
96

Propositional Equality for Gradual Dependently Typed

Programming∗

JOSEPH EREMONDI, University of British Columbia, Canada

RONALD GARCIA, University of British Columbia, Canada

ÉRIC TANTER, PLEIAD Lab, Computer Science Department (DCC), University of Chile, Chile

Gradual dependent types can help with the incremental adoption of dependently typed code by providing a
principled semantics for imprecise types and proofs, where some parts have been omitted. Current theories of
gradual dependent types, though, lack a central feature of type theory: propositional equality. Lennon-Bertrand
et al. show that, when the reflexive proof refl is the only closed value of an equality type, a gradual extension of
the Calculus of Inductive Constructions (CIC) with propositional equality violates static observational equiva-
lences. Extensionally-equal functions should be indistinguishable at run time, but they can be distinguished
using a combination of equality and type imprecision.

This work presents a gradual dependently typed language that supports propositional equality. We avoid
the above issues by devising an equality type of which refl is not the only closed inhabitant. Instead, each
equality proof is accompanied by a term that is at least as precise as the equated terms, acting as a witness of
their plausible equality. These witnesses track partial type information as a program runs, raising errors when
that information shows that two equated terms are undeniably inconsistent. Composition of type information
is internalized as a construct of the language, and is deferred for function bodies whose evaluation is blocked
by variables. We thus ensure that extensionally-equal functions compose without error, thereby preventing
contexts from distinguishing them. We describe the challenges of designing consistency and precision relations
for this system, along with solutions to these challenges. Finally, we prove important metatheory: type safety,
conservative embedding of CIC, weak canonicity, and the gradual guarantees of Siek et al., which ensure that
reducing a program’s precision introduces no new static or dynamic errors.

CCS Concepts: · Theory of computation→ Type structures; Program semantics.

Additional Key Words and Phrases: dependent types, gradual types, propositional equality

ACM Reference Format:

Joseph Eremondi, Ronald Garcia, and Éric Tanter. 2022. Propositional Equality for Gradual Dependently Typed
Programming. Proc. ACM Program. Lang. 6, ICFP, Article 96 (August 2022), 29 pages. https://doi.org/10.1145/
3547627

1 INTRODUCTION

Gradual dependent types relax the discipline of dependent types, so that programmers can write,
type check and run programs with partial type information and omit yet-to-be-devised terms or
proofs. These capabilities have the potential to help migrate code from non-dependently typed
languages, and reduce the learning curve for newcomers to this rich but complex type discipline.

∗This work is partially funded by CONICYT FONDECYT Regular Project 1190058. This work is partially funded by an
NSERC Discovery Grant.

Authors’ addresses: Joseph Eremondi, Department of Computer Science, University of British Columbia, Canada, jeremond@
cs.ubc.ca; Ronald Garcia, Department of Computer Science, University of British Columbia, Canada, rxg@cs.ubc.ca; Éric
Tanter, PLEIAD Lab, Computer Science Department (DCC), University of Chile, Santiago, Chile, etanter@dcc.uchile.cl.

© 2022 Copyright held by the owner/author(s).
2475-1421/2022/8-ART96
https://doi.org/10.1145/3547627

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3547627
https://doi.org/10.1145/3547627
https://doi.org/10.1145/3547627

96:2 Joseph Eremondi, Ronald Garcia, and Éric Tanter

Gradual languages [Siek and Taha 2006] check programs against the type information statically
available, comparing types via consistency �, i.e., equality up to missing type information. Static
checks skipped due to partial type information are instead performed at run time when the actual
values are known. Programs missing type information might not fail, nor are errors deferred until
an unsafe operation is attempted. Rather, partial type information is exploited at run time, so an
error occurs when a computation’s result has a type incompatible with the context in which it
arises. Gradual dependent types let programmers use type-driven programming with holes [Brady
2017] while running code and executing tests, even when missing parts of types, terms or proofs.

However, existing gradual dependent languages do not support propositional equality [Martin-Löf
1982]. The propositional equality type t1 =T t2 expresses that t1 and t2 are equal inhabitants of
type T. Its only constructor is reflt : t =T t, the proof that every term is equal to itself. Equality
is useful for practical dependently typed programming, since it lets a function express pre- and
post-conditions by taking or returning equality proofs. Likewise, a programmer can use an equality
proof to rewrite the type of the expression they are trying to produce. Propositional equality even
lays a path to support GADT-style inductive families, since constructors with different return types
can be encoded with non-indexed inductive types and propositional equality [McBride 2000].

Limited means of representing and reasoning about equality have been used in existing gradual
languages. GCIC [Lennon-Bertrand et al. 2022] supports decidable equality (see ğ2.2), where a type
is computed by pattern-matching on the equated terms. Gradual Refinement Types [Lehmann and
Tanter 2017] support first-order constraints in linear integer arithmetic. In contrast, propositional
equality is general and lightweight: it works for every type, provides its own construction and
elimination principles, and can be used with quantifiers or higher order functions.
Until now, the challenge with gradual equality has been propagating and enforcing equal-

ity constraints at run time. The problem is that equated terms may contain functions or de-
pendent function types, both of which bind variables. For example, (𝜆x. x + 0) =N (𝜆x. x) and
((x : N) → Vec N (x + 0)) =Type ((x : N) → Vec N x) are well-formed types. Extensionally equal-
ity of functions (up to partial information) is undecidable. Comparing functions syntactically, by
directly comparing bound variables, is decidable. Such a notion works for compile-time consistency
checks, but would be problematic during run-time checks, since it destroys static reasoning princi-
ples. Observationally equivalent terms in the static language would be distinguishable in the gradual
language, e.g., replacing 𝜆x . x + x with 𝜆x . 2 ∗ x can cause new dynamic errors. Lennon-Bertrand
et al. [2022] show that when refl is the only static constructor for propositional equality, its inclusion
in a gradual language violates static equivalences. Moreover, code that compares bound variables
cannot be easily compiled, since every function now needs a syntactic representation.
This paper presents the language GEq (pronounced łgeekž), which adds propositional equality

to GCIC, allowing =, refl and J to be used like in the Calculus of Inductive Constructions (CIC), but
with a dynamic semantics that is meaningful for gradual types. Our key insight is to represent an
equality proof using a witness that captures equality constraints discovered at run time.
Taking inspiration from evidence in Abstracting Gradual Typing (AGT) [Garcia et al. 2016] and
middle-types in threesomes [Siek and Wadler 2010], we represent witnesses with a term that is
as precise as both equated terms. As a consequence, refl and ? are not the only inhabitants of the
equality type, avoiding the above impossibility result. Our contributions are as follows:

• We demonstrate how equality proofs between imprecise terms are useful for discovering bugs in
programs and for guiding the development of static proofs (ğ2);
• We extend GCIC with propositional equality (ğ4) by typing equality using consistency witnesses
between terms (ğ4.2). We give operational semantics via a cast calculus, where the eliminator for
equality uses casts going through the result type given by the witness (ğ4.3). To combine witnesses

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

Propositional Equality for Gradual Dependently Typed Programming 96:3

when casting between equality types, we add witness composition directly as a construct in GEq
(ğ4.4). This operator delays the comparison of neutral terms until their variables are bound to
values, so composing statically-equivalent functions does not raise an error;
• We prove type safety, conservative extension of CIC, weak canonicity, and the gradual guarantees
for GEq (ğ5), so imprecision never causes stuck states or new (static or dynamic) errors, and GEq
rejects ill-typed CIC programs. Like Siek and Chen [2021], our proofs are parameterized over
definitions of consistency and precision, revealing sufficient properties to prove the theorems;
• We define precision and consistency for the cast calculus (ğ6), showing that they fulfill the
previously-identified properties. We separate static consistency, whether a term of some type
can be used in a given context, from dynamic consistency, whether two terms compose without
error. These coincide for non-dependent gradual languages, but in GEq they must be separated
to respect static equivalences while still rejecting ill-typed static programs.

Section 3 reviews GCIC and its cast calculus CastCIC, upon which the other sections build. Section
7 discusses extensions enabled by GEq’s features, along with related and future work.

2 SETTING THE STAGE

2.1 Programming vs. Proving and the Gradual Guarantees

Though programming and proving are connected by the Curry-Howard correspondence, the lan-
guage features best supporting each task differ. Our focus is dependently typed programming: we
consider GEq as a model of a programming language rather than as a type theory for mechaniz-
ing mathematics. Nevertheless, we prove important metatheory about GEq that may aid in the
development of future gradual type theories.
One goal with GEq is proving the gradual guarantees of Siek et al. [2015b], which state that a

reduction in precision introduces no new static or dynamic errors. These guarantees are useful
for programming because of the contrapositive: if a program has a type error, adding more type
information does not remove the error. The types are fundamentally inconsistent and must be
changed. By contrast, in current implementations of holes either block reduction, causing errors,
or block type checking, hiding errors that would otherwise be statically detectable.

2.2 Relationship to Existing Languages

GEq builds off the work of two existing gradual dependent languages, GDTL [Eremondi et al. 2019]
and GCIC [Lennon-Bertrand et al. 2022]. Section 7.3 gives a broader discussion of related work.
GDTL is a Gradual Dependently Typed Language with dependent functions, a universe hierarchy,

and decidable type checking. It introduced the imprecise term ?, which extended gradual typing to
allow imprecision not only in types, but type indices and proof terms. GEq inherits ? from GDTL.
Since it is based on AGT [Bañados Schwerter et al. 2021; Garcia et al. 2016], GDTL features ideas
similar to GEq’s witnesses. However, the authors only discuss equality and inductive types as an
extension, omitting it from their metatheory. Also, GDTL uses naive syntactic composition, and
suffers from the issues we discuss in the introduction: fully static terms that are observationally-
equivalent in the static language may have different run-time behavior in the gradual language.
GCIC is a Gradual version of the Calculus of Inductive Constructions (CIC). It uses a cast calculus

approach, extending a restricted version of CIC with inductive types but no indexed inductive
families or propositional equality. GEq is a direct extension of GCIC. The GCIC authors prove that
no gradual language can simultaneously conservatively extend CIC, have strong normalization,
and have graduality, a strengthening of the gradual guarantees where decreasing then increasing
precision produces an equivalent term. The authors give three variants of GCIC, called GCICG ,
GCICN and GCIC↑, which respectively sacrifice one of strong normalization, graduality, and

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

96:4 Joseph Eremondi, Ronald Garcia, and Éric Tanter

conservative extension of CIC, while keeping the other two properties. We build off GCICG ,
because, of the three options, sacrificing strong normalization is most palatable for programming.
GCICN violates the gradual guarantees, and GCIC↑ is too restrictive for practical programming,
so we avoid them both. Logical inconsistency and non-terminating proofs are not as detrimental
in programming as in mechanized mathematics: type safety is still guaranteed, and errors due to
non-terminating proofs are likely to be discovered when a program is run.
GCIC has no dedicated equality type, but decidable equality types are supported. That is,

programmers can write a function that takes two elements of a type, and produces a type that
is inhabited if and only if they are equal. The programmer must construct, either manually or
with tactics, an equality function for each type whose terms they wish to equate, along with the
corresponding elimination principle. Most function types have undecidable equality, and hence are
unsupported by this method. Also, common functions on equalities cannot be expressed in their
most general form with this method, such as such as cong : (f : T→ S) → a =T b→ f a =S f b.
Full propositional equality is more convenient for the programmer.

2.3 A Motivating Example: Eagerly Enforcing Specifications

In this section, we motivate our development with examples of how gradual dependent types can
catch errors related to the lengths of lists. A guiding principle of our work is that the types the
programmer writes should, as much as possible, be treated as specifications to be checked, either
statically or dynamically, regardless of whether their enforcement is required for safety.
Throughout the paper, we write static terms using red sans-serif font. Terms from the gradual

surface language use green, italic serif font. The theory is developed using a gradual cast calculus,
which we write using blue, bold serif font.

A Buggy Quicksort:We begin by showing how gradual types help the migration of a sorting
function from a non-dependently typed language to one with dependent types, and how this
migration can help identify bugs. Consider a flawed quicksort implementation:

sort : List Float→ List Float | List A = Nil | Cons A (List A)

sort Nil = Nil | (++) : List A→ List A→ List A (concatenation)

sort (Cons h t) =(sort (filter (< h) t)) ++ [h] ++ (sort (filter (> h) t))

Since < is used instead of ≤, duplicates are erroneously removed from the list. The programmer
may have a suspicion that they have made a mistake in their code, or may have observed incorrect
behavior while testing. Their dependent type enthusiast friends have repeatedly assured them
that dependently typed languages can help eliminate bugs, so they try migrating their code to a
dependently typed language with propositional equality.

An approach to reasoning about the correctness of sort is to use Fixed-length Lists, which we call
FLists. Dependent pairs and propositional equality allow for a type of lists indexed by their length.1

Figure 1 shows this type, and how it can be used to express that sort should preserve the length of
the produced list. Here, refl is the reflexive proof that t is equal to itself. That sort function behaves
like the non-dependent version, except it must extract the Lists from the FLists produced by the
recursive calls, and produce an FList with proof that the length is the same as the input.

At this stage, the programmer must fill the hole ??? by constructing a proof of type
length (Cons h t) =N length (sortLt ++ [h] ++ sortGt). This task is difficult for a newcomer, since
they must use associativity of addition and how length (list1++ list2) =N length list1+length list2.

1A more conventional approach would be to use an indexed type family, which we discuss in ğ7.1.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

Propositional Equality for Gradual Dependently Typed Programming 96:5

FList : Type → N→ Type

FList A n = ((x : List A) × length x =N n)

sort : (n : N) → FList Float n→ FList Float n

sort 0 (Nil, p) = (Nil, p)

sort (1 + n) (Cons h t, p) =

let lt = (filter (< h) t)

(sortLt, plt) = sort (length lt) (lt, refl)

gt = (filter (> h) t)

(sortGt, pgt) = sort (length gt) (gt, refl)

in (sortLt ++ [h] ++ sortGt, ???)

Fig. 1. Sorting Fixed-Length Lists

Moreover, they must prove that
length t =N (length lt) + (length gt), but such
a proof is impossible, due to the bug. Even
if they had such a proof, they would need to
then use the proofs from the recursive calls,
plt and pgt, to relate the lengths of lt and gt
to the lengths of sortLt and sortGt.
The programmer is now cursing their

type-theorist friend. For a non-buggy quick-
sort, one could construct the necessary
proof, but doing so is difficult, particularly
for a newcomer. The type checker does not
detect the bug, so it does not inform the
programmer that hole cannot be filled, and
it cannot say which aspect of the proof
is impossible. Also, development has now
stopped: the programmer cannot run or test
their code without the missing proof.
Gradual Types to the Rescue: GEq lets the programmer run and test sort before writing the

missing proof, checking (within the limits of decidability) whether any static values could possibly
replace imprecise types and proofs. In Fig. 1, replacing the hole with ?, the imprecise term,2 yields a
complete, well-typed GEq function that can be called, tested, or used in other modules.
The utility of gradual typing is shown in the run-time checks that let us identify bugs in

code. The run-time semantics of GEq are defined via type-directed elaboration to a cast calculus
CastEq, in which all implicit conversions are replaced by explicit casts. During type check-
ing, ? is elaborated into the CastEq’s ?n=Nlength (sortLt++ [h]++ sortGt) (the least precise term of type
n =N length (sortLt ++ [h] ++ sortGt)), which is not a value in CastEq. Instead, it reduces to the
consistency witness n &N length (sortLt ++ [h] ++ sortGt). The operator & is the gradual compo-
sition operator, which combines information statically known about its operands. Because types
depend on terms, composition is not limited to types, but can combine terms of any type. The &
operator is a syntactic construct of CastEq, not a meta-operation like it is in existing literature [Siek
et al. 2015a; Siek and Wadler 2010]. Reifying & into the object language is critical for composing
functions (ğ2.4). Since n is a variable, this composition expression does not reduce further.

We can identify the bug once sort is applied to a concrete list. Consider the input [2.2, 1.1, 3.3, 2.2],
which elaborates to [2.2, 1.1, 3.3, 2.2] in CastEq. Applying sort binds lt := [1.1] and gt := [3.3],
giving a result list of [1.1, 2.2, 3.3]. Then n is 4 and length (sortLt ++ [h] ++ sortGt) is 3, so the
witness for the result is the composition 4 &N 3, which reduces to a run-time error.

In a language without dependent types, this bug could be caught with testing or assertions. In
GEq, however, dependent types provide a unified means of specifying properties to be checked
statically or dynamically. During development, types serve as assertions to be checked dynamically
(or statically, if enough information is present). When a program is completed and all uses of ?
have been removed, those same types establish properties that have been statically verified.
Witness Composition: The key to finding the error above was tracking information with

witnesses, and combining those witnesses using the composition operator. While that composition
was a simple equality check, in general the composed values may be imprecise, and the result
is some value that is as precise as both inputs. The information from the witness is used when

2Each ? is actually ?@0, i.e., annotated with its type’s universe level. Our exposition omits levels; we explain them in ğ3.3.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

96:6 Joseph Eremondi, Ronald Garcia, and Éric Tanter

eliminating an equality proof: when using a witness tw of t1 =T t2 to rewrite a term of type P(t1)
into P(t2), we first cast to P(tw), then to P(t2). For a program with imprecise types or values, the
witness retains the information gained by running the program, preventing unsafe execution, and
informing the programmer when a counter-example to an imprecise equality is found.

Here we present an example of a bug that is found, not because of safety, but because a remem-
bered constraint was violated. Consider the following functions:

zip : (n : N) → FList A n→ FList A n→ FList (A × A) n

take : (n : N) → (m : N) → FList B (n +m) → FList B n

Here, zip takes two lists of exactly the same length, and produces a list of pairs of their elements,
while take takes a list with at least n elements, and returns the first n elements of that list. Each
function constrains the size of its input, so by tracking equality witnesses, we can also track these
constraints and detect where they are incompatible. Now consider lists with imprecise types:

list1 := ([1.1, 2.2], refl?) : FList Float ? list2 := (Cons 1.1 ?, refl?) : FList Float ?

For list1, we are converting a list of length 2 to a fixed-length list of unknown length, since 2 is
consistent with ?. For list2, however, the length is truly imprecise, since its tail is the unknown
term. We can zip these lists together as zip ? list1 list2 : FList Float ?, producing another list of
unknown length, since recursively applying zip to the unknown tail ? produces an unknown result.
Applying take 3 to the result of zip is well typed, since the length ? is consistent with 3 + ?, i.e.,
take 3 ? (zip ? list1 list2) : FList Float 3. However, computing the witness flags an error.
This error represents something deeper than a simple safety check: it detects fundamental

inconsistencies in statically-determined propositional equalities. In the absence of equality proofs,
the call could run safely: Cons (1.1, 3.3) ? would be a sensible result, having length consistent with
3. The witness composition is not just checking if a list is empty before taking the head, or counting
the elements in the list before running take. Rather, the information added by zip, that the list
should have length 2, has been propagated using the list1 witness and composed with the conflicting
information. GEq uses witnesses to enforce imprecise equality constraints at run time.
To understand how GEq detects this mismatch, we look at the result of elaborating to CastEq.

Initially, list2 has 1 + ?N as the witness that ?N is equal to 1 + ?N. The result of zip has 2 as the
witness of equality between ?N and ?N, since that is the length of list1. This new witness was
determined by composition: since 1 + ?N is consistent with 2, this composition succeeds. (Using a
Peano representation of naturals, S(?) is consistent with S(S(0))) Then, even though zip’s result
has a type that is consistent with what take expects, the run-time type information remembers that
zip constrained the list to have length 2. The result of zip is cast to FList Float (3 + ?N), the type
expected by take 3. The zip result has an equality proof of type 1 + ?N =N ?N, which is cast to type
1 + ?N =N 3 + ?N. During this cast, the target value 3 + ?N is composed with the witness 2. Despite
the imprecision, these values are not consistent, and composition produces an error: no value can
replace ? to make S(S(S(?))) equal to S(S(0)). We detail the semantics enabling this in ğ4.
With equality witnesses, we achieve more than type safety. From the gradual guarantees, we

know the above code cannot possibly be made static by replacing the ? uses with static terms. When
a witness reduces to an error, the program is equating two terms that are fundamentally not-equal.
So the gradual guarantees now inform about equality constraints, in addition to type constraints.
These constraints are expressed through types, rather than some external language of assertions.

2.4 Lazily Enforcing Specifications: Function Equalities and Extensionality

Propositional equality is not restricted to first-order values like numbers or to types with decidable
equality. In particular, we can form equalities between functions, for which equality is not in general

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

Propositional Equality for Gradual Dependently Typed Programming 96:7

decidable. The following summarizes howGEq handles propositional equality for functions without
encountering the impossibility result of Lennon-Bertrand et al. [2022]. Consider the example they
use to show the incompatibility between gradual typing and refl-based equality:

idN := (𝜆x . x) : N→ N add0 := (𝜆x . x + 0) : N→ N

test := 𝜆f . J (_.B) idN true f (reflidN
:: ? :: (idN =N→N f)) : (N→ N) → B

Here J is the eliminator for equality: we explain it fully in ğ4.2, but it suffices to know that in this
case, it uses a proof of type idN =N→N f to rewrite (𝜆_.B) idN to (𝜆_.B) f . The form :: denotes
surface type ascriptions, which are elaborated to casts in the cast calculus. Both types reduce to B,
but J only reduces if the equality proof reduces without error.

Since idN and add0 agree on all inputs, they should be observationally equivalent, producing the
same result in any context in which we use them. Violating this would mean that the embedding
of CIC into GCIC or GEq does not respect function extensionality, i.e., some statically-equivalent
terms are distinguishable in the gradual language. Lennon-Bertrand et al. [2022] offer test as a
context that distinguishes idN and add0. When idN is given as an argument, casting reflidN

to ? then
back to idN =N→N idN should produce reflidN

. However, when add0 is given for f , the cast must
fail, since refl cannot have type idN =N→N add0.
The first key to avoiding this inequivalence is the witness-based representation of equality. In

CastEq, refl is the only constructor for equality, but it takes an argument: the consistency witness
for the equated terms. Moreover, it does not require the equated terms to be syntactically identical,
only that the witness be at least as precise as both of them. So refl can have type idN =N→N add0.
What witness should be attached to the proof of idN =N→N add0? The second key feature

is the composition operator of CastEq, which builds said equality witness. Elaborating reflidN

creates witness idN. The cast to idN =N→N f composes that witness with the destination end-
points, idN and f , yielding idN &N→N idN &N→N f . The semantics of & reduce this composition to
𝜆x. (x &N x &N (f x)), similar to how a higher-order contract applied to a function produces a new
function that checks the input and result [Findler and Felleisen 2002]. Since & is an operator in
the language, the composition does not need to reduce further, but when the function is applied,
it continues to reduce. The same holds when we replace f with idN or add0. Section 6 defines
precision such that x &N x &N f x is more precise than both x and f x, so the above composition
is a valid witness. We define semantics for J so that when it is given the equality proof with the
above witness, it reduces, so test reduces to true for both idN and add0.
How can equating these functions be safe, since deferring composition means that we can

prove an equality between unequal functions? As we saw with sort above, J casts through the
witness, so when functions are extensionally non-equal, trying to prove equality between their
results dynamically fails. Consider instead subadd1 := (𝜆(x : N). x − 1 + 1). Since 0 − t = 0 in N,
subadd1 0 = 1. We can use the witness 𝜆x. (x &N x &N (subadd1 x)) to inhabit idN =N→N subadd1.
However, if we try to use J to prove that idN 0 =N subadd1 0, the result substitutes 0 for x in the
witness, giving 0 &N 0 &N 1, which reduces to an error.

The consequence of our approach is that GEq supports a limited form of extensionality. Neutral
terms, i.e., variables or terms for which reduction is blocked by one or more variables, always
compose to a non-error, so we can build a witness capturing the plausibility of equality between
them, given partial information. That witness makes an equality proof constructible. Furthermore,
any two functions with neutral bodies compose to a non-error. If the functions agree on all inputs,
eliminating their equality never fails and the proof of equality can be freely used. If the functions
disagree on some input, an error is raised when building a term that relies on the functions
producing the same value for said input. Since it is undecidable whether two functions agree on
every input, this approach finds a balance between decidability and flexibility.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

96:8 Joseph Eremondi, Ronald Garcia, and Éric Tanter

Static vs. Dynamic Consistency: For non-dependent gradual types, the successful composition
of two types usually implies that they are consistent. However, for GEq, two neutrals always
compose to a more-precise term. To conservatively extend CIC, all ill-typed (fully-static) CIC
programs must be ill-typed inGEq, and an uninhabited CIC type must not be inhabited by any fully-
static GEq terms. So GEq cannot have all neutrals consistent, since this would yield a fully-static
proof of (𝜆x𝜆y. x) =T→T→T (𝜆x𝜆y. y).

We resolve this tension with separate static and dynamic notions of consistency (ğ6). Terms are
statically consistent if they are syntactically equal up to 𝛼-equivalence, reduction, and occurrences
of ?T. Terms are dynamically consistent if they compose without error, or equivalently, if there
exists a non-error term as precise as both terms. Essentially, terms are dynamically-consistent if
they are statically consistent in the non-neutral parts. The type rules for GEq use static consistency.
Some pairs of terms are not statically consistent, yet still compose to a non-error term.

To compare static and dynamic consistency, consider the ill-typed CIC term refl : x =N y. When
embedded into GEq, refl : x =N y is still ill-typed: the expected type of x =N y and the actual type
of x =N x are not statically consistent, because the variables x and y are not identical. In CastEq, x
and y are neutral, and hence dynamically consistent, meaning x &N y witnesses x =N y.

Allowing neutrals to be dynamically consistent does not interfere with conservatively extending
CIC. For conservative extension, every ill-typed CIC program should be ill-typed in GEq. In the
absence of ?, pairs of definitionally-unequal CIC terms are statically inconsistent. While GEq
gives refl the same type as CIC, CastEq lets refl prove equality for dynamically consistent terms.
However, dynamic consistency does not allow CastEq to type ill-typed CIC terms, because CIC
programs are elaborated into a subset of CastEq where t only witnesses t =T t and all casts have
the form ⟨T ⇐ T⟩. The type (x : N) → (y : N) → (x =N y) is uninhabited in CIC, and while this
type is inhabited in CastEq using witness x &N y, the use of &N puts the witness outside the static
fragment of CastEq. The term x &N y does not correspond to any typed or ill-typed CIC program.
Static and dynamic consistency let us balance conflicting goals. If all statically inconsistent

functions composed to an error, then statically-equivalent terms would not be gradually equiva-
lent, making it harder to reason about program equivalence. Using dynamic consistency during
type checking would not conservatively extend CIC. By separating these, we obtain conservative
extension, while dynamically respecting all extensional equalities.

3 THE STATIC LANGUAGE AND GCIC

To begin our development, we review the state-of-the-art for handling inductive types in a gradual
language. We describe the Bidirectional CIC (BCIC), a modification of CIC whose bidirectional
types are convenient for gradual typing [Lennon-Bertrand 2021]. We then describe the gradual
surface language GCIC, along with the cast calculus, CastCIC, and a translation from GCIC to
CastCIC [Lennon-Bertrand et al. 2022]. Specifically, we use GCICG , the variant that satisfies the
gradual guarantees and embeds CIC, but sacrifices strong normalization. We discuss options for
decidable type checking in ğ7.2.1. Though GCIC is not a contribution of this paper, we use it as the
starting point for our development, making additions to the surface language and cast calculus.

3.1 Bidirectional CIC

3.1.1 Syntax. Figure 2 gives the bidirectional calculus of inductive constructions (BCIC) as originally
presented by Lennon-Bertrand [2021], though we modify their notation to maximize clarity for
GEq’s additions. BCIC terms are denoted by metavariables t and T, loosely following the convention
that T be reserved for types. Variables are denoted by x, y, z. BCIC has variables, a predicative
hierarchy of universes, function types, functions, and applications. Technically, BCIC extends the
predicative, non-cumulative fragment of CIC: each function type is in a higher universe than its

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

Propositional Equality for Gradual Dependently Typed Programming 96:9

t, TF x | Typei | (x : T1) → T2 | 𝜆(x : T). t | t1 t2 | C@{i}(t) | DC
@{i}(t, t′) | indC (t1, z.T, x.y.t2)

hF C | Type | Π

Γ ⊢ t ⇒ T (Synthesis) Γ ⊢ t ⇐ T (Checking) Γ ⊢ t⇒h T (Constrained Synthesis)

Γ ⊢ t ⇒ T′ T −→∗ T′′ T′ −→∗ T′′

Γ ⊢ t ⇐ T

(x : T) ∈ Γ

Γ ⊢ x ⇒ T Γ ⊢ Typei ⇒ Typei+1

Γ ⊢ T1⇒Type Typei
Γ, x : T1 ⊢ T2⇒Type Typej

Γ ⊢ (x : T1) → T2 ⇒ Typemax(i,j)

Γ ⊢ t0⇒Π (x : T1)→T2
Γ ⊢ t1 ⇐ T1

Γ ⊢ t0 t1 ⇒ [t1/x]T2

Γ ⊢ T1⇒Type Typei
Γ, x : T1 ⊢ t ⇒ T2

Γ ⊢ 𝜆(x : T1). t⇒ (x : T1) → T2

Γ ⊢ t𝑘 ⇐ Params𝑘 (C, i) [t]

Γ ⊢ C@{i}(t) ⇒ Typei

Γ ⊢ t𝑘 ⇐ Params𝑘 (C, i) [t] Γ ⊢ t′𝑚 ⇐ Args𝑚 (C, i,D) [t, t
′]

Γ ⊢ DC
@{i}(t, t′) ⇒ C@{i}(t)

Γ ⊢ tscrut⇒C C@{i}(tpar)Γ, z : C(tpar) ⊢ TP⇒Type Typej
(

Γ, xrec :X, y :Args(C, i,Dk) [tpar, y] ⊢ trhsk⇐[D
C
k@{i}(tpar, y)/z]TP

𝑘)

where X := (z : C@{i}(tpar)) → TP

Γ ⊢ indC (tscrut, z.TP, xrec.y.trhs) ⇒ [tscrut/z]TP

Γ ⊢ t ⇒ T
T −→∗ Typei

Γ ⊢ t⇒Type Typei

Γ ⊢ t ⇒ T T −→∗ (x : T1) → T2

Γ ⊢ t⇒Π (x : T1) → T2

Γ ⊢ t ⇒ T T −→∗ C@{i}(tp)

Γ ⊢ t⇒C C@{i}(tp)

t { t′ (Notions of Reduction) t −→ t′ (Contextual reduction)

(𝜆(x : T) . t) t′ { [t′/x]t
t { t′ 𝐶 an arbitrary context

𝐶 [t] −→ 𝐶 [t′]

indC(Dk (tpar, targ), z.TP, xrec.y.trhs) { [𝜆(x : C(tpar)) . indC (x, z.T, xrec.y.trhs)/xrec] [targ/y]trhsk

Fig. 2. Bidirectional CIC: Syntax, Typing and Semantics

domain and codomain, and there is no subtyping between universe levels. We assume a pre-existing
set of inductive type constructors, denoted by the metavariable C, each of which has a fixed set of
data constructors DC. Type and data constructors are annotated with the level of their type, though
we omit these annotations when they are not relevant.

To eliminate members of inductive types, a combined form indC (t1, z.T, x.y.t2) replaces CIC’s
fix and match. This form branches on the scrutinee t1 and has a parameterized result type T, called
themotive [McBride 2002], that binds a variable of the scrutinee’s type. The branches t2 correspond

to the constructors DC of C. In each branch, the variables y are bound to the arguments to DC,
and x refers to the whole indC expression, to facilitate recursion. The indC form expresses an
induction principle: if each branch produces a result of type T where z is bound to DC applied to y,
the elimination has type T where z is bound to the scrutinee t1. In essence, indC says that if we
can build a T for each constructor DC of C(tpar), then we can build one for any value of C(tpar).
Normally, a separate check ensures that recursive calls are only made on structurally smaller

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

96:10 Joseph Eremondi, Ronald Garcia, and Éric Tanter

t, T +F ?@i | t :: T
Γ ⊢ ?@i ⇒ ?@i+1

Γ ⊢ t ⇐ T

Γ ⊢ t :: T ⇒ T

Γ ⊢ t ⇒ T ′ T ′�−→T

Γ ⊢ t ⇐ T

Γ ⊢ t ⇒ T T −→∗ ?@i

Γ ⊢ t⇒Π ?@i→?@i

Γ ⊢ t ⇒ T T −→∗ ?@i

Γ ⊢ t⇒C C (?Params(C,i))

Γ ⊢ t ⇒ T T −→∗ ?@i+1

Γ ⊢ t⇒Type Typei

Fig. 3. GCIC: Syntax and Typing Lemmas

arguments, but we omit this check, since it is orthogonal to gradual typing and GEq would not be
strongly normalizing even with it.

BCIC also uses head tags, denoted by h, which act as symbols to specify a type constructor without
specifying its arguments. We use these in typing, e.g. for expressing that an applied function must
synthesize a function type, even though we do not know what the domain and codomain should
be. Tags are also useful in GCIC for defining the least precise type with a given head.

3.1.2 Typing and Semantics. The typing and semantics (Fig. 2) for BCIC resemble the typical
presentation of CIC, but typing is divided into synthesis, which produces a type, and checking,
which consumes a type. The semantics is given with primitive notions of reduction{, contextual
stepping −→where any sub-term reduces (even under binders), and multi-step contextual reduction
−→∗, which allows zero or more steps with −→. Because function types bind their parameter in
the codomain, applications synthesize a type depending on the value of the argument, since it is
substituted for x in the codomain type. A term checks against any type that reduces to the same
type as its synthesized type, since an application may have produced a type that must be reduced
before comparing. Constrained-synthesis, Γ ⊢ t⇒h T, generalizes the pattern of synthesizing a
type for a term after reducing it to a point that it has the desired head h. Function application has
the standard 𝛽-reduction rule.

For inductive types, the typing rule establishes that, if TP is a type parameterized over a value x
from the inductive type C, and we can (recursively) build a TP for each constructor of C, then we
can build a TP for any member or C. Hence indC () form gives an induction principle for C, hence
the notation indC (. . .). Inductive types may be parameterized, but each constructor has the same
return type. The reduction rule says that an indC (. . .) form given a value DC (. . .) reduces to the
branch corresponding to DC.

3.2 GCIC: The Surface Language

Figure 3 extends BCIC into GCIC, the Gradual CIC, by adding the imprecise term ?@i , which can be
used at any type in universe level i, along with type ascriptions, which were not in BCIC because
all forms synthesized types. We use ?T as sugar for ?@i when T : Typei.
Dependent types complicate the typing of GCIC. Because the dynamic semantics of GCIC are

defined using a cast calculus, and typing refers to reduction of terms, Lennon-Bertrand et al. [2022]
define GCIC typing with cast calculus types. Nevertheless, we can establish lemmas (Fig. 3), phrased
like rules, which provide intuition for how GCIC terms are typed against GCIC types, helping GCIC
be understood without diving into the details of the cast calculus.
The unknown term ?@i synthesizes ?@i+1 i.e. its type is unknown, one level up in the universe

hierarchy. A term checks against any type consistent with its synthesized type, where the relation
�−→ is understood to mean convertibility up to well-typed occurrences of ? (explained fully in
ğ6.1.2). An ascribed term synthesizes the given type if it checks against it, relaxing or tightening the
types of gradual terms. Constrained synthesis accounts for terms synthesizing ?Typei by producing
the germ (called the ground type in non-dependently typed literature). The type germ𝑖 (h) is the

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

Propositional Equality for Gradual Dependently Typed Programming 96:11

t,T +F ?T | ℧T | ⟨T2 ⇐ T1⟩t

Γ ⊢ T⇒Type Typei

Γ ⊢ ?T ⇒ T

Γ ⊢ T⇒Type Typei

Γ ⊢ ℧T ⇒ T

Γ ⊢ T𝑗⇒Type Typei for 𝑗 ∈ {1, 2} Γ ⊢ t⇐ T1

Γ ⊢ ⟨T2 ⇐ T1⟩t ⇒ T2

Propogation Reductions:

RedPropCastInd(Unk,Err)

⟨C(t2) ⇐ C(t1)⟩?T1
{ ?C(t2)

⟨C(t2) ⇐ C(t1)⟩℧T1
{ ℧C(t2)

RedPropCastDown(Unk,Err)

⟨T ⇐ ?Typei⟩??Typei { ?T
⟨T ⇐ ?Typei⟩℧?Typei

{ ℧T

RedPropFun(Unk,Err)

?(x:T1)→T2
{ 𝜆(x : T1). ?T2

℧(x:T1)→T2
{ 𝜆(x : T1).℧T2

RedPropMatch(Unk,Err)

indC (?C(tpar) , z.TP, xf .y.t) { ?[?C(tpar) /z]TP

indC (℧C(tpar)
, z.TP, xf .y.t) { ℧[℧C(tpar)

/z]TP

Cast Reductions:

RedCastUpDown

⟨T ⇐ ?Typei⟩⟨?Typei⇐germ𝑖 (h)⟩t { ⟨T⇐germ𝑖 (h)⟩t

RedCastInd

⟨C(t′par) ⇐ C(tpar)⟩D
C (tpar′′ , targ) { DC (t′par, t

′
arg)

where t′argi := ⟨Argsi (C, i,D) [t
′
par, t

′
args] ⇐ Argsi (C, i,D) [tpar, targs]⟩targi

RedCastType

⟨Typei ⇐ Typei⟩T { T

RedCastDomErr

⟨T⇐ ℧Typei
⟩t { ℧T

RedCastCodomErr

⟨℧Typei
⇐ T⟩t { ℧℧Typei

RedCastHeadErr

head(T) ≠ head(T′)

⟨T′⇐ T⟩t { ℧T′

RedCastFun

⟨(x : T′1) → T′2 ⇐ (x : T1) → T2⟩t

{ 𝜆y. ⟨T′2⇐[⟨T1 ⇐ T′1⟩y/x]T2⟩(t ⟨T1 ⇐ T′1⟩y)

RedCastFunGerm

(x : T1) → T2 ≠ germ𝑗 (Π) for 𝑗 ≥ 𝑖

⟨?Typei ⇐ (x : T1) → T2⟩t { ⟨?Typei ⇐ ?Typei → ?Typei⟩⟨?Typei → ?Typei ⇐ (x : T1) → T2⟩t

RedCastIndGerm

C(tpar) ≠ germ𝑗 (C) for 𝑗 ≥ 𝑖

⟨?Typei ⇐ C(tpar)⟩t { ⟨?Typei ⇐ C(?Params(C))⟩⟨C(?Params(C)) ⇐ C(tpar)⟩t

Fig. 4. CastCIC: Typing and Reduction rules that extend BCIC

least precise type with a given head in universe 𝑖 . For function types, the germ is ?@i → ?@i, and
Typei is its own germ. For inductives, the germ is C (?@i) where the i’s are the parameters’ levels.

3.3 CastCIC: The Cast Calculus

3.3.1 Syntax, Typing and Reductions. Figure 4 presents CastCIC, the cast calculus for GCIC. CastCIC
extends BCIC with the unknown term ?, an error ℧, and a cast ⟨T2 ⇐ T1⟩t from type T1 to T2.
Forms ?T and ℧T are ascribed with their type T, which affect the dynamic semantics of CastCIC.
The CastCIC type system contains all the rules from Fig. 2 plus the rules of Fig. 4. Terms ?𝑇 and ℧𝑇

synthesize their ascribed type T, while casts synthesize the destination type, given that the term
being cast checks against the source type, and that both types are well-formed. Because casts are
explicit, the checking rule uses definitional equality, rather than consistency.
The CastCIC semantics includes all BCIC reductions, plus cast rules and łpropagation rulesž

that handle ? and ℧. At type (x : T1) → T2, ? and ℧ expand to 𝜆(x : T1). ?T2
in RedPropFunUnk

and 𝜆(x : T1).℧T2
in RedPropFunErr. In the remaining RedProp rules, eliminating or casting

? or ℧ produces ? or ℧. Cast rules either convert between types with the same head, cast to

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

96:12 Joseph Eremondi, Ronald Garcia, and Éric Tanter

Γ ⊢ t _ t ⇒ T Γ ⊢ t _ t ⇐ T Γ ⊢ t _ t ⇒h T (Elaboration)

ElabUnk

Γ ⊢ ?@i _ ??Typei ⇒ ?Typei

ElabUnkFun

Γ ⊢ t _ t ⇒ ?Typei

Γ ⊢ t _ ⟨?Typei→?Typei ⇐ ?Typei⟩t⇒Π ?Typei→?Typei
ElabCst

Γ ⊢ t _ t ⇒ T′

T ′�−→T

Γ ⊢ t _ ⟨T ⇐ T′⟩t ⇐ T

ElabApp

Γ ⊢ t0 _ t0 ⇒Π (x : T1) → T2

Γ ⊢ t1 _ t1 ⇐ T1

Γ ⊢ t0 t1 _ t0 t1 ⇒ [t1/x]T2

ElabUnkInd

Γ ⊢ t _ t ⇒ ?i

Γ ⊢ t _ ⟨C(?Params(C,i)) ⇐ ?i⟩t⇒C C(?Params(C,i))

ElabUnkUniv

Γ ⊢ t _ t ⇒ ?i+1

Γ ⊢ t _ ⟨Typei ⇐ ?i+1⟩t⇒Type Typei

Fig. 5. Elaboration from GCIC to CastCIC (homomorphic rules omitted)

?Type
ℓ
, or produce an error. A cast from Typei to itself reduces away (RedCastType). For induc-

tives, casts from C(t1) to C(t2) reduce by casting arguments to their new types (RedCastInd).
Note that tpar and tpar′′ need not match, but typing guarantees that they are convertible. Casts
between types with mismatched heads produce an error (RedCastHeadErr), as do casts to or
from ℧Typei

(RedCastDomErr, RedCastCodomErr). A cast from the germ for a given head does
not reduce: ⟨?Typei ⇐ germ(T)⟩ acts as a tag, injecting into ?Typei . Casts from non-germ types to
?Typei decompose into casts through the germ that are then tagged with their injection into ?Typei
(RedCastFunGerm, RedCastIndGerm). In RedCastUpDown, a cast from ?Typei to T reduces when
the value being cast originates from a type with a matching head, and was accordingly tagged with
a cast from head(T) to ?Typei .

3.3.2 Elaboration. Finally, elaboration (Fig. 5) defines the relationship between GCIC and CastCIC.
Like CastCIC, elaboration has synthesis, checking, and constrained synthesis, but each produces the
elaboration of the subject term as output. ElabUnk synthesizes the unknown type for the unknown
term at the given universe level. ElabApp works like a normal dependent function application,
but uses the elaboration of the argument to replace the parameter in the return type. ElabCst
checks a term against a type consistent with its synthesized type, inserting the cast between these
types into the elaboration. Figure 5 also defines new constrained synthesis rules. Rule ElabUnkFun
works like the corresponding lemma, but adds the necessary cast to the elaborated term. Rules
ElabUnkInd and ElabUnkUniv work similarly. We omit the elaboration rules corresponding to
the remaining BCIC rules, which homomorphically elaborate the sub-terms of a given term.

Elaboration defines GCIC typing: we say t : T when · ⊢ T _ T ⇒Type Typei and · ⊢ t _ t ⇐ T.

4 PROPOSITIONAL EQUALITY

The main contribution of our paper is GEq: an extension of GCIC with propositional equality,
where the information about an imprecise value accumulates at run time to detect inconsistencies.
We define GEq’s semantics using a cast calculus CastEq, which extends CastCIC with equality.

The core idea is that a surface-language proof of type t1 =T t2 is elaborated into a witness for
the consistency of t1 and t2. Much like evidence3 from AGT [Garcia et al. 2016] or the middle-type
from threesomes [Siek and Wadler 2010], the consistency witness between terms is a term that
is at least as precise as either term. The standard equality proof, reflt : t =T t, witnesses that t is

3Evidence is more complex in AGT, since it can witness subtyping. Evidence for plausible equality between types collapses
to a single term as precise as the equated terms.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

Propositional Equality for Gradual Dependently Typed Programming 96:13

consistent with itself, while the imprecise proof ?t1=T t2 is witnessed by the least precise term that
is dynamically consistent with t1 and t2. As a program runs, equality witnesses may take values
between these extremes, which may be more precise than the witness for refl when t is imprecise.
The technical challenge with adding propositional equality is determining how to combine

information represented by the equality witnesses. When casting between types t1 =T t2 to t′1 =T t′2,
both of which may be imprecise, we must transform a witness tw for 𝑡1 =𝑇 𝑡2 to one for 𝑡 ′1 =𝑇 𝑡 ′2,
but even though tw is as precise as t1 and t2, it may not be as precise as t′1 and t′2. So we need a
composition operator that can take t′1, t

′
2 and tw and produce a term that is as precise as all three.

However, to respect static observational equivalences and avoid the problems of ğ2.4, composition
cannot be a syntactic meta-operation. The issue is with neutral terms, i.e., variables, or terms whose
reduction is blocked by applying or eliminating a variable. Syntactic composition would require
distinct neutral terms to compose to an error, but that would violate extensionality.

Along with composition, we must define a notion of precision that determines valid witnesses of
consistency. For the evolution of type information to be monotone, the operator& should compute a
lower bound with respect to this notion of precision. Computing the greatest lower bound prevents
premature errors, although the proof that composition is the greatest lower bound is left to future
work. With non-dependent gradual types, precision can be syntactically, by adding structural rules
to t ⊑ ?T, but structural rules are not flexible enough to handle composition.
The solutions to these two challenges are interdependent. We avoid the issues with syntactic

composition by adding it as a separate syntactic construct to CastEq, so that composition of neutral
terms is itself a neutral term. However, if composition is a construct in CastEq, then precision
must be defined to accommodate terms that feature composition, so composing two neutral terms
produces something that is actually as precise as those two terms. Precision must be defined to
respect composition without losing its other important properties, such as transitivity.
This section gives typing and semantics for gradual propositional equality, where proofs of

equality are represented by consistency witnesses, but we leave the exact definitions of consistency
and precision unspecified. In ğ5, we describe the properties that consistency and precision should
fulfill to ensure that GEq satisfies type safety and the gradual guarantees. Finally, ğ6 instantiates
GEq with notions of precision and consistency that fulfill our goals while ensuring decidable
consistency-checking. We separate our presentation in this way to motivate the choices we make
in the design of precision, and to avoid monolithic proofs when developing GEq’s metatheory.

We write precision as Γ1 |Γ2 ⊢ t1 ⊑←−−→ t2 and consistency as t1 �−→ t2, highlighting the operators

in grey to indicate that their definitions are not yet specified. The subscript −→ on �−→ indicates

that it is definitional consistency, whose name is chosen by analogy to definitional equality, since the
operands can be reduced before being compared structurally [Martin-Löf 1975]. Precision is precision
modulo conversion, meaning it is closed under the equivalence relation given by convertibility.
Unlike consistency, precision modulo conversion can look backwards in time, relating terms that are
the results of reducing syntactically-related terms, in addition to relating terms that are syntactically-
related after reducing. We discuss the need for this in ğ4.2. Precision takes two contexts, as its
operands must be typed in different contexts.

4.1 GEq Syntax and Typing

Fig. 6 extends GCIC to GEq by adding the equality type, introduction form, and eliminator. Their
types are identical to what is expected in the static setting. Again, because surface typing is defined
by elaboration, the given rules are actually admissible lemmas. An equality type t1 =T t2 denotes
equality between any two values of consistent types (because each endpoint is checked against T).
The reflexive proof reflt synthesizes type t =T t, so long as t is well typed at type T . The eliminator

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

96:14 Joseph Eremondi, Ronald Garcia, and Éric Tanter

t +F t =T t | reflt | J(x.T , t1, t2, t3, t4)

h +F =

Γ ⊢ teq⇒= t1 =T t2 Γ, x : T ⊢ TP⇒Type Typei
Γ ⊢ t1 ⇐ T Γ ⊢ t2 ⇐ T Γ ⊢ tP1 ⇐ [t1/x]TP

Γ ⊢ J(x.TP , t1, t2, tP1, teq) ⇒ [t2/x]TP

Γ ⊢ t1 ⇐ T Γ ⊢ t2 ⇐ T Γ ⊢ T⇒Type Typei

Γ ⊢ t1 =T t2 ⇒ Typei

Γ ⊢ t ⇒ T

Γ ⊢ reflt ⇒ t =T t

Fig. 6. GEq: Syntax and Typing Lemmas

t +F t1 =T t2 | refl(t)⊢t1�t2 | J(x.T, t1, t2, t3, t4) | t1 &T t2

h +F 𝜆 | CD | refl | =

ElabRefl

Γ ⊢ t _ t ⇒ T

Γ ⊢ reflt _ refl(t)⊢t�t ⇒ t =T t

CastRefl

Γ ⊢ tw ⇒ T Γ ⊢ t1 ⇐ T Γ ⊢ t2 ⇐ T

Γ |Γ ⊢ tw ⊑
←−
−→ t1 Γ |Γ ⊢ tw ⊑

←−
−→ t2

Γ ⊢ refl(tw)⊢t1�t2 ⇒ t1 =T t2

CastComp

Γ ⊢ t1 ⇐ T

Γ ⊢ t2 ⇐ T

Γ ⊢ t1 &T t2 ⇒ T

Fig. 7. CastEq: Syntax, Key Typing and Elaboration Rules

J takes a type TP parameterized over a value of type T , 4 along with two values of type T . Then,
given a value of type [t1/x]TP , and a proof teq that t1 and t2 are equal, the elimination has type
[t2/x]TP . That is, if two values are equal, we can take any term whose type refers to the first, and
transform it into a term whose type refers to the second.

4.2 CastEq Syntax and Typing

Fig. 7 extends CastCIC to CastEq by adding propositional equality and the gradual composition
operator. We extend the syntax for a static head h to include value constructors, not just types,
which is useful when defining the semantics of composition. A proof of reflexivity is written as
refl(tw)⊢t1�t2 , where t1 and t2 are the equated terms, and tw is a witness of the (dynamic) consistency
of those endpoints. We borrow the notation (tw)⊢t1�t2 from Garcia et al. [2016] to indicate that tw
contains information supporting the (dynamic) consistency of t1 and t2. Composition is ascribed
with the type of its arguments so that we can ascribe the proper T when the composition of two
terms steps to ℧T.
For typing, CastComp synthesizes a composition’s ascribed type when both arguments check

against that type. In CastRefl, refl(tw)⊢t1�t2 synthesizes t1 =T t2 if the witness tw is as precise
as both t1 and t2. In ElabRefl, reflt is elaborated into refl(t)⊢t�t, i.e., a term serves as the initial
witness that it is equal to itself. If t is imprecise, casts applied to the equality proof may produce
more precise witnesses, but the programmer never constructs a witness directly. We omit typing
rules for =T and J, as they mirror the lemmas in Fig. 6, as do their elaboration rules.
Precision must be closed under convertibility because, as Lennon-Bertrand et al. [2022] note,

syntactic precision is not preserved by stepping the less precise term. Since ?T is less precise than
x, the less precise term may reduce in a way that is blocked for the other term. So for contextual
steps to preserve CastRefl, the results of stepping related terms must be related.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

Propositional Equality for Gradual Dependently Typed Programming 96:15

RedJ

J(x.TP, t1, t2, tP1, refl(tw)⊢t′
1
�t′

2
) { ⟨[t2/x]TP ⇐ [tw/x]TP⟩⟨[tw/x]TP ⇐ [t1/x]TP⟩tP1

RedEqGerm

t1 =T t2 ≠ germℓ (=)

⟨?Type
ℓ
⇐ t1 =T t2⟩t { ⟨?Type

ℓ
⇐ ??Typeℓ =?Typeℓ

??Typeℓ ⟩⟨??Typeℓ =?Typeℓ
??Typeℓ ⇐ t1 =T t2⟩t

PropEqUnk

?t1=Tt2 { refl(t1 &T t2)⊢t1�t2

PropEq(Unk,Err)

℧t1=Tt2 { refl(℧T)⊢t1�t2

RedCastEq

⟨t′1 =T′ t
′
2 ⇐ t1 =T t2⟩refl(tw)⊢t′′

1
�t′′

2
{ refl((⟨T′⇐ T⟩tw &T′ t

′
1 &T′ t

′
2))⊢t′1�t

′
2

Fig. 8. CastEq: Reductions for Casts and J

4.3 Cast Semantics

A challenge with gradual equality is designing its dynamic semantics. In a fully static language,
refl always equates identical values, so J performs no computation other than pattern matching
on the proof of equality. In the presence of type imprecision, J must perform casts. We also need
reductions for casts between equality types. Figure 8 gives reductions for J and casts. The RedJ rule
reduces by casting through the motive TP with x bound to the witness tw. The typing of equality
guarantees that this witness tw is as precise as either t1 and t2. So [tw/x]TP is like a middle type,
since it is more precise than [t1/x]TP (the type of tP1) and [t2/x]TP (the type of the result).

Why cast through the middle, and not directly from [t1/x]TP to [t2/x]TP? As ğ2.3 showed, the
witness tracks constraints as the program runs, and since composition ismonotone, its precision only
increases. So constraints are remembered, and J only succeeds if the equated terms are consistent
with all those remembered contraints, allowing the programmer to see when a static constraint has
been dynamically violated. Also, the witness ensures that equalities between inconsistent values
cannot be used without flagging an error. Without a witness, one could have ?2=N5, despite the type
being statically uninhabited. Then J could use this equality to convert from Vec Float (2 mod 3)

to Vec Float (5 mod 3): the cast would succeed, despite the absurdity of the initial equality. Going
through the middle type catches such absurd cases.

For casting refl between equality types, the RedCastEq rule first casts the witness to the correct
type. The typing rule CastRefl requires the witness to be as precise as the endpoints, but the
result of casting the witness might not fulfill this! So the witness is composed with both endpoints,
producing a precision-related result. These casts are precisely why we need a composition operator.

The propagation rules PropEqUnk and PropEqErr reduce ? and ℧ at equality types to refl with
the least and most precise witnesses, respectively. RedEqGerm casts an equality proof to ?Type

ℓ
by

casting through the germ type, just like with functions and constructors.

4.4 Semantics of Composition

Figure 9 gives the semantics of composition. Technically, we do not need composition as an operator
in CastEq itself, but only for witnesses and cast type ascriptions. However, because dependent types
remove the separation between terms and types, witnesses and cast types need dynamic semantics.
So for simplicity, we let witnesses and cast-types be any CastEq terms, and add composition to
CastEq’s semantics, rather than duplicating CastEq’s semantics for a witness-specific language.
Several composition rules receive two or three different sets of type ascriptions, with one on

the composition itself, and possibly one on each of the composed terms. In such cases, the choice

4The full J in type theory parameterizes TP over the equality proof. Section 7.1.2 shows why this is not needed for GEq.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

96:16 Joseph Eremondi, Ronald Garcia, and Éric Tanter

UnkVal T (Types with ? and ℧ forms)
UnkVal Typeℓ UnkVal C(t) UnkVal ?Type

ℓ

t1 { t2 (Composition reductions)

RedCompUnkL

UnkVal T

?T &T′ t { t

RedCompUnkR

UnkVal T

t &T′ ?T { t

RedCompErrL

UnkVal T

℧T &T′ t { ℧T

RedCompErrR

UnkVal T

t &T′ ℧T { ℧T

RedCompGerm

(⟨?Type
ℓ
⇐ germ(h)⟩t1) &?Typeℓ

(⟨?Type
ℓ
⇐ germ(h)⟩t2) {

⟨?Type
ℓ
⇐ germ(h)⟩(t1 &germ(h) t2)

RedCompGermErr

h1 ≠ h2

(⟨?Type
ℓ
⇐ germ(h1)⟩t1) &?Typeℓ

(⟨?Type
ℓ
⇐ germ(h2)⟩t2)

{ ℧?Typeℓ

RedCompHeadErr

head(t1) = h1 head(t2) = h2
h1 ≠ h2

t1 &T t2 { ℧T

RedCompEq

t′′1 := ⟨T1 &Type
ℓ
T2 ⇐ T1⟩t1 &(T1&Typeℓ

T2) ⟨T1 &Type
ℓ
T2 ⇐ T2⟩t2

t′′2 := ⟨T1 &Type
ℓ
T2 ⇐ T1⟩t

′
1 &(T1&Typeℓ

T2) ⟨T1 &Type
ℓ
T2 ⇐ T2⟩t

′
2

(t1 =T1
t′1) &Type

ℓ
(t2 =T2

t′2) { t′′1 =(T1&Typeℓ
T2) t

′′
2

RedCompRefl

refl(t1)⊢tL�tR &t′′
L
=Tt
′′
R
refl(t2)⊢t′

L
�t′

R

{ refl(t1 &T t2)⊢tL�tR

RedCompLam

t1 &(x:T1)→T2
t2

{ 𝜆(x : T1). ((t1 x) &T2
(t2 x))

RedCompInd

C(t1) &Type
ℓ
C(t2)

{ C(&(Params(C, i), t1, t2)
)

RedCompCon

DC (t1, t2) &C(t′) D
C (t′′

1
, t′′
2
)

{ DC (t,&(Args(C, i,Dk), t2, t
′′
2
))

RedCompPi

(x : T1) → T′1 &Type
ℓ
(x : T2) → T′2 {

(x : (T1 &Type
ℓ
T2)) →[⟨T1 ⇐ T1 &Type

ℓ
T2⟩x/x]T

′
1 &Type

ℓ
[⟨T2 ⇐ T1 &Type

ℓ
T2⟩x/x]T

′
2

&((x : T), t1, t2) (Telescope Composition)

&(·, ·, ·) := · &((x : T1) · (y : T2), t1 · t
′
1
, t2 · t

′
2
) :=

(t1 &T1
t2) ·&((y : [(t1 &T1

t2)/x]T2), 𝑠𝑒𝑞1, 𝑠𝑒𝑞2) where

𝑠𝑒𝑞1 := ⟨[(t1 &T1
t2)/x]T2⇐[t1/x]T2⟩t

′
1

𝑠𝑒𝑞2 := ⟨[(t1 &T1
t2)/x]T2⇐[t2/x]T2⟩t

′
2
)

Fig. 9. CastEq: Semantics for &

of ascription in the reduct is arbitrary. For example, RedCompErrL uses the ascription from ℧,
rather than what was on &. While we do not require that the ascriptions be syntactically equal, the
typing rules ensure that syntactically distinct ascriptions are definitionally equal, so the choice of
ascription in the reduct does not affect the final result of evaluation.

Each composition rule resembles a unification rule, where each use of ? is treated as a unification
variable. Terms that have different head tags compose to an error, and terms that have the same
head tag compose by composing their parts. Any place where one term has ? but the other term
contains more precise information, the precise information is retained in the output. This ensures

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

Propositional Equality for Gradual Dependently Typed Programming 96:17

that when t1 &T t2 reduces, the result is a term that is as precise as both t1 and t2. For ?T &T t,
we produce t (RedCompUnk(L,R)), since t is always as precise as itself and ?T. Likewise, the rules
that produce ℧ satisfy this, since it is the most precise term. We see this in RedCompUnk(L,R) ,
which composes with ℧, and in RedCompHeadErr and RedCompGermErr, where composing
non-neutral terms with distinct heads reduces to ℧.
The remaining rules compose terms with the same head h, such as when both are functions or

both are built with the same DC. In these cases, the head h is applied to the respective composition
of the arguments, e.g., the composition of functions is a function returning the composition of
the bodies. For equality proofs and and inhabitants of ?Type

ℓ
, the head can be applied directly

(RedCompLam, RedCompRefl, RedCompGerm). In RedCompLam, composing functions yields a
new function that composes the results of the given functions for each argument. In the remaining
cases, we must account for how types of later arguments depend on the values of earlier arguments.
RedCompPi produces a domain by composing the argument domains, which is the type of the
parameter x. The codomain x’s each have their own domain types, so we cast all uses of x from the
composed type to the expected type. RedCompEq composes equality types: the type ascriptions
are composed, then the equated terms are cast to this composed type. Composing the results of
these casts yields the result endpoints.

The most complex rules are RedCompInd and RedCompCon. Because type and data constructors
have dependent function types, their arguments are telescopes: the type of later arguments may
depend on the values of previous parameters and arguments. To compose type or data constructor
applications, we compose the parameters and arguments element-wise, but composing two argu-
ments changes the type of later arguments. To compose telescopes, the metafunction & traverses
the types of type and data constructors, composing arguments element-wise and adding casts to
the bound variables in later arguments.
To see why composing needs casts, consider dependent pairs formulated as inductive types.

data DPair : (X : Type) → (P : X→ Type) → Type where

mkDPair : (x : X) → P x→ DPair X P

One example of a dependent pair type is DPair (N × N) (𝜆x. (𝜋1 x) + (𝜋2 x) =N 3), i.e., the
Curry-Howard equivalent of łthere exists a pair of numbers such that adding them yields 3.ž
Suppose we want to compose two inhabitants of this type, say mkDPair (1, ?N) refl(3)⊢1+?N�3 and
mkDPair (?N, 2) refl(3)⊢?N+2�3. To compose the first element, we can produce (1 &N ?N, ?N &N 2),
which reduces to (1, 2). However, for the second element, the two proofs refl(3)⊢1+?N�3 and
refl(3)⊢?N+2�3 do not have the same type: they equate different terms, so we cannot compose
them! Instead, we must first cast each to type (1 &N ?N) + (?N &N 2) =N 3, i.e., the value obtained
by replacing x with the composition of the pairs’ first elements in the term ((𝜋1 x) + (𝜋2 x) =N 3).
This gives a final result of mkDPair (1, 2) (refl(3)⊢3�3).

5 PARAMETERIZED METATHEORY: CRITERIA FOR PRECISION AND CONSISTENCY

GEq is now defined except for CastEq’s precision and consistency relations. For non-dependent
languages, the semantics of precision can be justified either in terms of sets of static terms [Garcia
et al. 2016] or in terms of semantic precision [New and Ahmed 2018]. Such justifications are difficult
with dependent types. Our approach is different: we define the important metatheoretic criteria
for GEq without referring to precision and consistency, then describe the criteria precision and
consistency must fulfill to prove the desired metatheoretic properties. Meeting these criteria guides
and justifies our definition of precision and consistency (ğ6). We see precision and consistency as a
means to the end of the desired metatheory.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

96:18 Joseph Eremondi, Ronald Garcia, and Éric Tanter

5.1 Stating the Gradual Guarantees

The gradual guarantees state that reducing the precision of a surface term introduces no new static
or dynamic errors. However, to state them formally, we must define what precision means for
surface terms. We follow Lennon-Bertrand et al. [2022] and define surface precision as the relation
generated by t ⊑Surf ?@i, plus all the usual structural rules. Essentially, t ⊑Surf t ′ holds if we can
obtain t ′ by replacing some parts of t with some ?@i. To guarantee preservation of typing, we also
need such replacements to be universe adequate [Lennon-Bertrand et al. 2022]. We say that the
judgment t ⊑Surf t ′ is universe adequate if, for every subterm r of t, when Γ ⊢ r _ r ⇒ T and
Γ ⊢ T⇒Type Typei, then any uses of r ⊑Surf ?@j have i = j. This essentially says t is t ′ with some
subterms replaced by ?@i for the right i. We can now state the static gradual guarantee:

Definition 5.1 (Static Gradual Guarantee). If · ⊢ t : T and t ⊑Surf t
′ universe-adequately, then

· ⊢ t ′ : T .

That is, reducing the precision of a program causes no new type errors.
To state the dynamic guarantee without referring to CastEq precision, we must formalize what

it means to introduce no new dynamic errors. We follow New and Ahmed [2018] and do this with
semantic precision, which compares terms by quantifying over all possible boolean contexts. We use
booleans because of their simplicity: gradual booleans have only the four values true, false, ?B and
℧B. If a context exists such that reducing a term’s precision changes the result from true to false,
then we have violated the guarantee that precision only affects behavior via errors. Likewise, if a
context exists such that reducing precision turns true to ℧B, then reducing precision introduced a
new error. By defining semantic precision in terms of all contexts, we capture the idea that the
above behaviors are impossible for precision-related terms. We formalize this as follows:

Definition 5.2 (Semantic Precision). Boolean precision ⊑B is defined by true ⊑B true, false ⊑B false,
℧B ⊑B b, and b ⊑B ?B for all b : B. Then two closed terms are related by semantic precision, written
⊨ t ⊑⊩ t′ : T if, for all 𝐶 : T→ B, whenever 𝐶 [t] −→∗ b, then 𝐶 [t′] −→∗ b′ and b ⊑B b′.

Then the gradual guarantee states that reducing a surface term’s precision causes a corresponding
reduction in the semantic precision of the surface terms’ elaborations.

Definition 5.3 (Dynamic Gradual Guarantee). Suppose · ⊢ t _ t ⇐ T and · ⊢ t ′ _ t′ ⇐ T. If
t ⊑Surf t

′ universe-adequately, then Γ ⊨ t ⊑⊩ t′.

5.2 Necessary Properties of Precision and Consistency

Next, we list properties that, if satisfied by ⊑←−−→ and �−→ , suffice to prove type safety, conservative

extension of CIC, well-typedness of elaboration, and the gradual guarantees. Each criterion is
accompanied by a specific case of the safety or gradual guarantee proofs that motivates its inclusion.
We also include criteria that composition should satisfy. While the semantics appear in a prior
section (ğ4.4), the criteria are new from GCIC, so we list them to highlight our contribution.

Though ⊑←−−→ is ideal for typing witnesses, it is too lenient to express the monotonicity properties

of CastEq. In particular, if the monotonicity of reduction is phrased with ⊑←−−→ , then consistency

must also be closed under convertibility, which would make it undecidable even when its operands
terminate. So we introduce a strictly stronger relation ⊑−→ which, like �−→ , only compares
after reductions, and not before. This distinction is acceptable because the precision side-condition
of CastRefl is never used to prove safety or monotonicity. Rather, the side-condition ensures
that witnesses always entail at least as much information as the equated terms. Including the
side-condition in CastEq’s type conveniently captures the invariant that, when reflt is elaborated
with initial witness t, future witnesses are never lose the information from t.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

Propositional Equality for Gradual Dependently Typed Programming 96:19

Safety and Elaboration. For elaboration to preserve types, precision must be reflexive so the
initial witness for refl is valid. For safety, progress requires that each well-typed non-value can step.
So composition must step for each non-value. For preservation, each reduction must preserve types,
including composition reductions. If composition yields a precision lower-bound and precision is
transitive, the side-conditions of CastRefl can be preserved.

Lemma 5.4 (Precision Reflexive). If Γ ⊢ t ⇐ T then Γ |Γ ⊢ t ⊑−→ t (For ElabRefl to produce an

elaboration that satisfies the ⊑−→ side-condition of CastRefl).

Lemma 5.5 (Composition Safety). If t1&Tt2 is not a value and Γ ⊢ t1&Tt2 ⇐ T, then t1&Tt2 −→ t3
for some t3 and Γ ⊢ t3 ⇐ T (For progress and preservation)

Lemma 5.6 (Composition Confluence). If t1 &T t2 ⇛ t3 and t1 &T t2 ⇛ t′3 maximally, then

t3 ⇛ t′3, where⇛ is the parallel reduction relation, standard in confluence proofs [Takahashi 1995]

(For confluence, which is needed to show that 𝛽-reductions preserve types);

Lemma 5.7 (Composition Lower Bound). If Γ ⊢ t1 &T t2 ⇐ T, then Γ |Γ ⊢ t1 &T t2 ⊑−→ t1 and

Γ |Γ ⊢ t1 &T t2 ⊑−→ t2 (Preserving the ⊑
←−
−→ condition of CastRefl for reduction RedCastEq);

Lemma 5.8 (Precision Transitive). If Γ1 |Γ2 ⊢ t1 ⊑−→ t2 and Γ2 |Γ3 ⊢ t2 ⊑−→ t3 : T then

Γ1 |Γ3 ⊢ t1 ⊑−→ t3 (Preserving the ⊑
←−
−→ side-condition of CastRefl for reduction RedCastEq);

Lemma 5.9 (Precision Modulo Conversion). If Γ1 |Γ2 ⊢ t1 ⊑
←−
−→ t2, where t2 −→

∗ t′2, then

Γ1 |Γ2 ⊢ t1 ⊑
←−
−→ t′2 (Preservation of CastRefl under contextual reduction)

Conservativity. If GEq is to conservatively extend CIC, then a fully-static program should be
well-typed in CIC if and only if it is well-typed in GEq. For the most part, the rules only differ when
? is involved, but the major exception is ElabCst, which let us replace a type with any consistent
type (after conversion). So for fully static terms, consistency should coincide with syntactic equality.

Lemma 5.10 (Static Consistency). For any static terms t1 and t2, let t1 and t2 be their embedding

in CastEq. Then t1 �−→ t2 iff t1 =𝛼𝛽 t2, i.e., if they are statically definitionally equal (For GEq to

conservatively extend CIC).

Monotonicity. The last group of properties relate to the gradual guarantees. The dynamic gradual
guarantee requires that evaluating precision-related terms produces precision-related results.
Because of the dependency in dependent types, proving the static guarantee relies on the proof
of the dynamic guarantee: ElabCst reduces types before comparing for consistency, so precision
of types before reduction should be preserved, and reducing the precision of a type should make
it consistent with no fewer types. Likewise, to show the static guarantee, elaboration must be
monotone in both synthesized types and elaborated terms, since dependent application uses the
argument’s elaboration in the return type.

Lemma 5.11 (Cast Monotonicity). Suppose that Γ1 |Γ2 ⊢ t1 ⊑−→ t2, Γ1 ⊢ t1 ⇒ T1 and Γ2 ⊢ t2 ⇒

T2 where Γ1 |Γ1 ⊢ T1 ⊑−→ T′1 and Γ2 |Γ2 ⊢ T2 ⊑−→ T′2. Then Γ1 |Γ2 ⊢ ⟨T
′
1 ⇐ T1⟩t1 ⊑−→ ⟨T

′
2 ⇐ T2⟩t2

(For ElabCst to produce ⊑−→ -related elaborations for ⊑Surf-related inputs)

Lemma 5.12 (Substitution Monotone). Suppose Γ1 |Γ2 ⊢ t1 ⊑−→ t2, where Γ1 ⊢ t1 ⇒ T1 and

Γ2 ⊢ t2 ⇒ T2. If Γ1 (x : T1)Δ1 |Γ2 (x : T2)Δ2 ⊢ t
′
1 ⊑−→ t′2,

then Γ1 [t1/x]Δ1 |Γ2 [t2/x]Δ2 ⊢ [t1/x]t
′
1 ⊑−→ [t2/x]t

′
2 (For ElabApp to be monotone in the return type)

Lemma 5.13 (Reduction Monotone). If Γ1 |Γ2 ⊢ t1 ⊑−→ t2 and t1 −→
∗ t′1, then t2 −→

∗ t′2 for some

t′2 where Γ1 |Γ2 ⊢ t
′
1 ⊑−→ t′2 (For DGG, to preserve ElabCst when reducing precision, and to preserve

typing under contextual reduction of refl(tw)⊢t1�t2)

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

96:20 Joseph Eremondi, Ronald Garcia, and Éric Tanter

Lemma 5.14 (Consistency Monotone for Precision). If Γ |Γ ⊢ t1 ⊑−→ t′1 and

Γ |Γ ⊢ t2 ⊑−→ t′2, and t1 �−→ t2, then t
′
1 �−→ t′2 (So reducing precision of V and V′ preserves ElabCst)

Lemma 5.15 (Structural Precision). ⊑−→ contains all structural rules (For homomorphic

elaboration rules to produce ⊑−→ -related elaboration for ⊑Surf-related inputs)

5.3 Metatheory: Proving Safety and the Gradual Guarantees

Finally, we summarize the properties that we can prove by assuming GEq satisfies the criteria
of ğ5.2. The general idea is that each case in the proofs either (1) is the same as the proof for
GCIC [Lennon-Bertrand et al. 2022] or (2) follows directly from one of our criteria. Full proofs can
be found in the appendix of the extended technical report [Eremondi et al. 2022].

5.3.1 Type Safety. Type safety is shown in the usual way for operational semantics, via progress
and preservation [Wright and Felleisen 1994]. Each well-typed CastEq term is either a value, or can
step to a well-typed term. Confluence is necessary to prove preservation for dependent types. Space
restrictions mean that the formalization of values v in GEq are in the appendix of the extended
technical report [Eremondi et al. 2022], but the idea is to follow Lennon-Bertrand et al. [2022],
adding t1 &T t2 as value when t1 and t2 are values, neither of t1 and t2 is ? or ℧, and T is not a
function type.

Proposition 5.16 (Confluence, Progress, Preservation and Elaboration).

• −→ is confluent.

• If Γ ⊢ t ⇐ T, then t is a value or t −→ t′ for some t′.

• If Γ ⊢ t1 ⇐ T and t1 −→ t2 then Γ ⊢ t2 ⇐ T.

• If Γ ⊢ t _ t ⇐ T, then Γ ⊢ t ⇐ T.

These together yield the main safety theorem.

Theorem 5.17 (Type Safety). If · ⊢ t : T , then t has an elaboration that either steps to a normal

form or steps indefinitely.

As a corollary, we can perform inversion on the typing derivations to obtain weak canonicity.
That is, every well-typed closed term that terminates steps to a canonical term of its type.

Corollary 5.18 (Weak Canonicity). Suppose · ⊢ t : V. Then either t diverges, or t −→∗ v where

v is ?V or ℧V, or the following hold:

• If V is (x : T1) → T2 then v is 𝜆x. t′

• If V is C@{i}(t1) then v is DC
@{i}(t2) for some D.

• If V is t1 =T′ t2 then v is refl(t′)⊢t1�t2
• If V is Typei then v is one of C@{i}(t1), (x : T1) → T2, Typei−1 or t1 =T′ t2.

5.3.2 Conservatively Extending CIC. Each CIC rule has a direct analogue in CastEq, so it is clear
that it extends CIC. Since most of the gradual-specific rules refer to ? or℧, knowing that consistency
collapses to 𝛼-equivalence on static terms is enough to show that said extension is conservative.

Theorem 5.19 (Conservativity). For any BCIC-terms t and T, let t and T be the GEq terms

corresponding to t and T by mapping BCIC 𝜆 to GEq 𝜆, etc. Then · ⊢ t ⇐ T iff · ⊢ t : T .

5.3.3 Gradual Guarantees. To prove the gradual guarantees, we use the gradual criteria to show
that elaboration is monotone. This, when combined with the monotonicity of{ with respect to
semantic precision, gives us both the static and dynamic guarantees.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

Propositional Equality for Gradual Dependently Typed Programming 96:21

Proposition 5.20 (Elaboration Gradual Guarantee). Suppose t1 ⊑Surf t2 and Γ1 ⊑−→ Γ2 (i.e.

entries in Γ1 and Γ2 are respectively related by ⊑−→). Then:

• If Γ1 ⊢ t1 _ t1 ⇐ T then Γ2 ⊢ t2 _ t2 ⇐ T for some t2 where Γ1 |Γ2 ⊢ t1 ⊑−→ t2.

• If Γ1 ⊢ t1 _ t1 ⇒ T1 then Γ2 ⊢ t2 _ t2 ⇒ T2 for some T2, t2 where Γ2 ⊢ T2⇒Type Typeℓ and

Γ1 |Γ2 ⊢ t1 ⊑−→ t2.

This, combined with the preservation of precision under evaluation, is enough to prove the static
and dynamic gradual guarantees as stated in ğ5.1. The hard work lies in proving that reduction
preserves precision, which we leave to ğ6.3.

6 CONSISTENCY AND PRECISION

Motivated by the criteria of ğ5.2, in this section we extend GCIC’s precision and consistency
relations to accommodate propositional equality and composition. We show that our relations fulfill
the laws of ğ5.2, thus showing that GEq fulfills type safety and the gradual guarantees, justifying
the design of precision and consistency.

6.1 Review: Precision and Consistency in GCIC

6.1.1 Structural Precision. Figure 10 recalls structural precision from GCIC [Lennon-Bertrand et al.
2022], written as Γ ⊢ t1 ⊑𝛼 t2. Structural precision is the syntactic relation out of which definitional
precision ⊑−→ is built. The generating rules GenUnk and GenErr establish ?T and ℧T as the least
and most precise terms of type T. For technical reasons, GenUnkUniv allows some cumulativity for
?Typej , while GenErrLam encodes a version of 𝜂-expansion for errors. The diagonal rules (named
Diag*) are structural: terms are precision related if they are built with the same syntactic construct
and the corresponding sub-terms are precision-related. We show a few examples, but omit most
diagonal rules for space reasons. Finally, cast rules capture non-structural properties of casts. Rule
Cast-L states that a casting t is more precise that t′ if the cast’s source and destination types are
both more precise than the type of t′, and if t is more precise that t′. The rule Cast-R says the
opposite: casting t is less precise than t if the source and destination are both less precise than the
type of t and t itself is less precise than t′.
Structural precision uses an auxiliary type judgment: presynthesis Γ ⊢ t ⇒∗ T is defined to be

exactly the type synthesis relation without the ⊑←−−→ side-condition in CastRefl. Presynthesis

types strictly more terms than synthesis, and both produce the same type, since they differ only
in side-conditions. The side-condition is not used in the type-safety proof, so any run-time terms
that presynthesize a type are safe. Unlike GCIC, GEq uses precision to type equality witnesses, so
presynthesis avoids a circular dependency between typing and precision.

Structural precision is defined mutually with definitional precision (Fig. 10) ⊑−→, which acts as
⊑−→ from ğ5. Definitional precision allows reducing before comparing, and is used with type
ascriptions, such as for functions, equality proofs and casts. Since the checking rule for CastCIC
allowed arbitrary reductions, a term may be well-typed even if its type ascriptions are not fully
reduced. Type ascriptions on a term may need to be reduced before structural precision is apparent.
This definition is due to Lennon-Bertrand et al. [2022].

6.1.2 Syntactic Consistency. Figure 10 defines consistency for GCIC. All terms are consistent
with ? (CstUnkL, CstUnkR). Each syntactic construct also has an (omitted) structural rule. Unlike
precision, consistency between terms ignores type ascriptions, and casts are also ignored (CstCastL,
CstCastR). We follow GCIC and let ℧T be consistent with ?T.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

96:22 Joseph Eremondi, Ronald Garcia, and Éric Tanter

Γ ⊢ t1 ⊑𝛼 t2 (Precision: Key Rules from GCIC)

GenUnk

Γ1 ⊢ t ⇒
∗ T′

Γ1 |Γ2 ⊢ T
′⊑−→T

Γ1 |Γ2 ⊢ t ⊑𝛼 ?T

GenErr

Γ1 ⊢ t ⇒
∗ T′

Γ1 |Γ2 ⊢ T⊑−→T
′

Γ1 |Γ2 ⊢ ℧T ⊑𝛼 t

GenUnkUniv

Γ1 ⊢ T⇒
∗
Type Typei

i < j

Γ1 |Γ2 ⊢ T ⊑𝛼 ?Typej

DiagVar

Γ1 |Γ2 ⊢ x ⊑𝛼 x

GenErrLam

Γ2 ⊢ t2⇒
∗
Π
(x : T2) → T′2

Γ1 |Γ2 ⊢ (x : T1) → T′1⊑−→ (x : T2) → T′2

Γ1 |Γ2 ⊢ 𝜆(x : T1).℧T′
1
⊑𝛼 t2

DiagAbs

Γ1 |Γ2 ⊢ T1⊑−→T2

Γ1, (x : T1) |Γ2, (x : T2) ⊢ t1 ⊑𝛼 t2

Γ1 |Γ2 ⊢ 𝜆(x : T1). t1 ⊑𝛼 𝜆(x : T2). t2

DiagCast

Γ1 |Γ2 ⊢ T1 ⊑𝛼 T2 Γ1 |Γ2 ⊢ T
′
1 ⊑𝛼 T′2 Γ1 |Γ2 ⊢ t1 ⊑𝛼 t2

Γ1 |Γ2 ⊢ ⟨T
′
1 ⇐ T1⟩t1 ⊑𝛼 ⟨T

′
2 ⇐ T2⟩t2

CastL

Γ2 ⊢ t2 ⇒
∗ T2 Γ1 |Γ2 ⊢ T1⊑−→T2

Γ1 |Γ2 ⊢ T
′
1⊑−→T2 Γ1 |Γ2 ⊢ t1 ⊑𝛼 t2

Γ1 |Γ2 ⊢ ⟨T
′
1 ⇐ T1⟩t1 ⊑𝛼 t2

CastR

Γ1 ⊢ t1 ⇒
∗ T1 Γ1 |Γ2 ⊢ T1⊑−→T2

Γ1 |Γ2 ⊢ T1⊑−→T
′
2 Γ1 |Γ2 ⊢ t1 ⊑𝛼 t2

Γ1 |Γ2 ⊢ t1 ⊑𝛼 ⟨T
′
2 ⇐ T2⟩t2

Γ1 |Γ2 ⊢ t1⊑−→t2 (Definitional Precision)

DefBase

Γ1 |Γ2 ⊢ t1 ⊑𝛼 t2

Γ1 |Γ2 ⊢ t1⊑−→t2

DefStepL

t1 −→ t′1 Γ1 |Γ2 ⊢ t
′
1⊑−→t2

Γ1 |Γ2 ⊢ t1⊑−→t2

DefStepR

t2 −→ t′2 Γ1 |Γ2 ⊢ t1⊑−→t
′
2

Γ1 |Γ2 ⊢ t1⊑−→t2

t1�𝛼 t2 (Consistency: Non-structural Rules)

CstVar

x�𝛼x

CstUnkL

?T�𝛼T

CstUnkR

t�𝛼?T

CstCastL

t�𝛼 t
′

⟨T2 ⇐ T1⟩t�𝛼 t
′

CstCastR

t�𝛼 t
′

t�𝛼 ⟨T2 ⇐ T1⟩t
′

Fig. 10. Structural Precision and Consistency for GCIC: Key Rules

6.2 Precision and Consistency for GEq

The structural precision laws are not sufficient for handling composition. In particular, we want
Γ |Γ′ ⊢ t1 &T t2 ⊑ t1, with the same holding for t2. However, this fact is not derivable from the
diagonal rule for composition. Instead, we must add rules to ensure that composing produces
a lower bound. However, once we start adding non-structural rules, we must be careful not to
disrupt the other properties we need from precision. For example, ğ5.2 states that precision must be
transitive. If we have (x &T y) &T z ⊑ x &T y and x &T y ⊑ x, but we also want (x &T y) &T z ⊑ x,
then we must transitively apply the fact that composing produces a lower bound.

Figure 11 shows the added rules. DiagRefl and DiagComp, along with the omitted DiagEq and
DiagJ, are like the other diagonal rules. The rules PrecCompL and PrecCompR encode that the
composition is a precision-lower bound, but in a way that preserves transitivity. The rules for ⊑←−−→
are also shown: like ⊑−→ they allow for reductions before comparing with structural precision, but
they also allow backwards steps, fulfilling Lemma 5.9. We only allow backwards-steps for the less
precise term, since backwards steps on the left-hand are admissible by Lemma 5.13.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

Propositional Equality for Gradual Dependently Typed Programming 96:23

DiagRefl

Γ1 |Γ2 ⊢ t1 ⊑𝛼 t2
Γ1 |Γ2 ⊢ t

′
1⊑−→t

′
2 Γ1 |Γ2 ⊢ t

′′
1 ⊑−→t

′′
2

Γ1 |Γ2 ⊢ refl(t1)⊢t′
1
�t′′

1
⊑𝛼 refl(t2)⊢t′

2
�t′′

2

DiagComp

Γ1 |Γ2 ⊢ T1 ⊑𝛼 T2 Γ1 |Γ2 ⊢ t1 ⊑𝛼 t2 Γ1 |Γ2 ⊢ t
′
1 ⊑𝛼 t′2

Γ1 |Γ2 ⊢ t1 &T1
t′1 ⊑𝛼 t2 &T2

t′2

PrecCompL

Γ1 |Γ2 ⊢ t1 ⊑𝛼 t3

Γ1 |Γ2 ⊢ t1 &T t2 ⊑𝛼 t3

PrecCompR

Γ1 |Γ2 ⊢ t2 ⊑𝛼 t3

Γ1 |Γ2 ⊢ t1 &T t2 ⊑𝛼 t3

CstComp(L,R)

t1�𝛼 t3 t2�𝛼 t3

t1 &T t2�𝛼 t3
t3�𝛼 t1 &T t2

CstCompDiag

t1�𝛼 t
′
1 t2�𝛼 t

′
2

t1 &T t2�𝛼 t
′
1 &T′ t

′
2

PrecModStruct

Γ1 |Γ2 ⊢ t1 ⊑𝛼 t2

Γ1 |Γ2 ⊢ t1⊑
←−
−→t2

PrecModStepL

t1 −→
∗ t′1

Γ1 |Γ2 ⊢ t
′
1⊑
←−
−→t2

Γ1 |Γ2 ⊢ t1⊑
←−
−→t2

PrecModStepR

t2 −→
∗ t′2

Γ1 |Γ2 ⊢ t1⊑
←−
−→t′2

Γ1 |Γ2 ⊢ t1⊑
←−
−→t2

PrecModStepBack

t′2 −→
∗ t2

Γ1 |Γ2 ⊢ t1⊑
←−
−→t′2

Γ1 |Γ2 ⊢ t1⊑
←−
−→t2

Fig. 11. CastEq Precision and Consistency rules for composition

Last are the rules for (static) consistency for composition. Recall that ğ5.2 requires that reducing
precision preserves consistency. Since composition is as precise as both its arguments, t1 &T t2�𝛼 t3
should imply that t1 and t2 are both consistent with t3. We conjecture that composition is a (semantic)
greatest lower bound, which would mean that errors in composing witnesses are never flagged
earlier than necessary. For this to hold, the composition of two terms must be consistent with
everything that is consistent with both of those two terms. Our composition consistency rules in
Fig. 11 express this: CstCompL and CstCompR ensure that t1 &T t2 is consistent with exactly the
terms that are consistent with both t1 and t2.
With consistency fully defined, the difference between static and dynamic consistency is now

clear: two terms that share a non-error lower-bound may be statically inconsistent if they differ only
in neutral terms. Variables are only statically consistent with themselves (CstVar) or ? (CstUnkL,R).
However, for any two variables x and y, x &T y is a non-error term that is as precise as both, as
given by PrecComp(L,R). This disconnect between precision and consistency is justified by the
criteria of ğ5.2: we show below that reducing precision preserves consistency. The separation of
static and dynamic consistency enables the gradual guarantees and conservatively embedding CIC
while maintaining static equivalences.

6.3 Fulfilling The Critera

GEq is now fully defined: we have defined the precision relations ⊑−→ and ⊑←−−→ and the consistency

relation �−→ to instantiate ⊑−→ , ⊑←−−→ and �−→ . We now establish that these relations fulfill

the criteria of ğ5.2. We give the intuition behind some of the cases that are new compared to GCIC.
Full proofs can be found in the appendix of the extended technical report [Eremondi et al. 2022].

• Immediate Results: Proving reflexivity of ⊑−→ (Lemma 5.4) is a straightforward induction. The
rules PrecCompL and PrecCompR make the composition of terms as precise as either term,
proving Lemma 5.7. The closure of ⊑←−−→ under convertibility is built into its definition, proving
Lemma 5.9. DiagCast gives that casts are monotone, proving Lemma 5.11. The monotonicity of
substitution (Lemma 5.12) is proved with a straightforward induction, relying on presynthesis
preserving types under substitution. The remaining diagonal rules give that ⊑−→ has all structural
rules, fulfilling Lemma 5.15.
• Composition Safety (Lemma 5.5) For progress, each composition of two canonical forms of the
same type has a reduction, where either the heads match and the arguments are composed, or an

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

96:24 Joseph Eremondi, Ronald Garcia, and Éric Tanter

error is produced. If one of the composed terms is not a canonical form, then either (1) one of
the composed terms can reduce, (2) one term is a ?T or ℧T where T is not a function or equality
type, and we can reduce with RedCompUnk or RedCompErr, or (3) one of the composed terms
is neutral, and hence the composition is neutral. For preservation, either the result is immediate,
or casts are inserted to ensure that types are preserved.
• Composition Confluence (Lemma 5.6) RedCompUnk(L,R) ensures that composing with ?T
only reduces when ?T cannot reduce, avoiding a łdiamondž problem.
• Precision Transitive (Lemma 5.8): We prove this after monotonicity of reduction, which lets
us prove that precision-related types have precision-related terms, which is necessary to fulfill
premises on terms’ types, such as in CastL and CastR. The rest is straightforward induction.
• Static Consistency (Lemma 5.10) The GEq rules not present in GCIC are for equality, which
are trivially handled, and consistency rules for composition, for which the result vacuously holds
since composition is not present in the static language.
• Monotonicity of Reduction (Lemma 5.13): The key fact is that, since PrecCompL and Prec-

CompR only have composition on the left, all the inversions in the GCIC proofs are still valid
for GEq. The interesting case is when precision is derived using PrecCompL (PrecCompR is
symmetric), and the composition reduces. The result is trivial for RedCompUnk(L,R) and Red-

CompErr(L,R). For the remaining cases, two terms with the same head are being composed,
and the result is either ℧ or another term with the same head. When ℧ is produced the result
is trivial. When a term with the same head is produced, the PrecCompL can be used with the
appropriate diagonal rule. In the case that casts are present in the result of composition, CastL
is used. The other notable case is when J reduces, where the result is derived using DiagCast.
• Consistency Monotone (Lemma 5.14) We first show that consistency is monotone on the left,
then prove that it is symmetric to obtain monotonicity for both arguments. The case when �𝛼 is
derived with CstCompR or CstCastRmust be handled specially, since they each take an operand
that can be any term. The trick is to unwrap the chain of CstCompR and CstCastR uses, use the
induction hypothesis on the contained derivation, then re-apply CstCompR and CstCastR in
the same order to obtain the result. When precision is derived with PrecCompL or PrecCompR,
then consistency must have either been derived with CstCompDiag, in which case the result
follows from the induction hypothesis, or with CstCompL or (symmetrically) CstCompR. For
CstCompL, the premise gives that both composed terms are consistent with the right-hand term,
yielding our result. The remaining cases are straightforward.

7 DISCUSSION

7.1 Extensions Enabled by Equality

In addition to catching the kinds of bugs discussed in ğ2, we show some benefits of having proposi-
tional equality in GEq. Three new language features can be encoded using propositional equality,
without augmenting the cast calculus: empty types, Axiom K, and indexed inductive type families.
For type families, we discuss some limitations of the approach andworkarounds for these limitations,
showing how our cast calculus is expressive enough to pave the way for future improvements.

7.1.1 The Empty Type. Just as the gradual J needed computation, eliminating the empty type has
computational content in a gradual language. In static languages, the empty type Empty has no
closed values, so either Empty contains no terms, or (for logically inconsistent languages) any such
terms are non-terminating. The elimination function exfalso : (X : Typei) → Empty→ X produces
a result of any type, given a value of the empty type. In a gradual language, however, ? and ℧ can
be used at any type, including the empty type. So a gradual exfalsomust produce a value of type X.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

Propositional Equality for Gradual Dependently Typed Programming 96:25

We again follow the goal of dynamically tracking constraints expressed by types. For the empty
type, a value of type f : T→ Empty encodes the constraint that T should be impossible, and a
branch built using exfalso should be unreachable. If f is applied to t : Empty, created using ? or
casts, then the constraint has been violated, and an error should be raised.
We can encode this behavior by defining Empty to be true =B false, and exfalso to be

𝜆X. 𝜆t. J (b. if b B X) true t. The key is ?Empty and ℧Empty both evaluate to refl(℧B)⊢true�false. So
the only value of type Empty is a dynamic type error. Likewise, the eliminator exfalso casts t to
type ℧Type

ℓ
before casting it to type X, so the result is always ℧X . Without adding any features to

CastEq, the bug-finding described in ğ2 handles constraints encoded as logical negation.

7.1.2 Axiom K. Because ?t1=Tt2 steps to refl(t1 &T g2)⊢t1�t2 ,GEq is in the class of dependently typed
languages where refl is the only constructor for equality. Composition can be used to derive a
(gradual) proof of this uniqueness, even though no such proof can be derived in most static type
theories [Hofmann and Streicher 1998]:

K : (x : T) → (pf : x =T x) → pf =x=Tx refl(x)⊢x�x

K x pf = refl(pf &x=Tx refl(x)⊢x�x)⊢pf�refl(x)⊢x�x

Axiom K can be used to prove that all equality proofs of a given type are equal [Streicher 1993], so
our proof-irrelevant J principle does not lose any expressivity, since any types parameterized by an
equality proof can be rewritten with K. Also, Axiom K allows for conventional dependent pattern
matching to be elaborated into inductive eliminators [Goguen et al. 2006], providing a lightweight
alternative to the cumbersome ind form. The combination of Axiom K and function extensionality
suggests a connection to Observational Type Theory [Altenkirch et al. 2007; Pujet and Tabareau
2022] that warrants future exploration.

7.1.3 Inductive Types. McBride [2000] describes how, using propositional equality, indexed induc-
tive families can be encoded. The main idea is, instead of having each constructor return different
indices, each index is a parameter, and each constructor takes an equality proof that the parameter
has the desired value. In the elimination principle, J is used to rewrite the type of the returned
value using the stored equality. Consider how the classic vector type is transformed:

data Vec (X :Type) : (n :N)→Type where data Vec′(X : Type) (n : N) :Type where

Nil : Vec X 0 Nil′ : (n =N 0) → Vec X y

Cons : X→Vec X n→Vec X (1+n) Cons′ : (z :N)→X→Vec X z

→ n=N (1+z)→Vec X n

This transformation gives a low-overhead way to incorporate indexed inductive families with
gradual dependent types. Since no extensions to CastEq are required, the safety and gradual
guarantee results from ğ5 apply. The constructors take equality proofs, so violations of those
equalities raise dynamic type errors.
However, the approach is limited in its ability to eagerly detect errors. The problem is that

dynamic consistency is fundamentally not transitive, since otherwise all types are consistent
through ?. Members of inductive types are essentially trees, and equality constraints track con-
straints at each level of the tree, but consistency across the entire tree is not ensured. The
witnesses track the evolution of type information across time, but not across space. Consider
Cons′ ?N true (Nil′ ?N refl(0)⊢?N0�) refl(2)⊢2�?N : Vec′ B 2, a vector with one element, whose type
says it has length 2. Constructing this vector raises no run-time type errors. At each level, the
equality proof is correct: 0 is consistent with ?N, and 2 is consistent with 1 + ?N. Gradually, the
non-transitivity means that imprecision at each level can cause disconnects between levels.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

96:26 Joseph Eremondi, Ronald Garcia, and Éric Tanter

Thankfully, CastEq is expressive enough to encode a solution to this problem. By having
composition as an operator in the language, one can define so-called łsmart constructorsž that
have the same types as the normal constructors, but that access the equality proofs stored in
the previous level of the tree when constructing new ones. For example, using J we can write
cong1 : (m n : N) → m =N n→ 1 +m = 1 + n, which can be used in a łsmartž Cons:

smartCons z h t eq = Cons z h t (eq &(1+z)=Nn (⟨(1+z) =N n⇐ 1+z =N 1+z⟩(cong1 (wit t))))

where wit : Vec X z→ z =N z

wit (Nil eq) = ⟨z =N z⇐ 0 =N z⟩eq | wit (Cons x h t eq) = ⟨z =N z⇐ 1+x =N z⟩eq

When smartCons is used in place of Cons′, the witness refl(0)⊢?N�0 is transformed to
refl(1)⊢?N�?N , which produces an error when cast to 1+?N =N 2, since 1 &N 2 { ℧N. Formalizing
the general version of this approach is beyond the scope of this paper, but it shows how having
composition as an operator enables more detailed manipulation of run-time type information.

7.2 Future Work

7.2.1 Termination and Approximate Normalization. As presented, GEq has undecidable type check-
ing. Precision and CastEq typing are not obviously decidable. Thankfully, we do not need to
decide precision typing to decide GEq typing, since initial witnesses are always valid by reflexivity.
Deciding GEq typing is straightforward, except for normalization: some terms do not terminate
and consistency compares modulo reduction. In GCIC, Lennon-Bertrand et al. [2022] show that
termination can be obtained by sacrificing the gradual guarantees, or by restricting universes
so that they are not closed under function types. While useful for type theory, these sacrifices
remove reasoning principles or reduce expressivity, respectively, that make them unsuitable for
programming.

Eremondi et al. [2019] propose approximate normalization, with different semantics for compile-
time normalization of types and run-time evaluation of terms. At compile-time, when missing type
information means that termination cannot be guaranteed, ? is produced as an approximation. Run-
time evaluation uses no approximations, so expressivity is not lost. We conjecture that approximate
normalization can be easily added to GEq. The challenge is finding a suitable termination argument,
since Eremondi et al. [2019] provide a proof that does not apply to inductive types. The syntactic-
model strategy of Lennon-Bertrand et al. [2022] can likely be adapted. Also, a decision must be made
about whether approximate or exact normalization should be used for run-time witness calculations:
since they are opaque to the programmer, witnesses may obscure the causes of non-termination.

7.2.2 Conjectures: EP Pairs, Composition, Blame and Full Abstraction. Lennon-Bertrand et al. [2022]
prove a stronger property than the gradual guarantees for GCIC. They show that casts between
precision-related types form an embedding-projection (EP) pair [New and Ahmed 2018], so that
increasing then decreasing precision produces the same result modulo errors, and decreasing then
increasing precision produces an observationally-equivalent result. While the gradual guarantees
are helpful, they are satisfied by trivial languages where every cast produces ?. Showing the EP pair
property would prove that casts in GEq never lose run-time information, giving more confidence
in its ability to dynamically track constraints. We conjecture that GEq fulfills the EP pair property,
but suspect novel proof techniques are needed to handle witness proofs. We also conjecture that
composition computes the greatest lower-bound for semantic precision, so that each type forms a
true semi-lattice. This would establish that witness composition never prematurely raises dynamic
errors, since two witnesses would compose to ℧ only when all other options are impossible.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

Propositional Equality for Gradual Dependently Typed Programming 96:27

Another desirable property of gradual languages is a blame theorem [Wadler and Findler 2009],
stating that, for a dynamic cast error, the less-precise type is always blamed. GEq has no notion of
blame, but we conjecture that the techniques of Zalewski et al. [2020] could be adapted to GEq.

Finally, we conjecture that there is a variant of CIC whose embedding into GEq is fully abstract,
meeting the criteria Jacobs et al. [2021] set out for gradual languages. Intuitively, we can form
equalities between extensionally-equal functions, and use those to cast between types indexed by
them, so any property of a function should apply to one that is extensionally-equal. Full abstraction
guarantees that all static equivalences hold in GEq, giving the programmer more tools with which
to reason about their code. Proving full abstraction for non-dependently typed gradual languages
is a recent development, so more investigation is needed to adapt these techniques to dependent
types. The usual technique for full abstraction is to simulate the target language in the source, so
every target context can be translated into a source context that is unable to distinguish the terms.
As a consequence, the embedded variant of CIC must have capabilities for non-termination added.

7.3 Related Work

Gradual Approaches to Equality:GRIP [Maillard et al. 2022] extends CastCIC with propositional
equality, but unlike GEq, this propositional equality is in a separate sort, the types of which have
all members definitionally equal. This propositional layer has no imprecision, and contains features
for catching dynamic type errors in the gradual layer. GRIP features an internal notion of precision:
while not all terms obey the gradual guarantees, self-precise terms do, and guarantees for such
terms are available as a theorem in the propositional layer. GEq provides reasoning about equality
within gradual programs, whereas GRIP provides a layer for reasoning about gradual programs.
GRIP is based on observational type theory (OTT), and hence supports fully static proofs of function
extensionality and Axiom K. GEq contains only gradual proofs of these. We conjecture that, like in
GRIP, OTT could replace BCIC as the underlying static language for GEq.
Our work also relates to that of Lemay [2022], which presents a dependently typed language

where all definitional equality checks are deferred to run time. Like in GCIC and GEq, casts are
inserted when a term’s synthesized type differs from the type against which it is checked. However,
there is no unknown term/type, and no requirement that synthesized and checked-against types be
consistent, so errors are raised only when safety is directly violated. Like in GEq, function equality
is checked extensionally: casts accumulate on unapplied functions, and arguments are cast when
cast-containing functions are applied, similar to composing functions inGEq. The work emphasizes
clear error messages, and unlike GEq, features a rich notion of blame.
Flexible Dependent Types: GEq builds on a long line of work mixing dynamic and static

enforcement of specifications. Ou et al. [2004] support mixed static and dynamic checking of
boolean-valued properties, and Lehmann and Tanter [2017] provide gradual typing for refinement
types. Similarly, Tanter and Tabareau [2015] develop a system of casts for Coq, using an unsound
axiom to represent type errors. These casts worked for values of subset types, i.e. a value paired with
a proof that some boolean-valued function returns true for that value, but not general inductive
types. Osera et al. [2012] present dependent interoperability for principled mixing of dependently
typed and non-dependently typed programs. Dependent interoperability was extended by Dagand
et al. [2016, 2018], who provide a general mechanism for lifting higher-order programs to the
dependently typed setting. All of these approaches presuppose separate simple and dependent
versions of types, related by boolean-valued predicates. Our composition of witnesses provides
similar checks, but by keeping witnesses, types need not be reformulated in terms of subset types
or boolean predicates.
Acknowledgments:We thank Felipe Bañados Schwerter, Paulette Koronkevich, Jonathan Chan,
Joanne Traves, and the anonymous reviewers for their feedback on this work.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

96:28 Joseph Eremondi, Ronald Garcia, and Éric Tanter

REFERENCES

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. 2007. Observational Equality, Now!. In Proceedings of the 2007
Workshop on Programming Languages Meets Program Verification (Freiburg, Germany) (PLPV ’07). ACM, New York,
NY, USA, 57–68. https://doi.org/10.1145/1292597.1292608

Felipe Bañados Schwerter, Alison M. Clark, Khurram A. Jafery, and Ronald Garcia. 2021. Abstracting Gradual Typing
Moving Forward: Precise and Space-Efficient. Proc. ACM Program. Lang. 5, POPL, Article 61 (Jan. 2021), 28 pages.
https://doi.org/10.1145/3434342

Edwin Brady. 2017. Type-driven development with Idris. Manning. https://www.manning.com/books/type-driven-
development-with-idris

Pierre-Évariste Dagand, Nicolas Tabareau, and Éric Tanter. 2016. Partial Type Equivalences for Verified Dependent
Interoperability. In Proceedings of the 21st ACM SIGPLAN Conference on Functional Programming (ICFP 2016). ACM
Press, Nara, Japan, 298–310. https://doi.org/10.1145/2951913.2951933

Pierre-Évariste Dagand, Nicolas Tabareau, and Éric Tanter. 2018. Foundations of dependent interoperability. Journal of
Functional Programming 28 (2018), e9. https://doi.org/10.1017/S0956796818000011

Joseph Eremondi, Ronald Garcia, and Éric Tanter. 2022. Propositional Equality for Gradual Dependently Typed Programming
(Extended Technical Report). https://doi.org/10.48550/ARXIV.2205.01241

Joseph Eremondi, Éric Tanter, and Ronald Garcia. 2019. Approximate Normalization for Gradual Dependent Types. Proc.
ACM Program. Lang. 3, ICFP, Article 88 (July 2019), 30 pages. https://doi.org/10.1145/3341692

Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-order Functions. In Proceedings of the Seventh
ACM SIGPLAN International Conference on Functional Programming (Pittsburgh, PA, USA) (ICFP ’02). ACM, New York,
NY, USA, 48–59. https://doi.org/10.1145/581478.581484

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg, FL, USA) (POPL ’16). ACM,
New York, NY, USA, 429–442. https://doi.org/10.1145/2837614.2837670

Healfdene Goguen, Conor McBride, and James McKinna. 2006. Eliminating Dependent Pattern Matching. Springer Berlin
Heidelberg, Berlin, Heidelberg, 521–540. https://doi.org/10.1007/11780274_27

Martin Hofmann and Thomas Streicher. 1998. The groupoid interpretation of type theory. Twenty-five years of constructive
type theory (Venice, 1995) 36 (1998), 83–111. https://doi.org/10.1093/oso/9780198501275.003.0008

Koen Jacobs, Amin Timany, and Dominique Devriese. 2021. Fully Abstract from Static to Gradual. Proc. ACM Program.
Lang. 5, POPL, Article 7 (Jan. 2021), 30 pages. https://doi.org/10.1145/3434288

Nico Lehmann and Éric Tanter. 2017. Gradual Refinement Types. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages (Paris, France) (POPL 2017). ACM, New York, NY, USA, 775–788. https:
//doi.org/10.1145/3009837.3009856

Mark Lemay. 2022. A Dependently Typed Programming Language With Dynamic Equality. Ph. D. Dissertation. Boston
University. https://github.com/marklemay/thesis

Meven Lennon-Bertrand. 2021. Complete Bidirectional Typing for the Calculus of Inductive Constructions. In 12th
International Conference on Interactive Theorem Proving (ITP 2021) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 193), Liron Cohen and Cezary Kaliszyk (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https:
//doi.org/10.4230/LIPIcs.ITP.2021.24

Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter. 2022. Gradualizing the Calculus of Inductive
Constructions. ACM Trans. Program. Lang. Syst. 44, 2, Article 7 (apr 2022), 82 pages. https://doi.org/10.1145/3495528

Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, and Éric Tanter. 2022. A Reasonably Gradual Type Theory. Proc.
ACM Program. Lang. 6, ICFP (2022). https://doi.org/10.1145/3547655 Preprint: https://hal.inria.fr/hal-03596652/.

Per Martin-Löf. 1975. About Models for Intuitionistic Type Theories and the Notion of Definitional Equality. In Proceedings
of the Third Scandinavian Logic Symposium, Stig Kanger (Ed.). Studies in Logic and the Foundations of Mathematics,
Vol. 82. Elsevier, 81 – 109. https://doi.org/10.1016/S0049-237X(08)70727-4

Per Martin-Löf. 1982. Constructive Mathematics and Computer Programming. In Logic, Methodology and Philosophy of
Science VI, L. Jonathan Cohen, Jerzy Łoś, Helmut Pfeiffer, and Klaus-Peter Podewski (Eds.). Studies in Logic and the
Foundations of Mathematics, Vol. 104. Elsevier, 153–175. https://doi.org/10.1016/S0049-237X(09)70189-2

Conor McBride. 2000. Dependently typed functional programs and their proofs. Ph. D. Dissertation. University of Edinburgh,
UK. http://hdl.handle.net/1842/374

Conor McBride. 2002. Elimination with a Motive. In Types for Proofs and Programs (Berlin, Heidelberg, 2002) (Lecture
Notes in Computer Science), Paul Callaghan, Zhaohui Luo, James McKinna, Robert Pollack, and Robert Pollack (Eds.).
Springer, 197–216. https://doi.org/10.1007/3-540-45842-5_13

Max S. New and Amal Ahmed. 2018. Graduality from Embedding-Projection Pairs. Proc. ACM Program. Lang. 2, ICFP,
Article 73 (July 2018), 30 pages. https://doi.org/10.1145/3236768

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1145/3434342
https://www.manning.com/books/type-driven-development-with-idris
https://www.manning.com/books/type-driven-development-with-idris
https://doi.org/10.1145/2951913.2951933
https://doi.org/10.1017/S0956796818000011
https://doi.org/10.48550/ARXIV.2205.01241
https://doi.org/10.1145/3341692
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1007/11780274_27
https://doi.org/10.1093/oso/9780198501275.003.0008
https://doi.org/10.1145/3434288
https://doi.org/10.1145/3009837.3009856
https://doi.org/10.1145/3009837.3009856
https://github.com/marklemay/thesis
https://doi.org/10.4230/LIPIcs.ITP.2021.24
https://doi.org/10.4230/LIPIcs.ITP.2021.24
https://doi.org/10.1145/3495528
https://doi.org/10.1145/3547655
https://hal.inria.fr/hal-03596652/
https://doi.org/10.1016/S0049-237X(08)70727-4
https://doi.org/10.1016/S0049-237X(09)70189-2
http://hdl.handle.net/1842/374
https://doi.org/10.1007/3-540-45842-5_13
https://doi.org/10.1145/3236768

Propositional Equality for Gradual Dependently Typed Programming 96:29

Peter-Michael Osera, Vilhelm Sjöberg, and Steve Zdancewic. 2012. Dependent Interoperability. In Proceedings of the Sixth
Workshop on Programming Languages Meets Program Verification (Philadelphia, Pennsylvania, USA) (PLPV ’12). ACM,
New York, NY, USA, 3–14. https://doi.org/10.1145/2103776.2103779

Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and DavidWalker. 2004. Dynamic Typing with Dependent Types. In Exploring
New Frontiers of Theoretical Informatics, Jean-Jacques Levy, Ernst W. Mayr, and John C. Mitchell (Eds.). Springer US,
Boston, MA, 437–450. https://doi.org/10.1007/1-4020-8141-3_34

Loïc Pujet and Nicolas Tabareau. 2022. Observational Equality: Now for Good. Proc. ACM Program. Lang. 6, POPL, Article
32 (jan 2022), 27 pages. https://doi.org/10.1145/3498693

Jeremy Siek, Peter Thiemann, and Philip Wadler. 2015a. Blame and Coercion: Together Again for the First Time. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (Portland,
OR, USA) (PLDI ’15). Association for Computing Machinery, New York, NY, USA, 425–435. https://doi.org/10.1145/
2737924.2737968

Jeremy G. Siek and Tianyu Chen. 2021. Parameterized cast calculi and reusable meta-theory for gradually typed lambda
calculi. Journal of Functional Programming 31 (2021), e30. https://doi.org/10.1017/S0956796821000241

Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In Scheme and Functional Programming
Workshop. 81–92. http://scheme2006.cs.uchicago.edu/scheme2006.pdf

JeremyG. Siek,MichaelM. Vitousek,Matteo Cimini, and John Tang Boyland. 2015b. RefinedCriteria for Gradual Typing. In 1st
Summit on Advances in Programming Languages (SNAPL 2015) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 32), Thomas Ball, Rastislav Bodik, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett (Eds.). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 274–293. https://doi.org/10.4230/LIPIcs.SNAPL.2015.274

Jeremy G. Siek and Philip Wadler. 2010. Threesomes, with and Without Blame. In Proceedings of the 37th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Madrid, Spain) (POPL ’10). ACM, New York,
NY, USA, 365–376. https://doi.org/10.1145/1706299.1706342

Thomas Streicher. 1993. Investigations into intensional type theory. Ph. D. Dissertation. Ludwig Maximilian Universität.
https://www2.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf Habilitation thesis.

M. Takahashi. 1995. Parallel Reductions in 𝜆-Calculus. Information and Computation 118, 1 (1995), 120–127. https:
//doi.org/10.1006/inco.1995.1057

Éric Tanter and Nicolas Tabareau. 2015. Gradual Certified Programming in Coq. In Proceedings of the 11th Symposium
on Dynamic Languages (Pittsburgh, PA, USA) (DLS 2015). ACM, New York, NY, USA, 26–40. https://doi.org/10.1145/
2816707.2816710

Philip Wadler and Robert Bruce Findler. 2009. Well-Typed Programs Can’t Be Blamed. In Proceedings of the 18th European
Symposium on Programming Languages and Systems: Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009 (York, UK) (ESOP ’09). Springer-Verlag, Berlin, Heidelberg, 1–16. https://doi.org/10.
1007/978-3-642-00590-9_1

A.K. Wright and M. Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and Computation 115, 1 (1994),
38–94. https://doi.org/10.1006/inco.1994.1093

Jakub Zalewski, James McKinna, J. Garrett Morris, and Philip Wadler. 2020. 𝜆dB: Blame tracking at higher fidelity.
https://wgt20.irif.fr/wgt20-final98-acmpaginated.pdf First ACM SIGPLAN Workshop on Gradual Typing 2020, WGT
2020 ; Conference date: 19-01-2020 Through 25-01-2020.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 96. Publication date: August 2022.

https://doi.org/10.1145/2103776.2103779
https://doi.org/10.1007/1-4020-8141-3_34
https://doi.org/10.1145/3498693
https://doi.org/10.1145/2737924.2737968
https://doi.org/10.1145/2737924.2737968
https://doi.org/10.1017/S0956796821000241
http://scheme2006.cs.uchicago.edu/scheme2006.pdf
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.1145/1706299.1706342
https://www2.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1145/2816707.2816710
https://doi.org/10.1145/2816707.2816710
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1006/inco.1994.1093
https://wgt20.irif.fr/wgt20-final98-acmpaginated.pdf

	Abstract
	1 Introduction
	2 Setting The Stage
	2.1 Programming vs. Proving and the Gradual Guarantees
	2.2 Relationship to Existing Languages
	2.3 A Motivating Example: Eagerly Enforcing Specifications
	2.4 Lazily Enforcing Specifications: Function Equalities and Extensionality

	3 The Static Language and GCIC
	3.1 Bidirectional CIC
	3.2 GCIC: The Surface Language
	3.3 CastCIC: The Cast Calculus

	4 Propositional Equality
	4.1 GEq Syntax and Typing
	4.2 CastEq Syntax and Typing
	4.3 Cast Semantics
	4.4 Semantics of Composition

	5 Parameterized Metatheory: Criteria for Precision and Consistency
	5.1 Stating the Gradual Guarantees
	5.2 Necessary Properties of Precision and Consistency
	5.3 Metatheory: Proving Safety and the Gradual Guarantees

	6 Consistency and Precision
	6.1 Review: Precision and Consistency in GCIC
	6.2 Precision and Consistency for GEq
	6.3 Fulfilling The Critera

	7 Discussion
	7.1 Extensions Enabled by Equality
	7.2 Future Work
	7.3 Related Work

	References

