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Abstract
Nea¡ a bifurcation the behaviour of any physical system is universal

(i.e. not depend of its specific details) and is described by a uniuersal
equation c led, normal form. These equations are uniuersality classes,
and very different dynamical systems (near to a giveu bifurcation) will
be desc¡ibed for the same normal form. Although this is mathemati-
cally strictly true infinitesimally near of the bifurcation, it occurs often
that the qua.litative aspects of the behaviour of the system is still given
by the uormal form even outside of the infinitesimal neighbourhood of
the bifurcation point. In this work we will show that the electrical
dynamics of a single neuron is a beautiful example of this fact.

At the present time, to describe neuronal dynamics for different
types of neurons there exist an overwhelming diversity of thousands of
high dimensional nonlinear models. These class of models are called
couductance based models (CB models) and a¡e considered the most
biophysically rea.listic models. Despite the huge diversitv of types of
neurons and models, they display a universal dynamics generically cap-
tured by phenomenological models of two variables (for spiking dy-
namics), and in non generic cases by three variables (for bursting dy-
namics). But the mathematical mechanisms by which single neurons
display this universal behaviour are still not clear.

We analytically show that a CB models that meet the biophysi
cal conditions for spiking are generically in the neighbourhood of the
Bogdanov-Takens bifurcation. We numerically confinn that the dy-
namics displayed by spiking CB models is qualitatively described by the
subcritical Bogdanov-Takens normal form (a two variable equation).
tr\rthermore, we found an anal¡,tic method to reduce, or transform in
the two variable cases, either CB or phenomenological models to an
equation with the same form of the subcdtical Bogdanov-Takens nor-
mal form. We a.nalltically and numerically show that the reduced most
famous CB and phenomenological models (Morris-Lecar, Hodgkin and
Huxley and generalised FitzHugh-Nagumo model) are actually equiv-
alent to the subcritical Bogdanov-Takens normal form and retain all
the qualitative dynamics of the original equations.

We also show that the Tliple Zero bifurcation is not generic for
CB models, but if these models meet the biophysical conditions for
bursting, then they will be in its neighbourhood. F\rrthermore, we
analvtically show that the Hindmarsh-Rose model the most famous
phenomenological model for neuronal bursting- can be transformed
by a trivial change of variable in almost the Tiiple Zero normal form.

This results make an advance toward ari universal description of
single neuron dynamics. Moreover the relevant experimenta,l quan-
tities measured in experiments have a clear link with the proposed

mathematical description.
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Foreword

We shall sta¡t this Introduction to our work presenting our point of view
on the way to approach the problem of neuron dynamics of a single neuron.

We can do this from the very beginning and without even entering in any
details concerning the biophysics involved since we shall adopt a dynamical
systems approach and the idea that what one has to look for is a robust
behaviour related to the experimental facts and construct from this analysis

the simplest possible model satisfying the requirements The fact is that
the robust behaviour of the electrical activity of a single neuron is kno¡¡¡n

and it consists in the presence of global bifurcations of codimension one

which lead to the appearance of a limit cycle. These global bifurcations
are two dimensional and then we can immediately state that our simplest
possible model will have two variables. This is what the geometry tells

us. Furthermore it is well known that the Bogdanov-Takens normal form
has two variables and has these behaviours' On the other hand one knows

through experience that norma.l forms a¡e almost always easier to analyze

than an a¡bitrary equation and if we can modelize a problem with a normal

form it is a good idea to do it. This is exactly what we shdl try to do here.

First we rema,rk that in codimension one we have only the Andronov-Hopf
local bifurcations with t¡¡¡o va.riables but its normal form does not present

the giobal bifurcations. We go then to codimension two and there the only
bifurcation with two variables is Bogdanov-Takens. Therefore our guess is

that in some sense all models that describe the dynamics of a single neuron

must be in the conditions in v¡hich the robust behaviour is observed, i.e. uea¡

a Bogdanov-Takens bifurcation, and this is exactly what we prove. Since in
the experimental setup one moves only the external current one can expect

that the two Bogdanov-Takeru conditions must be related and then that in
the class of models describing neurons this instability arises in some sense

with codimension one. We shall see that this is exactly what happens and

find that the necessa.ry conditions for the occurrence of this instability are

two conditions sindicated as the mechanisms of the excitability. These two

conditions are the existence of two time scales (an indication of two laniables)

and. the existence of amplifying and resonant variables. One can of course

ask the question of why should one try to do this program since one knows

and it is discr.ssed in detail in the literature that the minimal models have

two va¡iables. The answer is that proceeding as we propose we can relate

the two variables in our two dimensional model to the physical variables

of any modei with any quantity of variables, although we restrict ourselves

here to the conductance based (CB) models since it is widely accepted by

12



the community of neuroscientists that they give a complete description of
the problem. One can also ask if this reduction to two va¡iables is not a
consequence of an adiabatic elimination ofvariables, and the answer is yes in
the sense we shall explain in detail in the section devoted to model reduction
where we show that we can eliminate adiabatically the fast variables, but not
the slow ones, a fact ¡¡¡hich is corroborated by direct numerical simulation.
The result of this last procedure is once again a Bogdanov-Takens type
second order equation in the Arnold form. Although the Bogdanov-Takens
instability is seldom mentioned in the literature (He et ai., 2012) it has
always been considered in special cases and not in the sense of being the
general mechanism underlying the behaviour of a single neuron. What we
have described here is our prograrrr. The rest of this thesis is its practical
implementation and the proof that our program is a good and successful
attempt to understa¡rd the universal behaviour of single neuron d¡'namics.
Then to work.

ffvtAD oN
t..t a4),\:- >-'
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1 Biophysics of single neuron dynamics

In this section we v¡ill introduce some fundamental concepts of neuronal
biophysics that a¡e necessary to understand the text. Because this is a¡ in-
terdisciplinary work, we will try to reduce the technical biophysical concepts

to the minimum which is necessary for our purpose v¡hich is to reach a v¡ide

audiencel.
AIl the living cells have an electrical potential difference betv¡een their

inside and the outside which is called the membrane potential (u). Neurons

(a t¡pe of cell) have the special feature to respond to certain magnitude
of electrical stimulus by a rapid and sharp change of their membrane po-

tential 
-phenomenon 

called membrane action potential (see Figure 3)- or
(and) having sustained autonomous electrlcal activity (e.g. pacemaker neu-

rons). The electrical activity in neurons is produced by ionic currents (the

four most common ionic species in neurons are: Na+, l(+, Q¿2+ and C1-)

through neuron membranes. The ce1l membrane is a lipid bilayer which by
itself is a poor conductor. But embedded in the neuronal membrane are

pore-forming membrane proteins called ionic channels. The ionic channels

allow the passage of the ions involved in the electrical activity in neurons

and turn then the cell permeable to ions. They selectively allow to pass

certain ion species (e.g. Na+ ionic channels) or more than one type of ion,

generating the flux (an actual electrical current) of specifrc ions through
the membrane. The ionic channels involved in the generation of the action
potential (called voltage gated ionic channels) change their permeability de-

pending on the membrane voltage, and this dependence with the voltage is

nonlinear. In addition to this, a delicate molecular mechanism in which ionic

pumps and the hydrolysis of ATP (energy spending) by the cell are irrvolved,

maintains constant the difierence of each ion species between the inside and

the outside of a ce1l, thus creating electrochemical gradients. These gradi-

ents Benerate an actual electrical potential difference (Hilte, 2001) for each

ionic species (e.g. tr¡.+, u]K+ ) uca++ and u61-) called the Nernst potential,

and these are the driving forces of neural activity. Therefore, when a neurorl

is electrically stimulated (by the experimentalist or by the electrical activ-

ity of other neurons via synapses) the membrane potential changes and the

permeability of the ionic channels vary nonlinearly with the change of the

membrane potential. This may cause a time dependent influx or outflux of

llf some reader is interested in unde¡stand more in deep some aspects of the biophysics

or neuroph¡rsiology of neu¡o¡rs we recommend the excellent books: Foundations of Cellula"r

Neurophysiologl¡ (Johnston and Wu, 1994), Ion Cha¡rnels of Excitable Membranes (Ilille,

2001) and the spanish book Biofísica v Fisiología Celular (Latorre, 1996)'

14



thc mcmbrarre action potential. Sorne of these con(iepts are schematised irr
the figrre 1.

I ,, Membrane

+ Extracellular

Figure 1: Scheme of a conductance based model. At the top, from left to right:
an sketched neuron, a cartoon of the molecula¡ structure of the cell membra,ne and
a picture of a detailed molecular simulation of a ionic channel embedded in the cell
membrane. At the bottom: a diagram of a «rnducta¡rce based model, where the
cell membrane is represented as a capacitor in parallel to a potentia,l dcpendent
resistance in series v/ith batteries. The resistance represents the conductance ofthe
ionic channels a¡rd the different batteries represent the different reversal potentials-

1.1 Conductance based models

The development of a mathematical description for the electrical dvnamics
of a singie neuron2 begun with the seminal work of Hodgkin and Huxleys

'Singl. neuron it refer to a neuron without sJmaptic coDnection with othe¡: neürons.
This imply that their electrical d5mamics will be the result of its intrinsic biophysical
properties.

3see appendix E.l for the Hodgkin and Huxle¡r model.

,.lI : :1, | / (l i
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(Hodgkin and Huxley, 1952). These authors were the first to show exper-
imentally that the electrical dynamics of neurons can be described by a
class of mathematical models called conductance based models (CB mod-
els). In these models the electrical properties of the neuron a.re represented
by an equivalent circuit. The circuit consists of three components: (1) con-

ductors in parallel, representing the different ionic channels; (2) batteries,
representing the Nernst potentiala of each ionic species; and (3) a capacitor,
representing the ability of the rnembrane to store charge. An scheme of the
equivalent circuit of a CB model is sho¡¡¡n at the bottom of the Figure 1.

This physical model leads to both an intuitive and a quantitative under-
standing of how electrical signals are generated in neutons. The differential
equation that describes mathematically this kind of circuit is:

r =c9+ir,dt 1,,
This equation physically means that the total current across the mem-

brane (1) is equal to the current stored in the rnembrane as a capacitor (C$)
plus the sum of the curent of the ionic channels (D?=, 1¿). By Ohm's law
each ionic cha¡nel current is I¿ = 61a1, - o¿), where G¡ is the average con-
ductance of each ionic channel, and u¿ is the Nerst potential of each ionic
species. In a microscopic level ionic channels are pore forming membrane
proteins that are closed or open with certain kinetics. Because ionic chan-
nels are complex macromolecules. the probability of a ionic channel to be
open depends on the fact that diflerent subunits of the ionic channel can
be activated and not yet inactivateds at a certain time. The dynamical
variables which represent the plobability that subunits are activated and
not inactivated are called gating variables (m¡(t)). Then the probability
of a ionic channel to be open can be mathematically represented by the
product of the probability of each subunit to be active or not inactive (

Il¡m¡(t¡pi, e.g. in the Hodgkin and Huxley model the probability of the
potassium ionic channel to be open is n4, where n is the corresponding
gating variable ). Each gating variable has its own kinetics which depends
on the stationa¡y probability to be activated (nzf(u)) and the relaxation
time of this stationa.ry probability (z¡(r;)), and both quantities are nonlinear
functions of the membrane voltage. Therefore in a macroscopic level, if we

aAlso often called reversal potential.
sThere a¡e certain subunits that can inactivate a ion channel io be open- One example

is the gating variable h of the sodium ion channel in the Hodgkin and Huxley. Where h
represent the probability of a ceúain subunit not inactivate ihe sodium ion chan¡rel.

16



suppose that each subunit is independent, the average conducta¡ce for the
io-nic channel k is obtained by the product of the maxima.l cond.uctance g¿
of this ionic channel with the probability of this ionic channel to t" opá,
i.e. G¡ : StlT¡m¡¡t¡oi. Then the electrical dynamics of a single neuron
can be described by a set of Na 1 non linear ordinary differential equations
(ODEs), the first for the potential ( which is just the Kirchhofl law for the
equivalent circuit) and then N equations for the l/ gating variables):

.1
" :C

m
l,-8,

f(u)-m¡
!*i'@-ü)

;-1.' A¡

where tur' is a set of indices labelling the gating variables of the j¿á ionic
channel.

In the past decades this class of models has been largely validated ex_
perimentally and theoretically (Johnston and Wu, 1g94). This models are
considered by the scientific community as the more realistic mod,els, in the
sense that they describe the electrical d¡mamics of a single neuron using a
mathematical description which has a solid biophysical and thermodynam-
ical ground (Hille, 2001).

An experimentally important characteristic time consta.nt is the mem-
brane time. The neurophysiologist define the membrane time as the time
relaxation for an small step like electrica.l stimulus to a neuron in the limit
when the neuron has a linear ohmic behaviour. If we consider a CB model
for long times and very negative potentials, v¡hich in fact is the limit of a
linea,r ohmic behaviour, all the gating lrariables have relaxed to their station-
ary state and the stationary probability functions are either 0 or 1. Then
the equivalent circuit becomes a simple RC circuit with a capacitance equal
to C. If we consider that a set of rz1 gating variables will have a stationary
probability equal to 1 for very negative voltages, then the resista,nce of this
circuit will be R:1,/l¡.n, 9É. Hence, the membra,ne time is theoretically
defined as rmembrane = C / Dxenr gt".

L.2 Amplifying and Resonant gating variables

To understand the core of the dynamical mechanism through which ionic
cha¡nels shape the dynamics of the membrane action potentia,l we will in-
troduce the concepts of amplifying and resonant gating variabte (Izhikevich,

mj
"i(u)
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2010). The amplifying gating variable amplifies voltage changes via a posi-
tive feedback loop and the resonant gating va,riable resists to voltage changes
via a negative feedback loop. For a gating variable the property of being
ampüfying or resonant depends only on the relation between its stationary
probability a,nd the sign of the current6 of the respective ionic channel at a
given membrane potential, i.e. if is an outwa¡d or an inv¡ard current.

In the case of the amplifying gating variable a small depolarizating per-
turbation will augment the increase of the membra,ne voltage causing a pos-
itive feedback. There a¡e only two possible mechanisms for this positive
feedback and they a¡e illustrated in grey boxes in Figure 2: 1) A gating
variable with an increasing-with-the-voltage stationary probability a,nd an
inward ionic channel cu¡rent at that voltage (the sign of u - u¡1".ru.r" is neg-
ative) will be such that a depolarization stimuli will increase the inward
current causing the increase of the membrane potential; and 2) A gating
ra¡iable with a decreasing-with-the-voltage stationary probability and with
a,n outv¡ard ionic channel current at that voltage (the sign of u - ulteverse

is positive), will be such that a depolarization stimulus will decrease the
outwaJd current causing the increase of the membra¡e potential.

In the case ofthe resona.nt gating r,nriable one has a resistance to voltage
changes in the membrane potential. There are also only two possible mech-
anisms for this negative feedback and they are illustrated in white boxes in
Figure 2: 1) A gating variable with an increasing-with-the-voltage station-
a,ry probabiiity and an outwa¡d ionic channel cuffent at that voltage (the
sign of o - uReve¡se is positive), is such that a depolarization stimuius will
increase the outward current causing the decrease of the membrane poten-
tial; and 2) A gating lrariable with a decreasing-with-the-voltage stationary
probability and with an inward ionic channel currert at that voltage (the
sign of o - uReve¡se is negative), is such that a depolarization stimulus will
decrease the inward curent causing the decrease of the membrane potential.
The explanation for an hlperpolarization stimulus is similar.

The membrane action potential is a.n interplay between amplifying a,nd
resonant gaiting variables. To get an spike we need a fast amplifying gat-
ing variable (e.g. rn in the case of the Hodgkin and Huxley model) which
produces a positive feedback that rapidly increases the membra,ne poten-
tial and a slower resona,nt gating va,riable (e.g. rz and h in the Hodgkin
and Huxley model) which generates a negative feedback to rcstore the po-

6The convention is that a¡r inward cu¡¡ent is negative and depolarize (increase) the
membrane potential and a¡ outflaxd current h¡perpolarize (decrease) the membrane po-
tential.
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tential value. This fast positive feedback/s1ow negative feedback generate
oscillations called tonic spiking. Indeed, a fast inward current that rapidly
depolarizes the membrane potential (which implies a fast ampiifying gating
i,ariable) and a slov¡ outward current (which implies a slow resonant gat-
ing variable) which hyperpolarizes the membrane potential, is considered

experimentally (Johnston and Wu, 1994; Latorre, 1996) and theoretically
(Izhikevich, 2010) the core mecha.nism of the action potential in the ex-
citable cells, and sometimes as the minimal lecessary conditions to have an

enc,itable behaaáour.

Figure 2: Scheme of how amplifying or resona.nt gating variables depend on the
stationary probability function and the reversal potential. Adapted ftom the book

Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting
(Izhikevich, 2010).

2 Diversity of conductances and universality of
the dynamics

In the last decades, the detailed electrophysiological and biophysical descrip-

tion of the wide diversity of conductances (Ranjan et a.I., 2011) led scientists

to the possibility of building detailed CB model of almost any neuronal type
studied (Carnevale and Hines, 2006). Each different CB model -built using

adjustements of pa,rameters with the experimental data- has usually more

than twenty nonlinear equations. Diserent CB models may va.ry the number

currents

pcler\llal /Y--./
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of equations, the speciflc functions for the stationa.ry probability (mi(u)) or
the relaxation time (r¡(u)) and the va"lue ofthe parameters. This "has gen_
erated in the last decades a massive production of diflerent CB models for
diflerent type of neurons or experimental situations, and the development
of databases of thousands of different CB models (peterson et al., 1996).
F\rrthermore, earh CB model, depending on the values of the parameters,
can produce different firing7 patterns and there exist databases of up to a
million combinations of parameters for a same CB model (prinz et al., 2003).

2-L Class I and Class II neurons

Although there exists a huge diversity of tJpe of neurons (and CB models)
there is a robust dynamics observed experimentally (and numerically) in
a.lmost all of them. This distinctive electrica.l dynamics obser-ved in neurons
is called lhe excitable behau,iour of neu¡ons. In 1948 it was Hodgkin who
classifi, this exci,table behauiour observed in neurons in two major groups
(Hodgkin, 1948):

o Class 1 neural excitability. Action potentials can be generated with
arbitrarily low frequenc¡ depending on the strength o{ the appüed
current. See left of the Figure 3.

o Class 2 neural excitability. Action potentials are generated in a certain
frequency band that is relatively inserisitive to changes in the strength
of the applied current. See right of the Figure 3.

Rinzel and Ermentrout were the flrst to note the connection between
this classification a¡d bifurcation theory (Rinzel and Ermentrout, 1gg8),
They note that class 1 neural excitability is consistent with a Saddle-node
homoclinic bifurcation (see Figure 4). On the other hand, they also note that
class 2 neural excitability may be consistent with a subcritical And¡onov-
Hopf bifurcation with a narrow range of bistabilityS. Now many authors
which classify membra.ne properties as class I or class II really mean Saddle-
node homoclinic bifurcation and Hopf bifurcation, respectively (Ermentrout
and Terman, 2010). It is important to mention that it was shown that the
classification is consistent with other (global) bifurcations such as the Saddle
homoclinic bifurcation (see Figure 5) or the Big homoclinic bifurcation (see
Figure 6) (Izhikevich, 2010; Kuznetsov, 2005).

7w'hen a ,reuron present an action potefltial the neuroscientist say that it flre o¡ spike.sln fact, in this thesis we will show that this is a more complicated scena¡io when a
big homoc)inic bifurcation may led to homoclinc bihrrcations of a heteroclinc separatriL.
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Figure 4: Typical Saddle-node homoclinic bifurcation in a single neuron model.
This bifurcation is also called Saddle-node on a.r'r inva.dant circle (SNIC). Adapted
from the book D¡mamical Systems ln Neu¡oscience: The Geometry of Excitability
and Bursting (Izhikevich, 2010).

Figure 5: Typical Saddle homoclinic bifurcation in single neuron model. Note
that for the biJurcation scenario one needs the saddle fixed point and the homoclinic
connection, but in single neuron models there are often involved a node point ard
an unstable focus as the figure shows. Adapted from the book Dynamical Systems
in Neuroscience: The Geometry of Excitability and Bursting (Izhikevich, 2010).
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Figure 6: Typical Big homoclinic bifurcation in a single neuron model, the basin of
attra,ction of the stable focus is in grey. Note that the bifurcation acenario occurs
when the unstable manifold a.nd the stable manifold connect in the same orbit
and the homoclinic orbit formed traps the other ends of the unstable and stable
manifolds of the saddle. In single neuron models there are often involved a stable
focus and a,n unstable focus within the homoclinic connection as the figure shows.
It also happens often in single neurou models, that after the homoclinic connection
appea,rs an heteroclinic separatrix which connects the stable manifold of the saddle
point with the unstable focus forms a closed figure which separates the limit cycle
and the stable focus, as is showed in the figure. Adapted from the book Dynamical
Systems in Neuroscience: The Geometry of Excitability and Bursting (Izhikevich,
2010).

2.2 Minimal models

It is interesting that although there is a zoology of firing patterns, v¡ith the
exception of the very particular dynamics observed in a few neurons called
bursting, the d¡,namics observed in general can be reproduced with models

of two differential equations. The literature refer to this models as ttrc min'
ir¡¿¿l models for neuronal dynamics because they are the models with the
minimai number of variables that reproduce the dynamics observed in neu-

rons. These can be phenomenological modelss or reduced CB model' Some

of the most famous two lrariable phenomenological models are the FitzHugh-
Nagumo model (FitzHugh, 1961), the generalized FitzHugh-Nagumo model
(Hindmarsh and Rose, 1982) or the minima,t model of Izhikevich (Izhike-

vich, 2010). On the other hand, the CB models can reduce their dimensions

(the number of equations) by difierent procedures (Kepler et aJ., 1992;

Izhikevich, 2010) The most common is the adiabatic elimination (Van Kam-
pen, 1985). In fact, there exists also a zoology of two va,riables reduced CB

models, but the most famous is the Morris-Lecar model (Morris and Lecar,

eA mathemalical phenomenological model is a modet that reproduce a phenomeua

observed in nature but which not have mechanistic ground that conelate the dynamics

observed with the physical world.



1981), Appendix D.

3 Motivation and objectives

3.1 Motivation
There is a fundamental theoretical question still not answered: which are
the mathematical mechanisms by which neurorxi (described by CB
models) display an universall0 dynamics? To address this question is
in some sense to extract the mathematical essence of single neurons dynamics
from the detailed biophysics (mathematically described by the CB models),
and build a theoretical bridge between both.

3.2 Objectives

3.3 General objective

Our general objective is to understand the mathematical mecha.nisms by
which neurons (described by CB models) display their robust dynamics and
then to build a universal mathematical description for single neuron dynam-
ics, relating phenomenological models with biophysical detailed CB models.

3.4 Specific objectives

o To study the mathematical structure of CB models. Study the ap
pea,rance and disappearance of fixed points and the structure of the
Iinear system arou¡d them.

r Answer the question; Is there a local bifurcation in CB models which
can explail the universal pla.nar dynamics observed in neurons? If
yes then the objective is to study the mechanism through which this
bifurcation appears naturally and to relate it to the mathematical
structure of CB models.

o To study the dynamics of the normal form of this bifurcation and to
relate it with the dynamics observed in CB models.

10In nonlinea¡ dynamics an universal dynamics is a dynamic oppear invariantly in na-
tu¡e under ce¡tain circumstances Dot matter the specific system. As discussed later this
universality occur when a system is near to bifurcaiion.
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To build an interactive software specidly costumed for the numerical
study the original CB models, the normal form and the theoretical
approximations simultaneously and in real time.

To study how exceptions to this universal planar dynamics, which are

not often observed in neurons, such as the bursting dynamics and
chaos. can arise in CB models.

To make biophysical interpretations of our theoretical results.

4 Thesis structure

This part (Part I) has introduced the necessary cóncepts of biophysics and
neurophysiology to understand this thesis. In parts II, III and IV we present
the results of this thesis. In Pa¡t II we characterize the mathematical struc-
ture of CB models and obtain an analytical expression for the characteristic
polynomial of the linear matrix around a given fi.xed point. In the part
III we use this previous result to show that CB models are generically in
the unfolding of the Bogdanov-Takens instabilit¡ and show anal¡'tically and
numerically that the subcritical Bogdanov-Takens normal form successfully
describes the excitable behaui,our observed in neurons. In Part IV we show
that a CB model under the necessary biophvsical conditions for bursting
dynamics is in the unfolding of the Tliple Zero bifurcation, and also show

that the most famous model for bursting ca.n be transformed to almost the
tiple-Zero normal form. In Part V we present the conclusions and per-
spectives. In the appendices we give the detail of the calculations and the
mathematical proofs,

In order to make this thesis more pedagogic, specially for readers ofother
backgrounds than physics or mathematics, we recall the most important
mathematical results of a section within this frame:
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We also present the pa,rticuiar mathematical expressions of our approach

for the Morris-L""* ,,r.á Hodgkin and Huxley CB models within this frame:
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Part II
Discovering the Mathematical
Structure of Conductance Based
Models



In this pa.rt we will show new general results obtained regarding the
mathematicai structure of the couductance based model. This results will
be key to show ou¡ main results regaxding these uniaersal feature of silgle
nerlron dynamics.

5 The conductance based models

As we explain in the previous section, the dynamics of the membrane po-
tertial and the different ionic currents across the neuronal membrane is
represented by a set of equations called conductance based models or CB
models. As also discussed in the introduction this equations have strong
biophysical and experimental substrate and reproduce the dynamics mea-
sured in any type of neuron of the nervous system. The CB models a¡e a
set of ODEs with l{ * 1 independent va¡iables. One of the variables rep.
resent the membrane voltage u (more precisely u : uin - uoat where u4". 'ls

the potential inside the cell and u*¿ the potential outside), and the other
N variables represent the ionic chanr¡els gating variables rn¡. This kind of
systems can be written in a dimensionless form scaling the time and the
variables. In this thesis we will refer to these models assuming that this has
been done. In order to obtain general results applicable to all conductance
based models, we will write the most general form for this set of models.
Therefore, a CB model can be written in a general form as follows:

ú -I-G(u,rti,67)
. mf (u,d¡) - m¡

" r¡lu,dr)
j:r'2..-N (5.1)

As was explained in the section 1. the function mf (u,di) represent the
stationary probability of a gating variable ra¡ to be actiuated,, and r¡(u,d¡)
is its relaxation time to this stationary probability. TypicallV mf (2, d¡) and
r¡(u,d¡) depend on the potential and also on the same parameters d¡. The
parameter 1 represents the injected current to the neuron a,rrd the function
G(u,rñ,d) represents the total ionic current. This last function depends on
the pa.rameters d7 and has the general form:

G@,rn,fl = I¡r: Ir, ll ot'@-"¡) (5 2)

J=l j=1 lco;
Each Ij represents a ionic current of a generic CB model. The ionic

current I¡ associated to a ionic conductance j can be written in general as:
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I¡=g¡ilmll(u-u¡) (5.3)
L€u j

where 91 is the maximal conductance and u¡ is the reversal potential
associated with the j'á current. Is important to náte that for a given current
Ij one has a set of gating variables W¡:{m¡l € tu¡}, where @j is a set of
indices. Because each gating variable rn¿ represents the probability of a
specific sub-unit of a given ionic channel j to be open, one cannot have
the same gating variable in two different ionic cur¡ents. This restriction
is based in the very nature of the ionic channels biophysics: the activity
of one ionic channel does not directly aflect the activity of another ionic
channel (indirectly it does through the coupling with the potential z) siuce
their mechanisms of opening and closing are not physically connected (Hille,
2001). This mathematically mear» that if one has n difierent ionic channels
in a CB model then I4lr ñW21t..,ñWn-tnWñ: ó. This mathematical
expression of a physical consideration will have a key importance to obtain
further anal¡tical results. One example of that is the Hodgkin and Huxley
model where G (u, m, n, h) : g,¡ om3 h (u - u ¡v o) + g x na (u - u K) + g L (u - u L).
and where it is clear that the variables for the sodium current m and ¡¿ are
not involved in the potassium curent that have r¿ as their unique gating
vaxiable.

5.1 CB model in standard form

We will introduce another fonn to write the CB models that we sha.ll
call stand,ard, Jonn. lf we do the following nonsingular translation rñ =
ñ,* (u, d) * á the equation 5.1 becomes:

ú :I-G(u,rñ*+í,d7.\
. Í i 0m?(u,d\¡¡ =-iGa i=r,2...,\

Using the definition 5.2 the tota.l ionic current reads:

(5.4)

G(u,ñ.* + i,dr) =E t ,U,n(,,:,)f-o lm¡(u)*)kt (u - u¡) (5.5)

If we consider long times such that all the gating variables have relaxed
(t:0), the ionic current written as 5.5 becomes stationary and will be
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thc samc as the v¡ell-known I-v curve studied in electrophysiology (Latorre,
1996). We shall call /(2, d7) this ionic curent. It is given by:

n

f (u,d7) = G(u,iñ,*(u,al7),ail :Dg¡ fl l*,{")*lo,{" - ") (5.6)
j=\ lew5)

Some examples of this function in well-known models are:

Note that because all the gating variables have relaxed the function J(z)
only depends on the potential u. Now if we defiite K(u,i'dr) as the part of
the total current which depends on u and í, i.e. K(u,í,dr) :G(u'¡í'¿* +
í,dr) - f(",dr), one has:

K{u,í,dv):ár,,lrtrP^(;,)*r*'tm¡(u)*tkL(u-u¡) (5.7)

In the models above one has:
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Morris-Lecar model calculation 5.1.

f (u) : glrn@ (u)(u - u1) ¡ g2n* (r)(u - z2) t 93(r - u3)

Details in the appendix D.I

Hodgkin & Huxley model calculation 5,1.

f (u) : g1m*(u)3h-1u¡i, - u) + s2n*(u)a(u - u2) + g(u - q)

Details in the appendix E.1



Note that the lunction /(u, dz) and the function K(u,i,67) depend on
the same set of parameters d7. We define:

6m?fu.d,\
-' cllt.

(5.8)

Due to the form of rnf (u, ái) which is a strictly incrteasiug (or decreas-

ing) function of ¿ one has that 0¡@,di¡ is strictly positive (or negative).
The equation 5.4 reads now:

ú : I - f(",dr) - K(u,i,6a)
r, : --- 

rl- 
- B¡Q,d,¡it 7 - 1.2... N- r)\u,oj)

This last equation is a CB model written in its standard form. In this
form the reader can see that the dynamics of each gating variable m¡ is

a exponential decay to its stationary value (which corresponds to Íj : 0)

plus a perturbation that is the derivative of the potential weighted by the
derivative with respect to u of the stationary function. The fixed points

{z-, d¡} of this equation are:

(5.e)

6{o'o}/"r- o»- g\'\8h3
v,J9

Morris-Lecar model calculation 5.2,

K \u. 11 = 91.r(u - u1)

Details in thc appendlx D.1



¡ : ¡(u-,d7)
d=0' (5.10)

and they have a very intuitive physical interpretation: a fixed point
in a CB model occurs when al1 the gating variables have relaxed to their
stationary value and when there is no net flux of current through the neuron
membrane. It is important to note that mathematically tlne location of the
fixed point as functions of the parameters depends only on the function
f("',dr). Therefore, in the CB models very importa.nt events from the
point of view of bifurcation theory as the appearance or disappearance of
fixed points depend exclusively of the function f(".,dr).

In the figure 7 the lector can see the functions r(u), m*(u). É(u) and
/(z) for the Morris-Lecar and Hodgkin and Huxley model. The functions
r(u), m*(u), B(z) will be quatitatively the same for all CB models or sim-
plified versions of them (Izhikevich, 2010). The function /(z) will have the
same shape for very negative or very positive large values for a.ll CB models.
In both cases it approximates asymptotically a straight line as it can be
seen in figure 7. This is because the functions rn-(u) take values of 0 or 1

asymptotically and consequently the function /(u) for u -+ too will approx-
imate to a straight line whos slope will be the sum the conductances of the
currents that do not have a gating variable which goes to zero probability.
But it is 'in a central intet-ual ( i.e. between the two asymptotic behaviors)
of the va¡iation of LL where the function /(z) can have diflerent shapes for
difierent models leading to one, three. or in peculiar cases five roots, of the
equation I - f(u.,ó7):O.

The standard forms of the previous models are:

Morris-Lecar rnodel calculation 5.3. N'Iorris-Lecar model in
their Staudard forrn;

ú : I-f(u)-K(u,r)
i : -: +itu)úrlu)

Dctails in the appendlx D.1



6 On the linear structure around a fixed point

In this section we shall study the linear system, specifically the structure
of the Iinear matrix, of a CB model in its standard form around a stable
fixed point. As Elphick-Tirapegui-Brachet-Coullet-Iooss theorem stated in
their famous 1987 paper (Elphick et a1., 1987; Haragus and Iooss, 2011;
Wiggins, 2003), that the form of all the non linear terms arising in the
normal form of any local bifurcation of a stable fixed point is determined by
the linear critical part of the system. More explicitly one has to study the
system linearized around the fixed point and then study the linear matrix
to determine when the flxed point will loose its stability through variation
of the parameters. When this happens one says that one is in a critical
situation and the number of critical variables is determined by the dimension
of the linearly unstable space. The linear matrix restricted to this space

completely determines the nonlinear resonant terms which can come in the
normal form. The first step then in the reduction to the normal form is to
calculate the coefñcients of this nonlinear terms since their form is already
known. The reduction to the normal form involves a rcduction of the number
of variables ofthe original problem to the critical values which are in general
quite less (the dimension of the critical space) and one then has to express

all the original physical variables in terms of the new critical variables: the
functions realizing this are called the ansatz, i. e. the explicit expression of
the old physical va¡iables in terms of the critical values which are the ones

appearing in the normal form. Normally the linea: part of the ansatz, which
is determined by the eigenvectors of the critical linear pa,rt of the system,
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gives the relevant physical information relating the physica,l variables to the
ones of the standard normal form, and in that sense one can say that all
the specific physical content of the problem is contained in the "ansatz".
Once all this has been done the next step is to move away from the critical
point varying slightly the parameters around their critical lralues; this is
called the unfolding and it is here that the codimension of the bifurcations
appears in a transparent way since it is just the number of independent
pa,rameters needed to move away from the critical point in the space of
parameters. Therefore is of capital importance in this work - in order to
find the uni,uersal equations or normal form that reproduce the dynamics
observed in neurons- to characterise the linear system of a CB model.

We have shown in the previous section that the fixed points must satisfy
f: 0 and I : f(u,6z,). This equation for conductance based models has
at least one root because the function Í(u,6r) for u + +oo can only have
negative slope (because the conductances 9j are always positive quantities)
but generically more than one (see figure 7). As also discussed in the previous
section, the existence or disappearance of flxed points depends only on the
equation I : J@,d7). Moreover, this fact enables us to choose a root
u of this equation as a continuos parameter of bifurcation instead of the
parameter 1 as long as we stay in the same branch of the solution. Tal<ing
the last point into account, we will consider a frxed point (z*, d), were 1* :
f(".,6r). Thus, by doing the standa¡d translations in the neighborhood of
the fixed point (d : d + í and ?, : u. + ü) we flnd that the linear matrix
has the form:

(6.1)

Where

t- --ln-:Ao[Éa.rV'1

A(u.,d7) 
(:

0
1;'67i¡

ó #-)
(6.2)

(6.3)lt\u ,oT'): -

-1
4mf (u dt)

;
árn§(u,d,r¿)
-"8;- )

.1C



/ ?Jfu,ár) I

¡i(u',ar): tttr 
II uo,,.u,u,, ,

\ ---E;- / u=t..;i_d

(6.4)

defining:

MJu-,dr\ - - ac@trñ"dr\l
o'Ins lü=ü,./ú=ni@(u..oi)

aK@,ñ,d7)l: - a"" l,=.,.r:n
(6.5)

which gives

Me : -9jpe f[ [-r(u.)-lp'-6', (u* - uj)
leuj

In orrr models we obtail:

óo

Morris-Lecar model calculation 6.1.

M1(u) : -7t(u-u1)
M21u1 : 92(u-u2)

Note that we consitlered the equation il l\{olris and Lecar (1981)

before the arliabatic elim irra t ion.

Hodgkin & Huxley model calculation 6'1.

Mv@) : -3g1m* (u)2h* (u)(u ' u1)

M2(u) : - g1m@ (u)3 (u - u)
M3(u) : -4g2n* (u)3 (u - u2)

and:



We shall call the matrices which have the form 6.1 neuronal matrices.
The neuronal matrices have the form of the direct sum of two matrices: a
diagonal matrix A (á;; = ardr.;) plus a matrix C : [B'e,47rl which resultsr- I -
from the tensorial product of a column vector d of components 0i and a
row vector ,ú of component s fuI¡ (C¡¡: U¡il.In the next section we will
prove an important theorem which allows us to find an explicit analytical
expression for all the coeffi.cients of the characteristic polynomial of this kind
of matrices and consequently for a1l CB models.

Remark 6.L. The linear matrix of any CB model can be written

IL:AO IF*'A'1L]

Where A, i ad Iú are deflned in 6.2. 6.3 and 6.4 respectively.

(6.6)

(7.1)

7 Neuronal matrices and their properties

Here we shall study the properties of the neuronal matrices. In particular
we shall find explicit analytical expressions for the coefficients of the char-
acteristic polynomial of these matrices. This result will be fundamental in
our argumentation to ñnd a universal equation which describes the generic

features of neuronal dynamics, but it has of course an interest per se. The
following steps are completely general a.nd depeud only on the particular
structure of these special matrices.

Deffnition of Neuronal Matrices 7.1, Given a n x n diagonal matrix A
and two vectors 6 arrd Ñ of rr, components a Neuronal Matrix N is defined
as:

N:^ao l0*n 1

which can be written in an explicit form as:



N:
at -t BtMt hMz

7zM:, az * lzNIz
(7.2)

We shall call the matrix .A the self-interaction matrix and their diagonal
components a¡ the self-interaction terms. We will called the vector B- the
bias vector and its components B¡ the bias terms. We will called the vector
,ú the interaction vector and their components Mj the interaction terms.

Physical note 7.7. In figure 8 we show an example of the graph representa-
tion of a 3 x 3 neuronal matrix. In this graph representation we note that
each i node interact with the other nodes by the terms M¿ weighted by
its own B¿ coefficielt. The term B¿ \s a bias term i\ the sense that its sign
depends on the hind, of irtteraction with the other nodes, and its value deter-
mines the strength of the interaction with all the nodes of the system. This
is the reason why we called Mj the interaction terms and Bi the bias term.
In the case of CB models this can be interpreted physically saying that at
linear order the interaction between a variable r¿ with all the variables z¡ is
via M¿ 

-which 
qualitatively represents the cu¡rent associated with the kr[

ionic channel - weighted by the derivative of their own stationaxy fu¡ction
B¿. This means that the sign of Bi and its current value is very important in
the interaction ofthe z¿h gating variable with the complete system. It is also
important to note that each node interacts with itself through the ai plus
its own M¿ weighted by its own B¿. In the case of neurons the a¿ interaction
is the inverse of the time of the exponential decay to the stationary value
(-1, /r¿) ail, the M¿ represents the interaction associated with its own ionic
current activity wighred by the term -'*'P* .

Theorem 7.1, Let N óe ¿r¿ n x n Neuronal Matrir with self-interaction
matrir A , bias uector § and, interact'ion uector ú. Itu d,eternlinar¡,t is giaen
bat

D A/T
Pntvtl l)nwt2

AtM"
0zM"

an * BnMn

Der(NQ = f[ cri + ! É,-v.r, f[ ", (7.3)
j:L i=l s+i

The proof is in the section A.1

Corollary 7.1. The charo,cteristic pollyromial P(A) is giaen by the general
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Figure 8: Graph representation the neuron¿l matrices and their Adjacenc¡, matri-x.

forrnula:

P(.\) : ú(CIj - x¡ +ionu,fi(o, - ))j-\ i:t é+i

Prool. Using the expression for the determina¡t of a neuronal matrix proved
in the theorem 7.1 and doing the translation a -+ a. -.\ we trivially obtain
the cha¡acteristic polynomial. n

Corollar¡r 7.2. Each oefi,cient ai of the charu,cteristic polynomi,al P(A) --
D?:o"¡^i of a neuml matri:¡ is gíaen bY:

(7 .4)

(7.5)ai: (¡t
lr

llon*Lr."u"
i*l¡ s=0 ir

\-
12

*tz" *t¡
\-z-

* "*i¡-
tI

i.fi.¡-r

Proof. Usng the expression for the cha¡acteristic poh,nomial 7.4
to verify the previous expression 7.5 for a¡.

it is easy
tr



Remark 7.1. The characteristic polynomial of a n x n Neuronal
Matrlx with: .\ their self-interaction matrix, B- their bias vector
and t1.7 their interaction vector is given by:

nnÍr,
P()) : fl(aj - A) + »Bi¡4 fl(o, - l)j=t í:t s+i

8 First and second coemcients for the character-
istic polynomial of CB rnodels

As vve discussed in section 6 the Iinea¡ matrix (n ) of any CB model can be
written as:

/ ao * AoMo AoMt
I pruo at + §tMt[,:l : :

\ prro fr*Mt

with:

0oM¡¡
AtM¡¡

aw * AIMN

:ae [Bsiú"]

(8.1)

(8.2)

1

0

Mo = - af*^er)l
111- u'

Then, using expression 7.4
model ca.n be written as:

ami'(u,dr) 
|- --D,, lu=ü.: -rfi)

_ ac@,i,ar)l-
- - ---a\ 

1,,=¿.;e-:ó

a_

cro

PJ

aj

Mj

the characteristic polynomial for any CB

p()) = -,r 
tü,", 

- il + i ¿¡¿, ü,", - ^,] 
¡ pou¡f!1o,-.\) (8.s)

Writing the characteristic polynornial in the form f (,\) = !fli"1 a¿,lk

we obtain for os
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^=Bo*of!o,:(-1)N+1 
a+P|". 

ü* (84)
l:1

and for a1

,, : - lü", -tu"r"ff ",*oo.ra.Éü".1 = (-r¡rv-rü 
"d,L,=, s-l i*" i-r kli l

NN
-r (- I)N D 0 

"{u-. 
d 

") 
t't 

"1"- 
. drl n ;¡;1il

+(-1)N-1 aI9 a,)l +g l

du t"=".;.!];ñir\ (8 5)

Remark 8.1. The characteristic polynomial of any conductance
base model can be written as:

With a, B and M defined in 8.2.

p(^) : -,\ 
tü,", 

- » * i0,rr,fl,",- r]+Bo¡¿0fr(o,-¡)
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Part III
Toward a Universal Description for
Single Neuron Dynamics

42



9 The Bogdanov-Takens Bifurcation

Since the Bogdanov-Takens bifurcation (Bogdanov, 1975; Takens, 1974) will
play a central role in what follo¡vs we shall make here some genera,l consider-
ations about its principal characteristics. It is a codimension two bifurcation
which means that one has to move two parameters of the d¡.'namical system
in order to put the system described by the dynamical system at the insta-
bility. This instability of an stable fixed point a¡ises as follows: 1) First we
are in a situation where the fixed point of interest is stable, i.e. when one
linearize around this fixed point and considers the linear terms one has that
the matrix deflned by the linearization has all its eigenvalues with negative
real parts; 2) We move in the space of parameters of the system. Then the
eigenvalues ofthe matrix which are functions ofthe pararneters move and we
Iook for a situation where two eigenvalues go to zero generating in the char-
acteristic polynomial of the matrix an eigenvalue zero of multiplicity two.
In order to achieve this one has to impose two conditions on the pa,rameters
(codimension two) and generically one will have only one eigenvector, i.e. a
Jordan block of order two. However one has to check this last fact separately
since in a defined problem the linear matrix can have particular character-
istics which can change the scenario. In the case of the conducta.nce based
(CB) models which are studied in this thesis we have studied this carefully
and we have explicitly calculated the basis vectors which generate the Jor-
dan block. The point in the space of parameters q¡here the double zero is
realised is what we call the critical point and when we write the dynamical
system for the values ofthe parameters corresponding to this point we speak
of the critical equation (there can be of course a manifold of critical points
but this does not chalge the essential points we want to explain here); 3)
The next step is to see what happens around the critical point, i.e. what
happens when one in a loose sense crosses the critical point in the space
of parameters and when one expects that the eigenvalues which were zero

create a positive real part and generate modes which are now linearly unsta-
ble. These modes become new variables which are what we call the critical
variables and have to be saturated by nonlinear terms and when one is in
this region around the critical point one says that one is in the unfolding
iI the bifurcationi 4) The behaviour of the system in terms of the critical
variables in a neighbourhood of the critical point, i.e. is in the unfolding, is

what is described by the normal form of the bifurcation. which is the a set
of differential equations for the critical variables, in this case two va¡iables.
In the normal form we can see how the unstable modes are saturated by
nonlinear terms and this balance is precisely what tells us the polynomial
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order where we have to stop the nonlinear terms, this of course is seen in the
normal form with its unfolding terms. It is also important to rema¡k that
we can study in the uormal form the appearance of secondary instabilities
a¡d the occurrence of global bifurcations and check the self-consistence of
what we are discovering. Although the normal form is strictly valid only
in a small neighbourhood of the critical point one can expect that it will
continue to be valid qualitatively in a much bigger domain of the space of
parameters, in fact the region in which no new instability not contained in
the normal form appears.

All these characteristics will be used extensively in this thesis.

10 The Bogdanov-Takens normal form
When any dynamical system undergoes a local bifurcation, we can write
anal¡.tically an equation that describes asymptotically for large times the
dynamics of the system in the neighbourhood of the bifurcation, this equa-
tion is called normal form a,nd it is a u¡iversal equation which depends onlv
on the type of local bifurcation. The specific physical case one is studying
only determines the values of the coeffi,cients of the terms in the normal form
which are monomials of different degrees. The variables of the normal form
(the critical variables) a.re usually much less than the original variables. The
original variables are expressed in terms of the variables of the normal form
in a formal series which starts with linear terms, when one is in the critical
point, followed by quadratic terms, cubic terms, etc. When one moves away
from the critical point in the space of parametcrs, i.e. when one considers
the unfolding of the singularity. new correction terms appea,r in the expres-
sions of the physical variables in terms of the c¡itical va¡iables. Usually the
linear terms aJe the essential ones and most the physics of the probtem is
there since they give expiicitly, at the dominant order, the original physica)
variables in terms of the variables of the normal form (Elphick et al., 1987;
Ha.ragus and Iooss, 2011). Then, very difierent dynamical systems (near to
a given bifurcation) will be described for the same normal form. Although
this result is strictly true infinitesimally near of the bifurcation, which is a
point in the space of parameters, it occurs often that the qualitative aspects
of the behavior of the system is still given by the normal form even if one
is outside of the small neighborhood of the bifiurcation point. This just
reflects the fact that the qualitative behavior of the system does not change
until one finds a new critical point in the space of parameters, i.e. a new
bifurcation point. Therefore. we caf,r use this method to understand and
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describe qualitatively the dynamics of a particular physicai systems when

are not strictly in thé neighborhood of a particula'r bifurcation but in certain

range of parameters nea¡ the critical point'

10.1, The resonant terms

AsshowedintheirfamouspaperElphicketal.(1987),usingtheinner
o.oduct tfrat the authors defing we can write the adjoint of the homologic

Io"rr* t¡t¡"ll of any d¡mamical system as l'he homologic operator o[ the

üoint ot tt " "ilti"ur 
[nea.r matrix, i e' ('4(jl")t : 'A(tJ"]t) )' Therefore'

".i"* 
,Ui. inner product and knowing the form of the^linear matrix operator

; ;;;" basis projected in the critical subspace (J") w" ""' find all the

i"r-Jof thu ,ror*al iorm of a given bifurcation' When one works in the basis

i" *fri"t the original critical linea¡ matrix is in Jorda¡ form the homologic

operator has the form:

"41J'"¡ =¡" '"' 
9 -¡"

And the the adjoint of the homologic operator ,,4(J") is'

,4(J"¡t = t.l, ")-""fi - iJ")t

Where c., are the variables of the normal form' In the case of Bogdanov-

Takens the operator i" has the form:

," Io tl'-Lo ol
Then the adjoint of the homologic operator reads:

.{(r.;t:Il?1",*_l? s] (10.4)

(10.1)

(10.2)

(10.3)

rherefore, if the vecror xkt,cz): (::l::"2\) is a.n element of the

kernel of the adjoint of the homologic operator' then:

cr\tti -- g

.r&#f) -xr(c1, c2) : 0
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Is straightforward to show that at order rn in the components (c1,c2)
the vector X(q, c2) has the form:

Xt(c1, c2) : .u¡;@-t) 1cr¡

Xz(c1., c2) : c21r(,o-r) k) + 9(*) lcr¡
where rp(-) (cr; is a monomial in c1 of order m and tp@-t) 1cr) is a mono.

mial in c1 of order m - 1. Therefore, the Kernel of the homologic operator
for the Bogdanov-Takens bifurcation written in the Jordan basis is:

Kerner¡7 [rr¡"lr] : {,,ttr*-1t{.t) ( :; ),arn,,( ? )} (10.5)

To obtain the normal form we must impose the general solubility con-
dition for linear equations of the form Aí : b where.A is a linear oper-
ator in a finite-dimensional vector space (a matrix), d the unknown vec-
tor and b a given vector. This condition (Ffedholm alternative) is that ó
must be orthogonal to the adjoint A* of A in any nondegenerate scala¡
product defined in the vector space. In our case we have two critical vari
ables (c1,c2) and the original physical variables of the CB modets V =
(u,a1,x2,. . ., a¡) are expressed in terms of (cr, cz) in a series of the form
V : Ufr) @y, c2) ¡ flf2l @1, cz) * U[elic1, cz) * -.. where uÍr]kr,c2) is a vec-
tor whose components are polynomials of o¡der r in the variables (ci, c2).
and at each polynomial order r we have to solve the homological equation

'1.11.)ud@1,cr¡ 
: tld@¡cz) - ff"lGl,c2), r :1,2,... where !trl?r,c2)

is a known vector determined by the previous orders and Íf') kt, c2) =

(l[:,t::',::l) *" "t'oo*n and in ract thev determine the r¿ñ porvno-

mial order in the differntia.i equations of the normal form which are

arc, : ¡!1) Q1, c2) + ff) @t,.2) + d3l (cr, 
"z) 

+ . . .

0¡.2 : ¡f,l) @1, c2) + f/2) k, 
",¿) 

+ ¡[3) @1, c2) + ...
/[nJ u¡¿ ylal have the form:

¡ _ ( "l.lri + ol'21.,cf-rc2 + .,....+ otr)-rc1ri-'+ "[]"i \- \ "l1l"f + of,)r,,,"i-1"2 r ... ..+ "l'l ,"r"1-1 + ffiq )
bt - ( 4'l"i+»\!r,rci-tc2+"""+,1,1,-,,"14-' +"[]lc; \- \ ",l',J"i 

+ ul"2) 1,¡ci-1 c2+ . . . . . . + r!2) a" rri- t + "[]c2 )
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Wnn of;:'z),, and. "f,\,¡ coefficients of the monomial in c1 and c2. The func-

tions (/j-l(cr, cz ¡,¡{) 1cr, o)) are determined by the soulubility condition
applied to the linear homological equation throuBh the equations

) 
:, (10.6)

:0 (10.7)

(Í^t - fr*t,.,tt- ,,(",) ( :; )
(/^t- ¡^t,rt^lt.,l( ? )\
\ - \!,//

We obtain using the inner product described in Elphick et a1. (1987) that
for any order we must have:

"@t,¿-"flJ)+{"[?,,, -4?,,) : o

"1"'l-/"') : ,
(10.8)

(10.e)

These two last equations can be satisfied in more than one way and
we shall use this freedom. Apart from this general feature this two last
equations leave an inherent freedom to incorporate to the normal from /('n)
elements that do not belong to the Kernel of the adjoint of the homologic
operator, a freedom which exists in any normal form. In the Bogdanov-
Takens bifurcation we have two extreme choices to write the normal form:
The Arnold choice and The Takens choice. In the Arnold choi"e o[1] : 6 *¡¿
o(^')r,, = ""L'A 

+ r!,')r,, ura o['] : uf,2) añ the normal form can be written
as a perturbed hamiltonian system (Elphick et a1., 1987). The other extreme

choice is the Takens choice with of,')r, : o ana ol1|- : ,f,!r,r/" + á')r,,
a"d of'zJ = ,l',]. B""rr"u in the Arnold choice we gain all the Hamiltonian
intuition. in this work we will use the Arnold form for the Bogdanov-

Takens normal form.

LO.2 Arnold form: the subcritical scaling

As we showed in the sections 10.1 the Bogdanov-Takens normal form is

written in their Arnold form as;

¡¡:F(u,a)-úx(u,0) (10.10)

We will call the function F,(2, a) the Jorce arrd. the function ,\(2, B) the

fricti,on (we have written explicitlv the two unfolding parameters (o,B))
using the obvious analogy with rnechanics. Explicitly:
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F (u,a) : a+12u2+''leu3+7tu4+..-
\(u,fi : A * \tu* \2u21.\323 *..,

F(u,a): -y*P

(10.11)

(10.12)

We recall that the unfolding pa.rameters, represent the fact that the
normal form has to be written for values ofthe original parameters in a small
neighborhood ofthe critical point in the space of paxameters, in other words
a and B a¡e functions of the va¡iation of the original parameters around
their values in the critical point, and their number, here two, represents the
codimension of the bifurcation. Due to their meaning the values of (a, B)
are small since they dete¡mine the dornain in which we expect the normal
form to give not only a qualitative description of the behavior of the system
but also a quantitative description. We can define a potential V(z,a) such

that the force -F (2, a) is given by:

Where:

(10.13)

(10.16)

(10.14)

Then we can define the energy of the Bogdanov-Takens norrnal form as;

E(u,a):f,a'+v 1r,o¡ (10.15)

If we multiply equation 10.10 by ti we obtain after a direct calculation:

This equation shows that the Bogdanov-Takens normal form does not

corserve the energy. Something which is expected since this equation is
cha¡acterized by a nonconserlative dynamics due to the friction term. The

reader should note that the Bogdanov-Takens normal form can undergo an

injection or dissi,pati,on of energy depending of the sign of .\(t^r,, B), and this

sign can of course change when t changes.

Because the dynamics of the neurons is bounded in the sense that the
physical values do not go to infinity in the relevant range of parameters, we

want to have the same bounded dynamics in the normal form in order to
reproduce with this equation the observed dynamics of the neurons. As it
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is discussed in the literature the supercritical normal form of the Bogdanov-
Takens is not bounded in the complete phase space and in the whole space
of parameters and also does not contain the distinctive global bifurcations
observed in neurons as the saddle-node homoclinic bifurcation or the saddle-
homoclinic bifurcation (Guckenheimer and Holmes, 2002; Kuznetsov. 2004).
This supercritical scaling has a linear friction (with .f(u, B) : É + trru). It
is clear in the figure 9 that if -# a " the energy of the system can grow
without bound in the zone where there is ouly injection of energy. No matter
what is the sign of p or ).1. there will always exist a range of u between -f,
and too, were the er.rergy will grow with a rate that increases lineary with
z. This is shown with a¡ exarnple in the frgure 9, Ieft graph. Then this
scaling forbid the feature that we are looking for: a bounded dynamics in
all phase space. Therefore we will look for another scaling where the frictiou
stops the unlimited growth of the va¡iables of the system.

Now, if we consider a quadratic friction (with \(u, B) : 0 + )p + )zu2)
ancl impose that (0 < ,\2). As is showed in the figure 9 fight graph, is

clear that for values ' q-^* a u a --\ ,@ there will be only
injecti,on of elergy and is easy to a,nalytically show that one cannot have
an stable fixed point in this area. Therefore all the orbits will scape from
this region but the orbits will not go to infinity, because as soon as they

. Ar r ,6i-A^,p - 
^, 

-,/R-lrñreach the regions ff <uor u < ]--J,j:|--:]j: the system will
dissipate energy quadratically with the variable z, and the dynamics will be
bounded to a certain region of phase space.

Hence, an scaling of the Bogdanov-Takens normal form which allows a
quadratic friction )(u,B) with a coefficient.\2 implying a dissipative be-
haviour when ¿ goes to +oo (that is 0 < ,\2), will always present a bounded
dynamics, Also Kuznetsov show that the Bogdanov-Takens normal form
with a quadratic frictlon preseuts several global bifurcations, some of which
are characteristic of neuron dynamics (Kuznetsov, 2005).

The reader can check that if we try to find the most general scaling:
u - e3, ú - en, ct - e' and B - ee such that the no term of the equation
is of greater order than the quadratic term of the friction zu2 (which must
be there due to the dissipative dynamics we need in Im) the result is that
n = 3s, r : 5s and 9 : 2s. Then the subcritical Bogda.nov-Takens normal
form is:

ü= a*tzu2 + %u3 + ttu{ -f .ysu5 - ú(B + Á1u+ \2u2) (10.17)

The coefficients are of order: a - u5, 1z - €3, ?B - e2, .yl - e, 15 - 1,
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\(u,0) - P+^fi \(",§):Bt).1u1_),2u2

I ln¡ection ofenergy zone f] Dissipation of energyzone

Figure 9: The left graphic shows in green a linear friction curve. The right graphic
shows in red a quadratic friction curve with 0 < ,\2. The a,rrow indicates the points
where the fiictiou changes the sign in both cases. Irr pale red we indicated the region
where the system undergoes an injection of energy 0 < f;E(u,a) a.nd ür pale blue
the region where the system undergoes a dissipation of energy iE(u,c\) <0.

0 - e2", \r - e' and .\z - 1-

Even though the Jorce of the Bogdanov-Takens normal form v¡ith a sut>
critical scaling is quintic as we have shovrn 10.17 , we will see that in practice
in most of the cases a cubic force will be enough to describe the neu¡onal
dyna.rrics- Orly peculiar cases. when for example neurons have more tha¡
one stable rest potential (He¡.lvard et a1., 2001), the d1'namics of a single

neuron needs a description with a quintic potential-
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Remark 10.1. The subcritical Bogdanov-Takens normal form
written in tl¡e Arnold forrn reads:

ü: a*,yzu2 + 7su3 + y¿ua + tsus ú (g + Áru +,\2u2) (10.18)

with the scaling o - e ) ú * e3, a - eb and p - 6z a.nd the equation
is of order e5.

10.3 Global bifurcations in the subcritical Bogdanov-Takens
normal form

We simulate the subcritical Bogdanov-Takens normal form using the scaling
of the coemcients showed in the previous section, with s : 1 and e = 0.1.
We found all the typical global bifurcations mentioned in the Iiterature for
neuron models (Ermentrout and Terman, 2010; Izhikevich, 2010) which are
the Saddle-node homoclinic bifurcation, the Saddle.homoclinic bifurcation
and the Big homoclinic bifurcation (see section 2).

For the simulations we used our objective-c/COCOA software specially
developed by us to deal with neuron models from the point of view of non
linear dynamics and normal form theory (see appendix I). In the simulations
we calculate analytically and in real time the fixed points (which is a z* such

that I.(u.,o) = 0 and ú : 0) and the eigenvalues and eigenvectom of the
critical matrix. For the visualizatiol we symbolize with squares the nodes

and saddle fixed points and with a circle the focus fixed points. The stable
fixed points are purple, the unstable fixed points red and the saddle fixed
poiuts dark yellow. The linea,r stable manifold was coloured blue and the
linear unstable ma¡rifold coloured yellow. We a,lso show in phase space the
force .F,(u, o) in blue and the friction .\(2, B) in red. The phase space of the
Bogdanov-Takens normal forrn is naturally the plane ú-z plane.

The figure 10 shows the Saddle-node homoclinic scenario. Before the
bifurcation we have three fixed points: an stable node, a saddle and an

unstable focus. As it is shown numerically if we follow the orbits in green

these two fixed points have an heteroclinic connection. The unstable focus
is inside the heteroclinic connection. When we move the parameter o these

fixed points collide and the heteroclinc connection becomes a limit cycle,

this is the point where the Saddle-node homoclinic bifurcatlon occurs. The
unstable focus remain inside the limit cycle. This scena¡io was expiained in
the section 2 as a distinctive bifurcation of class 1 neurons and is the generic
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Bpfore the bifurration lnthe bifunation

-(

scena,r'io found in the Hodgkin and Huxley model.

Afterthe bifunation

íitltlt-T-
í 

-í 

t
c[ 1].i:,llrliil {irri::',!.i..:liij:.1.:ra!.i:l: ¡r:i;-l'1,-é:*r:¡ " ':' Ñf ¡ 'i.:i':ii' r 

''r 
l':.: :,r-''1ii:r-":,-:rlii '

Figure 1O: This figure shows the Saddle-node homoclinic bifurcation scenario

in Ihe subcriticai Bogdanov-Takens normal form. On the upper part we show the

phase space before the bifurcation, in the bifurcation and after the hifrrrcafion ln
ile *iáOt" v¡e show the graphic of u versus time for long times corresponding to

the case above. On the bottom of the figure the brown arrow indicates that the

parameter <r is increasing.

The figure 11 shows the Saddle-homoclinic scena¡io in the subcriticai

Bogdanov-Takens normal form. We have again three fixed points: an stable

noie, a saddie and an unstable focus' When we move the pa'rameter B

the u-nstable manifold of the saddle fixed point returns getting closer from

the stable manifold. When the unstable manifold and the stable manifold

connect by the same orbit the Saddie-homoclinic bifurcation occurs' and

then the homoclinic connection becomes a limit cycle' The unstable focus

stay inside the limit cycle. For the Bogdanov-Takens normal form and for the

neuron models also (Ermentrout and Terman, 2010; Izhikevich, 2010)' afier

the bifurcation ttre timit cycle (marked with 1 in the flgure) and the stable

node (marked with 2 in the frgure) are separated by the sta'ble manifold of

the saád1e point. Therefore as its shown in the third graph of the figure 11

we have bistability between these two attractors' The Saddle-Homoclinic

bifurcation is not necessary to have this bistable scenario, but in the case of

the Bogdanov-Takens normal forn a¡d in the neuron rnodeis this scenario
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lnthe bifr¡totion

generically occurs.

Beforethe bifurotion

Figure 1l: This figure shor¡¡s the Saddle-homoclinic bifurcation scenario in
the subcritical Bogdanov-Takens norural fo¡m. Ou the top we show the phase space
before the bifurcation, in the bifurcation and after the bifu¡cation. In the middle we
show the graphics of u versus tine for long times correspouding with the situations
above. On the bottom of the figure the brown arrow indicates that the parameter
p is increasing. The two attr¿ctors that appear after the bifurcation are marked
with the number 1 a¡rd 2 in the phase space and in the ?¿ versus t graphic.

The figure 12 shows the Big homoclinic scenario in the subcritical Bogdanov-
Takens normal form. As in the other two scenarios we have three fixed
points: an stable node, a saddle and an unstable focus. When we move the
parameter B the unstable manifold of the saddle fixed point returns getting
closer to the stable manifold. When the unstable manifoid and the stable
manifold connects by the same orbit and the homoclinic orbit formed úraps

the other ends of the unstable and stable manifolds of the saddle, then the
Big homoclinic bifurcation occurs. This homoclinic connection becomes a

Iimit cycle with the three fixed point inside. The limit cycle is separated
of the unstable focus by an heteroclinic separatrix as is shown in the third
graphic of the fi.gure 12 in black. The separatrix connect the stable mani-
fold ofthe saddle point with the unstable focus forming a closed figure. This
connection is generic (codimension 0) because it connects a.n stable manifold
(dimension 1) with the unstable manifoid (dimension 2) of the focus and in

Afterthe biftrcation
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the mathematical sense it is analogous to the intersection of a linc with a

plane. This separatrix may suffcr a Saddlc-homocllnic bifurcation and we

finally have: a big limit cycle, a stable focus and a limit cycle separatrix

in bctween. Then moüng the parameters this limit cycle could collide and

disappear (simulations pcrformed but not shown) Interestingly we found

that the big homoclinic scenario showed in the figure 12 led to the other last

scenarios describe<l. Together these scena¡ios are distinctive of the class 1I

rleurolls.

Beforethe bifutcation ln the bifuration Afterthe bilutotion

Figure 12: This flgure sho¡¡¡ the Big homoclinic bifurcation scenario in the

suüútica,I Bogdanov-Takens normal fo¡m On the top we have the phase space

before the bifuication, in tlre bifurcation and after the bifu¡cation ln the midrlle we

show the graphic of u versus time for long times corresponding with earh situation'

On the bo"tto ofthe figure the brown arrow indicates ihe decrease ofthe parameter

B. flu t*o attractors which appeai'a'fter the bifurcation are marked with numbers

i nJ z lr.,h" phrr" 
"pu"u 

ur'r,l i, th", versus t graphics The heteroclinic separatrix

¡.t*o"r, ttt""" t*o attructo.s (simulated using negative time) is showed in black'

1l- The Bogdanov-Takens bifurcation in CB mod-

els

As we discussed in the previous section to have the codimension two Bogdanov-

Takens bifurcation in a dynamical system we must impose that two eigen-

I-¡0

J
.\



ra,lues of the linea¡ matrix must be zero and a Jordan block should arise.
As we discussed in the section 6, to find the linear matrix we consider

a ffxed point (u-,d), were I- : f(u.,d) and d = 0-. Thus, by doing the
standard translations in the neighbourhood ofthe fixed point (d: Ó'+á and
u: u* + u) we find that the linear matrix has the form 8.1. In this section
we will show that by moving two parameters d we can reach generically the
Bogdanov-Takens biftircation with the critical matrix n "(u*,;').

11.1 The double zero eigenvalue

In order to have a zero eigenvalue with multiplicity two in the linea.r matrix,
we must impose that the constant term (as) and the linear term (a1) of the
characteristic polynomial (P(A) : Li=0"¡)i) must be zero, and then the
characteristic polynomial can be written as P(,\) : \2 (\iral\t-2).

Using the general expressions 8.4 and 8.5 for the coefficients of the char-
acteristic polynomial, the two general conditions to have two zero eigenvalue
a¡e:

Éof[o, :'6: 6

NNN

I|"n+D|¡u¡ffo¿ :,,: ¡
j=r J=l tli

Is very important to notice that the second equations means that the
determinant of the N x N submatrix )L¡¡¡ below must vanish, i.e.

Det(n-.¡y,.ry):

at * 1t,Mt §tMz
AzMt az* AzlVIz ..,

0tM¡¡
AzLIN

... aw l ANMN

:0 (11.1)

0w Mt ?¡¡Mz

Therefore the two conditions in terms of the functions of the conductance

based model are:

v* 0K(u,í,6)
0rj
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Since the functions r¡(u,d\ are strictly positive the two condition for a zero
eigenvalue with multiplicity two become;

'#1,=,. 
: o (11'2)

$ amf(u'd)l ac\u'r'd)l ,¡1r,.,á) : r (11.3J! u 1,-" --A\ r¿-,.,i-ó-

This last result is very important: it is the general condition
under which a conductance based model undergoes a double zero
bifurcation. If a CB model meets these two conditions we will refer to the
linear matrix as the critical linear matrix n-c.

L7.2 A Jordan block always arise

We will proof that in the conductance based equations if you have a double
zero bifurcation, a Jordan block always will arise and therefore one has a
Bogdanov-Takens bifurcation. If we meet the double zero eigenvalue condi-
tion for CB models 11.2 and 11.3 the critical linear matrix is written:

0oMN
hMN

0oMt
at*§tMt ...

fc_

(: : .. :

1NMt ... a¡'¡ 1- §¡'¡MN

It is immediate to see that the vector X(0) b"lo* is a,n eigenvector for the
eigenvalue 0:

,,:(:)

As we rema¡ked in the previous section, the second condition 11.3 is
equivalent to impose that the submatrix n fir", has a determinant equal to
zero. If this holds, using a basic linear algebra theorem, there always exists

an N component vector Í(1) =(i1,i2...,i,v-1,ár) such that:

ILfi,,rÍ(1) = 6

5tt



Then if we consider the vector ( iu is arbitrary):

1
\- \1/ : 

-

t - r.o»!=ru,t, (Í 
) 

w,h

(:)-.',ir;,.) (i)

¿u€iR

it is easy to see that this vector X(') i. th" second vector of the Jordan
basis of the critical matrix IL" as theJolowing equation trivially shows:

lcr(t)

1oMt
at * ?tMt

aoDf:r»riii

We have then proved that the critical m¿trix of a generic double zero
bifurcation in CB models will always have two vectors such that:

Lcx(o) _ 0

¿cr(l) : ,(o)

which is the definition of a Jordan block for a double zero bifurcation.
Therefore, we proved that when any CB model undergoes a double zero
bifurcation this bifurcation always will be a Bogdanov-Takens bi-
furcation.

Surprisingly we can found an analytical expression for all the
vectors of the Jordan basis for any CB model that undergoes a
Bogdanov-Takens bifurcation. In appendix B we give these expressions
explicitly. This last result is very powerful from two different points ofviews.
Mathematically this result allow us to cornpute the Bogdanov-Takens normal
form anal¡tically for a generic CB model. i.e. for any CB modei. Physically
these aualytical expressions enable us to do important biophysics interpreta-
tion, since they determine the dominant contribution to the formulas giving
the physical original variables in terms of the variables of the normal form.
This point will be discussed in the last section of this part.

(:
_ -.(0)

lr N tvll

57



Remark 11,1. The general conditions for any CB model to have
a Bogdanov-Takens bifurcation are:

dt l1t. o\ IJ\ I _ ñ

du l,=".

f,w#91"_, 9!t',1i*=,. 
,_d,itu.,ó) - |

An anal¡.tical expression for the complete Jordan basis of the crit-
ical matrix ([-c) is given in the appendix B.

L2 Invariants

It is clear that for any n variables dynamical system evolving with time t the
eigenvalues of the linear matrix ,4 have dimension [1/ü]. Then the cha¡ac-
teristic polynomial P()) : Det(É - ). 1) : bn)" * bn-t\n-1 +. . . + ór) + á0,

with b,, : (-1)", has dimension [t/tN] ana the coefficients of the poly-
nomial (b6, b1,..., b¡) have dimension of [1/¿N] ,11/t*-,),..., [t/t] , [t] re-
spectively. Therefore for any given N variables dynamical system with a
dimensionless time i and with a time scaling I, i.e. t : Í, the dimensionless
eigenvalues of the linear matrix (i1,i2,...,i¡) u.e related to the eigen-
vatues (,\¡,)2....,),) of the system with dimensions by i¡ : /.); with
j :1,...n. Hence, each coefficient of the dimensionless characteristic poly-
nomiat .É(i) : (¿l-"P()) : a"(i)" + ...+ 61) + 6¡ depend as a power law
on the time scaling in the form t¡ : tM-i6r, j : 0.,1,. . ., n. This shows
that physical cousiderations such as being near to a bifurcation is equivalent
to .\r (( 1 depends on the election of the tirne scaling and in particular
in our case the statement near to Bogdanou-Takens expressed in the form
6o (( 1 and 5r ( 1 also depend on the time scaling. On the ther hand
the physics cannot depend of the time scaling, and since in a dynamical
system the notion of absolute time has not physical sense we must com-
pare characteristic times of the system in order to obtain physical
conclusions (e.j. something is fast of slow compared with what). To take
into account this fact in our analysis we will introduce mathematical quan-
tities associated with each coefficient of the characteristic polynomial of the
critical linear matrix (a6,a1,...,a,,) which will be invariant with respect
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to changes in the time scaling. We shall call these quantities invariants.
These invariants axe quotients of characteristic times of the system or pow-
ers of them, and therefore have a deep physical meaning in the sense of
dynamical systems. The introduction of this mathematical tools will be of
great importance in the analysis of the necessary mathematical conditions
for the occurrence of a Bogdanov-Ta-kens instability, and then will be crucial
to show our main physical result: that CB models are generically nea.r to
Bogdanov-Takeris.

Is important that the reader notice that since these quantities will be
inva¡iant under time scaling and under the scalings leading to adimensional
variables, and consequently these quantities can be use to compare
quantitatively different CB models. The introduction of invariants
in this problem is inspired by old physical scaling ideas (Barenblatt, 1996;

Sedov, 1993) the physics of a given system (in our case the dynamics of a
single neuron) cannot change with any non-singular change of variables (such
as the nondimensionalization and the time scaling in our case) - In fact the
previous statement underlies the flrst formulations of the renorrnalization
group in fie1d theory (Tirapegui, 1975) and it will play an important role in
our understanding of the single neuron dynamics as it is presented here.

L2.l Invariant associated with a6

In this section we will obtain the invaxiant associated v¡ith the coefficient
a¡. Let us consider the expression 8.4. By the definition 5.6 the function
/(z) is given by the following expression:

n

ttul :2n f[ [-i(u)-Je, (, _,;)
j=l leu¡

Is important to mention that the derivative of this function for very neg-

ative values of the potential (z -+ -oo) is the inverse of the nondimensional
membrane time constant (see section 1). This is because, as we discussed in
the section 5, the function /(u) is actually the nondimensional version of the
I-u curve. Hence, if we take into accou[t the time scaling is straightforward
to arive that in fact is the inverse of the nondimensional membrane time
constantll (i-"^u,*.). If we study carefully the expression # l,-,, ,"irrg
5.6, we obtain:

"ri,,,,**-- [ # l"=".] 
-' : i-"-u-...

59



Tl -=i" |I [m1(u')-]P/r
j=t l€ur

" r I ^ --,f s,Lr, I f[ [,,.,,,.r-r.-'. I 
gi}l 

@, - uj)
j-L reu j Lteu j .l ,,=,

Let put our attention in the second term inside the brackets, if we com-
pare with 6.5, we obtain:

]V

DD n,o, f[ [-.{,.)-]"-u''' 
o#l 

@'-u¡):\u,¡u.¡8,1u.¡
j:t le.,\ retuu) ou lu:u' i,

and if we define the first ter¡n as:

ln¡¡
ro(ux)' -, tr:1

we obtain:

'JYl = -l-- +f p,@')m,(,-)
ou lu=r r0(¿$) 

-,_. ,

and the coefficient as ca¡ be written as:

*: (-r),*',q 

'fu 
L;trn 

+l0ttu.vutttu"l) O2.2)

Therefore the inva¡iant associated with the coefficient ¿o can be defined
as:

llfll = ^l l,-,,'-,' 
g # ] 

=, * -t,.r i p ¡(u.) M ¿(u.) (12 -s)

due physical considerations the maxima,l conductances (9¡) and also the
stationary probabilities (-f ("-)) are always positive. Then r6(u*) will aJ-

ways be positive a.nd finite. F\rthermore, for very negative values of z*

(12.1)



the function r¡(u.) will be exactly the nondimensional membrane time con-
stantl2. On the other hand the rj are always positive because there are

relaxation times. Therefor" [i-rl'n[" {] wi[ never be zero. Then the

coefHcient ao will be equal to zero if and only if only if its associated iwa,ri-

^"t ll+ ll vanishes.IouI
In figure 13 we show the typical shape of the invariant ll#ll * .

function of ¿. Because the functio¡rs B(u) are decreasing exponentials tend-
ing to zero iu the limit z -+ too. the value of the inva¡iant tends to 1

ai
(Im,,*+o. ll#ll : tl. This means that the slope of the function /(¿) will
be constant for very negative or very large values of the injected current.
In some central interval between very large negative and very la"rge positive

values of u the invariant t¡pically is convex. When the invariant ll%P|l 
-

zero the function /(z) has slope zero. Therefore, the zeros of this invariant
are the values of z corresponding to certain values of the injected current
(via 1* : /(z+)) where a saddle-node bifurcation occurs.

r2Because li¡n"--+-- á¡(r-)
nondimensional membrane time constant

lim..-+-- ro(u*).

0, is straightforward to show that:

= rim..--- [e4@l l-'- *t o" l":..1

Remark L2.1. The invariant associated with the coefficient a6 is
defined as:

ll#ll:'+'ofoLu,
The coefficient of the characteristic polynomial a6 will be
equal to zero if and only if when its associated invariant
ll arll .

ll a; l{ 
rs zero'

(1.2.4)
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varianr asso(.iared with 
"o 

(ll#
the appendix D we obtain: "

lA.f I .l ,--(¿,)l
ll¿il: ,r-ro\u*) tr, , l, ,,,

0n-(ull
92 - a, I 

,._,.

lu - u1)+

I(u' - uz) | (12.5)
)

with
re(zx) : t/lg1m@\ur) + g2n6\u*) + %l (12.6)

Although Morris-Lecar is described by two dylamical .i,ariables
{u and J). this model reprcsenrs Lhe dy¡¡¿-¡". ofa neuron with
tw_o gating variables but one of them wirh a very fast rela_ral,ion
(Morris and Lecar, 1981).

Hodgkin & Huxley model calculation 12.1. Calculation of
the irrvaria¡r associared *irlr ro (ll#ll). Using the expressions of
the appendix E we obtain:



Morris-Lecar and Huxley

i\i
| 2\lr-

'r- - 'itt

f(") ll¿/(") ll

ll d" ll -------

Figure 13: The /(u) function is in blue, the tlerirative {p i" i" solid purple

Iines and the invariant ll%Pll is in dashed purple lines. The figue on the left is

the graphic of the invaxia¡t for the Morris-Lec¿¡,r model for releva¡t lralues of the
parameters. The figure on the right is the graphic of the invariarrt for the Hodgkin
and Huxley model.

12.2 Inwariant associated with a1

In this section we will obtain the invaria¡t associated with the coefficient
a1. Using the expression 8.5 a1 can be written as:

., : - 
{ü 

g +f aia.tru,<,)fi c}.. 
ü *H É #fi ll#il }

Therefore the im'ariant associated with the coefficient 01 can be defincd
¿ts:

1,, l =,, / lü ffi] : vf o,<,.t0r,r".r",r"'r.i ffi ll ff ll

(12.e)
Note that when ff : 0 (which implics as : 0) the coefiicient a1 is

exactly the determinant of the N x N sub-matrix of the linea¡ matrix written
explicitly iu equation 11.1 . We can define the im¿riant associated with the
determinant of the submatrü lL¡¿"¡ as

df (")
du,
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Where:

Det([-¡,.¡¿) :

,v

llDet[,ivxrll =1-»Pj@.)M¡(u-)r¡(u.) (12.10)
j=1

at l' AtMt AtMz 7tM¡¡
hY' az*azMz '..' PzMN 

l=ü"rllDerr-iv*¡ll| : : I rl
'li=l

§¡¡Mt /¡¡Mz au - 1wM¡,t I

Therefore the inu¡iant associated with the coefficient a1 can be written
as: 

N - r- *r ,r ¡rt,
llalll : llDetl,Nx¡vll + )- ".\"'1 lli' li (12.11)' ' " ?- 16(z-) llazll

Because a1l the r¡ a.re positive since they are relaxation times, one has

that [(-1)N fl[r {] wm never be zero for finite va.Iues of the parameters.

Therefore, the coefficient of the characteristic polynomial ¿r will be equal
to zero if and only iI only if its associated invariant llalll is zero.

Remark 12.2. The inva¡iani associated with the coefficient a1 is

defined as:

llalll = ltDetf.¡,,il . ll#llÉ * (12.12)

The coefficient of the characteristic polynomial or will be
equal to zero if and only if when its associated invariant
llal ll is zero.
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12.3 Gating Invariants

We will define the gating invariant of a gating variaple rn¡ as:

llm,ll = r¡M¡B¡ (12.15)

This invariant quantity extmcts very importan! features of the impact
of a single gating variable in the dynamics of a CB model. First, is easy

to notice that if the gating invariant is negative then the gating
r¡ariable acts as an ampliffer, and if it is positive it acts as resonant
(see section 1.2). This leads us naturaily to a sign criteria to designate an

amplifier or a resonant gating variable that did not exist until now. An
example of a amplifier gating invariant llrnll for the Hodgkin and Huxley
model is showed in the figure 15.

But the gating invariant not only indicates if a gating variable is am-
plifier or reson¿nt, the magritude of thc gating inva¡iant is tightly related
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1
Morris-Lecar model calculation 12.2. The invarialt associ-

ated with a1 (llDein ¡¿*ru jl ) is givel by:

llDetll¡¡x¡-ll :1- rr(zx)gr %Pl,:,.(u. -,r) (1,2.13)

Hodgkin & Huxley model calculatit¡¡ !2.2. The invariant
associated with o1 (llDetn-,y,¡¡ll ) is given by:

'(¡r')'?ñ*(u') 
amTt'-)l (,' - ,,)lll)or[.¡¿, vll =1+ 3r¡(u*\g¡m' ou l,=,.

+ 4e2r3(u*)n*(u.f %Pl,:,.(u. - u,)

(t2.t4)



to the contribution of this gating variable to the dynamics of a certain CB

model. In the next sections we will show that the invariant llDet'[.ivxrll
will be key in the Bogdanov-?akens condition and appears explicitly in the
general Andronov form reduction of CB models (see section 15.2). Thel,
if a gating variable is large or small compare to 1 (as shows the equation
12.13) this is related with the contribution of this gating variable to the
invariant llDetlL.,vx¡ll. and therefore to the dynamics of a CB model. This
can be seen intuitivelv taking into account that the magnitude of the gating
invariant depends on its three components r¡, 0¡ and M¡ (see as an exam-

ple the figure 15). If the inva¡iant is large due to a large É¡(u), then the
function rni (a) will be in the z-interval of maximum slope as shown in the
figure 15. In this interval, and if the rela-tation time is not very fast, an

slight change in u v¿ili led to abrupt changes of the gating ra.riable rn¡ and

will have a noticeable impact in the dynamics of a CB model. If the invari-
ant is small due to a small M¡(u), this will be because stationary functions
(-j(")-) involved in M¡(u) have values near to zero, therefore a change in
the value of m¡ will not have a noticeable influence in the dynamics of the

CB model. Finali¡ if the invari¿urt is la.rge because the function 17 is large,

this leds to a persistent (slow) effect of mi irt the dynamics. In contrast, if
it is small due to a small 13 this generates a tra¡§ient (very fast) effect of
rn¡ in the dynamics of the CB mode1. Hence, if the mi gating inariant
is large in magnitude this gating rariable will have a persistent
noticeable effect in the dynamics while if it is small the effect will
tre a transient not noticeable for long times.

The fact that these gating invariants (as their name indicates) are invari
ant under scalings of time and of variabies allow us to compare quantitatively

different gating variables or CB models. This comparison can determine, for

example, th¿t one gating variable is more resonant (negative and larger in
magnitude) than other, or if one CB model has more ampli,fier contributáons

(the sum of amplifier gating variables) than another.

13 Existence of Bogdanov-Takens in CB models

In this section we shali use the invariants defined in the previous section

to study the necessary relations that must fulfill the functions 1' B¡ anrJ

M¡ in a CB model to have a Bogdanov-Takens bifurcation. Since these

functions are directly related with the biophysics of the ion channels of
the CB models, we shall obtain the features and relations between the ion

channels which are necessa,ry to have a Bogdalov-Takens bifurcation. We
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ll-ll
**(u)

r*(u)- Mr(u)
7L(u) 

-
Figure 15: Dependence on u of the r¿ invariant of the Hodgkin and Huxley rnodel

and of the diferent firnctions on v¡hich it depends. In retl the invaria.nt llznll, in
brom the stationary probability m-(u), in blue the relaxation time r,,(u), in
orange the fru¡ction Mr(z) and in purple the functioü pr(u). The black rectangle
shows a zoom of the graphics. Note that llmll is a resonant gating invariant (i.e.

negative) for all the values of u.
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will aiso find invariant quantities that are easily interpretable in terms ofthe

üi.pt y"i"t.f 
" "ingle 

neuron, finding a deep biophysical interpretation to our

*.ifr"*.ri"rf e*f.e"siorl". This anáIysis 1ed us to a remarkable conclusion:

il"'"orr¿itioo, that both experimentalists and theo¡eticians designate as the

**r*.t necessary conditions to have an ercitable behauiour (see section

i.ii"t" ,fr"-"."r"'to hu'" the Bogdanov-Takens blfurcation in a CB model'

This conclusion can be considerá our main result in this section' In the

next section we shall give our arguments to süpport the following statement:

,r"*orra ,r" genericaliy near to a Bogdanov-Takens Bifurcation'

Remark 13.1. FYom equations l2'4 arrd' L2'L2' lhe two condi-

ilr* ,fr" must fuifiIl a CB model to undergo a Bogdanov-Takens

bifurcation wdtten in terms of their invariants are:

llq¿ll=r*,"*r,* : o

ll a" ll ua

N

llDetlLNx¡,,11 =t-lAix'In : 0

j=1

(13.1)

13.1 Time scale seParation

Using the invariants we will show that one necessaxy condition to have a

áosl'.rr;"-tut "rs 
bifurcation in a CB model is to have a time scale sepa-

¡ation between at least two sets of characteristics times of the CB models'

;ñ ; the gating variables relaxation times and the membrane charac-

i"riJ" ,r*". ñni. Á"*" physically that there -must 
exist at least one

set of fast variables and anotúer set of slow variables We reca'li

that in order to have a Bogaanov-Take"s bifurcation the invariants of a CB

model must satisfy equations 13'1 Let us assume that we have only one

time scale i. This physicalty m"aos that all ionic channels and z¡ reiax with

time scales of the same order' Therefore:

i-rj-ro i-L,2..'N
Then the conditions for the Bogdanov-Takens bifurcation (equation 13'1)
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read:

N

llDetn,v,¡vll : 1 - i» Pj Mj

and then we must have:

:0

:0

N-

\o'tl' : -!
Nlyp,ru,: !

L,J J

j=t

These tv¡o equations cannot be satisfied simultaneously. However it is

clear that equations 13.1 can hold if we have two or more cha.racteristics
times (thats it at least rj + rk j,k e [0, N] with j I k) and then the
Bogdanov-Takens conditions may be fulfilled. We have then shown that to
have a Bogdanov-Takens bifurcation in a CB model it is necessary to have
at least two time scales. Thats means in pract'ice that one must have dif-
ferent orders of magnitude for at ieast two groups of cha.racteristics times,
for example differences between the relaxation times of two different gat-
ing variables (for example r¡ )) r¡). The necessity of different time scales
to have a Bogdanov-Takens bifurcation coincides with one of the two nec-
essary conditions that all the literature suggests for et:citable behatiour as

explained in section 1. In fact it is widely accepted that the fast inwa¡d
currents (in general sodium currents) are responsible for the initiation of
the action action potential and therefore it is almost obvious for the neuro-
physiologist that the time scales sepa.rations is something essential for the
erci,table behaaiour. But this is our first step to show the tight relation
between lhe erci,table behaaiour and the Bogdanov-Takens dynamics. To
exemplify this we show in figure 16 that this conditions is fulfilled in the
Hodgkin and Huxley model (the condition is automatically fulfilled in the
Morris-Lecar model since there one assumes that one of the gating variables
is very fast and can the be replaced by its stationary value, see Morris and

Lecar in 1981).

ll#ll:,+,fo,u,



,o(r)- r,.(u)- rn(u)- rn(u)-

Figure 16: Gating variables relaxation tiües a.Dd 16 for the Hodgkin and Huxley
model. The grev dashed line with the tag B.T. is centered in the ioterval of u where
the system often undergoes the Bogdanov-Takens bifu¡c¿tion for several values of
the parameters.
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13.2 Resonant and Amplifying Variables

As we explain in the section 1.2, we can deflne amplifying and resonant
gating variables, and we showed in section 12.3 that this notion was trans-
parently interpreted in terms of the gating inva¡iants. In this section we
will show that the second necessary condition to have a Bogdanov-
Takens bifurcation ln a CB model - in addition to time scale
separation - is to have at least one resonant and one amplifoing
gating variable. Let us assume that in the ralge of interest for the param-
eters the system has only one kind of gating variables, i.e. all the va¡iables
are either resonant or amplifying. This means mathematically :

Sign (B¡Mr) : 1 or Sien (É¡ Mi) -- -1 Vi € N

If this is true. then the Bogdanov-Takens conditions written in 13.1 be.
come:

ll#ll=, +sign(B¡M¡troÉ,rr, : o
ll ou ll ¿=r

llDetn-¡*¡ll : t - sie,-(0¡M¡)L9¡tw¡l"i : o
j:t

Then to have a Bogdanov-Takens bifu¡cation we must have:

Sign (B¡.Azl3) :

Sisn(6,M,) = , t
v'é¡¡ \rr¡'¿r' 

sign (Df=, lB¡u)"¡)

i.e.:

Sisn(P¡M¡) : -1
SigrL(B¡M¡) -- 1

These two equations cannot hold simultaneously. Nevertheless it is clear

by looking the equations in 13.1 that having at least one resonant and one

amplifying gating variable (thats it at least Sign (B¡ M¡) I Sien (p*Mk) i, k e
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[0, N] with j I k) the Bogdanov-Takens conditions may be fulfilled.
Therefore we have shown that to have a Bogdanov-Takens bifurcation in
a CB model - in addition to time scale separation - it is necessary to
have at least one amplifying and one resonant va¡iable. Is very interesting
that. as in the previous section, this second necessary condition to have a
Bogdanov-Takens bifurcation in a CB model, also corresponds to the the
second necessary condition that al1 the literature suggests for eccitable be-
haaiour as explained in section 1. As it was explained in this section, it is
widely accepted that the fast inward currents (iu general sodium currents)
that drive a positive feedback, are responsible for the initiation of the ac-
tion potential and involve amplifying gating variables. On the other hand,
it is also widely accepted that the outward currents responsible for the re-
polarization phase of the action potential (for example potassium currents)
involve primarily resonant gating variables. In fact, it is also almost obvious
(and widely accepted for the neurophysioiogist and also for dynamical sys-
tem theoreticia.n) that the coexistence of a positive aud negative feedback

- which means at least an amplifying and a resonant gating variable - is
directly related to the oscillating behaviour of neurons and is therefore a nec-
essary condition for eacitable behauiour. This is our second step to show the
tight relation between the excitable behaaiour and the Bogdanov-Takens dy-
namics. Figure 14 exemplifies this result in the Hodgkin and Hut§ model
which has one amplifying gating invariant (llmll in red) and two resonant
gating invariants (lláll in brown and llnll in blue).

As a corolla.ry of this result we see that a CB model with one gating
variable cannot undergo a Bogdanov-Takens bifurcation.



Remark 13,2. The two necessa.ry conditions for a CB model to
undergo a Bogdanov-Takens bifurcation are:

o There must exist time scale separation. This mathe-
maticaliy means;

lj, k € [0, N] wlt}:, j I k sttch that: r¡ f rx

o There must exist at least one resonant and one am-
plifying gating variable. This mathematically means:

lj,ft € [0,N] with jt'k such that:
Sisrr (B ¡ M ¡) I Sisn (B¡ M ¡)

Although the Morris-Lecar model in its usuai formulation is described
by two dynamical variables (u and r), this modei represents the d¡'namics
of a neuron with two gating va.riables but one of them with a very fast
relaxation (lvlorris and Leca.r, 1981). Taking this into account that, in both
Ivlorris-Leca¡ and Hodgkin and Huxley model the two necessary conditions
to undergo a Bogdanov-Takens bifurcation (see remark 13.2) are fulfilled.
An example of one of the possibilities in the space of parameters to reach

the Bogdanov-Takens bifurcation is shown in figure 17 (Morris-Lecar model)
and flgure 18 (Hodgkin and Huxley model).

1.3.3 Two time scales gating variables

In this section we will analyse the scenario when the necessary condition
exposed in the section 13.1 are fulfilled with two time scales for the gating

variables. As a flrst step ¡¡¡e want to prove the statement: if the two time
scales gating variables condition holds, then the sum of the fast
invariants must be amplifying and the sum of the slow invariants
must be resonant-

Let us assume that we have two sets of gating variables in a CB model:

the fast gating variables with relaxatiol times of the order of r¡ (set of
va¡iables .F) and the slow gating variables with relaxation times ofthe order
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-0.8 -0.6

-2.0
Figure 17: A Bogdanov-Takens bifurcation in the Mo¡¡is-Lecar model. The

lloá!i' ll i""-i"". is shown in purple. The llDetn ¡*¡ll invaria.nt is shown in green.

th" g.rphl"" i¡ black fratnes shov¡ the eigen'alues of tl¡e linea¡ matrix n (ri, di)
in the complex plaue. The tags 1-3 tags hdic¿te thc corresponding values of the
rrariable u. The graphic ir¡ a red dashed frame shows the eigenvalues of the linear
matrix n-(u,di-) in the complex plane when the system undergoes a Bogdanov-

Takens bifurcatior¡.
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1.0

-2.O
Figure 18: A Bogdanov-Takens bifurcation in the Hodgkin and Hudey model.

Th" ll¿l+ot ll invaria¡rt is showu in purple. The llDetn-¡,¡7yll invaria¡¡t is shown inlt ¿.
green. The graphics in the black fr¿¡mes sho¡r the eigeNrlues of the linear mat¡ix
\,(u,d9¡)'tn the complex plane. We omit the most qegative eigenvahre (far to the
left) in order to better yisua.lize the tv/o critical ones. The tags 1-3 indicate the
corresponding values of the va¡iable u. The graphic in a red dashed fra¡ne show
tho eigenvalues of the linear ma.trix n (u, df,) in the complex plane when the system
undergoes a Bogdanov-Takeus bifu¡catio¡r.
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of 7s (set of va¡iables ^9). We have then:

Tk-TF

n -Ts
witu fi << r

Hence, the Bogdanov-Takens conditions in the equation 13.1 a¡e written;

rce¡
¿€,9

(1.3.2)

(13.3)

(13.4)

If we define:

\0,u,
¿€s

\,oour

7*r¡lBMs+ BMpl:¡
7-TsBMs-rrBMr=O

Then, a.fter some algebra:

BMs:+=4
r¡ r ?5

r 1+E
B^tF ='r"T_É

" 15

S]'¡rce rpfTs (( 1 we can conclude that

(13.5)

(13.6)

(13.7)

(13.8)

(13.e)

(i3.10)

r'1
t -,0 l)-6,M - )- B*¡z.l = o

I
L¿€S K€F J

L -Ts»PMt - rr\B¡t'to:o
¿€S k€F

BMs

BMr
&€F'

the equations 13.5 and 13.6 become:

BMs>0
BM¡ <0
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This means that if we have two time scales for the gating va¡iables the
sum of fast ina¡iants must be amplifying and the sum of the slow
invariants must be resonant. This is a generic situation widely observed
experimentally in neurons and which has been also discussed theoretically
(Johnston and Wu, 1994; Izhikevich. 2010). This happens in the Morris-
Lecar and in the Hodgkin and Huxley models as shown iq figure 14 where
the fast gating invariants are amplifying (llmll in the Hodgkin and Huxley
model) and the slow gating invariants are resonant (llmll in the Hodgkin and
Huxley and Morris-Lecar model). With further calculations (see appendix
C) we can show that the most generic case for a CB model is that rs and
the slow time scale are of the same order (ro - 7s). The figure 16 shows

that within the range u where the Hodgkin and Huxley model undergoes the
bifurcation (indicated with a dashed line) this condition hoids (the figure
shov¡s that r¡(u)/rs - r"(u) /¡o - l).

L4 CM models are in the neighborhood of Bogdanov-
Takens

In the previous section'!ve showed that the necessary conditions to have a

Bogdanov-Takens instability in a CB model are two: 1) at least two time
scales 2) at least one amplifiring and one resonant gating variable. As a
corollary of this we proved that a CB model with only one gating va.riable

cannot undergo a Bogdanov-Takens bifurcation. We a.lso show that if these
two conditions a¡e fulfilled with two sets of fast and slow gating variables,
then the sum of the fast invariants must be amplifying and the sum of the
slow invariants must be resonant. This last analysis also suggested that
the order of magnitude of the membrane time constant is geuerically of
the order of the slow gating variables. Surprisingly all these conditions are

pointed out in the literature as fundamentai conditions and sometimes as

the mechanisms Íor the erci,table behat¡iour observed in neurons (see section

1). In this section we will show that indeed tll,e excitable behaoi,our utd' tbe
Bogdanov-Takens dynamics are two sides ofthe same coin. Therefore, at the

end of this section it will be verv clear that the Bogdanov-Takens behavior is

the key mathematical mechanism which gives rise to the observed dynamics
of single neurons.

Since the Bogdanov-Takens bifurcation is of codimesion 2, one has to
reach a point in a two dimensional space of parameters as it is seen in figure
19, and this means that experimentally one has to tune two knobs in specific
points to realize this bifurcation. This scenario does not look likeiy for single

78



g(d1,o2) : o 

-

J(o1,o2) = 0 

-Figure I-9: Codimer¡sion 2 bifurcation in the space of parameters. The curves
g(o1,o2) : 0 and J(o1, o2) : 0 are two conditions for tv¡o different codimemion
1 bifurc¿tions. The i¡tersection in thc spa¡:e of parameters is a codimension 2

bifurcation point.

neu-ron dynamics where in one of the usual experiments where varying only
the magnitude of the injerted curent it is possible to observe tlrc enci,table

behaaiour. One has then the impression that the observed dr.namics depends
on a codimension 1 mechanism (mathematically a bifurcation) rather a codi-
mensioü 2 bifu¡cation such as the Bogdanov-Takens instabiüty- But a the
local codimension 1 bifurcation (a^s Saddle-node and Hopf bifurcation) and
their no¡mal forms fail to explain all the phenomenology of tbe ercitable.

behaai,our characterised by global bifurcations. Hence. there is a se-,eming

contradiction between the codimension 2 Bogda.rrov-Takens bifurcation and
the apparent coümension 1 rnechanism observed experimentally in neurons.

Using our previous results we reconcile this apparent paxadox showing
that the CB equations are generically near to the Bogdanov-Takens bi-
furcation. In fact their mathernatical structure makes -if the necessary
conditions for Bogdanov-Takens in remark 13.2 hold- that the first two
coefficients of the characteristics polynomial will be very small (o6 << 1 and
ar ( 1). This then leds to the conclusion that generically CB models will
be piaced in the neighbourhood of a Bogdanov-Takens bifurcation.

In order to shou¡ these results let us consider the coefficients o¿ and a1

of the cha¡acteristic polynomial (equation 12.3 and 12.9):
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a0:

&1 :

,-,,*'ü+ll#ll

1-r¡oo+r fi 1 ¡¡o,ll

(14.1,)

(L4.2)

We assume thet the necessary condition of having at least two time scales
for the gating variables is fulfllled. Let us assume k fast gating variables with
a time scale ¡ and m slow gating variables with a time scale ?, then we can
write the equations 14.1 and 14.2 as:

as = (-1)N-1-i==llgll
z6rt?m ll áu ll

o, = (-t)N-rff¡.,¡,
we remind the reader that r and 7 a¡e nondimensional characteristic

times. As discussed in the section 12 the physics of a system cannot depend
of the time scaling. but in order to do physical comparisons (saying for
example that a coefficient is small) we n:ust choose a characteristic time to
nondimensionalize. This time should be a relevant time of the system, to
give physical sense to the words fast or slow. In this case it is quite obvious
that a good choice of the time scale to nondimensionalize is the fast variable
r, then something very fast will have times smallest than 1 and slow things
will have times greater thau 1. Then, if we consider times with a tilde as
times with dimensions, the equations become:

a¡ = (-1)N+'1#ll#ll:(-1)N+1(;) (á)-ll#ll
:k-¡l,. /:\ m

a, = (-r)r*'i7;ll"rl =(-,)r.,(á) ll,ril

We recall that a necessary conditions for Bogdanov-Takens in a CB
model is:

r ilr i
=_::!-::<(1'1 T/r T
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and we consider also a membrane relaxation time of the order of the
slowest variables ("0 - 7s). We define

,: +..,
Then

o1 : (-1)N+1e- llal ll

"n"" 
O ll#ll is does not diverge one concludes that

lrol << t
lorl << i

The functions 0¡(u) are always finite and decay exponentially for u --+
*m and the functions M¡(u) car, increase or decrease at most linearly when

I u l--+ oo. Then because r << I and ro - 7, we have

=1

lim ltalll : 1¡'tT =21r --++CO T0

We see then that the invariants as functions ofz are both of order one for
very large negative aud very large positive values of u and in some central
interval they take flnite values and can la.nish. This is shown for the Mor¡is-
Lecar and Hodgkin and Huxley models in the figures 13 a¡d 14. lt is then

in the central interual where the inra,riants can change of sign' Since it is

not experimentally seen and physiologicai plausible that the functions p(u)

have maximums at large negative values we can expect that the inva¡iants
will go monotonicaJly from 1 to zero as it seen in the figures referenced.

Hence, from verv large negative values of ¿ to the critical value where the

invariant is zero (2fi f"t tt" ll#ll and ut for llalll) both inrariant will be ot

order 1 as it is shown in the figiues 17 and 18. Therefore. in the interval
z e [-oo,zfi] the coefficients ae will be of order em and in the interval
u e [-oo,zi] the coefficient a1 will be of order e@]1. The reader may note

o6 = (-1)N+r.^"' llgll
ll ou ll

.. Ita/ Ittlm ll.:-ll
u-,+oo II dr, ll

81



that the invariants are zero in two point. But because we a,re following the
stable fixed point root (the positive z fixed point is generically unstable),
we only have Bogdanov-Talens for negative values of u.

Since the invariants are finite and remain oforder 1 nea.r to the Bogdanov-
Takens point and since the pro ürcts p¡(u)M¡(u) and the functions 7j(¿) will
not cha.nge abruptly (as they do) as we discuss in the appendix C, the co-
efficients ¡emain small ( ao - e"'and a1 - e-+1 ) in a¡ inte¡val between zfi
and zt.

Our analysis shows that if we have two time scales for the gating vari-
ables the coefficients oo and a1 will be generically very small. This is a
very powerful result: this physically means that if a CB model satisfies the
necessary condition for the edstence of a Bogdanov-Takens instability then
the system is automatically in the neighbourhood of the Bogdanov-Takens
bifurcation (near as is shown in the figure 19), i.e. in its unfolding. Because
the structure of the CB equations! the necessary conditions for the ex-
istence of the Bogdanov-Takens bifurcation becomes sufficient to
be in the unfolding of Bogdanov-Takens. Aithough mathematically
we have a codimension 2 bifurcation, if the conditions of the existence of
Bogdanov-Takens holds, it is not necessary to move any paxameter to stay
in neighbourhood, and the CB models will behave as in the unfolding of the
Bogdanov-Ta.kens normal form.

In the next section we clea.rly show analytically and numerically that if
CB models rneet the necessary conditions in the remark 13.2, its dynamics
axe descúbed by the Bogdanov-Takens normal form.

Remark 14.L. lf a CB model satisfies the two necessary condi-
tions for the existence of Bogdanov-Takens as described in Remark
12.1 with two time scales for the gating va¡iables this CB model
is in the unfolding of Bogdanov-Takens, that is:

l¿o I << t
l¿rl << t

It is important to note that the previous arguments do not apply to
instabilities of higher codimension. We shall see ir appendix G that the
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tripie zero bifurcation (which will have chaotic behavior) is not generic in
the se¡ue discussed here for CB models, and in order to have this instability
the CB models must fulfill a very specific corditions. We also study carefully

the coefficients oz and ¿¡ ofthe cha,racteristic polynomial and show that they
are bigger than og and a1.

15 CB model reduction

In this section we will explain a method developed to trarsform any CB
model in almost the Bogdanov-Takens normal form in their Arnold form.
We say alrnost because this equation will have the form of a perturbed
Hamiltonian and will fulfiil the subcritical scaling in the relevant rauge of
parameters, but the force and the friction will be written in terms of tran-
scendental functions. This reduced equation will be written in terms of the
two r.rariables z and ú. Is important to note that using the anall'tical expres-

sion for the Jordan basis in section 11.2 and in appendix B it is easy to show

that these two variables (the potentiai z and the derivative ofthe potential ú
of the CB modei) a.re actually the critical va¡iables of the Bogdanov-Takens

normal form.
In addition to this rema¡kable fact, we will say that the reduced equation

preserues the \inear structure. This is not strictly true, because in this
method we reduced the number of va.riables from N * 1 to 2, therefore we

wili change the linear matrix and furthermore at ad hoc change of variables

will break the "neuronal matrix" structure of the linear system. But we

preserve two fundamentai features of the original CB model that we have

shown in the previous sections and which are the key for the etcitability
behaai,our: 1) the reduced form will maintain the fixed point condition of
the original CB model giveu by t. : Í(u.,6r), therefore the appearance

or disappearance of fixed points with respect to the parameters will be the

same in both the original CB model and their reduced form, 2) the reduced

form also preserves the Bogdanov-Takens points of the original equation

(thats it ll#ll :, and llDetn ¡*¡ll :0).
To do this reduction we will use three assumptions:

1. The difference between the gating variable and its stationary proba-

bility is small (lrjl<< 1).

2. There exists a separation of time scales which leds to two sets of gating

variables: the siow set with constant time relaxation T5 and the fast

set with constant time relaxation r¡.

83



3. The CB model is near to the Bogdanov-Takens bifurcation in the sense
that we can use the scaling in the remark 10.1 and then neglect higher
order terms with respect to that scaling. Iu fact, we show iu the
previous section 14 that if the assumption 2 is fu1fi1led then we are in
the unfolding of the Bogdanov-Takens instability.

In the next section we will show numerically that this reduced equation has
the same form and behaviou¡ as the subcritical Bogdanov-Takens normal
form with a cubic-lilce force and a quadratic-like friction in the relevant
range of parameters. But most importantly we will show that this reduced
equation has qualitatively the sa¡ne dynamics of the original CB model,
confirming that the dynamics of CB models is qualitatively described by
the subcritical Bogdanov-Takens normal form.

15.1 Two time scales model reduction

Consider the most general CB model written in its standard form (see section
5.1):

ú = I - f(",dr) - K(u,í,67)
;- -- 

rj*i = - rjüil, 0,fu,d¡\ú i =1,2...N

Since lo¡ | ( 1 for every j, we shall neglect the higher orders in these vari-
ables. Then if we expand K(u,i,67) around the fixed point (z:z-,d:0)
we keep only the linear orders in á, and using the definitions 6.4 the last
equation becomes:

N

ú : I-f(u)+lu¡(u)r¡
, f:i¡ = --+-B¡(u)ú j=1...N

J

Now we use the assumption 2): the fast gating variables will have re.
laxation times of the order of r¡ (set of va¡iables -l?) and the slow gating
valiables will have relaxatiou times of the order of ?s (set of variables ,S).

i.e.
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r¡(u) - a,
r1(u) - 7t
with A << 1

For simplicity we shall use the subindices F and S for the functions B¡(u)
aú, M¡(u) which are related to the fast and slow gating variables, respec-
tively. Therefore the equations can be written (using an obvious notation)

keF
¿€,9

ú : I - Í(u) + ÑF@). ir + Ifrs(u). ís
- ir ; ,..rF = -- + PF\u)utF

- is z, ..:Ls = -;- + ps\u)u
l.s

If we take the derivative with respect to time of these equations 15.1 we
obtain:

, = -a 5?), + *# . i Fit + ñI F@) i 
" 

+ 
a ú:J") 

. í sú + 
^i 

s@) . i s
(15.4)

where the sign . is the usual euclidean scalar product. Then using the
equations 15.2 and 15.8 in 15.4 we obtain:

, : -ut#' o - ryy . iFú - ÍrF@) l-t * B;r"1"]

*oÑ-stu)..osr+¡7s(u) [-#*4, ' I* a, L rs 'st')'l
We can eliminate adiabatically (Van Kampen, 1985) the fast variables

assuming that they are instantaneous. Then we put

á¡-o+ ir=ú¡eie(u)
and we obtain:

.. aÍ@). oMefu) ; , , ., aúsfu\ - .-iü = - - 
b;' ú + tr . ?rfu)¡r ú, * --:ffi-:. . isú -+ Ms(u).

(15.1)

(r5.2)

(15.3)

(15.5)

f-ry.a,r"l"]
(15.6)
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If we consider now equation 15.1 we can obtain tlle expression:

ñs¡u1 .rs: ¿ 
[1 - ,pl)Ip@) o"al) - (¡ - /("))

If we replace this expression in equation 15.6 we obtain:

¡ = 
1 -Jtu) - - (W* á {, - rs ús\u) . dstu) -,pñp¡u¡ n;r"l})

-luñ*l 6,(u)1 ,,,,* f 
a'*r'l . rrl ,

t 0u "l' L du -J

and using the definitions of the inva¡iants in 12.4 a¡d 12.10 the equation
becomes:

¿ =r -Jtu) _ , (* il#ll * | rr*u,",t"rrr)

- lfl+ll E,@)1,,t * lu'ir'l -,1
ld" .l Lou I

Then the CB model becomes:

u: t -r(u\ -, (; ll#ll * { rr,*u,.,r,lr)
lañ.tut =..l , [a¡Z"t"l -.].. L# 

'1rtu¡)rrti * 
¡= r= '"J 

o (15 7)

is: -?;+ is@)ú (15.s)

L5.2 CB model in Andronov form

Using the fact that we are near to Bogdanov-Takens we can neglect the

term:

l,!!v) po.,)),o¡,
lou l

Using the subcritical scaling (see remark 10.1) we realise that this term
is smaller than the order terms of the Bogdanov-Takens normai form:



lryP o,r't]',a'-'¡''6" << 
'u'

Then the equations becomes:

* : t -J@) -, (; ll#ll * fi rro*o,.,(")il) . [el#,,] ¿

Ís:-=-+llslu)u
lS

Now the t"rm f9lftlo .;sl li i* the onty term which links togerher rheLou "l
nÉr+2 equations ( ng is the number of slow lariables S). This is ¿ non linear
term and will only a,ffect nonlinea,rly the dynamics of the first equation.
F\rrthermore if we are near to Bogda.nov-Takens and we use the ansatz (the
expression ofthe physical variables in terms of the critical variables) at linea¡
order (see section 11.2 and the appendix B) we can write

Ís - ul sps\u)

and:

lryP "], - l*# a;,r,r] r'r' - &€6" << €s"

Therefore is fair to neglect this term. Actually in the Morris-Lecar model
we have obtained an analytical expression for this term (we can do that in
any two gating variable CB model) as a function of z and ú (see equation
D.23) and we have shown numerically that this term qualitatively does not
change the dynamics (see section 16.1). Hence, finally, the reduced form of
any CB model is:

, =' -#'(+ll9ffll * f rro",o,.,r,rtt) (15.e)

Note that this equation has the form of the Bogdanov-Takens normal
form in the Andronov form. The force and the friction a¡e:
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F(") _ I-i(u)
Tg

)(z) = fil4!ll Fl¡Dcrr_N,.N(u)tl' r0 ll d¿, ll ls

L6 Numerical Results

In the appendices D and E we reduce (transform in the case of Morris-
Lecar model since in that case it is just a nonlinear change of variables)
the two most famous conductance based models -the Morris-Lecar model
and the Hodgkiu and Huxley model- to the form in 15.9 using the method
developed in the previous section. In the appendix F we show. doing a

change of variables, that one of the most famous phenomenological models

used to describe the single neuron electrical dynamics, calied the generalised

Fitzhugh-Nagumo model, (Hindma.rsh and Rose, 1982), is actually the sub-

critical Bogdanov-Takens normal form13.

In this section we present numerical results which show that this reduced

ecluation has the same qualitative behaviour as the subcritical Bogdanov-

Takens normal form with a cubi.c-li.ke force and quad,mtic-like friction in the

relevant range of parameters in the case of Morris-Lecar and Hodgkin and

Hudey models (because in the case of the generalised Fitzhugh-Nagumo
model the result is exact). We will show -as the theory predicts- that the

dynamics ofthis reduced equation has the same local and global bifurcations
as the subcritical Bogdanov-Takens normal lorm studied in section 10.3. We

will also numerically show that this reduced equation has qualitatively the

same dynamics of the original CB model, confirming that the dynamics of
CB models is qualitatively described by the subcritical Bogdanov-Takens

normal form.
For the simulations we used our objective-c/CoCOA software specially

developed by us to deal with neuron models from the point of view of non

linea,r dynamics and normal form theory (see section I).

16.1 The Morris-Lecar model

We simulated simultaneously the Morris-Lecar model (equation D.19), the

Morris-Lecar model without the kinetic erlergy term (equation D'23) and

'3Note in the apperrdix F that this model i§ not the most general form of the subcritica'l

Bogdanov-Takens normal form.



the reduced form of the Morris-Leca¡ model (equation D.24). With our
software we can visualize and perturb interactively the orbits in the same
phase space (the ¿-¿ plale). We use green colour to draw the orbits of the
original Morris-Lecar model, vellow for the Morris-Lecar without the term
in (ú)2 and purple for the Reduced form. Because the three equation have
the same fixed points and the same linea¡ matrices when they are linearised
around the fixed points, in the software we calculate analltically and in
real time the fxed points (thats is a ¿* where I. : Í("-) and r¡ : 0) and
the eigenvaiues and eigenvectors only once. The symbology used for the
different classes of fixed points and stable and unstable manifolds is the
same that was used in section 10.3. The force (ffi) is the same for the
three equations and we plot it in the phase plane in blue. The friction curve
will be different for the three rnodels (the original tr{orris-Lecar model, the
Morris-Leca¡ without the term in (á)2 and the reduced model in which we

neglect also the term -#¿ which will always vanish when it is eva,luated
at a fixed point u* which is such that l. : f(".)). For Morris-Lecar a¡d
Morris-Lecar without the term in (ú)2 we plot the friction curve in red and
for the reduced model we use magenta.

As the figures 20, 21 and 21 show the forces have a cubic shape (aiso

consistent with a quintic shape) and the friction in both cases (with and

without the - !,#ri'l has a qua.dratic shape with slight differences betweeu
the two friction curves. As the theory predicts, we found the same global
bifurcation scenarios as in the subcritical Bogdanov-Takens normal form (see

section 10.3). Interestingly -and also as our general theory predicts- we

show numerically that the dynamics does not change qualitatively between
the three equations. The figures show how quantitative features such as

the specific value of the nondimensional injected current ,I when homoclinc
or heteroclinc bifurcation occur, the shape and period of the limit cycles,

the shape of the separatrices change when the parameters vary in the three
equations (and must change since in the global bifurcations the nonlinearities
play a role). But the simulations show that the qualitative features -as the
kind of bifurcations- are the same in the th¡ee equations, i.e. they are

robust.
The flgure 20 shows the Saddle-node homoclinic scena¡io. Before the

bifurcation we have three flxed points: an stable node, a saddle and an un-
stable focus. We move the nondimensional injected current 1 and the stable

fixed point collides with the saddle and the heteroclinc connection becomes

a limit cycle. As it is shown iu the third plot of the figure the shape of the
three iimit cycles are different and have different periods. But because the
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Figure 20: This figure shows the Saddle-node homoclinic bifurcation scclatio
in the Morris-Lecar model (green orbits), the IUorris-Leca¡ model without the (ú)2
term (yellow orbits) and the reduced form of the Morris-Lecar model (purple orbits).
On the top we show the phase space before the bifurcation, in the bifurcation and

after the bifurcation. In the middle v¡e sow the graphic of ¿ versus time for long
times comesponding to e¿ch situation. The period ofthe oscillations is indicated for
the three models using with a coloured bar with the preüous colour code. On the
bottom of the figure the brown arrow indicates the increa^se of the londimensional
injected current f.
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Before the bifu«ation

bifurcation is locally a saddle-node bifurcation, and this bifurcation depends
locally of the linear system. the Saddle-node homoclinic bifurcation occurs
in the same bifurcation point for the three equations.

Figure 21: This figure shows the Saddle-homoclinic bifurcation scena.rio in the
Morris-Lecar model (green orbits), the Mor¡is-Lecar model without the (z)2 term
(yellow orbits) ard the reduced form ofthe l{orris-Lecar model (purple orbits). On
the top we show the phase space before the bifurcation, in the bifurcation and after
the bifurcation. In the middle we show the graphics of '¿ versus time fol long times
corresponding with each situation. On the bottom of the figure the brown arrow
indicates the increase of the nondimensional injected current f- The two attractors
that appear after the bifurcation are marked with the number 1 and 2 in the phase

spare and in the u versus t graphic.

The figure 21 shows the Saddle-homoclinic scenario. There exist three
fixed points: an stable node, a saddle and an unstable focus. When we

move the nondimensional injected current I tlie unstable manifold of the

saddle fixed poirt returrs getting closer to the stable manifold. When the

unstable manifold a,nd the stable manifold cormect in the same homolinic

orbit the Saddle-homoclinic bifurcation occurs, and then the homocliuic

cornection becomes a limit cycle. Because the Saddle-homoclinic is a global

bifurcation the specific bifurcation point depends on the nonlinearities and

the equations have different bifurcation points (the figure shows that the

original i\{orris-Lecar model bifurcate before the other two). Although the

ln the bifurration Afterthe bifurcation
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shape of the limit cycles of the three equations are diferent we can see that
after the bifurcation the same qualitative scenario appears: a limit cycle
(marked with 1 in the figure) and the stable focus (marked with 2 in the
figure) separated by the stable manifold ofthe saddle point. Therefore, as it
is shown in ihe third plot of the frgure 21, after the bifurcation in the three
equations there exists bistability between two attractors.

Figure 22: This figure sho¡'s the Big homoclinic bifurcation scenario in the
Morrislecar model (green orbits), the Mo¡ris-Lecar model without the (ú)2 term
(yellow orbits) and the reduced form of the Morris-Lecar model (purple orbits).
On the top we sho¡¡¡ the phase spa.ce before the bifurcation, in the bifu¡cation and
after the bifurcation. In the middle we show the graphics of u versus time for long
times corresponding with each situation. On the bottorn of the figure the brown
arrow indicates the increase of the nondimensional injected current 1. The tv¡o
attractos that appear after the bifurcation a¡e marked with the numbers 1 and 2
in the phase space and in the z ve¡sus t graphics. The heteroclinic separatrices of
the three equations beh!,een the two attractors (simulated using negative time) are

showed in black.

The figure 22 shows the Big homoclinic scenario. As it is shown in the
fig:rue 22 the three equations urdergo qualitatively the same scenario de-

scribed in section 10.3. Interestingly - as the theory predicts- we also

found that in the three equations, that moving the parameters the big ho-
moclinic scena¡io lead to the other scenarios distinctives of class 2 neurons.

Before the bifurotion ln the bifurcation Afterthe bifurotion
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Not surprisingly for us, is clear that the dynarnics of class 2 neurons is not
explained merely by an Andronov-Hopf bifurcation as many authors propose
(Ermentrout and Terman, 2010), but by the big homoclinic scenario which
led to other homoclinc bifurcations of the sparatrices.

This results are remarkable by itself: we numerically confirm that the
Morris-Leca¡ model is in fact equivalent to the subcritical Bogdanov-Takens
normal form. But must importantl¡ this simulations consistently supports
our theoretical results showing that the dynamics observed in the original
CB model is explained by the subcritical Bogdanov-Takens normal form.

76.2 The Hodgkin and Huxley model

We have simulated simultaneously the Hodgkin and Huxley model (equa-

tions E.17, E.18. E.19 and E.20 ), the Hodgkir and Huxley model after
linearisation of the gating variables (equations E.32, E.33, E.34 and E.35)
and the reduced form o{ the Hodgkiu and Huxley rnodel (equation E.46).
With our software we can visua.lize and perturb interactively the orbits in
a projection of the phase space (the ru1-u plane) and -in the case of the
reduced model- in a transformation of the ú-z phase plane using the rela-
tion E.37. Therefore, in this simulations we visualise in the same rl-¿ plane

the Hodgkin and Huxley model, the model with linearisation of the gat-
ing variables (a four variables ODEs) and the reduced form of the Hodgkin
and Huxley model (a two variables ODE). We use green to draw the orbits
of the original Hodgkin and Huxley rnodel, yellow for the model with lin-
earisation and purple for the reduced form. The three equations have the
same fixed points because the fixed points only depend on the I- : "f(u-)
relation. The Hodgkin and Huxley model and the linearised Hodgkin and

Huxley model have the same linea¡ matrices and the same eigenvalues and

eigenvectors around the fixed points. But in the reduced model the eigen-

vectors and eigenvalues are not equal to the other models. In practice the
nea.rest to zero eigenvalues will be approximately equal to the nearest to
zero eigenvalues of other two models. Hence, in this simulations we will plot
the eigenvectors and eigenvalues only for the reduced model. We used the
same previous colour and shape symbology for the different classes of fixed
points, the stable and unstable manifolds and for the force and the friction
functions.

The figure 23 shows that the shape of the limit cycles is quite differ-
ent for the three equations and also their periods, but the dynamics does

not changes qualitatively, and the the three equations undergo a Saddle-

node Homoclinic bifurcation. Because the bifurcation is locally a saddle'
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Figure 23: This flgure show the Saddle-node homoclinic bifurcation scenario
in the Hodgkin and Huxley model (green orbits), the linearlsed Hodgkin and Huxley
model (¡'ellow orbits) and the ¡educed form of the Hodgkin and Huxley model
(purple orbits). On the top we shov¿ the phase plane before thc bifurcation, iu the
bifurcation and after the bifurcation. In the top left of each phase plane we present

in an edge dashed box a zoom of the phase plaue. In the middle we shov¡ the
graphics of u versus time for' long times corresponding to each situation. With a
coloured bar is we indicate the period of the oscillations for the three models using

the same colour code. On the bottom of the figure the brown arrow indicates the
increase of the nondimensional injected curyent ¡.
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node bifucation: and this bifurcation depends locally on ttre /. : "f(¿.)
curve, the Saddle-node hornoclinic bifurcation occurs in the same bifurca-
tion point for the three equations. The fact that the three models have the
same qualitative behaviour is a beautiful example the Elphick-Tirapegui-
Brachet-Coullet-Iooss theorem (Elphick et al., 1987; Haragus and Iooss,
2011; Wiggins, 2003). This theorem states that the relevant nonlineari
ties which shapes the qualitative d1'namics of a given nonlinear d¡,namical
system only depends of the structure of the linear system. Our numerical
result strongly supports the statement because the three systems maintain
the same linear stmtcture and have the same qualitative dynamics.

16.3 The generalised Fitzhugh-Nagumo model

For completeness we show one example of the simulations performed in
the generalised Fitzhugh-Nagumo modei. The figure 24 shows the Saddle-
node Homoclinic bifurcation scenario using the same symbols and colour
codes of the previous simulations. Because (as we showed in the appendix
F) this equation is almost the subcritical Bogdanov-Takens normal form
(it is in fact less general than the normal form since there is.a relation
between the coefficient of the highest order nonlinear term in the force and
the coefficient ofthe quadratic term ofthe friction) this equation will present

all the bifurcation scenarios shown in section 10.3.

LT Biophysical interpretations

In this section we pretend to give an outline and a brief discussion of some

biophysical interpretations which we found relevant. These interpretations
are by no means unique and maybe they are not the most relevant of our

theoretical work. We expect that the discussion with the reviewers of this
thesis will enrich and open other possible interpretations and experimental
applications.

One interesting outbreak interpretation comes from the very nature of
the normal form approach. As we have previously discussed the qualitative
dynamics of any dynamical system near a bifurcation is given by the normal

form, but the co¡rnection with fh¿ real world is given by r¡¡hat we ca.ll the

ansatz wln\ch is just the set of expressions through which the original phys-

ical variables are expressed in terms of the variables of the normal form. In
this sense one can say that the physical content of a particular problem is
in the ansatz which va¡ies from one physical situation to another in con-

trast to the norn al Jorm which has a uniaersal nature. O:ur ansatz shows
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Figure 24: This figure shows the Saddle-node homoclinic bifurcation scenario
in the generalised Fitzhugh-Nagumo model (green orbits). On the top we show the
phase plane before the bifurcation, in the bifurcation and after the bifurcation. In
the middle we show the graphics of u versus titne for long times corresponding with
earh situation. On the bottom of the figure the brown arrow indicates the increase

of the parameter Í.
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a, very interesting feature of CB models. namely that the critical va¡i¿bles,
i.e. the variables of the normal. form. a¡e the potential u and its de¡ivative
with respect to time ¿ which have to be considered as independent variables
since the normal form is ¿ set of two first order difierantial equations. This
is very surprising because the variable ¿ is actually the observable measured
in the current experiments and ¿ is often calcul¿ted through widely used
data analysis in electrophysiology (Khaliq and Bean, 200g; yu et al., 200g;
Fernandez and White, 2010). Hence. a first important observation is that
the uariables of the norrnal lomn are the erperimentally releuant aariables,
something that does not happen very often. As the theory predicts, because
the CB models are generically in the neighbourhood of a Bogdanov-Takens
bifurcation, the N gating variables of the CB models (m1,rn2,...,m¡¿) will
be siaved by the critical variables u a¡d ¿. Since we are able to calcu-
late analltically the Jordan basis we have the analytical relation between
the gating variables (^r,^r,...,mN) and the critical ra¡iables (z and ú)
at the dominant linear order in the critical variables for any CB model.
Explicitly, using expression B.3 and the definitions 6.3 and 6.6 we obtain
U:t'2,...,N)

8m?(u\m;=ml(u) '--ff-r¡(u);" (17.1)

These equations mean that the gating variables arc Jollowing the sta-
tionary probabilities rnf (z). The magnitude of the difference between a
gating variable and its stationary probability will depend on the magnitude
of the associated relaxation time, the variation of the stationary functions
raf (u) on the potential u and the magnitude of the time variations u of the
potential. The previous equations allow then a clea,r interpretation which is
full of biophysical sense and -as our theory predict- will be approximately
true for CB models.

As we mention in the previous sections, the model reduction method
captures the qualitative features of the CB models. In that sense it is not a
biophysicai accur¿te description b:ut a qualitatiue cartoon of lhe CB models
which captures the essential features of their dynamics. Hence, the reduced
equations exhibit the essential biophysical elements needed for the erei,table
behaaiour observed in neurons. The interpretation of this equation provides
us with a bridge betweeu the excitable dynamics described bv the subcritical
Bogdanov-Takens normal form and the minimal biophysical elements of a
CB model and the relations needed for lhis ercitable behaui,ou,r.

As it can be seen in the reduced equation 15.9 the force is proportional
to the diference between the injected current and the stationary current.
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Then our theory suggests that the stationaJy current actually acts as a
hamiltonian like force, and zeto f.orce means zero net current through the
neuron.

But most surprisingly for us is the physical interpretation which ca.n be
given to the friction. In the hamiltonian dynarnics the friction is key to
transform a conservative (reversible) system in an out of equilibrium (irre.
versible) system. It is known that this breaks the, ---+-ú syÍ¡metry, a fact
that is a fundamental feature shared by all biological systems (Prigogine.
1981). The friction in the equation 15.9 is composed by two terms; the
,".rn + llryll = \p andthe term fr llD"ttl,,'r,ru(,)ll . As we we explain

in section 5 the derivative respect to the voltage of the function /(z) can
be interpreted as the stationary resistance of the neuron mernbrane for long
times. The resistance in electrodynamics is the analog of the friction in clas-
sical mechanics since the dissipated energy is proportional to the resistance
and the friction, respectively- For large values of the potential (z -+ *m)
both terms (# *d { lloetl-lv* rv (r)tl) are positive and act as a toic-
tion that dissipates energy. In fact it is known that in this conditions the
membrane is actually dissipating energy and acting as a,n ohmic resistance
(Latorre, 1996). On the other hand, to maintain the proper constant con-
centration of ions inside the neuron (concentration that changes in time due
to the activity ofthe ionic channels that seiectively permeate the ions inward
or outward of the neuron) and maintaining constant the Nernst potentialla
of each different ion, the cells use an active mechanism. By ionic pumps
that use ATP (the energy qua.nta in biology) the cell actually uses euergy
to maintain the ionic homeostasis (Alberts et al.. 2007). By maintaining
the reversal potentia.ls is given a determined sign for the functions M¡(u)
fo¡ u above or below the reversal potential. This energy consumption wili
be responsible of the zero and negative resistance of neuronal membranes
(in a neuronal membrane a very small current can produce a huge change
in the potential) characteristic of the active membranes and of the exci,table

behaa'iour.

This energy consumption of the cell can be represented mechanically
in the reduced CB model by the zone where the friction is negative (the
injection of enerry region in our mechanical interpretation). Interestingly
the necessary conditions to have Bogdanov-Takens in CB models (see remark
13.2) will ensure a bounded energy injection region of values of u surrounded

14The u¡ parameters are nersi potentials or linear combinations of ne¡st potential of
diferent ion channel. l'his parameters are also called the ¡eversion potential or the driving
force of each io¡r channel.
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by a dissipation energy zone extending to infrnity in thc reduced CB rnodel if
the system is not very far from Bog<1anov-Takerrsrs. Therefore there exists
a beautiful consistence between the bionergeticsl6 behind the excitabilitg
behaoi,our of neurons and the mechanical energy analysis of the reduced CB
model (model that we have showr is equivalent to the subcritical Bogdanov-
Takens normal forrn) .

lsConsider that the inv& ¿nts have the ru.lue of 1 fo¡ u -+ *oo and the Bogdanov-
Takens necessary condition imposes a sign change in both in€,riants. If this change of
sigD not happened to far in u the ñiction will change the sign.

1611 reler to the field of science that concerns of the energy flow through living systems.
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Part IV
Bursting, Chaos and Tliple Zero
Bifurcation in Conductance Based
ModeIs
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18 tiple Zero bifurcation in CB models

In the previous section we showed that neurons are poised generically in the
neighbourhood of Bogdanov-Takens. Therefore -as we confirmed theoret-
ically and numerically- the single neuron dynamics will be qualitatively
described by the subcritical Bogdanov-Tal<ens normal form. An amazing
theoretical consequence of this is that this normal form is a two dimensional
dynamical system which will not have chaotic behaviour in spite of the fact
that the CB models are a set of uery non linear coupled equation with more
than three degrees of freedom (often between 4 to 30 equations) that should
led generically to chaotic behaviour (Strogatz, 2001). Therefore, a theoret-
ical prediction of our results is that the observation in single neurons of a
chaotic behaviour will be very rare. In fact a cha,otic dynamics is rarely
observed experimentally in single neurons. But in some occasions it has
been reported (Hayashi and Ishizuka, 1992; Makarenko and Llinrís, 1998)
and also reproduced numerically (Canavier et al., 1990; Innocenti et al.,
2007; Laudanski et a1., 2010).

On the other hand, the bursting dynamics is a phenomenon observed
in single neurons that, in the last decades, attracted a lot of attention of
ma¡y theoreticians (Coombes and Bressloff, 2005; Izhikevich, 2010; Ermen-
trout and Terman, 2010). It is characterized by an oscillatory dynamics
where two or more spikes are followed by a quiescence period, and where
one can see an interplay of fast and a slow oscillations. Although this is
not the most generic behaviour, it is observed in some neurons, and can
be only be theoretically reproduced with models of at least three dynamic
variables (Izhikevich, 2010). Because the subcritical Bogdanov-Takens nor-
mal form is a two dimensional dynamical system it fails to capture the
bursting phenomenon. Interestingly. it was shown that chaotic dynamics
may arise during the transition between the tonic spiking (explained by the
Bogda.nov-Takens normal form) and the bursting dyna.rnics (Innocenti et a1..

2007; Terman, 1991, 1992).
To understand how this non generic dynamics (that may lead to chaos)

arises in some particular cases from CB models, we have further investigated
the mathematical structure of CB models. In appendix G we showed that
the Tfiple Zero bifurcation (Arneodo et al., 1985) is not a generic bifurcation
for CB models. But if a CB model meet the necessa,ry biophysical colditions
for bursting (Izhikevich, 2010) thats is: 1) a third very slow gating variable
(order of magnitude slowest than Ts),2) a high threshold gating variable,
and this in addition to the necessary conditions for spiking, then the CB
model will undergo a Tliple Zero bifurcation if there exists three zero eigen-
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values. F\rthermore, using the calculations in the appendix G and with
a similar analysis of the one given in section 14, one can show that if one
has this third slow gating va.riable (in addition to the fast set r¡ and slow
set ?s of gating va ables) the three first coefficieuts of the characte¡istic
polynomial will be very small:

lao I << I
lar I << r

lozl << t

and we shall have a Jordan block of order 3. This result shows that,
if a CB model meet the necessary biophysical conditions for the bursting
dynamics, the system is mathematically within the unfolding of the lYiple
Zero bifurcation. Therefore in this conditions, the CB model will present
all the complex phenomenology contained in the Ttiple Zero normal form,
which consists in three critical variables which give rise to a rich phenomenol-
ogy that includes chaotic dynamics, and where the Bogdanov-Takens nor-
mal form is contained (Arneodo et al., 1985). In addition to this, we re-
cently showed that with a change of variable the Hindmarsh-Rose model
(Hindmarsh and Rose, 1984) -the most famous phenomenological model
for neuronal bursting- is actually almost the Ttiple Zero norrnal form (see

appendix H).
This results strongly suggest that the Tbiple Zero bifurcation explain

the bursting dynamics observed in neurons and the trarsition to chaos in
CB models. But because this are preliminary results, we think that we

need more theoretical calculations (e.g. to study the invariant to obtain the
necessary conditions for the Thiple Zero bifurcation in CB models, and also

to study with more detail the Hindmarsh-Rose model) and more numerica.l

simulations in order to give a definitive a.nswer. But if our hypothesis is true,
we shall be able to say that we can undetstand all the observed dynamics
in neurons with a theory that connects the biophysics of single neurons (in
the CB models) with their rnathematical essezce (bifurcations and normal
form theory).
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Part V
Conclusions and Perspectives
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19 Conclusions

Our aim in this work has been to give a unified mathematical description of
the behaviour of neuron d¡'namics as it is obserued in current experiments.
Since this behaviour is well characterised experimentally our conviction was

since the beginning that such a description should exist. This conviction
was supported by numerous comments and observations going in that sense

in the literatu¡e such as the existence of minimal models or the reduction of
models.

Our starting point has been the conductance based (CB) models which
are universally accepted as models which give an excellent description of
what is going on. The problem is of course that we have a huge quantity
of these models which differ on the assumptions one makes for a deflnite
situation. The models can differ in the number of variables one uses which
depends on how many gating variables one considers important and in the
characteristics of each ionic channel. The essential variable that is mea-

sured is the potential of the membrane of the cell which can be stationary,
can make excursions a¡ound a rest stationary state or can have a periodic

behaviour.
One of the most common electrophysiological experiments (current ciamp

experiments) are done varying the electrical current I injected in the neuron
and observing what happens to the rest state of the potential. The behaviour
which one observes in this procedure is what we call the "generic behaviour

of neuron dynamics". Other behaviours, such as bursting, need some kind

of "forcing" of the system in the sense that one has to impose conditions on

the parameters of the model which put the system in very special conditions

which are difficult to observe (they can be found in some special type of neu-

rons). It had been noted by many authors that the generic behaviour can

be essentially reproduced by a plana.r dynamics, i.e. by a dynamical system

involving two variables, and many planar models have been constructed and

studied.
Our central conclusion here is that the description of the experiments

performed as explained in the previous paragraph can be done by a two

variables d¡mamical system: the subcritical normal form of the Bogdanov-

Takens bifurcation (02 in the notation of Arnold). This certainly looks

contradictory since the Bogdanov-Takens bifurcation is codimension two,

which means that we have to fix two parameters, and this does not seems

to be the case in the description of the experiments we have given But we

have very strong aJguments to sustain our conclusion which we shall now

summa¡ize:
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1. A very complete theoretical discussion of the very special nature of the
CB models has led us to the conclusion that when the usual qualitative
assumptions accepted to observe the generic behaviour of neurons are
satified, namelv the eistence of two different time scales and two
diflerent t¡pes of gating rzriables (one amplifying and one resonant),
then the dynamical system, whatever is its dimension, is always in
the unfolding of the Bogdalov-Takens (BT) bifurcation and is thus
described by the corresponding normal form;

2. A reduction method which can be applied to any CB model satisfying
the above mentioned conditions led in a very natural way to a reduced
model which is "almost", in a sense that is made precise in the text,
the normal form of the subcritical BT bifurcation.

3. We have constructed a special numerical simulato¡ with high interac-
tivity and specially adapted to this problem in a1l possible ways. In
particular we are able to see in the same window a¡d in real time the
simultaneous behaviours of the original CB model, the reduced model
and the subcritical BT normal form. Nloreover we can exhibit the
fixed points of the three systerns together with their stability and also
the linear part of the stable and unstable manifolds of the fixed point,
all this in real time. Our numerical simulati,ons support completely our
conclusion and we can then say that indeed our arguments are correct
and the universal description of the generic dynamics of neurons is
given by the subcritical BT normal form.

4- When we write the normal form in the Arnold form we have a sec-
ond order differential equation with a direct mechanical interpretation
since it is a Hamiltonian system with non linear friction. We see then
in this form the appeareance of two important functions: a nonlinear
force (with its corresponding mechanical potential) and a non lineax
friction. This allows us to discuss the behaviour of neurons in terms
of mechanical analogues which are highly intuitive and of direct inter-
pretation.

Finally we have explored the "forcing" of the system and we have con-
cluded that when the conditions given in the literature to have the "non
generic" bursting behaviour are satisfied the system is in the unfolding of
the triple zero 03 bifurcation which has chaotic behaviour as it has been
obse-rved experimentallv.
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A Neuronal matrices proves and calculations

4.1 Proof of the theorem 7.1

Proof. We will proof it by induction. For n = 1 it is trivia.l, for n : 2 the
equation 7.3 reads:

ff"¡ +\Outwuflo, : *ro, -t hMpzt AzMzat
j:1 i.=1 s*i

On the other hand the Neuronal Matrix for n : 2 reads:

-- / o' +8,M, B,M" \N:l. '8,M.'",il,u")
and its determinant is;

Det(N) : a1d.2 t p1M7a2 -t §zMzat

Therefore the theorem holds for n : 2. Lel us assume that the theo¡em
holds for the Neuronal Matrices of n x n and calculate the determinant of
the r¿* 1 x n* 1 Neuronal Matrix. We use the Laplace cofactor expansion for
matrices and expand in the minors of the first column (C¿,1) of the Neurona,l
Matrix- Thus we can write determinant of a n* 1x r¿* 1 Neuronal Matrix
as:

¿+1

Det(N,,a1¡,a1) : (q, ¡ fuM)C1,1 + M1 »(-1)n*'ArCn,,
i=2

Using the hypothesis for n x n neuronal matrix

n+l n+1 n+1

c,., = II oj+»BiMifl,"
i=2 i':2 3*i

we obtain

n+1 n+l n+)- n+\ n+!
(a1r fuM)C4: fI"¡ +l|tMiil,o"* PrMrl\ntwnfl""

j=r i=1 s#i i=2 3+i

Heuce, to prove that
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n+1 n+1 7¿+1

Det(N,"_.1¡¿a1) : fl ", +l \rMfl a"
j:t i=1 s#i

'We rnust prove now that always

n+1 n+1

MrD(\u*' Bnc¡¡ : - B1M 1\ 0n un ff ""
If we use matrix row operations and their determinant properties, moving

the first raw to the i - 1 raw of each minor, we get the following expression
for each minor

n+7

C,r : (-1)'

az * 1zMz

g¿Mz

0tMz,
0¿+tMz

P^U,

It is straightforward
obtaining

Q.E D.

1zM¡¡ 1zM¡ 0zM¿+t

0¡-t M¿ 1¿-tM¿+t
§tMt 0tM¿+t

1¿+tM¡ ct¿+t * 1¡+tMt+t

0"M¡ 0nM¡+t

T.3foreachnxnminor

a¡,t * §t-tM¿-t
hM¿-t

A¡+tM¡-t

g^Mt-t

that we ca¡r use

t7

0zM"

a

0¿M"
AtM"
A¡M"

(tn * AnMn

C¡1= ByM¡lla¡ i=2...n*1
i+i

Thus, using this expression we obtain

ñ+1 n+1 n

M tLG t)'*' \oc+ : - M t ltl gntwnff 
",i-2 i-2 ili

ú
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B Analytical expression for the Jordan basis

In section 11.2 we show that the first vector of the Jordan basis is:

(8.1)

Therefore, the equatiou that must be solved to find explicitly the seconrl
vecto¡ of the Jordan basis is:

,,:(:)

Let us number these N * 1 equations beginning with the first equations
as the equation 0 and the last one as equation N. If we perform the following
operation with the equations:

j)x ps-o)x B¡

We find that

a¡1oa¡ --'A
Because neither a¡ ,Ao or É¡ a,re singular

A¡

"--"¡lh
And if we choose z : 0 we find that the second vector of the Jordan

basis, which we ca X(1), ako belongs to the two dimensional Jo¡dan block
subspace and is given by:

:

*(o¡¿ t É¡¡.4y',v ) ¿¡,.
(B.2)

1

0

ó

o

[,cx(1) : x(o)

Then. the explicit linear equations reads:

1oM$t -l: 1oMztz*
(c,t* ?tMt)q * AtMzzzl

AoMrr, i A¡Mtrzl
: ... :_r

At¡ Mpt * B¡'¡ Mzrz*

*0oM¡¡c¡¡
* AtMxx¡¡

' (*¡ + /¡M¡)x¡... -tB¡M¡¡a¡¡
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/s\
Lu)=-ul * | (Bs)

\#/
Is important to notice that if we plug-in the expression (B.3) in the

original linear equations (B.2) the equations a¡e fulfilled and a¡e written
in term6 of the second condition to be in the Bogdanov-Takens Bifurcation
11.3.

Now we have a analytical expression for the two vectors X(0) and X(1)
and they belong to the Jordan block subspace. To find the other N - L

vecto¡s of the Jordan base, let us suppose the most generic case when all
the rest of the N-l eigenvalues ({)2,)3...}¡}) are diflerent. Therefore,
the general equation for the N - 1 vectors is (l : 2, 3,. . ., N):

Then the equations are:

-l¿.rf) + B6M1rf 
)+

(arl-üMt-)¿lrÍ)+
+loMt¡xf, = o

+B1rt[¡¡rl! : o

Wx(t) : ¡,*(rl

: : : :i
A¡Mp? + "'(a¡ + B¡M¡ - r,)rÍ) +B¡M¡¡x\l = o

:

B¡¡twpt)+

Doing the following operation with the equations:

: i :i
*bN + A¡¡MN -.i¡)ri{) : o

(B 4)

we find that

i)1o-o)*F¡

r¿l A¡ l¿ i
') -- 7i ¡, - *"o

Then we find that

tt4



. t¿)

.. (t) - ^t,d-p0

1
pt

'8.'
)¿-aa

:

9u

(B.5)

Where:c§) is a free parameter. Similar to the previous case, if we plug-in
the expression (B.5) in the original ünear equations (B. ) the equations are
fulfilled. But now the expression that arise is written in therms of the ana-
l¡.tical general expression of the characteristic polynomial of a conductance
based model given in equation (7.5).
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C Estimation of the order of r¡

We will estimate the order of 16 assuming the conditions given in section
13.3 . That is assuming that we are in the Bogdanov-Takens point and
rr/Ts 11 1. Using the last assumption in the equations 13.7 and 13.8 we
can approximate:

(c.1)

(c.2)

We analyze equation C.2. lf. Ts/rs ) 1 then BM¡ must be la.rge and

-due the features of the functions Bi@) ar,d M¡(")- very narrow. This is
a singularity for the functions 0¡@) aú, in the CB models generically will
not happen. But in section 18 we v¡ill show that in this peculiar case (which
is unlikely to happen experimentally) the CB models generically undergo a
triple-zero 03 bifurcation ( i.e. an eigenvalue zero with multilicity three and
a Jordan block of order 3). Analogously, 1f rpfro)) 1, then using the same
axgument but with BMs we conclude that this case must not be generic
either. Now, if we consider the case rpfr6 - 1, equation C.2 becomes

and take into account that rF/Ts ( 1 we see that BMr must be large
and this case will not be generic. Now if we consider the case Tsf rs 41 l,
then approximately:

BMg rt

BM¡ =

And the invariants read

nu,= *(r. #)
BMp=-!l,*&)lS \ ro./

BMF 
^, -+(,. ?)

1

%
1

-ts

ll#ll=' .+-ft
llDetn¡,,yll *1+fr-|, 'rFx-

.¿s
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This result shows that if this case holds then the systern will be /ar from
Bogdanov-Takenr (.,"." ll#ll - 1), in contradiction with the assumprion

used in this analysis (we assumed that the system is il the Bogdanov-Takens
point). This can be interpreted saying that if the system is in this case, the
parameters must be forced, (in the sense of taking extreme values) to undergo
the bifurcation. Finally if 7s/26 - 1, we can write approximately:

BMs x i
;
-( sr

BMF! -+
And the invariants:

llDed-iy,,yll = 1 -

r0

= É..t

ll-tll-'. /'o - 
z'o\

\r, rs )
/ Ts 2t¡ \(E- 

""/
Using our first assumption that rp /Ts 11 1 the last equations shows that

the approximations done in this case (k /rs - 1) do not deviate rnuch the
invariants from the Bogdanov-Takens point (the other assumption for this
analysis).

This rough analysis suggest that the only case where we do not need

to Jorce the parameters to put the functions § or M in extreme values
(very large or very small) to undergo Bogdanov-Takens in CB models is

whet Tsf r¡ - 1. Hence, this must be the generic physical scenario {or
a realistic CB model that undergo the Bogdanov-Takens bifurcation. The
figure 16 shows that within the range z where the Hodgkin and Huxley model
undergoes this blfurcation (indicated with a dashed line) this condition hold
(the figure shows that r¡"(u) lts - r"(u) lro - i). If we take into account

that ro is of the order of the adimensional membrane time constant, then in
general the experimental data supports this theoretical estimation.
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D The Morris-Lecar Model

D.1 The Model

One of the simplest and well known conductance based model for the gen-
eration of action potentials is a model proposed by Kathleen Morris and
Harold Lecar (Morris and Lecar, 1981). The model has three channels: a
potassium channel, a calcium channel, and a leak. In the simplest version
of the model. the calcium current depends instantaneously on the voitage.
The Morris-Lecar is representative of the conductance based models that
have excitabiüty class 1 and Class 2 (Erment¡out and Terman, 2010) and
the global and local bifurcations cha¡acteristics of this kind of neuronal
dynamics (Tsumoto et aI., 2006). The mathematical formulation of the
Morris-Lecar model is

1it = a-lI -gyn(u- Ex)-scom*(u)(u- E¿")-sL(u- E¿XD.I)
UM

m-1rr¡ : i(r**'n+)
n@(u) : i(r+o,r,"Js;

-t^, - 
7

'\"i - cosh o;#

(D.2)

(D.3)

(D.4)

(D.5)

. ,n*(a) - nn = Q---:-;:--r\u)

with;

To transform the equations to dimensionless equations we can use the
scaliug:

u2 'Lt3 ar bt A2 bt

1 lErllv¿ -vs/v¿ lE¡,1/vz

Table 1; Dimensionless parsmeters for the Morris-Lecar model.

We scale time as

. C*,
9L
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and the variable o as

lEtl
Then the new equations are

ú : I - gln(u - u7) - 92m* (u)(u - u2) - gs(u - us)
. n*(u) - n

r(u)

with

**(r)

,* (u)

] [t + tann (azt + az)]

] [1 + tanh (oru + ar)]

(D.6)

(D.7)

(D.8)

(D.e)

(D.10)

(D.13)

(D.14)

u

;

-l-.\ - 
c'\", - ;he@

Then with a non singular change of variables the equations get a struc-
ture that has an important and general interpretation in all models of neu-
rons. We write

r:n-n*(u) (D.11)

and define

f (u) : sp*(u)(u - ur) + s2m@(u)(u - u2)-t s(u - q) (D.12)

Then doing the proper calculations that we do for a generic conductance
based model in section 5 we obtain

I-f(")-s1r(u-u1)

-16-ffV-f@)-sP(u-u1)l
And v¡ith the definition 5.8:

0n* 1 -..
01") = - :l:- = -iarsech¿(a1u + b1)



the equations finally take the form:

-- I-f(")-s¡r(u-uy)
- - --;--¡ -l l1\u)uf\u )

Then using equation D.16 in D.18 we obtain

, = -u'-li'o- g,(u -,,, {-ñ + 6(u)a} - or,;

If we use equation D.15 we have

u (D.15)

(D.16)

(D.18)

D.2 Morris-Lecar to Andronov

We will reproduce the method developed in section 15.1 in this particular
model. Since the Morris-Lecar is a two va¡iables model this will be a change
of variable rather than a process of model reduction. In fact, this calculation
is very instructive in relation to the general calculations that was performed
in 15.1. We begun by doing the time derivative of D.15:

.. aftu). .,u= - A, u -9rx(11 - ut)- gL..ru (D.17)

I - f(")r=;1"-,)-16-u)
a.nd if we plug this expression in equation D.18 and if we consider the

definitions of the invaxiants in sections 12 and E.40 we finally obtain:

a : I - !\") - a( I - ¡("t*-".(") Il#ll + * lo"u.(,lrr) +frr(u) \ z - ur I du tl rlu) 
(D.19)

with

z6(u) :
lgtm*(u)*92n6(u).t9,3l

(D.20)

ilryil = r+ro(u){,, q*@1,=, 
(u - u )*r, 4#1,-, 1, - rr))

(D.21)
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llDetr-(u)ll =t -r(u)hY#l _r"-"U @.22)

Then following the steps of section 15 we can neglect the term *;
obtaining

* :' ;tt;\"' -, ("-ili' .,.(,, ilq#il * * llo",,u(,)tt) ro zar

Using the same arguments of section 15.2 we can neglect the term ú (##)
to obtain finally the reduced form of the Morris-Lecar model

,:' ;-¿\") -,; (,0i,,)ll#ll * { ¡¡o*u1"¡¡¡) (D24)
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E Hodgkin and Huxley Model

E.1 The Hodgkin and Huxley Model

The Hodgkin-Huxley rnodel is the first conductance based model proposed
by Alan Lloyd Hodgkin and Audrew Huxley in 1952 to explain the ionic
mechanisms underlying the initiation and propagation of action potentials
in the squid giant axol (Hodgkin and Huxley, 1952). They received the 1963
Nobel Prize in Physiology o¡ Medicine for this work. It is widely accepted
that this model contain the key biophysical mechanism which give rlse to the
excitabil'itg behauiour of most of the neuons. The mathematical formulation
of the model is

(E.2)

(E.3)

(E.4)

ú : ¿ {i - sr,¡,,n3n@ - E¡,o) - gxna(, - E«)-9¿(u-E¿)XE.1)

. m*(u) - m
ttL 

- -"".:a--'i--:-rmlu )

; h@(x\ - h

in(u)
. n-(u) - n

r"\u )

To transform these equations to a dimensionless form we can use the
scaling:

Table 2: Relation between the the original and the dimensionless parameters.

The new time scale is

t: C t
9L+9K

and we scale the potential va,riable u as

u

": lotl
We also consider dimensionless parameters for rn-(u), lz-(z) and n-(z),

as written in tables 3, 4 and 5, respectively. Then these functions read
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Table 3: Dimensionless parameters for m* (u) a ' r^(u).

Táble 4; Dimensionless pa.r'amete¡s for ñ,-(u) and r¡(u).

Ar_ AB" Bp, cB^

Table ó¡ Dimensionless parameters for n6(z) a.nd r'(u).

a*(u)

§^(u)

ah(u)

0n(") --
1 * 

"@oa"+eon)0.1 (A"-u + B"-)an(u, = -X4;.iB;J-
0,@) : Cp^e(Ao'"+eo-)

an (u)

Ao^u I Bo^
4r;;iÉ;;=
Cu*e(Ao*"+na^)

C ooe(A'n"+ 
B"a)

1

a^(u) + 0*(u)
o¡(r)

(8.5)

(E.6)

(E.7)

(E.8)

(E.e)

(E.10)

(E.11)

(E.12)

(E.13)

and finally

m*(u) =

h@(u) =

o^ht\
-@¡r¡,\ : ___-_:::_-_:_'" \*l a"(u) + A"(u)

The dimensionless relaxation time of tbe gating variables (without tilde)

an(u) + 7n(u)

L23

are



¿ t",\ - 9tl9v'n¿\u,¡ - =::-_-c'[o,,(u) + a^Q)¡

rn(u) - 9L+gKd6@+dd
Thus the new equations will be

ú = I - glm3h(u _ q) _ g2na(u _ u2) _ g(u _ q)
. m*(u\ - m.m,='

r*(u)
; h@(u\ - h.

n(u)
. ne(u\ _ n

r"(u)
By doing the calculations explained in section S to transfo¡m a generic

CB model in its stand,ard, lor¡¿ we obtain

¡ : r_ffu)_K(u,x1,r2,x3) 
1r.rZ¡i' = -ffi+rlu)ú (E.18)

i2 : - ',2, iL¡(u\úrh\u) (E'ig)

ir=-" -,ff + ltt\u)u (8.20)

with

f (u) : g1m* (u),t"* 1u¡1u - q) + s2n@ (u)n (u _ ,r) 1_ gs(u _ u3) (E.21)

and

K (u, x1, c2, xs) : h {r1r2 )- Sxlm* (u)r2 * 3r1m6 (u)2 12 * m* (u)3 q + xsrn* 6¡+
3xlm*(u)h@(u) + 3r1m*(u)2h* (")l (u - ui + s2 {rt + 4xln* (u) + 6t!n*(u);+

4a3n* (u)3| (u - u2)
(8.22)

(E.14)

(E.15)

(E.16)



and where we have used the de'finition 5'8:

ám* (Ú) |

Jr(u) = - -T\n=,
ah*(u)l

úz(u) = - - ar-1,:,
án* (u) |

Jg(u) : - -ñ|^

(E.23)

(E.24)

(E.25)
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with

Om-(d.) | ------.;=-lou l¿=,

+
(eA.*u+o.^ - t) (" "*r + C,*eAa^"+ao^)

Ao-eA.^u+ B.^ 
7Ao^u * Bq-\

(eA. ^u+ 
8. ^ - t lt ( 

"" " ^,*-M*¡ 
i C p 

^ 
eA o ^"+ 

a o ^)

(A"^u + B"^) -o"''^3ilj|"?Áizi{o*t+;;#x*,*Ae^cB^eAa^"+Bo^

(eA. ^ 
u + B. ^ - 4 (ffi. * r + c p - eA a ^ " 

+ e o ^)
A

ahc"(¿) I

ou l¿=,,

(E.26)

(8.27)

(E.28)

án-(z) |

au lr="

0.1(Ao.u * Bo")

I

C6neA^au"^n (A^oc"n"oohutBoh - ffi)
(c ̂

 ^ 

ro " i*, " ^ * fiir, * r)'
AroCooeAonu+Bon

c ooeA- nu'r B' t + ñ+É p h +t

(eA..u+Ba. - rl (ffi#$ +ce*eAe*.+eo^)

8.2 Hodgkin and Huxley model reduction

We will reproduce the method developed in section 15 1' Let us suppose

tha\ tt,¡z,xs (( 1, then:

0.lAo^eA"^u+B-" (Ao^u 1- Ba^)

+

+ 7"ffX"-r l AB.C g.eAo^"+Bo'



K(u,r1,12,4) x -M1(u)r1 - M2(ufu2 - Ms(u)x3

where:

M:(u) : -3g1m* (u)2h* (z)(u - u1)

M2@) : -spf(u)3(u-u1)
M3@) : - 4g2n@ (u)3 (u - u2)

ú : I - f(u) + Mt(u)rt* M2(u)r2* M3(u)r3
. Jl ^ , , .JI : -- l-Pl(ull,,TF

.Í212 = --+ P2\u)11
-as

Is = -=-+p3\u)u-lS

If we take the time derivative of equation E.32 we obtain

(E.2e)

(E.30)

(E.31)

As its clear in the figure 16 in the Hogkin and Huxley model we have

one fast gating variable (r1 corresponding to the rn variable) and two slow
gating variables (22 and z3 corresponding to ñ and n respectively). We will
consider that r-(u) is of the order of some z¡ and consider r¿ and r, of the
order of some ?g, and perform all the calculations described in general in
section 15.1. It will be not qualitatively important how to approximate the
specific values of z¡ and ?5, for example we can approximate its values by

doing the average in an intervai of u of r*(u) for r¡ and of r¡ and 2," for
?s. But the important matter is -as it actually happens in the Hodgkin

and Huxley model- that there must exist two sets of gating variables with
difierents time sca,les r^(u) - r¡ and r¿(l¿) - r"(u) - Ts, that meet the

condition rp /Ts >) 1. Then the Hodgkin and Huxley model becomes

(E,32)

(E.33)

(E.34)

(E.35)

r : -ut#', *,,\fr * M1(u)i1 +,r\pt + M2(u)iz

+M3(u)tu*rrafff* (E.36)

Because 11 is a fast variable we can do al adiabatic elimination supposing

that Ít is instanta¡eous
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ip -0+ rt: ú¡r1*(u) (E.37)

Then equation becomes

" 
: -a 

fr?) 
" * rr o¡u¡\pt' n,,ff ,i * M2(u)i2

-t M3(u)4+*r9#Pt (E.s8)

Using equations E.34 and E.35 we obtain

, = -af#) t +,rB,t,¡afipa' + *,a$pt + M^o {-ft* p,(")ú}

+ M3(u) {-4 * a,aw} * ,,\f, (D.3s)

Flom equation E.32 we have

M2(u)x2* M3(u)4:ú-V -/(")l - rrMÁu)0{u)ú

and using this last equation in E.38 we obtain

.. r-|tu) .laÍtu) t" -'-i: - " (i; + 

"- 
[1 - r¡M1(u)81(u) -TsMz(u)Bz(u)

- rsM¡ ( u) É¡ ( u )l ) -, r a t 6\a!!l t' * t {r r\f *, "'-!#}
(E.40)

If we consider the definitions of the invariants in section 12 the equation
E.40 becomes

*=I -Jtu) _, (# il#ll+ frlo*,,(,)l)+,,0,t )\pt,
* ,{*r)M=z(u\ + uraMj(u) 1 (E.4r)" t-' 0u 0u I

Finally the Hodgkin and Huxley model is written as
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¿=I-J@) -'(# ll%Pll+ fr lo"tr,(,rrr) +,,o,q,t\pú
*o{*)f.*#}
,r=-?+Bztu\úls
*s:-Ts+Ps\u)u

with the constraint

(8.42)

(8.43)

(E.44)

M2(u)a2 -t Ms(u)rs-- ú- V - Í@))- rrMt@)?t@)ú (E.45)

E.3 Hodgkin and Huxley to Andronov

Fallowürg the same steps as in 15.1 we finally arrive to the reduced form of
the Hodgkin and Huxley model:

r:I -J@) -, (#ll9ffll* { r,*u{,)rr) «unur
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F Generalised Fitzhugh-NagumoModel

The generalized FitzHugh-Nagumo model proposed ir Hindmarsh and Rose
(1982) can be written as:

i -- I+f(r)-a
ú : g(,)-v

(F.1)

(F.2)

with:

f (") : -a# + bc2 (F.3)

g(x) : -c + d'r2 (F.4)

Taking the derivative with respect to time of the first equation

.. df ("\ .x:= fu-r-a
and using equation F.2 we obtain

We use now equation F.2 to obtain

a:I+i@)-i:
Therefore the generalized FitzHugh-Nagumo model becomes

i = I - lg@)- /(,)l - t {, - #}
and using F.3 and F.4 we have

ü : I - l-c + d.r2 - (-aé + bn2)) - t; {t - (-lar2 + ztr)\

which can frnally be written in the form

i= I tc-lar3 +(rl-t)rzl-*{3ax2 -zar+t\
and if we define 1 : ,I * c the equations reads
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t = Í - lar3 + (d - ó)22] - b {Bar2 - 2h + 1.}

This equation has the form of the subcritica,l Bogdanov-Takens normal
form in its Andronov form with a cubic force and a linear friction (see
remark 10.1). Note that because we have 5 parameters instead of the six of
the subcritical Bogdanov-Ta.kens normal from (three in the force and three
in the friction), this modei is not the most general form of the subcritical
Bogdariov-Takens normal form.
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G TYiple Zero conditions in CB models

In this appendix we will show that the triple zero bifurcation is not generic
in CB models. But unde¡ certain conditions that the literature claim a¡e the
minimal necessary conditions for bursting (a third very slow time scale with
a sharp stationary probability) a CB model actually will undergo the tiple
Zero bifurcation. Using the general expression 8.3 for the characteristic
polynomial we obtained that the three zero eigenvalues conditions a¡e:

il
t*j^l+r

But in addition to the three zero eigenvalues we need to have a Jordan
block with multiplicity three:

11 
cx(o) - 0 (G.4)

\.cxo) = x(o)

Where IL¿ is the critical matrix of a CB model and X(o), X(1) and X(2)
the criticai vectors of the Jordan basis.

Theorem G.l. IJ i,n a CB mod,el the characteristi,c polynomial has an e'igen-

ualue zero o! multiplicitg three (cond,itions G.1, G.2, G.3) we need, a new
condi,ti,on i,n ord,er to haue the OB bifurcation.

Proof. "Ihe critical matrix is of the form

N
a6 : B6ffa¿:o

i=1
NNN

o1 = ffoi+»pjMjfl",:o
i:1 j:\ l+j
NNNN

", : Ifl"t+lr'¡ru¡l
s=! ífs i =I rli

(G.1)

(G.2)

(G.3)

o §oMt
0 at I AtMt

o A*'u,

o¿:0

l3oMw

FzMN

aN * 0¡¡MN

U'rt'> = *Ol

":(

§oMz
0tMz

p*ltt,...
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In section 11.2 we show that the first vector of the Jordan basis of this
matrix is:

...=f:l
[.,/

Therefore, to fild the second vector of the Jordan basis

(G.6)

(a¡ + g¡M)x!t) ...

+r.oM¡ur\1,\

+§tMN*l!,)

+B¡i*,li)

+(o¡v + ÉivM,v)r$)

:1
=0

:0

:0

n "X(1) = X(o)

we must satisfy the equations (*here (c[1),a[1),...,rÍoD) are the compo-
nents of X(1))

B¡twpfl) + Bsu2rf) +
(at+ §tMix\t)+ \oMz*!))+

B¡ur,rf)+ 0¡urrl)\+
::

P¡¡u1z\1) + B¡¡u2r!j) +
(G.7)

Let us mmber the N + 1 equations with 0 for the flrst one and N for
the last one. If we perform the following operation with the equations

j)xPs'0)xB¡
we 6nd that

a ¡ Boxtrr\ - -B'
Since neither a¡ or Bs are singular we obtain (j = t,Z, . . . , N)

Ar)-- Pj
a¡ 0o

We note that rf;) remains as a free parameter since it does not appea.r

in the equations. Weputo = -gort\ where a is now free. Then the second

Jordan vector reads



(G.8)

If we calculate explicitly G.13 using G.8 we found that the conditions G.2
for the three zero bifurcation must hold. Therefore our result is consistent
and we have shown that we must have a Jordan block of order 2.

To find the third vector of the Jordan basis we must solve

/r, 1

- lJo

Ir)

o
Ft

atAo

-h-,¡ 9o

-P.N-aNFo

where again rf;) i. u, free parameter that we witl 
"ull 

z = -r[2). Th",

rc-.(:)--(t)

Bsu2xf\ +
Bs^,l2af,) +

§¡Mr,f)+
::

B¡¡t'lpf)+ \¡uMrcl?+

If we perform the same previous

i)"00
we find that

a¡Bn*(r2\ = -', (+ - ")
Since neither a¡ or B¡ are singular

,t') = -b /a *")
' a; \a¡ /

' @¡ + A¡M)rf;) "'

....

operations (j : t,Z,..., U)

-o)x §¡

+\oMNafr\
+ArM¡¡rK)

:

+9¡M¡¡rfr)

+(ax + 0xU¡¡)xf,)
(G.e)

The explicit linear equations reads (where (r['),rl'),...,r$)) ur" the
components of X(2))

B¡upf)+
(ot + g,.Mt)r?\ +

B¡Ur''?)+

the third Jordan vector reads
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^.(2\ _ _ (G.10)

If we calculate explicitly G.9 with G.10 in order to verify the consistency
with the third condition for the zero eigenvalue of multiplicitly three G.2 we
arrive to the equation

[*l ]

)- "'jfj = o (G.11)

This equation is independent of the conditions for the zero eigenvalue
of multiplicity three (conditions G.1, G.2, G.3 ) then we must impose a
fourth condition to have a Jordan Block of order 3. Therefore, generically
in a CB model a zero eigenvalue of multiplicity three will have a Jordan
block of order 2 and we conclude that the Tfiple Zero bifurcation does not
occur automatically in CB models (as it is the case for the Bogdanov-Takens
bifurcation which is the reasou to call it "generic" in the context of the CB
models).

Q.E.D. tr

Theorem G.2. We d,iscuss now the cond,i,tions for a CB model to und,ergo

a triple 0 bi.Jurcati,on 03 i,f (conditions G.1, G.2, G.3 ) hokt. A wag to haue

the 03 biJurcation (trl,ple Zero with a ,Iord,an block oJ order 3) is to haae a
gating uariable k which luLfills:

o lts relaxation t'ime is aery slow:

a¡-+0<+r¿>>1

o Its stat'ionary probabi,lity functi,on i.s uery sharp or far from the haff
stationary probability uoltagerT :

At-0
l7This is consistent with the high threshold ion channels.
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/ o hMt ooMz soMt¡

[ó -]'i:*' a",ui .'. b;';; )

""= 

[ ; u,ó *, :,, .. ,'u.,.)
It is trivial to realize that the first vector of the Jordarmat¡ix is

ProoJ. Then the critical matrix will look like

/l\

o..'= f ? I

l;/
Therefore, to find ihe second vector of the Jordan basis

r1(t) : 
'10¡we must satisfy the linear equations

BoMtr\l)+ AoMz*\r)r
(o, + 7rMt)r\')+ loMz¿P+

(G.12)

basis of this

+\oM*rÍ]) - 1

+B1M¡¡af;,) = o

:0
:.:

AN Mpll) + B¡¡M2r\1) +

, . 
Numfelins the N + 1 equations from 0 to N we perfor- *n" *,,"(3;11]ation as before (j=t,2...,N,j+k)

i)xAo-0)x0¡

a¡B¡rlQ - -B
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Since neither ai or B¡ are singular

-tt't - - 
0i

a¡Ao

where now rá') u.rra ,f;) are free. Then the second Jordan vector reads

- {Joxó''
R,

a;-
^ fr)

- pori '

9t"+t

"¡*,

e.

If we calculate explicitly G.13 using G.14 we find that the condition G.2
for the 03 bifurcation must hold. But we also found that we must fulfill

,f;) :0
If we will cull o: - f¿oat) then the second Jordan vector reads:

o
EL

Pu-,

0

"a+,
:

É.N-

To find the third vector of the Jordan basis we must solve

¡c,(z) = 
'(1)

Then, the explicit linear equations reads

- Ito

.,(1) - - 
1

-Po

(G.14)

(G.15)



Bsu.r\2\ + \oMrr\r\ +
ktt + gtMt)t\2) + §oMzr?\ +

::
B¡ttp\2)+ \t"Mzxf)+

13¡¡Mrrf) + 0NM2rf;) ¡
If we perform the same operation as above

i)xB¡-o)xB¡
We 6nd that:

#):n*
,f' : -*(;.,
'Í') = Flu"

Then third Jordan vector reads:

+0oM¡,¡rfr)
+/rM,¡*Í)

:

+B¡M¡¡tft)

:

+@n + AwM¡,ia¡)
(G.16)

: _4,
at0o

-:
0

::
: _Fu

aN9o

(2\

"'i \ü + o7

:

.L(4=-l-4:+(ü.")
| -2i'
I *ei+ (#*")

:-/,
4¡¿f--1-+.,)qN \ON ]

- If we"calculate explicitly G.16 using G.17 we find that the condition G.J
tor the 0r bifurcation must hold but also found that we must have

,\2): l-$g¿
o Mo 'z- o,

3 +tc
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If we will call c[2) : -v thel the third Jordan vector reads:

x(2) : _ *- (*- *")
- 1 \-N M-'4,

Mk z¿jfk d|

ffi(#.;)

We find then that we can have a Jordan Block of order 3. In addition we
have obtained an explicit expression for each vector of the Jordan critical
basis. Therefore, if the conditions in the theorem G.2 hold a CB model
generically undergo a Tliple Zero 03 bifurcation.

Q.ED. !

v
P, / r ---\

:

^/,\pN I I t -\AN \AN I
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H Hindmarsh-Rose to almost Tbiple Zero normal
form

The Hindmarsh-Rose model (Hindmarsh and Rose, 1984) reads:

: y¡Q@)-z+I
= ,b@)-a
: r{s(r -*a)- "l

ó(,)
,h@)

o*2 - a3

L-ba2

(H.1)

(H.2)

(H.3)
a

z

with:

(H.4)

(H.5)

(H.e)

Let us define:

.l=r§
13=-r
1= -rsXp

Then the model is

i : y+ó(r)-z+I
ú = ,!,(s)_a
2 : ax+ gz*..t

If we take the derivative of equation H.6 we obtain:

. . oolr) .

oÍ
Using H.7 and H.8 in this equation we obtain:

t:, - *(r\ - ,t - tdÍ + Bz +.yl +Wi.-Y\-l v \*-, 0t

If we use equation H.6 we have:

-a=ó@)-z-i+I

(H.6)

(H.7)

(H.8)
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Using this equation H.9 ca¡r be written as

ü : (I - i +bt'@) + ó(r) - "d*lw- r] u- @ + 1)z (H.10)

If we take the de¡ivative H.10 with respect to time we obtain

r = 1ry? * a'.!1) 
- ol o* lW -,1 -. a' ó@ o, -(B+ r ) ¿ (H.,)*-l-0,'at *l-'L a, 'l- 0t2 *

Using the equation H.6 in H.12 we obtain:

. - - | 
al@ * 04@) _ "1,*1ry _ r) r"ffi r, - {e*rl @r + § z + t)L dx dr I L ar ) ot 

(H.12)
Flom H.10 we have:

-(§ + r¡z : i - (I - t) - l,l,@) + ó(t) - ",1 - lff - r)r

If we use this expressiou iu H.12 we obtain:

.- _la14k) +aq(x) _olr* lil]J-rf r*a,?V)0,*-lo*'a, *l- La, 'l ' or2 *

+É(t-(I-t)-lúQ)+ó'., Ldr J /
If we order the terms finally we obtain:

n = -@r +i + alua)+@(r) - ;"] . [%P + o - ilW+p-ar] z

(H.13)

.lW+p-1)] r*ffP*'
This is aimost the Tliple Zero normal form (Arneodo et a1., 1985)'
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I Some words about the simulations software

Within the collaboration with Professor Pierre Couliet of the Universit de
Nice Sophia-Antipolis, wc developed from the scratch an interactive sim-

ulator specially suited for neuron models from the point of view of non
linear dynamics and normal form theory. The software was developed in
objective-c/COCoA. With this software it is possible to observe orbits t¡f
different equations in the same phase space (i.e. diferent steps in the reduc-
tion of one equation). calcul¿te and visualize in real tirne the fixed points,
calculate and visualize stable and unstable manifolds, visua"lize separatrices
and more. This softwa¡e is interactive in the sense that we can perturb the
system and observe the behaviour after the perturbation in real time. An
snapshot of the softwa¡e is shown in the figure 25.

Figure 25r Snapshot of the simulations software.

138

,;#

.\-
-r
\

\

E


