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Abstract. Computer-supported collaborative inquiry-based learning (CSCIL) 

represents a form of active learning in which students jointly pose questions and 

investigate them in technology-enhanced settings. Scaffolds can enhance CSCIL 

processes so that students can complete more challenging problems than they 

could without scaffolds. Scaffolding CSCIL, however, would optimally adapt to 

the needs of a specific context, group, and stage of the group’s learning process. 

In CSCIL, the stage of the learning process can be characterized by the inquiry-

based learning (IBL) phase (orientation, conceptualization, investigation, con-

clusion, and discussion). In this presentation, we illustrate the potential of auto-

matic content analysis to find the different IBL phases from authentic groups’ 

face-to-face CSCIL processes to advance the adaptive scaffolding. We obtain 

vector representations from words using a well-known feature engineering tech-

nique called Word Embedding. Subsequently, the classification task is done by a 

neural network that incorporates an attention layer. The results presented in this 

work show that the proposed best performing model adds interpretability and 

achieves a 58.92% accuracy, which represents a 6% improvement compared to 

our previous work, which was based on topic-models. 

Keywords: Inquiry Based Learning, Deep Neural Networks, Natural Language 

Processing. 

1 Introduction 

Scholars widely agree that lecture-based teaching should be complemented with more 

active learning methods to support the development of skills and knowledge that stu-
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dents graduating from science, technology, engineering, and mathematics (STEM) do-

mains need [1,2]. In this respect, the potential of computer-supported collaborative in-

quiry-based learning (CSCIL) has been known for a long time [3], and it still is a pop-

ular pedagogical approach to enhance skills and knowledge beneficial for future STEM 

professionals [4]. In short, CSCIL is a technologically facilitated and mediated process 

in which a group of students follows the practices of scientists to acquire scientific 

knowledge, learn scientific content, and better understand the nature of science [5]. 

CSCIL emphasizes the student’s active role in the learning process; students are en-

couraged to explore the material, ask questions, and share ideas with each other so that 

technological advancements can increase the success of learning even more [6]. 

CSCIL is not an unambiguous pedagogical method or model, and there is no unified 

theory of CSCIL. Pedaste et al. [7], however, have made a synthesis of the various 

inquiry-based learning (IBL) models. They provided a framework in which the essen-

tial aspects of IBL are captured with the help of five phases—orientation, conceptual-

ization, investigation, conclusion, and discussion. In the orientation phase, students 

should identify the main concepts and variables of the problem and become familiar 

with the needed technological resources. In the conceptualization phase, students 

should determine the dependent and independent variables as well as propose research 

questions or hypotheses that they start to investigate. In the investigation phase, stu-

dents should plan their data collection procedure, implement the procedure, and analyze 

and interpret the data. In the conclusion phase, students should offer and evaluate solu-

tions to their questions or hypotheses. In the discussion phase, students should elaborate 

on their findings and conclusions as well as reflect their CSCIL. Even though collabo-

ration and technological resources themselves can assist students in IBL, research has 

shown that other scaffolds are also needed to achieve the benefits of CSCIL [8]. It is 

also known that the needs for scaffolds are different in the different IBL phases [5]. 

Thus, before designing and implementing the scaffolds, there is a need to study CSCIL 

with particular focus on the IBL phases. To study CSCIL, researchers can conduct con-

tent analysis [9,10], for example, so that they code the transcribed students’ conversa-

tions to the different IBL phases (orientation, conceptualization, investigation, conclu-

sion, and discussion) [7]. 

Currently, researchers conduct content analysis procedures mostly manually. The 

human-driven content analysis of large data sets, however, is time-consuming. Moreo-

ver, the validity of inferences from the data depends on the consistency of the coding 

procedures [11], which is why the inter-coder and intra-coder reliability are subject to 

intense methodological research efforts over long years [12]. The development of an 

automatic content analyser could have significant implications concerning the scaffold-

ing CSCIL. First, automation allows large-scale analyses. Second, it might enable the 

real-time monitoring of several groups when they engage in CSCIL. The real-time in-

formation about groups’ ongoing IBL phase could be useful so that technological learn-

ing environments or teachers could adapt scaffolds based on each group’s needs. The 

present work introduces an automatic content analysis method for utterance classifica-

tion so that the IBL phase can be automatically captured from CSCIL processes taking 

place in face-to-face interaction in an authentic higher education setting. Our method 

shows the potential of computer-driven analysis to address the current challenges of 
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manual content analysis, namely insufficiency of the time resources and issues con-

cerning reliability. We address the following research question: How similar are the 

results of the manual and proposed automatic content analysis? 

2 Related Work 

The present work focuses on the automatization of the IBL phase coding necessary for 

all further analysis. Therefore, this work contributes by automatizing a time-consuming 

process of researchers’ work, so researchers can focus on interpreting results and de-

signing optimal scaffolds. A previous work done by our team presented in [13] had the 

same objectives and was used as a guide-line for this research. To improve the perfor-

mance, the methodology presented here focuses on two points: 

Feature Engineering. The previous work was based on a Latent Dirichlet Alloca-

tion (LDA) topic model [14]. Topic models are statistical models that are used to find 

groups of words, called topics, that usually appear together in large document collec-

tions [13]. This model was trained with scientific literature (physics textbooks) to gen-

erate features from the utterances, representing them as a distribution of a fixed list of 

60 learned topics. However, the LDA model training process did not include natural 

dialogic language sources that are present in common social interactions (such as 

groups’ conversations), which are however difficult to obtain. Nevertheless, even with 

these limitations the results of the previous work were promising. Alternatively, in this 

work we used a Word Embedding model. This procedure consists in the assignment of 

high dimensional vectors to words in a way that preserves the syntactic and semantic 

relationships between them, and is one of the most fundamental techniques in natural 

language processing [15]. When trained on large enough corpora, this model admits 

vector representations for a big number of words, even for typical of dialogic language. 

In this work, we evaluate a word embedding model already trained on a mass scale 

corpus (provided by the TurkuNLP project [16]), to obtain a numerical representation 

of utterances as sequences of vectors.  

Classification Algorithm. The preceding study used Support Vector Machines 

(SVMs) [17] trained with the hand-labelled transcriptions from the groups’ conversa-

tions to classify each utterance. Instead, we used a deep neural network with an embed-

ding and an attention layer, which are widely applied in the Natural Language Pro-

cessing tasks [18]. When needed, the incorporation of an embedding layer makes pos-

sible the adjustment of the word embedding vectors during the training process. On the 

other hand, attention layers are a standard part of the deep learning toolkit, contributing 

to impressive results in various tasks. In fact, a standard neural network consists of a 

series of non-linear transformation layers, where each layer produces a fixed-dimen-

sional hidden representation. For tasks with large input spaces, this paradigm makes it 

hard to control the interaction between components. However, an attention network 

maintains a set of hidden representations that scale with the size of the source by per-

forming a soft-selection over these representations, as explained in [19]. In this work 

we implement two attention mechanisms. The first is called simple attention, that soft-

selects important words from each utterance in a general manner for all categories. The 
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second operates in a category-specific way, so each IBL phase performs the soft-selec-

tion according to their own nature. This mechanism is called differentiated attention. 

Further details will be discussed in the next section. 

3 Methodology 

In this study, we analysed 55 students in an introductory university physics course on 

thermodynamics. The participants were divided into eleven groups of five students and 

each group worked with a shared laptop computer. The students were asked to collab-

oratively solve thermodynamics problems in a technology-enhanced learning environ-

ment while their conversations were screen-captured and audio recorded. In this sec-

tion, we present the procedures when implementing our model for automatic content 

analysis.,1.  

3.1 Data Set 

Our data set was built by manually transcribing each group’s talk while they solved an 

inquiry problem. The transcriptions are in Finnish. Each group said, on average, 180 

utterances, summing up to 1980 for the whole data set. These utterances include, on 

average, 11 words. The utterances were manually labelled by using theory-driven con-

tent analysis [20], i.e. each utterance was coded to one of the IBL phase presented by 

[7]. One of the researchers coded all the utterances while another researcher outside of 

this study independently coded 20% of the utterances. The inter-rater agreement was 

67.7%, after which the disagreements were discussed and resolved. 

3.2 Data Pre-processing 

Text data is pre-processed to transform it into a simpler form so algorithms can perform 

better. First, raw digits are converted to words (example: ‘92’ is turned into ‘ninety-

two’’). Second, punctuation marks are removed, except from questions marks that are 

considered as new words. Later, a tokenization is done considering only the top 2000 

most frequent words (out of 3500 different words found in the transcriptions). Finally, 

utterances are transformed to the same fixed length of 20 words. As a consequence, a 

total of 254 utterances are truncated, and 1700 are padded with the token 0. 

3.3 Feature Engineering 

In this work, the main input for the model is the current utterance represented as a 

sequence of tokens. This sequence will be later transformed into a sequence of word-

vectors by the embedding layer explained later. Additionally, we considered as input 

for our model the previous and the next utterances’ token-sequence representations, as 

 
1  Further details are available at https://github.com/pabloveazul/CIBL. 
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well as the number of words of the current utterance and its relative position in the 

respective group work session. 

3.4 The Neural Network Classifier 

In this work we have replaced the precedent SVM with a neural network composed of 

different layers. Distinct configurations of these layers give rise to numerous models 

with different architectures that are evaluated later. The main layers are explained be-

low2: 

Embedding Layer. Word embedding vectors are obtained from the Tur-

kuNLP project, where an already trained word embedding model is available for public 

use. These vector representations are obtained using a word2vec model [21] trained on 

the Finnish Internet Parsebank (FIB), a mass-scale corpus with automatic syntactic 

analysis that currently includes about 3.7 billion tokens [16]. This layer turns tokens 

into word embedding vectors. We then represent utterances as ordered sequences of 

word-vectors. Mathematically, each word token 𝑚 in the vocabulary is associated with 

an 𝑑-dimensional embedding 𝐸𝑚𝑏(𝑚) ∈ 𝑅𝑑 . If 𝑚 is represented by its one-hot vector 

𝒎, 𝐸𝑚𝑏(𝑚) corresponds to the column 𝑬𝒎 of an embedding matrix 𝑬 ∈ 𝑅𝑑 ⊗ 𝑅|𝑉|. 

Here |𝑉| is the size of the vocabulary 𝑉 (|𝑉|= 2000) and 𝑑 is the dimension of the word 

embedding (d= 200). Then, the embedding layer output of a sequence of 60 words 𝒖 =
[𝒎1, . . . , 𝒎60], corresponding to the previous, current and next utterance (each one of 

20 words) is given by: 𝐞 = [𝐄𝒎1, … , 𝐄𝒎60]. The matrix weights 𝐸𝑖,𝑗 are initialized 

with the weights given by the TurkuNLP project, and can be adjusted through back-

propagation during the training process (if they are set to trainable) or remain constant 

(if they are set to static). The embedding of the token 0 is the null vector. 

Attention Layer. To enhance relevant words for the classification task, a sim-

ple attention mechanism is built. A Single Layer Perceptron (SLP) with a single output 

is applied to every temporal slice of the encoded sequence (i.e. to each embedding of 

𝒆). The full output of this layer is called the attention weight vector: 𝒘 = [𝑤1, . . . , 𝑤60]. 
Mathematically, the attention weight of each encoded word 𝒆𝑡 is given by: 

 𝑤𝑡 = 𝑆𝐿𝑃(𝒆𝑡) = 𝒂 
𝑇𝒆𝑡 + 𝑏  

 (1) 

Here, 𝒂 is a vector with the same dimension as 𝒆𝑡  and 𝑏 ∈ 𝑅. These are the parameters 

of the SLP which are learnt through backpropagation. Later, a softmax layer is applied 

time-wise (i.e. word-wise) to obtain probabilities proportional to the exponentials of 

the weight numbers. The output is then interpreted as an attention-probability vector 

𝑎𝑡𝑡(𝒆) = [𝑎𝑡𝑡(𝒆)1, … , 𝑎𝑡𝑡(𝒆)60]: 

 𝑎𝑡𝑡(𝒆)𝑡  =  𝑠o𝑓𝑡𝑚𝑎𝑥(𝒘)𝑡 = ℯ(𝒂 
𝑇𝒆𝑡+𝑏)/(∑  60

𝑖=1 ℯ(𝒂 
𝑇𝒆𝑖+𝑏)) (2) 

This attention-probability vector is then multiplied element-wise with the vector 𝐞 =
[𝒆1, … , 𝒆60] of encoded words to finally obtain a weighted sequence 

 
2  All vectors and matrix written in bold, scalars in light. 



6 

[𝑎𝑡𝑡(𝒆 )1𝒆1, … , 𝑎𝑡𝑡(𝒆 )60𝒆60]. Each attention probability can be interpreted as the im-

portance of each word in the utterance. This attention mechanism is called simple at-

tention. However, one may think that the importance of words may vary depending on 

the final classification. For example, numbers within an utterance should be the im-

portant features for the investigation phase, whether concept words should be respec-

tively for the conceptualization phase. This leads to another possible architecture for 

the attention layer, where each category is connected with one independent attention 

mechanism. This means each category 𝑐 is associated with one SLP (noted 𝑆𝐿𝑃𝑐) with 

a single output, and no parameters are shared between these SLPs . Mathematically this 

is: 

 𝑤𝑡
𝑐 =  𝑆𝐿𝑃𝑐(𝒆𝑡) = (𝒂𝒄)  

𝑇𝒆𝑡 + 𝑏𝑐
 
 

 
   (3) 

Where (𝒂𝒄) and 𝑏𝑐
 correspond to the parameters of the SLP associated to the category 

𝑐. Similarly, the attention-probability of a given category 𝑐 and a given encoded word 

𝒆𝑡 is then computed as: 

 𝑎𝑡𝑡𝑐(𝒆 )𝑡  = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒘𝒄)𝑡 =  ℯ(𝒂𝒄)  
𝑇

𝒆𝑡+𝑏𝑐
 
 

/(∑  60
𝑖=1 ℯ(𝒂𝒄)  

𝑇
𝒆𝑖+𝑏𝑐

 
 

) (4) 

The output of this layer are the five weighted sequences: 

[𝑎𝑡𝑡𝑐(𝒆)1𝒆1, … , 𝑎𝑡𝑡𝑐(𝒆)60𝒆60]. This attention mechanism is named differentiated at-

tention. 

Sum Layer. A simple sum is applied timewise over all the vectors from the 

previous layer to obtain a context vector 𝒔 =  ∑  60
𝑡=1 𝒖𝑡, where 𝒖 = [𝒖1, … , 𝒖60] is the 

previous output sequence. When the differentiated attention mechanism is present, this 

sum is done independently on each weighted sequence of each category 𝑐: 𝒔𝒄 =
∑  60

𝑡=1 𝑎𝑡𝑡𝑐(𝒆)𝑡𝒆𝑡  . 
Multi-Layer Perceptron. After the input corresponding to the utterances is 

processed by the previous layers, the final sum 𝑠 is concatenated with the inputs corre-

sponding to the number of words of the utterance (𝑛) and its relative position in the 

CSCIL-process (𝑟) into a single vector [𝑠, 𝑛, 𝑟]. This vector is fed into an MLP with 

one hidden layer, and an output (𝒚) of dimension 5 (one for each IBL phase) with soft-

max activation function to obtain a probability distribution over the different phases as 

a final prediction 𝒚̂. This prediction is interpreted as the probability of the utterance to 

belong to each one of the phases.  

 𝒚 =  𝑀𝐿𝑃([𝑠, 𝑛, 𝑟]) (7) 

 𝒚̂  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒚) (8) 

In the case of the differentiated attention mechanism, each sum 𝑠𝑐  is concatenated with 

𝑛 and 𝑟 into a single vector [𝑠𝑐 , 𝑛, 𝑟] and fed into a category-specific MLP. Each MLP 

(noted 𝑀𝐿𝑃𝑐) is independent and has a hidden layer and a single output 𝑦𝑐. A softmax 

layer is applied then to the concatenation vector of these outputs to obtain the final 

prediction 𝒚̂. This is: 

 𝑦𝑐  =  𝑀𝐿𝑃𝑐([𝑠𝑐 , 𝑛, 𝑟]) (9) 
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 𝒚̂  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥([𝑦1, 𝑦2, 𝑦3 , 𝑦4, 𝑦5]) (10) 

3.5 Model Evaluation 

To evaluate each model, we independently split the training and testing sets with all 

possible combinations of nine and two group transcriptions respectively. Models are 

trained through backpropagation using an ADAM optimizer [22] and cross-entropy loss 

function. Then, the average accuracy over all the splitting combinations is considered 

as the performance of each model. 

4 Results 

Several models with different layers are evaluated. A table with the description and the 

results of the model evaluation process are shown in the Table 1 (the best results in 

bold): 

Table 1. Model description and evaluation results. The confidence interval is calculated with the 

95% confidence level. (Pre-Trained Trainable: initiated with TurkuNLP weights and trained 

during training process, Pre-Trained Static: initiated with TurkuNLP weights and not trainable, 

No: no addition of the corresponding layer. Model names MLP: Multilayer Perceptron, SE: 

Static Embedding Layer, TE: Trainable Embedding Layer, SA: Simple Attention, DA: Differen-

tiated Attention) 

Model Name Embedding Layer Attention Layer Mean Accuracy on 

Test Set 

Mean Accuracy on 

Training Set 

MLP+SE Pre-Trained Static No 54.43 ± 0.90 76.46 ± 2.02 

MLP+SESA Pre-Trained Static Simple 57.38 ± 1.02 61.87 ± 0.99 

MLP+SEDA Pre-Trained Static Differentiated 𝟓𝟖. 𝟗𝟐 ± 𝟎. 𝟗𝟔 64.57 ± 1.34 

MLP+TE Pre-Trained Trainable No 54.33 ± 1.07 𝟖𝟓. 𝟖𝟕 ± 𝟐. 𝟕𝟖 

MLP+TESA Pre-Trained-Trainable Simple 56.03 ± 0.98 69.50 ± 1.98 

A comparison between the manual and automatic classification of the best performing 

model (MLP+SEDA) is presented through a confusion matrix. Each component 𝐶𝑖,𝑗 in 

the matrix is the average percentage of utterances in the test set that were manually 

coded to IBL phase 𝑖 and automatically coded to IBL phase 𝑗: 

Table 2. Mean Confusion Matrix of the best performing model (Model 3). For each real phase, 

the highest percentage between the phase predictions is in bold. 

Real Phase Predicted 

Orientation  

Predicted Con-

ceptualization 

Predicted In-

vestigation 

Predicted 

Conclusion 

Predicted 

Discussion 

Orientation 17 0.87 1.7 0.12 5.6 

Conceptualization 2.4 2.1 1.4 0.07 5 
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Investigation 2.6 0.48 16 0.02 5.9 

Conclusion 0.04 0.25 0.52 0.2 2.7 

Discussion 6 0.78 4.2 0.4 24 

A comparison table between the previous LDA model [6], the MLP+SEDA and a hu-

man coder regarding the precision for each phase is shown below: 

Table 3. Precision of different IBL phase utterance classifiers. For each phase, the highest pre-

cision between the automatic models is in bold.  

Classifier Orientation 

Precision (%) 

Conceptualization 

Precision (%) 

Investigation 

Precision (%) 

Conclusion Pre-

cision (%) 

Discussion 

Precision (%) 

LDA 50 49 68 49 51 

MLP+SEDA 60 47 67 24 55 

Human Coder 71 55 76 45 64 

Attention probabilities of the differentiated attention mechanism incorporated to this 

model let us understand what type of words are relevant for each IBL phase. In Figures. 

1. and 2. we graphically represent the attention probabilities for each word in the pre-

vious, current and next utterance respectively. In the x-axis each word of each utterance 

is written according to the previous order. Blank spaces correspond to the null word 

vectors added by the padding process. The y-axis represents the attention probability. 

Each coloured line corresponds to a different category (IBL phase): 

 

Fig. 1. MLP+SEDA correctly classifying the utterance 500 into the investigation phase. Atten-

tion probabilities corresponding to the investigation phase are high for numbers (‘nine’, ‘two’, 

‘hundred’, ‘thousand’). 
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Fig. 2. MLP+SEDA misclassifying the utterance 12 into the orientation phase (real: discus-

sion). Attention probabilities of the conceptualization phase are high for concept words 

‘molekyylien’ (molecules) and ‘jakaumaa’ (distribution).  

Figures 1 and 2 show that the attention probability corresponding to null vectors is close 

to 0 for every IBL phase. Also, the attention probabilities effectively vary between the 

different IBL phases, so that peak values are found for a different type of words in each 

case. 

5 Discussion and Conclusion 

This work was our second attempt to automatize the content analysis in an authentic 

CSCIL context. We compared the results with the ones discussed in [13], which we 

have exceeded using the new models by 6%, achieving a 58.9% average accuracy (the 

previous model has a 52.9% average accuracy). Nevertheless, there is still a challenge 

to improve the automatic content analysis models to attain human-level performance 

(67% accuracy). Additionally, most of the issues found for the previous results remain 

present for the ones obtained in this work: precision is still notably higher for the in-

vestigation phase. On the other hand, despite improving the precision for the orientation 

and discussion phase, the precision of all the other IBL phases decreased. To improve 

the precision of the conceptualization and conclusion phases (see Table 2), we will 

gather more data as we now constrained ourselves to a thermodynamics problem. 

Regarding the methodology, we replaced the previous SVM classifier with a deep 

network that can model more complex functions. Also, it incorporates an embedding 

layer that associates high-dimensional features to words, which can be trained through 

backpropagation. Therefore, the previous feature engineering manual process based on 

an LDA model is replaced by this procedure. Additionally, the pre-trained embedding 

model given by the Turku University NLP project incorporates face-to-face Finnish 

vocabulary that was only partially contained previously in the physics textbooks. For 

instance, adding an attention layer helps not only to improve performance but also to 

obtain more interpretable results by analysing the attention weights. For each IBL 
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phase, words with high weights may be interpreted as the key elements for the classifi-

cation task within each utterance.   

The automatized identification of the IBL phase from students’ face-to-face conver-

sation could be used for adaptive scaffolding purpose. Even though the idea of the 

adaptive scaffolding is not a new one [23], the work is still in progress [24]. Our results 

may provide input for this development of systems that allow technological learning 

environments or teachers monitor in real-time (through a dashboard in their 

smartphones or notebooks) the IBL phase of several groups’ CSCIL processes. These 

systems may include other applications, such as giving quick feedback to teachers re-

garding their speech when they provide support to students, as presented in [25]. 
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