = 1,2,...,N)

mgn __ B

a;fBo
We note that :cél) remains as a free parameter since it does not appear
in the equations. We put ¢ = — ﬁowgl) where o is now free. Then the second

Jordan vector reads
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g

B
1| B
x(”=—% o (G.8)
Bx
ay

If we calculate explicitly G.13 using G.8 we found that the conditions G.2
for the three zero bifurcation must hold. Therefore our result is consistent
and we have shown that we must have a Jordan block of order 2.

To find the third vector of the Jordan basis we must solve

Loy ® = O
The explicit linear equations reads (where (:c(()z),mg?), . .,:cﬁ)) are the
components of x(?)
ﬁoMpL‘&Q)-l- ﬁoMgl‘éz)-{* siwe L8 +ﬁ0MNQZ§3)

(o + 51M1)$(12)+ ﬁoM2w§2)+ e +51MNx§3)
b Gt o (a4 MY M
ﬁNM1$§2)+ 6NM233£2)+ e i +(an + ﬁNMN)scf,\z,)

(G.9)
If we perform the same previous operations (7 =1,2,...,N)

7) x fo—0) x B;
we find that

1
ajﬁoff,-z) = —B; (— + 0)

£

Since neither a; or By are singular

o= B (L M)
? aj \oj

where again a:(()z) is a free parameter that we will call v = —:L'ff). Then
the third Jordan vector reads
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L

1
Sl
Bz (1
=- alate (G.10)

By 1
& (& +9) )
If we calculate explicitly G.9 with G.10 in order to verify the consistency

with the third condition for the zero eigenvalue of multiplicitly three G.2 we
arrive to the equation

N
> ﬂﬁf L=0 (G.11)
j=1

This equation is independent of the conditions for the zero eigenvalue
of multiplicity three (conditions G.1, G.2, G.3 ) then we must impose a
fourth condition to have a Jordan Block of order 3. Therefore, generically
in a CB model a zero eigenvalue of multiplicity three will have a Jordan
block of order 2 and we conclude that the Triple Zero bifurcation does not
occur automatically in CB models (as it is the case for the Bogdanov-Takens
bifurcation which is the reason to call it “generic” in the context of the CB

models).
Q.E.D. O

Theorem G.2. We discuss now the conditions for a CB maodel to undergo
a triple 0 bifurcation 03 if (conditions G.1, G.2, G.8 ) hold. A way to have
the 0% bifurcation (triple Zero with a Jordan block of order 3) is to have a
gating variable k which fulfills:

o [ts relazation time is very slow:

ar—= 07> 1

e [is stationary probability function is very sharp or far from the half
stationary probability voltage” :

Bk ~0

I7This is consistent with the high threshold ion channels.
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Proof. Then the critical matrix will look like

0 BoM boMy ... BoMy
0 a1+481M M, ... B2 My

B=la 3 0o .. 0 (G.12)
0  BvMy  ByM, ... oy + v My )

It is trivial to realize that the first vector of the Jordan basis of this
matrix is

1
_)Q(O) = O
0
Therefore, to find the second vector of the Jordan basis
LexW = 4

we must satisfy the linear equations

ﬁngmglJ—!- B()Mgmgl)—l- e e +50MN33§\1,) =
@1 +B M)+ fodaalds o gD
0 =0
e O M)z ~0
By Mz + BN Mozy '+ +an + v My)z$;

(G.13)
Numbering the N + 1 equations from 0 to N we perform the same oper-
ation as before (j =1,2. . N, 3 #E)

7) X o —0) x B;
we find that

ijﬁomgl) = —p;
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Since neither a; or fy are singular

W__Bi
i 01;:'50
(1)

where now z;,’ and :r:( ) are free. Then the second Jordan vector reads

(-t
B

251

5.!:. 1
N 1 1

L BO ——ﬁow( )

Bk+1

D1

.

\ )
If we calculate explicitly G.13 using G.14 we find that the condition G.2

for the 0% bifurcation must hold. But we also found that we must fulfill

(G.14)

:c,(cl) =0
If we will call o = ——ﬁom( ) then the second Jordan vector reads:
[ o
=
23]
” 1 5k'—1
= —— B G.15
X B 0 (G.15)
Bi+
Qg1

\ & /

To find the third vector of the Jordan b3513 we must solve

Léx® = 5

Then, the explicit linear equations reads
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50M1$§2}+ ﬁoszrf,Z}-i—
(al + ,31M1)23§2}+ ﬁ0M2&2£2)+

JBkM1$£2)+ BeMaz P+

ﬁNMl.rgz)-f- ﬂNnggz}-F

If we perform the same operation as above

j)Xﬁg—O)Xﬁj

We find that:
3:[()2} = Free
2 _ B (_}_ 4 a)
’ aj \a;
:c,(f) = Free

Then third Jordan vector reads:

(L

B 1
a—i (aT + 0')
Br—1 1
K(z) — k1 (ak(_z'l)' + cr)
Brey1 1
Qpy1 (a'k+1 ¥ 0‘)

\ 2 (&)

(o + BeMi)z? ...

+,80MN:D§3)
+B1MN:L'§3)

+ 5L M N:ngg)

+an + By My)zd
(C.16)

(G.17)

If we calculate explicitly G.16 using G.17 we find that the condition G.3
for the 0% bifurcation must hold but also found that we must have

N
@ _ 1 ZMjﬁj
dp " e 3
Meiz o
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If we will call x(()z} =

(

&(2) =

B

(231

Br—1
Qg1
1

—

Br41
Ok+1

—v then the third Jordan vector reads:

\

174
(o)

1
(12)
Ytk ar

1
("‘Hl Ed 0)

Bn

1

| &) )
We find then that we can have a Jordan Block of order 3. In addition we

have obtained an explicit expression for each vector of the Jordan critical

basis. Therefore, if the conditions in the theorem G.2 hold a CB model

generically undergo a Triple Zero 0° bifurcation.

Q.E.D. !
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H Hindmarsh-Rose to almost Triple Zero normal

form

The Hindmarsh-Rose model (Hindmarsh and Rose, 1984) reads:

y+o(x)—z+1

= ¥(@)-y
2 = rls(z=ag)—2]
With:
Hz) = ax?-23
W(z) = 1-ba?
Let us define:

a = rs
}6 = =r
v = -rsXgp

Then the model is

& = y+é@)-—z+1
P(z) —y
ax + Bz +y

Il

If we take the derivative of equation H.6 we obtain:

... O¢(x) .
T=y—z+ O T
Using H.7 and H.8 in this equation we obtain:
3] )
F=Y(z)-y— (ax+6z+7)+%m

If we use equation H.6 we have:
—y=¢x)—z—c+1
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(H.1)
(H.2)
(H.3)

(H.4)
(H.5)

(H.6)
(H.7)
(H.8)

(H.9)



Using this equation H.9 can be written as

E=I -5+ [¥(z)+ o(z) — az] + [ag(;) - 1} t—(8+1)z (H.10)

If we take the derivative H.10 with respect to time we obtain

B [3‘(;5”) a‘gf) -—-a] &+ [Q%gl-l] Et (f) &%~ (B+1)% (H.11)

Using the equation H.6 in H.12 we obtain:

@ = [3¢($) 9¢(x) a] r+[§%g‘)—1}i +ZE g2 (541) (o + B2+ )

Oz oz
(H.12)
From H.10 we have:

~(B+ )z =& = (=) = [(a) + 9(o) — aa] - | 2D 1) ¢

If we use this expression in H.12 we obtain:

% = [&gff) 3“;&”) —a] &+ [8—%&@ - 1} 3+ 6;1(2"'5) ;2

48 (- (1=7) = @) + 62) — aa] = | 252 1] 4) 8+ D)o - 3+ 1

If we order the terms finally we obtain:

9Y(z)

E=—(BI+7)+p [zb(m) + () — %w} g [ 5 T (=B qu(m)

+(B-a)|z
(H.13)
[%(‘T) +(B- 1)} i + ———azi(f ) 42

This is almost the Triple Zero normal form (Arneodo et al., 1985).

141



I Some words about the simulations software

Within the collaboration with Professor Pierre Coullet of the Universit de
Nice Sophia-Antipolis, we developed from the scratch an interactive sim-
ulator specially suited for neuron models from the point of view of non
linear dynamics and normal form theory. The software was developed in
objective-c/COCOA. With this software it is possible to observe orbits of
different equations in the same phase space (i.e. different steps in the reduc-
tion of one equation), calculate and visualize in real time the fixed points,
calculate and visualize stable and unstable manifolds, visualize separatrices
and more. This software is interactive in the sense that we can perturb the
system and observe the behaviour after the perturbation in real time. An
snapshot of the software is shown in the figure 25.

_I-flw)_ (I=S() 1 |ofu]
r{u) b R O T S )

L/’\/“t/ﬁ_/\)\/;"L/_-‘““v"\/N

Figure 25: Snapshot of the simulations software.
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