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Abstract. Constraints on the cosmological concordance model parameters from observables
at different redshifts are usually obtained using the locally measured value of the gravitational
constant GN . Here we relax this assumption, by considering G as a free parameter, either
constant over the redshift range or dynamical but limited to differ from fiducial value only
above a certain redshift. Using CMB data and distance measurements from galaxy clustering
BAO feature, we constrain the cosmological parameters, along with G, through a MCMC
bayesian inference method. Furthermore, we investigate whether the tensions on the matter
fluctuation σ8 and Hubble H0 parameter could be alleviated by this new variable. We used
different parameterisations spanning from a constant G to a dynamical G. In all the cases
investigated in this work we found no mechanism that alleviates the tensions when both
CMB and BAO data are used with ξg = G/GN constrained to 1.0±0.04 (resp. ±0.01) in
the constant (resp. dynamical) case. Finally, we studied the cosmological consequences of
allowing a running of the spectral index, since the later is sensitive to a change in G. For the
two parameterisations adopted, we found no significant changes to the previous conclusions.
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1 Introduction

The ΛCDM concordance model has been successful in accommodating with most of nowa-
days cosmological probes like the cosmic microwave background (CMB) temperature and
polarisation power spectrum, weak lensing correlations, galaxy clustering and supernova’s
Hubble diagram. Recent measurements of the aforementioned observables, Planck [1], KIDS
[2], eBOSS [3], DES [4] and PANTHEON survey [5] have succeeded in putting strong con-
straints on the parameters of the ΛCDM model with near percent precision. However, these
constraints have been obtained with some prior assumptions, among them, a fixed value
for the Newtonian Gravitational coupling (GN ) treated as a constant both in the Newton’s
or the general relativity theory which the Committee on Data for Science and Technology
(CODATA) [6] recommends value as GN = 6.67430 × 10−11 m3 kg−1 s−2. This is strongly
justified from the stringent constraints on G possible variation in time or space, obtained
from experiments in lab and solar system, see [7–10]. Further astrophysical studies corrob-
orated this assumption after attempts to test deviation from fiducial of a time-varying G
using Type Ia supernovae [11, 12] or Tully-Fisher relation data [13], found consistency with
the gravitational constancy hypothesis.

However, unlike the lab or solar system experiments, those on larger astronomical scales,
do not operate onG itself and the analysis rather include proxies to mass of interacting bodies,
leaving room for possible degeneracies through which a variation from fiducial GN remains
possible. This is even more the case when we explore cosmological scales at higher redshifts,
far from our local universe. That is why some have attempted to revisit the different cosmo-
logical studies while relaxing the G value in order to test the impact of such change on the
cosmological parameters constraints and to infer G independently from local measurements.
The latter goal has some theoretical justification, since many modified gravity theories pre-
dict a time-dependent G as an attempt to naturally model the accelerated expansion of the
universe, [14–35].

Another motivation, related to the aforementioned impact on the cosmological parame-
ters constraints, is justified by the growing evidence of two discrepancies found lately on the
matter fluctuation parameter σ8 and the Hubble parameter H0, between their values con-
strained from deep universe probes like the CMB correlations in comparison with those from
local ones, like cluster counts or weak lensing correlations for the σ8 inference [36, 37] or the
Cepheids luminosity distance for H0 [38]. There has been attempts to alleviate the tension
for, either σ8 [39, 40], or the Hubble parameter, for each alone or for both at the same time
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(see [41] and references therein), with relative successes. Especially when combining with the
baryonic acoustic oscillation (BAO) angular distance probe, where it was shown that almost
all the gain in reducing the discrepancy between deep and local probes vanishes when the
BAO constraints were added see e.g. [42]. This was also found by similar attempts to fix the
discrepancy with some of the models we mentioned earlier [19, 20, 43–45]. Other approaches
that were explored meant to have a transition of G at a particular redshift, see [46–48] or
one in H0 in general [49].

In this work we use cosmological observables like CMB temperature and polarisation to
constrain deviations of G from fiducial but we do not consider modification to G as a result
of a particular modified gravity. We rather choose to test deviation and extension to the
fiducial fixed G N value with general phenomenological parameterisations and try to account
for the consequences of such parameterisation on the observables even on the microphysics
involved.

Similar studies on the deviation from fiducial G in cosmology have been considered, for
instance: in [50], it was provided a method to constrain the gravitational constant, showing
that a degeneracy between its effect on the expansion rate and the primordial spectrum can
be broken by measuring CMB polarisation along with its temperature correlations; in [51]
were presented cosmological constraints on deviations of Newton’s constant at large scales,
analysing the cosmic microwave background (CMB) anisotropies and primordial abundances
of light elements synthesised by big bang nucleosynthesis; and in [52], where CMB data
were used together with BBN priors to constrain G in models of free constant or varying G;
whereas in [11], SN data were used to set a limit on G variation with time. These analysis were
repeated later, with updated measurement of G after the first Planck release [53], confirming
that G/GN is in agreement with being equal to one. Recently, there have been works using
BNN data [54] or adding to the CMB, local data such as BAO or SNIa measurements, [55].

Here we follow the same idea by considering G, within general relativity theory, as a
free parameter allowed to vary from the fiducial GN , paying attention to its impact on all
the main physical processes involved in the cosmological observables. This has a double
objectives of, first exploring the consequences on the G constraints, and second its impact on
the aforementioned discrepancies and the other cosmological parameters. Since it has been
shown that models with late modification do not succeed in fixing the discrepancies, especially
when combining with BAO constrains, we shall, as describe later, consider parameterisations
where G deviates from GN only at early times before reverting back to its fiducial value
after a certain redshift, with the latter threshold chosen at different times outside the BAO
domain presently measured at redshfits below z ∼ 2.5.

The outline of the paper is the following. In Sect. 2 we discuss models for modified G
and implications on the cosmological probes. In Sect. 3 we describe the datasets used and
the way modifications to observables were implemented. In Sect. 4 we present and discuss
the results of a Bayesian analysis constraints and their implications on the cosmological
observables, and we conclude in Sect. 5.

2 Variable G : Models and cosmological implications

We introduce a dimensionless parameter ξg to quantify the potential deviation of Newton’s
gravitational G from the laboratory-based measurement GN . We consider three phenomeno-
logical parameterisation:
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• constant case scaling with ξg
G = ξg ×GN ; (2.1)

• a step like function where the parameter ξg is different from fiducial GN , above a certain
redshift ztr,

G =

{
ξg ×GN , for z > ztr;

GN , for z < ztr;
(2.2)

• an hyperbolic tangent function, where δz is the width of the transition:

G =

[
1− (1− ξg) (1− 0.5)× tanh

(
ztr − z
δz

)]
×GN . (2.3)

To show the impact on observables like the CMB spectrum or BAO feature, we consider,
without loose of generality, the first parameterisation. The Friedmann equation then becomes
(working in c = 1 units):

H2 =

(
ȧ

a

)2

=
8π

3
ξ2gGNρtot (2.4)

where ρtot is the total energy density. This implies that the expansion rate H satisfies:

H(a, ξg) = ξg ×H(a) , (2.5)

so that the shape of H is not changed by ξg. This serves to see the consequence on the
CMB temperature power spectrum. To show its effect, we start by writing the temperature
perturbation as an integral along the line of sight over the sources:

∆Tl (k, ξg) =

∫ 1

a
da S̃ (k, a, ξg) eik·n̂r(a,ξg)g̃ (a, ξg) , (2.6)

where S(k, a) is the anisotropy source term and r(a) is the distance from the observer to a
point along the line of sight at the scale factor a, and g(a) is the visibility function. Assuming,
form the moment, ξg constant, the distance r(a) reads:

r(a, ξg) =

∫ 1

a

da

H(a, ξg)a2
= r(a)/ξg (2.7)

and the ξg parameter is factored out in Eq. (2.6), satisfying S(k, a, ξg) = S(k/ξg, a), as also
shown by [50].

Since the CMB angular power spectrum is calculated from ∆Tl(k, ξg) using

Cl(ξg) =

∫
dk

k
P (k0)|∆T l(k, ξg)|2 (2.8)

where P (k0) is the power-law primordial power spectrum, we can choose to scale the latter
by means of a transformation k′ = k ∗ ξg, this will compensate the ξg modifications so that
the CMB power spectrum ends up being invariant by our parameterisation of G.
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This holds if the visibility function is not affected by ξg. However, the physics of
recombination introduces a preferred timescale. This happens through the visibility function
g(a) written in terms of κ (the opacity for Thomson scattering) that is dependent of ξg as:

g(a, ξg) = −a2H (a, ξg)
d

da
exp (−κ (a, ξg)) (2.9)

with

κ(a, ξg) = σT

∫ 1

a

ne(a, ξg)

H(a, ξg)a2
da, (2.10)

where σT is the Thomson scattering cross section, a is the scale factor, with the number of
free electrons ne affected by ξg as:

dxe
da

=
Cr

a H(a, ξg)

[
β(Tb)(1− xe)− nHα(Tb)x

2
e

]
. (2.11)

Here, nH is the total number density of Hydrogen nuclei, xe = ne/nH is the ionisation
fraction, Tb is the baryon temperature, β(Tb) is the collisional ionisation rate from the ground
state, α(Tb) the recombination rate to excited states and Cr is the Peebles correction factor
to account the presence of non-thermal Lyman-α resonance photons. We also account for
modifications in the ionisation fraction of Hydrogen xp and Helium xHeII. Based on [56], we
implemented the changes of G in the Boltzman code (see Sec. 3) by solving the following
differential equations as a function of ξg:

dxp
da

=
f1(xe, xp, nH, TM)

a H(ξg, a)
, (2.12)

dxHeII

da
=
f2(xe, xHeII, nH, TM)

a H(ξg, a)
, (2.13)

dTM
da

=
f3(xe, TM, TR)

a H(ξg, a)
+ 2aTM, (2.14)

where TM (TR) is the matter (radiation) temperature and where the specific expressions of
f1, f2 and f3, independent of ξg are given in [56].

There is still an effect from the change in the Poisson equation that relates the gravita-
tional potential Φ to the density contrast δ

∇2Φ = −4πξgGNρ δ , (2.15)

which influences the CMB anisotropy on large scale through the Integrated Sachs Wolfe
effect (ISW). The linear ISW temperature shift along direction n̂ is calculated from the
time-dependent gravitational potential Φ

∆TISW

T
(n̂) = −2

∫ 1

a
a (1− f(a)) Φ (n̂, a) da , (2.16)

where f = d lnD/d ln a is the linear growth rate of structure and D(a) = δ(a)/δ(1) is the
growth of density contrast δ(a). The equation of motion for δ(a) is:

δ′′ +

(
3

a
+
E′

E

)
δ′ − 3

2

Ωm,0

a5E2
δ = 0 (2.17)
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where prime denotes derivation with respect to a and E2(a) = H2(a, ξg)/H2
0 . Thus, H0, Ωm,0

and, ξg will be constrained from CMB through this effect.
The variation of G will also affect the polarisation of the CMB, allowing us to use the

polarisation spectrum and cross correlations with the temperature fluctuations spectrum of
the CMB to constrain ξg.

To understand the effect of ξg on the polarisation, let us consider that the degree of
linear polarisation, ∆P , is defined in terms of the Stokes parameters Q and U of the CMB
radiation. Choosing two orthogonal directions basis, into which the intensity is projected, so
that U = 0, we can limit the study to the amplitude of the Q Stokes parameter produced by
a single Fourier mode k [57] yielding:

Q ∝ cs k δτD sin(kcsτD)g(a, ξg) (2.18)

where g(a, ξg) is the visibility function, cs is the photon-baryon sound speed, τD is the
conformal time ( τ =

∫
dt a0/a) when G peaks and δτD its width. The extra δτD in Eq. (2.18)

implies that, if the visibility function is wider, the photons will travel on average longer
between their last scatterings, enhancing the quadrupole anisotropy, thus increasing the
polarisation. This effect will induce a characteristic scale k∗, above which the effects on the
polarization is larger.

A change in the value of G could also impact the reionisation process influencing the
CMB observations. During the reionisation epoch, CMB photons are Thomson scattered
by the free electrons produced, which suppress the amplitude of the observed primordial
anisotropies. Additionally, large-scale polarisation of the CMB radiation could be produced
above the earlier ones during recombination. However the reionisation process is complicated
and includes many astrophysical variables whose study is outside the scope of this work.
Therefore, we consider only model with simple almost instant parameterisazation so that
any influence of G on time and volume will not manifest, as well as any gravitational effect
degenerate with G will not influence the physics of reionisation from forming stars. In practice
the ionisation fraction xe is parameterised as a tanh function with a width ∆ z = 0.5 around
the reionisation redshift [58].

3 Datasets and analyse method

In order to implement our model, we modify the cosmological solver CLASS [59] that is
able of calculating the temperature-temperature (TT) and polarisation-polarisation (EE)
angular correlations and their cross correlations (TE) of the CMB, as well as the cosmological
distances and the redshift epoch of the baryonic acoustic oscillation early occurrence, both
needed to compare with galaxy clustering BAO measurements.

We then perform a Monte Carlo Markov Chain (MCMC) analysis to constrain deviations
of G from fiducial CODATA value using MontePython [60], a tool that embeds CLASS
functions in the Planck likelihoods as well those needed for the BAO likelihood. For that, we
use Planck CTT

` , CTE
` , and CEE

` at high ` and TT and EE correlations at low ` from the final
mission survey release of Planck (2018) [1], as well as the BAO measurements from Beutler
et al. (2011) [61], Ross et al. (2015) [62] and Alam et al. (2017) [63].

Besides the free constant case, we choose the redshift threshold at which the model
reverts back to constant fixed G case, which allows us to distinguish between the different
effects. We choose two different thresholds: the first one is ztr ∼ 30, which occurs later than
the recombination epoch (around the beginning of formation of structures) but well before
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Figure 1. CMB temperature angular power spectrum for different ξg = G/GN . Top left panel
is obtained with a constant ξg, whereas the top right panel is obtained with ξg 6= 1 for a redshift
transition from GN at ztr > 8. Bottom left panel is obtained with ξg 6= 1 for ztr > 30, whereas the
bottom right panel is obtained with ξg 6= 1 with a transition width ±10 around ztr ∼ 30.

the reionisation epoch; the second one is around ztr ∼ 8, happening at the latter epoch
but well before the BAO local times, since this last epoch would have been covered by the
free constant case that goes close to our present times around z ∼ 0.0025. Even with the
free constant case we do not consider redshifts below the latter value, to try evade solar and
astrophysical constraints from non linear structure formation, since also z ∼ 0.0025 translates
into the size of ∼ 10 Mpc, close to that of our local galaxy cluster. In all these models the
transition back from modified G to the fiducial GN happens sharply. This could enhance
the ISW effect. To test the impact of such effect, we consider the same binning but with a
smooth transition with a large width following the model described by Eq. (2.2) in Sect. 2.

To justify the above choices, we illustrate their effects on our observables. In Fig. 1, we
show the temperature correlations angular power spectrum CTT

` s for some of the different
aferomentioned cases. On top left panel, we observe that the free constant case (ξg 6= 1) affects
the angular power spectrum at small scales. For the other cases, the effects are prominent
at larger scales. We, thus, expect that the latter will put more constraints on deviations of
G from the fiducial. Furthermore, we observe that the dynamical G affects strongly the ISW
scales (see Sect. 2), contrary to the case of constant G where the variation has a monotonic
increase. However, the influence of the dynamical G gets smaller (in average) when the
redshfit threshold gets close to late times (bottom left and bottom right panels). Thus, in
order to take this effect into account, we compare the MCMC chains with and without the
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Figure 2. CMB polarisation angular power spectrum for different ξg = G/GN and their residuals
with respect to fiducial GN . Top: Obtained for the same change in G at all redshifts. Middle:
Obtained for a redshift transition from GN at ztr > 8. Bottom: Obtained for a redshift transition
from GN at ztr > 30.

smooth transition.

In Fig. 2, we show the polarisation correlations angular power spectrum CEE
` s for the

three cases: one with the change in GN for all redshifts, then, in the middle, with a transition
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Figure 3. Confidence contours (68 and 95%) for cosmological parameters in the fixed CODATA GN

case in comparison with a free constant ξg 6= 1 using CMB data only or combined with BAO data.

threshold below ztr ∼ 30 and, at bottom, for ztr ∼ 8. As described in Sec. 2, we observe,
especially in the last two panels, that the difference in amplitude of the CEE

` s is significant
and it could reach twice its value even for a 10% modification on value of G. This suggests
that the probe could put strong constraints on the value of G.

4 Results and discussion

In Fig. 3, we show the confidence contours of the cosmological parameters using the CMB
temperature and polarisation correlations from Planck 2018 datasets with the free G constant
case, together with the case where G is fixed to the CODATA value. We usually show
the confidence values obtained at the 68% level unless otherwise stated. We quantify the
deviation with the parameter ξg = G/GN , where ξg = 1.0 corresponds to G taking the
fiducial CODATA value. We first observe that the fiducial value of G is within the inferred
ξg, with the maximum likelihood at 1.0±0.04. This is the consequence of ξg 6= 1.0 effect on
the small scales of the CMB spectrum as illustrated in Sec. 3 and in Fig. 1, as a result of
the correlation between ns and ξg. However the discrepancy with σ8 or H0 remains high as
the constraints do not change significantly with respect to the fixed GN case. We neither
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Figure 4. Confidence contours (68 and 95%) for cosmological parameters in the fixed CODATA GN

case in comparison with a free constant ξg 6= 1 for a redshift transition from GN at ztr > 30 using
CMB data only or combined with BAO data.

observe a change in ξg constraints when we combine CMB with BAO probes. This is due to
the fact that a different constant fiducial value of G only changes the cosmic clock without
altering the BAO observable.

In Fig. 4, we show the confidence contours when we allow ξg to vary for ztr > 30. We
observe that, using Planck 2018 only, the constraints on G are similar to those of the free
constant ξg case, with the maximum likelihood at ∼ 1.0 and a 1σ variation of ±0.03. The
reason is that, at lower `, the impact of ξg on TT correlation (Fig. 1 bottom left) is lower than
the one observed with the free constant ξg on all redshifts case, while the opposite is seen for
the effect on the polarisation correlations as shown in Fig. 2. For the Hubble parameter, we
observe that the discrepancy is alleviated as the constraints become much broader than the
constant G case, with the local Hubble value of ∼ 73− 74 now falling within less than 1σ of
CMB inferred one. The σ8 discrepancy is reduced in this parameterisation as well, and the
value corresponding to that from local probes is reached at the 2σ level. This is expected
from the non monotonic effect of ξg on the ISW level seen in Sec. 3 in Fig. 1. However,
the combination with the BAO datasets restores the discrepancy on both σ8 and H0. The
BAO addition also tightens the constraints on ξg to ±0.03 at 3σ, as a consequence of ξg
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Figure 5. Confidence contours (68 and 95%) for cosmological parameters in the fixed CODATA GN

case in comparison with a free constant ξg 6= 1 for a redshift transition from GN at ztr > 8 using
CMB data only or combined with BAO data.

that now needs to accommodate this paramerterization with two observations that disfavor
a transition between the two redshifts.

Assuming a value of ztr ∼ 8, we observe in Fig. 5 that the constraints on ξg stay almost
the same or get slightly tighter despite that ξg is allowed to deviate from its fiducial value for
a larger range of redshifts. The reason here is that the sensitivity of the CMB polarisation
spectrum to ξg is weaker than the ztr ∼ 30 case, as seen in Sect. 3 in Fig. 2. The same
discussion applies to σ8 or H0 constraints with the only difference that now BAO data are
unable to completely restore the discrepancy as in the previous case because G is allowed to
vary for a much longer period.

So far we have considered models that deviate sharply at some chosen redshift; however
it is interesting to consider smooth transitions that mimics a linear variation around the
threshold redshift. In Fig. 6 we show the results combining CMB and BAO data when using
a tanh function which allows for the transition at ztr ∼ 30. We observe no substantial impact
on all the parameters when we combine CMB to BAO data, indicating that the ISW effect is
not enough to constrain deviations of G. We also verified (without showing here the results)
the case where ztr ∼ 8 and we found an even smaller difference between the confidence
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Figure 6. Confidence contours (68 and 95%) for cosmological parameters for a free constant ξg 6= 1
with a sharp transition from GN after ztr > 30 in comparison with a transition width ±10 around
the same redshift threshold using CMB data only or combined with BAO data.

contours of the sharp transition parameterisation and the smoothed one.

Finally, since we found that the constraints could change with the redshift transition
threshold, we decided, in a more model independent approach, to repeat the bayesian analysis
with ztr as an additional free parameter. Using Planck 2018 data alone, we observe in
Fig. 7 that the ξg maximum likelihood coincides with the fiducial GN one with much tighter
constraints then the other cases to ±0.02. The H0 and σ8 tensions are alleviated but after
adding BAO data, the discrepancy on H0 is restored and the ability to fix the σ8 discrepancy
is reduced. The addition of BAO also tighten the constraints on ξg with 68% confidences
values at ±0.01.

Besides the redshift threshold influence, we noticed that the spectral index ns shows
a correlation with ξg in all the cases considered in this work. Since the CMB probe puts
strong constraints on ns, we decided to relax the latter by allowing a scale dependency
through the spectral index running parameter αs = dns/dlnk. In Figs. 8 and 9 we show the
confidence contours on the cosmological parameters including a free running spectral index
different from the null fiducial value in the fixed CODATA GN case along with two of the
parmetrisations for ξg with opposite behavior in terms of their redshift transition value: the
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Figure 7. Confidence contours (68 and 95%) for cosmological parameters in the fixed CODATA GN

case in comparison with a free constant ξg 6= 1 and a free redshift transition threshold from GN using
CMB data only or combined with BAO data.

first considering a free constant ξg different from fiducial at all redhsifts (i.e. with a threshold
fixed to ztr ∼ 0.0), while the second allows a free ztr on a very large range spanning from
nowadays until the recombination epoch. For the case of a constant free G and a free αs
(Fig. 8), we observe that the running is correlated with the ξg with the later confidence
contours tighter than the case with vanishing αs (represented by the dashed vertical lines).
This comes from the fact that the data rather prefers a negative αs instead of larger deviations
of ξg. The latter constraints are however slightly broader than the ξg = 1 case, resulting in a
larger constraints on the Hubble parameter with respect to the previous case with a vanishing
αs, represented by the dashed vertical lines in the H single likelihood box. We finally note
that the confidence contours remain almost the same for all the parameters when combining
with BAO. In the case of allowing the redshift transition threshold also to vary (Fig. 9), we
observe that the introduction of the running parameter does not have much impact on the
different constraints, since already in the previous case relaxing ztr has showed a preference
for a tighter ξg though the deviation of the αs from the null fiducial value translates into
slightly wider constraints on the ξg, σ8 or H0 (with the previous represented by the vertical
dashed lines in each box), with the last two parameters again restored to their fiducial values
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Figure 8. Confidence contours (68 and 95%) using CMB data only or combined with BAO data for
cosmological parameters in the case of a free αs and a fixed CODATA GN in comparison with a free
αs along with ξg 6= 1.

when we combine with BAO.

5 Conclusions

In this paper we have studied the impact of a varying G onto some of the cosmological
observables at both macro or micro physical scales. For that, we used CMB temperature
and polarisation correlations data alone or in combination with BAO distance measurements
from galaxy clustering. We performed a MCMC analysis allowing a constant free G different
from fiducial or a dynamical G that switches value at a given redshift. The objective of
this analysis was to update the constraints on the deviation of G from GN and investigate
whether the discrepancy on the matter fluctuation σ8 and H0 parameters could be alleviated
by these parameterisations.

For a free constant G case, we found that this parameterisation has no effect on fixing
the σ8 or H0 discrepancy while the ξg = G/GN is constrained to 1.0±0.04. Then, to separate
constraints coming from lower redshifts from the ones at recombination epoch, we considered
a dynamical G, with two redshift threshold at which G transits from GN , one at high redshift
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Figure 9. Confidence contours (68 and 95%) using CMB data only or combined with BAO data for
cosmological parameters for a free ξg with a free redshift threshold and a free αs together with a free
αs but with a fixed CODATA GN .

ztr ∼ 30 and another at ztr ∼ 8. With both redshift transitions, we found that we were able of
alleviating the tensions on H0 and σ8 only if we use the CMB temperature and polarisation
correlations alone and at the expense of wider constraints, while the discrepancies were
restored when we combine with BAO in the higher redshift transition option or only reduced
with the lower redshift transition case. We also found that the constraints remain almost
unchanged whether we consider a sharp or a smooth wide transition of the G from its fiducial
value at the given redshift, as an indication that the ISW effect is not enough constrained by
CMB data due to the large cosmic variance present at large scales in the CMB correlations
measured.

Finally, we considered two additional more general cases: one allowing a free redshift
threshold in a further model independent approach, and the other introducing another degree
of freedom by a non vanishing running of the spectral index, since the later was found in
correlation with ξg. In the first case, we found that we are still not able of alleviating
the tension on the Hubble constant when the BAO are combined with CMB data, while
the discrepancy on σ8 is reduced and ξg is constrained to 1.0±0.01. In the case where we
allowed a free running spectral index αs, we found that the constraints on ξg are tightened
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with the data rather preferring a negative αs, with only a small improvement of alleviating
the discrepancies on H0 and σ8 was found. When we considered a free redshift transition
value along with a free running of the spectral index, we observed that the data is now
preferring a stronger correlation ξg − α than ξg − ns allowing further deviation of ξg from
the fiducial and an alleviation of the tensions but only if BAO observations are not included.
We conclude that there remains a preference to the fixed CODATA GN model and that
the different parameterisations we considered are not able of alleviating the Hubble and the
matter fluctuation parameter discrepancies.
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on the evolution of σ8(z) from Linear Nash-Greene fluctuations, arXiv:2009.0216.

[31] K. A. Bronnikov, On variations of G in the geometric scalar theory of gravity, Eur. Phys. J. C
80 (2020), no. 5 434, [arXiv:2004.0123].

[32] E. T. Hanımeli, B. Lamine, A. Blanchard, and I. Tutusaus, Time-dependent G in Einstein’s
equations as an alternative to the cosmological constant, Phys. Rev. D 101 (2020), no. 6
063513, [arXiv:1910.0832].

– 16 –

http://xxx.lanl.gov/abs/2006.0546
http://xxx.lanl.gov/abs/2104.1448
http://xxx.lanl.gov/abs/1308.1019
http://xxx.lanl.gov/abs/2004.1426
http://xxx.lanl.gov/abs/2004.1434
http://xxx.lanl.gov/abs/1403.7377
http://xxx.lanl.gov/abs/2009.0443
http://xxx.lanl.gov/abs/1803.0861
http://xxx.lanl.gov/abs/hep-ph/9803315
http://xxx.lanl.gov/abs/hep-ph/9905221
http://xxx.lanl.gov/abs/hep-th/9906064
http://xxx.lanl.gov/abs/hep-th/0005016
http://xxx.lanl.gov/abs/2009.0216
http://xxx.lanl.gov/abs/2004.0123
http://xxx.lanl.gov/abs/1910.0832


[33] S. Nesseris, G. Pantazis, and L. Perivolaropoulos, Tension and constraints on modified gravity
parametrizations of Geff(z) from growth rate and Planck data, Phys. Rev. D 96 (2017), no. 2
023542, [arXiv:1703.1053].

[34] M. Ballardini, F. Finelli, and D. Sapone, Cosmological constraints on Newton’s gravitational
constant, arXiv:2111.0916.

[35] T. Abadi and E. D. Kovetz, Can conformally coupled modified gravity solve the Hubble
tension?, Phys. Rev. D 103 (2021), no. 2 023530, [arXiv:2011.1385].

[36] H. Hoekstra, R. Herbonnet, A. Muzzin, A. Babul, A. Mahdavi, M. Viola, and M. Cacciato, The
Canadian Cluster Comparison Project: detailed study of systematics and updated weak lensing
masses, Mon. Not. Roy. Astron. Soc. 449 (2015), no. 1 685–714, [arXiv:1502.0188].

[37] Planck Collaboration, P. A. R. Ade et. al., Planck 2013 results. XXIX. The Planck catalogue
of Sunyaev-Zeldovich sources, Astron. Astrophys. 571 (2014) A29, [arXiv:1303.5089].

[38] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D. Scolnic, Large Magellanic Cloud
Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and
Stronger Evidence for Physics beyond ΛCDM, Astrophys. J. 876 (2019), no. 1 85,
[arXiv:1903.0760].
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[40] S. Ilić, Z. Sakr, and A. Blanchard, Cluster counts. II. Tensions, massive neutrinos, and
modified gravity, Astron. Astrophys. 631 (2019) A96, [arXiv:1908.0016].

[41] E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G.
Riess, and J. Silk, In the realm of the Hubble tension—a review of solutions, Class. Quant.
Grav. 38 (2021), no. 15 153001, [arXiv:2103.0118].

[42] K. Jedamzik, L. Pogosian, and G.-B. Zhao, Why reducing the cosmic sound horizon alone can
not fully resolve the Hubble tension, Commun. in Phys. 4 (2021) 123, [arXiv:2010.0415].

[43] A. a. J. S. Capistrano, Constraints on σ8 and degeneracies from linear Nash-Greene
perturbations in subhorizon scale, Eur. Phys. J. C 80 (2020), no. 9 898.

[44] J. Sola, A. Gomez-Valent, J. de Cruz Perez, and C. Moreno-Pulido, Brans-Dicke cosmology
with a Λ- term: a possible solution to ΛCDM tensions, arXiv e-prints (June, 2020)
arXiv:2006.04273, [arXiv:2006.0427].

[45] R. P. Gupta, Effect of evolutionary physical constants on type-1a supernova luminosity,
arXiv:2112.1065.

[46] L. Kazantzidis and L. Perivolaropoulos, Hints of a Local Matter Underdensity or Modified
Gravity in the Low z Pantheon data, Phys. Rev. D 102 (2020), no. 2 023520,
[arXiv:2004.0215].

[47] V. Marra and L. Perivolaropoulos, Rapid transition of Geff at zt'0.01 as a possible solution of
the Hubble and growth tensions, Phys. Rev. D 104 (2021), no. 2 L021303, [arXiv:2102.0601].

[48] G. Alestas, D. Camarena, E. Di Valentino, L. Kazantzidis, V. Marra, S. Nesseris, and
L. Perivolaropoulos, Late-transition vs smooth H(z) deformation models for the resolution of
the Hubble crisis, arXiv:2110.0433.

[49] M. G. Dainotti, B. De Simone, T. Schiavone, G. Montani, E. Rinaldi, and G. Lambiase, On the
Hubble constant tension in the SNe Ia Pantheon sample, Astrophys. J. 912 (2021), no. 2 150,
[arXiv:2103.0211].

[50] O. Zahn and M. Zaldarriaga, Probing the Friedmann equation during recombination with future
CMB experiments, Phys. Rev. D 67 (2003) 063002, [astro-ph/0212360].

– 17 –

http://xxx.lanl.gov/abs/1703.1053
http://xxx.lanl.gov/abs/2111.0916
http://xxx.lanl.gov/abs/2011.1385
http://xxx.lanl.gov/abs/1502.0188
http://xxx.lanl.gov/abs/1303.5089
http://xxx.lanl.gov/abs/1903.0760
http://xxx.lanl.gov/abs/1803.1117
http://xxx.lanl.gov/abs/1908.0016
http://xxx.lanl.gov/abs/2103.0118
http://xxx.lanl.gov/abs/2010.0415
http://xxx.lanl.gov/abs/2006.0427
http://xxx.lanl.gov/abs/2112.1065
http://xxx.lanl.gov/abs/2004.0215
http://xxx.lanl.gov/abs/2102.0601
http://xxx.lanl.gov/abs/2110.0433
http://xxx.lanl.gov/abs/2103.0211
http://xxx.lanl.gov/abs/astro-ph/0212360


[51] K.-i. Umezu, K. Ichiki, and M. Yahiro, Cosmological constraints on Newton’s constant, Phys.
Rev. D 72 (2005) 044010, [astro-ph/0503578].

[52] S. Galli, A. Melchiorri, G. F. Smoot, and O. Zahn, From Cavendish to PLANCK: Constraining
Newton’s Gravitational Constant with CMB Temperature and Polarization Anisotropy, Phys.
Rev. D 80 (2009) 023508, [arXiv:0905.1808].

[53] Y. Bai, J. Salvado, and B. A. Stefanek, Cosmological Constraints on the Gravitational
Interactions of Matter and Dark Matter, JCAP 10 (2015) 029, [arXiv:1505.0478].

[54] J. Alvey, N. Sabti, M. Escudero, and M. Fairbairn, Improved BBN Constraints on the Variation
of the Gravitational Constant, Eur. Phys. J. C 80 (2020), no. 2 148, [arXiv:1910.1073].

[55] K. Wang and L. Chen, Constraints on Newton’s constant from cosmological observations, Eur.
Phys. J. C 80 (2020), no. 6 570, [arXiv:2004.1397].

[56] S. Seager, D. D. Sasselov, and D. Scott, A new calculation of the recombination epoch,
Astrophys. J. Lett. 523 (1999) L1–L5, [astro-ph/9909275].

[57] M. Zaldarriaga and D. D. Harari, Analytic approach to the polarization of the cosmic
microwave background in flat and open universes, Phys. Rev. D 52 (1995) 3276–3287,
[astro-ph/9504085].

[58] A. Lewis, Cosmological parameters from WMAP 5-year temperature maps, Phys. Rev. D 78
(2008) 023002, [arXiv:0804.3865].

[59] J. Lesgourgues, The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview, ArXiv
e-prints (Apr., 2011) [arXiv:1104.2932].

[60] B. Audren, J. Lesgourgues, K. Benabed, and S. Prunet, Conservative Constraints on Early
Cosmology: an illustration of the Monte Python cosmological parameter inference code, JCAP
1302 (2013) 001.

[61] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker,
W. Saunders, and F. Watson, The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the
Local Hubble Constant, Mon. Not. Roy. Astron. Soc. 416 (2011) 3017–3032,
[arXiv:1106.3366].

[62] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, The
clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance measure at
z = 0.15, Mon. Not. Roy. Astron. Soc. 449 (2015), no. 1 835–847, [arXiv:1409.3242].

[63] BOSS Collaboration, S. Alam et. al., The clustering of galaxies in the completed SDSS-III
Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample,
Mon. Not. Roy. Astron. Soc. 470 (2017), no. 3 2617–2652, [arXiv:1607.0315].

– 18 –

http://xxx.lanl.gov/abs/astro-ph/0503578
http://xxx.lanl.gov/abs/0905.1808
http://xxx.lanl.gov/abs/1505.0478
http://xxx.lanl.gov/abs/1910.1073
http://xxx.lanl.gov/abs/2004.1397
http://xxx.lanl.gov/abs/astro-ph/9909275
http://xxx.lanl.gov/abs/astro-ph/9504085
http://xxx.lanl.gov/abs/0804.3865
http://xxx.lanl.gov/abs/1104.2932
http://xxx.lanl.gov/abs/1106.3366
http://xxx.lanl.gov/abs/1409.3242
http://xxx.lanl.gov/abs/1607.0315

	1 Introduction
	2 Variable G : Models and cosmological implications 
	3 Datasets and analyse method
	4 Results and discussion
	5 Conclusions

