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Abstract. In this work, we propose new packing algorithm designed for
the generation of polygon meshes to be used for modeling of rock and
porous media based on the virtual element method. The packing problem
to be solved corresponds to a two-dimensional packing of convex-shape
polygons and is based on the locus operation used for the advancing
front approach. Additionally, for the sake of simplicity, we decided to
restrain the polygon rotation in the packing process. Three heuristics
are presented to simplify the packing problem: density heuristic, grav-
ity heuristic and the multi-layer packing. The decision made by those
three heuristic are prioritizing on minimizing the area, inserting poly-
gons on the minimum Y coordinate and pack polygons in multiple layers
dividing the input in multiple lists, respectively. Finally, we illustrate the
potential of the generated meshes by solving a diffusion problem, where
the discretized domain consisted in polygons and spaces with different
conductivities. Due to the arbitrary shape of polygons and spaces that
are generated by the packing algorithm, the virtual element method was
used to solve the diffusion problem numerically.

Keywords: Polygonal meshes · Geometric packing · Virtual element
method · Computational geometry

1 Introduction

In the last decade, the use of finite element methods (FEM) have been the
common engineering practice to design and evaluate the performance of different
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systems. However, in many applications, the FEM has shown some limitations
related to the complexity involved in the mesh generation, specially for problems
in which the domain is defined by an arrangement of irregular sub-domains. In
particular, these situations are found in problems related to the flux of fluid
and heat in porous media, fracture mechanics of conglomerate rocks, stability
of tailing dams, concrete modeling, amount others. Here, one of the issues is to
deal with the random nature of the sub-domains, requiring the statistical study
of the problem with multiple simulations. As consequence, the computational
burden increases since it is required to draw the geometry and create the mesh
several times.

With the advent of the virtual element method (VEM) [15] very general
polytopal meshes (polygons can even be non-convex) can now be used to sim-
ulate problems based on Galerkin methods in a manner similar to FEM. In
porous media, microstructure, rock accumulation, among others, the bidimen-
sional domain is composed naturally of arbitrary polytopal shapes, which in a
simulation can be represented by virtual elements. In this regard, the mentioned
issues could be solved using the packing perspective together with numerical
methods that employ polytopal meshes (i.e., Virtual Element Method). In a
general perspective, packing is an optimization problem on how to organize the
content of a container as densely as possible. A particular example of pack-
ing is the geometric packing; this packing comprises fitting geometric figures
as much as possible inside a container. For example, packing polygons inside a
rectangle container, or packing tetrahedra inside a cube container. Then, these
polygons/polyhedrons could be used to define the sub-domains at the same time
that could be used as a mesh under VEMs schemes.

Different packing strategies have been developed in the past employing dif-
ferent packing geometries. For example, adopting a circle and sphere packing
[3,8,10] and exploring applications of circle packing through simulations of dis-
crete earthquakes [16] or employing packing geometries based on square-like or
rectangular-like shapes [6,7]. However, the use of convex polygon shapes had
been received a limited attention, being the advancing front approach [4] one of
the seminal works in this matter.

In this work, we propose a new packing algorithm designed for the generation
of polygonal meshes to be used for modeling of rock and porous media based on
VEM. Here, the packing problem to be solved corresponds to a two-dimensional
packing of convex-shape polygons, where the designed algorithm is based on
the locus operation used for the advancing front approach [4]. Additionally, for
the sake of simplicity, we decided to restrain the polygon rotation in the pack-
ing process. In the following sections, the locus operation principle is presented
first. Then, it is explained how the new algorithm works, and subsequently, to
demonstrate the potential and the feasibility of the proposed algorithm, a diffu-
sion problem is solved using the virtual element method on a domain discretized
with a packing-based mesh.
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2 Advancing Front Approach

From the computational complexity theory, the packing problem is considered as
a NP problem [2], which indicates the imperative use of an heuristic to establish a
proper solution. The heuristic employed here is based on the so called Advancing
Front Technique [4] to allocate a new polygon on the boundary of the current
polygon cluster. The algorithm determines the position of the new polygon by
applying an operation to all active polygons in the cluster. The concept of active
polygons is used to identify the polygons that belong to the top layer of polygons
in the packing container. In particular, the algorithm builds a locus over each
of these active polygons, which is defined as the resulting polygon after sliding
the new polygon around the active polygons. This operation is similar to the
Minkowski addition [1]. However, the Minkowski addition extends the polygon
in a particular direction, contrary to the locus that extents the polygon in all
directions. The locus generated from the active polygons of the layer (loci) help
to identify the possible positions of the new polygon on the cluster. In this
regard, the intersection of two loci results in the possible positions to allocate
the center of the new polygon. Note that this approach enforce the intersection
of the polygon with the active layer. Figure 1 shows a scheme to exemplify the
algorithm steps to build the locus polygons. In the figure, it is possible to observe
the locus of each polygon and the possible positions of the new polygon defined
by the intersection between the locus. The computational cost to obtain the
locus is of order O(n + m) using a cross product to determine intersection on
each step with n and m the number of vertices of P and Q, respectively.

Fig. 1. Example of the locus algorithm with two polygons P and Q. a) Positions where
the polygon moves around and the resulting locus. b) Intersection points of the two
loci and the possible positions to allocate the center of the new polygon.
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Note that the advancing front approach has been used before for packing
circles, specifically using the locus of polygons to fill the domain [5]. Similarly,
the algorithm has also been used to perform a sequential sphere packing [9].

3 Convex Polygon Packing Algorithm

As it was stated before, the packing algorithm is considered a NP problem
which requires an heuristic approach. For this purpose, we propose three dif-
ferent approaches on how to generate the mesh. These approaches are:

1. Density heuristic: Aims to place the polygons on a position that minimize the
area generated between the packed polygons.

2. Gravity heuristic: Prioritizes the Y position overall. It tries to place the poly-
gon as low as it can.

3. Multi-layer packing: This packing works differently, groups the input on dif-
ferent batches of polygons, so it simulates multiple layers piled up. In each of
these layers, the multi-layer packing uses either the density heuristic or the
gravity packing heuristic.

Figure 2 shows a scheme to exemplify a comparison between the density
heuristic and the gravity heuristic. We show the decision the algorithm takes
when inserting a polygon on the layout. On both images, the polygons with
striped lines are the positions where the next polygon could be placed. The
green polygon the position selected to place the polygon.

Fig. 2. Gravity heuristic and density heuristic decision example. (a) Decision made by
the area heuristic choosing the middle position because the empty space left by the
polygon has the smallest area. (b) Decision made by the gravity heuristic choosing the
bottom position.
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3.1 Input Construction

The input construction refers to the definition of any new polygon that will be
introduced in the container. Here, two restrictions are imposed: only convex-
shape polygons are generated, and the rotation is restrained. Additionally, two
variables are introduced to control the roundness and size. Then, the polygons are
generated adopting a strategy based on circumscribed circles [13] following three
steps: (1) create a circle, (2) placing points randomly on the circle perimeter,
and (3) connecting the points in a counterclockwise order. As a summary, the
input of this algorithm is a list of radius and number of vertices, while the output
corresponds to a list of convex polygons.

3.2 Inserting a New Polygon

Once the new polygon is defined, it is necessary to define the algorithm to
allocate it. The first step corresponds to insert the first polygon, which comprises
of inserting the polygon at the bottom left corner of the layout (container). For
this purpose, the algorithm searches for the minimum x and y coordinates of the
polygon. Then, the polygon is translated to the corner applying a translation.
In the second step, the process is repeated until there is no polygon left to pack
or cannot pack the remaining polygons. Inside the loop, the next polygon on the
list is take and located in the best position it could be placed depending on the
heuristic decision. If the polygon cannot be inserted, the algorithm returns null,
and it is discarded.

Additionally, it is important to highlight that at the moment to insert a new
polygon, the algorithm iterates over the active polygons to identify if the new
element suits. Thus, the algorithm does the following steps to determine the best
position:

1. It looks for the neighbors of the polygons and checks if the distance between
them is less than the longest diagonal of the inserted polygon.

2. Then, it obtains the locus polygon of both packed polygons and intersects
those loci to get the intersection points.

3. Finally, it tests the obtained position with the used heuristic. If the result
of the evaluation is better than the current best one, it saves the position;
otherwise, the position is discarded.

After the algorithm allocates the polygon, it checks if the neighbor polygons
of the inserted polygon are not suitable for following iterations. For example,
if none of the next polygons can be place near them, then that polygon is not
suitable. This check helps the algorithm to discard polygons and also improve
the computational cost.

3.3 Neighborhood Data Structure

The allocation of new polygons could have a significant computational cost. In
order to alleviate this computational burden, we propose the construction of a
neighborhood data structure that is consulted in each iteration.
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In particular, the data structure consists of a graph with nodes defined by
the centroid of each polygon and the links between the polygon and its neigh-
bors. There are concave or convex polygons between polygons, those polygons
are named “spaces” and also those spaces are inserted to the graph. The graph
is initialized inserting the container. The container is accounted employing two
nodes, one that represents the container itself and another that represents the
empty space. After inserting the container, the graph is updated in the same
fashion after each polygon insertion: (1) identify the space that contains the
inserted polygon, (2) generate two new spaces from allocating the polygon, (3)
add the new spaces and the polygon as new nodes, and (4) update the neigh-
borhood links. Figure 3 shows (a) the mesh of an intermediate iteration of the
algorithm and (b) the graph build from the polygon insertions.

Fig. 3. Packing mesh and its graph data structure. Each of the polygons is named
with a P, and the spaces with H. (a) Intermediate stage of the algorithm. (b) Graph
representation of the intermediate stage (a)

In each step of the packing algorithm, the next inserted polygon or the target
polygon is processed in the same way. After we insert the target polygon, a space
inside is divided into two spaces. So we need to look for that space to update
the graph. Note that this space can be a concave or convex polygon. So to find
this space we use the Shimrat’s algorithm [14], which finds if a point lies inside
a polygon. The Shimrat’s algorithm uses ∞ to cast a ray, for this purpose, we
use a point far away from the layout and then casting a ray from there to the
centroid of the target polygon. Then we use this algorithm on each space across
the graph, if this ray intersects even times, the centroid of the target polygon is
outside that space, and if the ray intersects odd times, the centroid of the target
polygon is inside.

After getting the space to divide or the overlapping space, the algorithms
divide this space into two new ones. Thus for this division, we need to find
the intersection points between the target polygon and the overlapping space.
For this intersection, we use a simple algorithm of order O(n2), but it can
be improved with an algorithm that uses a sweep line approach [17] to order
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O(nlog(n)). Then the algorithm uses intersection points to build the new spaces,
iterating across the overlapping hole in clockwise order from one intersection
point to the other intersection point. Then calculates the same route but start-
ing with the second intersection point. The same algorithm is applied to the
target polygon generating 4 routes. Although we have these four routes, the
algorithm does not know how to connect these routes correctly. For example,
it can merge two routes and have a wrong representation of the layout gener-
ating a space containing the target polygon. This error can cause an incorrect
construction of the mesh. We solve this problem efficiently with the Shimrat’s
algorithm. In this way, the algorithm connects two random routes, one from the
target polygon and from the overlapping space. If the space built contains the
centroid of the target polygon, this means we are connecting the wrong routes,
so we change one of these and get the correct polygon. We get the other space
from the two remaining routes.

Finally, with the new two spaces, we update the graph structure linking the
spaces to the polygons linked with the overlapping space. We get the neigh-
bor polygons with the intersection points between the space and the neighbor
polygons. Also, we add the target polygon into the graph, link it with the neigh-
bor polygons, and the two new spaces. This concludes an insertion step of the
algorithm.

4 Complexity Analysis

In this section, we analyze the computational order of the algorithm by com-
puting the computational complexity of each step and, finally, the order of the
whole algorithm. Being p the number of packed polygons and n the number of
vertices of the resulting mesh, the order of each step is:

1. First, we look for pairs of polygons and test first if they are close. This test
costs c ∗ p being c the number of neighboring polygons, but the number of
neighbors is negligible compared to the number of polygons of the mesh. So
looking for pairs of polygons cost O(p).

2. After we have a pair of polygons, we get the locus of the two chosen polygons.
Getting the locus costs O(n) [4].

3. We got the loci for the possible positions for the target polygon. Then, we
intersect the loci and get the points where we can allocate the centroid of the
target polygon. The intersection of the loci costs O(n) because the loci are
convex.

4. Now that we got a possible position, we test the position on each heuristic:
• Density Heuristic: For this heuristic, we need to first find the overlapping

space with the target polygon. This search cost O(n2). Then, we build
two spaces generated when inserting the target polygon. This step costs
O(r) with r the number of segments of the route. In the worst case, the
route generated includes all the links of the graph, so it costs O(n). In
consequence, this step cost O(n2).
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• Gravity Heuristic: This heuristic uses the Y coordinate to test. When
we create a polygon, we previously stored the centroid on the polygon
representation. In consequence, getting the Y coordinate is constant, so
this step is order O(1).

• Multi-layer packing: This packing uses one of the previous heuristics to
test the position. So the order of this heuristic is the same as the one used
to pack multi-layers.

5. After we got the best position, we insert the target polygon on the mesh and
we update the graph. To update the graph, we need to find the overlapping
space, build the two new spaces when placing the target polygon, and update
the links. Because the spaces of the layout can be concave, we can not use
the intersection algorithm between convex polygons. We use the simplest
algorithm of order O(n2), and then updating the graph is just updating the
neighbors of the divided space. This update can cost at most the number of
segments of the graph that is order O(n). In conclusion, this step cost O(n2).

6. Finally, checking if the target polygon closed the surrounding of their neigh-
bors costs O(c), and as the number of neighbors is negligible compared to the
number of polygons of the mesh, then the step is order O(1).

In summary, being p the number of polygons inserted by the algorithm,
the algorithm costs O(p2n) for the gravity heuristic, and costs O(p2n2) for the
density heuristic. The number of polygons p is directly related to the number of
vertices n so we can replace it. The final order for the gravity heuristic packing
is O(n3), and for the density heuristic packing is O(n4).

5 Performance Experiments

To test the performance of the algorithm, we designed a variety of tests. The
first batch of tests comprised a comparison between the two heuristics. The
experiments considered an increment on the number of vertices of the packed
polygons, changing the size of the packed polygons, packing polygons close to
a regular polygon vs convex polygons generated randomly. These experiments
test time and efficiency of the heuristics, with efficiency the percentage of space
of the container covered by the inserted polygons. We ran all these experiments
on an Intel Core i5-8400 CPU.

5.1 Heuristic Comparison

The results of the experiments were that the algorithm with the density heuristic
reaches a maximum efficiency of 75% and with the gravity heuristic reaches
a maximum efficiency of 80%. Also, the density algorithm takes 4000 s when
packing polygons of 20 vertices, but the gravity heuristic takes 40 s to pack the
same list. That difference in time happens in all the experiments, concluding that
the gravity heuristic reaches its goal in less time. Figure 4 shows two examples
of resulting meshes of each heuristic. The packing on the left shows the result
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of using the density heuristic and on the right the mesh resulting of applying
the gravity heuristic. The clear differences are that the generated meshes using
the density heuristic contains spaces that have more area but zones of the mesh
where it is more dense. Instead of using the gravity heuristic produces meshes
with more uniformly distributed polygons. These differences reflect the results
of the experiments showing why the density heuristic reaches less efficiency.

Fig. 4. Generated meshes when packing three different polygons of different size and
number of vertices. (a) Mesh generated using the density heuristic and (b) mesh gen-
erated using the gravity heuristic.

5.2 Multi-Layer Packing

The last approach designed is the Multi-layer packing. This algorithm inserts
layer by layer the polygons on the container. We inserted the polygon in ascend-
ing order by size of the polygon, i.e., the first layer comprised the polygons with
the biggest radius and on each following layer the following biggest polygon. We
tested the same experiments on this approach, reaching a maximum of 78% using
the density heuristic for each layer. Figure 5 shows an example of a mesh got by
the multi-layer packing algorithm. On that example we packed the polygons on
three layers each with different size and a different number of vertices. The size
of the polygon decrease on each passing layer. In a qualitative analysis these new
meshes seems to be worse than the one layered meshes in space efficiency.

We compare a one layer container versus a multi-layer container, both exper-
iments using the density heuristic. We made five different experiments: (a) pack-
ing with polygons of 5 vertices all same size, (b) packing with polygons with 5
or 7 vertices all same size, (c) packing polygons with 5 vertices and two differ-
ent sizes, (d) packing polygons with 20 vertices all same size, and (e) packing
polygons with 20 vertices and two different sizes. The multi-layer packing used
different polygons on each of the layers, we used the polygons on ascending order
by size, decreasing the size on each layer, i.e., on experiment (c) we used on the
first layer the bigger polygons and then on the second layer used the smaller
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ones. Figure 6 show the result of the experiments described and it show a simi-
lar behaviour of both approaches. The difference is that the multi-layer packing
needs a bigger container to be more efficient in covered space. The multi-layer
packing algorithm generates different meshes but with a 2% loss in efficiency.

6 Preliminary Simulation Results

In a recent work about polygonal meshes [12], a C++ library for the virtual ele-
ment method [15] (VEM) was developed. Therein polygonal meshes were gener-
ated from a constrained Voronoi diagram [11] of the domain. The present work
aims to extend the variety of meshes generated in [12] to be able to perform
simulations of packing-based problems using the VEM.

To test a mesh generated using the proposed packing algorithm, the following
diffusion problem is considered:

1. A unit square domain (1 m × 1 m).
2. A 0 ◦C applied to all the boundary nodes.
3. A conductivity of 1 W/(mK) assigned to all the polygons.
4. A conductivity of 0.1 W/(mK) assigned to all the spaces.
5. A heat source that varies according to the following equation:

b(x, y) = 32y(1 − y) + 32x(1 − x)

The foregoing diffusion problem is solved numerically using the VEM. This
method can handle arbitrary polytopal meshes including non-convex polygons,
and thus it is very appealing for simulations that use packing-based meshes.

Figure 7(a) shows the domain and mesh used in the diffusion problem.
Figure 7(b) depicts the VEM temperature field. Finally, the heat flux is shown
in Fig. 8.

Fig. 5. Generated mesh when packing on a three layered container. The algorithm
inserts the polygons depending in how we configure them. Here each layer has polygons
with different size and a different number of vertices.
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(a) (b)

Fig. 6. Efficiency results from testing the packing with (a) gravity heuristic on one
container versus (b) multi-layer packing. We ran the five experiments on each algorithm.
The experiments are divided into to categories, the experiments that change number
of vertices: (1) “5vs” polygons of 5 vertices, (2) “5–7v” polygons with 5 or 7, and (3)
“20v” polygons with 20 vertices; and the experiments that pack two different sizes of
polygons: (4) “5vds” polygons with 5 vertices and two different sizes, and (5) “20vds”
polygons with 20 vertices and two different sizes.
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Fig. 7. Heat conduction in a unit square domain discretized with a packing mesh: (a)
Packing mesh and (b) temperature field.
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Fig. 8. Heat conduction in a unit square domain discretized with a packing mesh: (a)
flux in the x-direction, (b) flux in the y-direction and (c) norm of the flux.

7 Conclusions

The experimental results showed that the gravity heuristic is better in CPU
time and covers more area than the density heuristic. The gravity heuristic
packing algorithm takes less CPU time than the density, behaving according the
theoretical order shown in Sect. 4. It also improves the efficiency by 5% with
respect to the density heuristic: 80% vs 75%, respectively.

The experiments testing the multi-layer packing algorithm showed an inter-
esting new type of resulting meshes. However, there is a decrease of 2% in
efficiency compared to the gravity heuristic packing, but this decrease is not
significant.

Thus, the meshes resulting from the packing algorithms can be useful for
modeling of rock and porous media. As an example, we illustrated its potential by
solving a diffusion problem, where the discretized domain consisted in polygons
and spaces with different conductivities. Due to the arbitrary shape of polygons
and spaces that are generated by the packing algorithm, the virtual element
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method was used to solve the diffusion problem numerically. This shows that,
for the virtual element method, a new variety of problems can be solved using
packing-based meshes.
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