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sPara qué sirve la utopia?

La utopie estd en el horizonte.

Camino dos pasos, ella se aleja dos pasos
y el horizonte se corre diez pasos mds alld.
éEntonces para que sirve la utopia?

Para eso, sirve para caminar.

Fduardo Galeano
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Resumen

Dada X una superficie de Riemann compacta con accién de un grupo finito G, el
algebra de grupo Q[G] induce una descomposicién iségena de su variedad Jacobiana
JX, conocida como la descomposicién segiin el dlgebra de grupo de JX. En este
trabajo desarrollamos un método que permite construir concretamente una descom-
posicién de este tipo. Eso permite estudiar la geometria de la descomposicién. Por
ejemplo, permite construir diferentes descomposiciones de tal forma de lograr aquella
que corresponda a una isogénea del menor niicleo posible, de entre las construidas con
nuestro método. Aplicamos este método a familias de curvas trigonales hasta género
10.




Abstract

Given a compact Riemann surface X with an action of a finite group G, the group
algebra Q[G] provides an isogenous decomposition of its Jacobian variety JX, known
as the group algebra decomposition of JX. We obtain a method to concretely build
a decomposition of this kind. Our method allows us to study the geometry of the
decomposition. For instance, we build several decompositions in order to determine
which one has kernel of smallest order. We apply this method to families of trigonal
curves up to genus 10.




Introduction

The action of a finite group G on a compact Riemann surface X of genus g > 2 in-
duces a natural homomorphism p : Q[G] — Endg(/X) from the rational group algebra
Q|G into the rational endomorphism algebra of JX. The factorization of Q[G] into a
product of simple algebras yields a decomposition of JX into abelian subvarieties [21]
[18], up to isogeny.

This decomposition, and in general that of Jacobians with group action, has been
extensively studied from different points of view [12] [21] [19] [25] [26] [20] [3] [7] [28]
[31] [18] [1].

In [26] Paulhus studies the decomposition of Jacobians of hyperelliptic curves into
elliptic factors. She develops a nice geometrical description for these Jacobians up to
genus 10. Her motivation came from [12], where completely decomposable Jacobians
of any dimension g were sought. They gave examples up to g = 1297, but leaving
gaps in between. In [81] an explicit formula to calculate the dimension of the factors
in the decomposition of JX is given. The polarizations of certain subvarieties in
the decomposition of JX are studied in [19] and [20]. In general, the kernel of the
decomposition of JX has not been studied. The only references treating kernels we
know are: [29] for Jacobians with action of the symmetric group of order 3, [24] where
the author studies families of curves whose Jacobians are isomorphic to a product of
elliptic curves and [8] where the authors study dihedral actions on Jacobians, but the
tools used to compute kernels are different from the method developed here.

This thesis is structured as follows:

e Chapter 1 is a summary of known results concerning Jacobian varieties with
group action. We introduce the group algebra decomposition of a Jacobian
variety {21] [7] and a useful method [19] for describing the lattice of each
factor of such a decomposition. This method uses a symplectic representation
of the action.

o Chapter 2 is the heart of this thesis as it describes and proves our main resuit.
We present a method to concretely build an isogeny which is a group algebra
decomposition.

10




INTRODUCTION 11

Given a compact Riemann surface X with the action of a group G, the
general theory presented in section 1.1 provides us the existence of a group
algebra decomposition for the corresponding Jacobian variety JX. The results
presented in section 1.4 allow us to compute the dimensions of the factors.

The method that we present in this thesis consists in finding a set of
primitive idempotents fii, .. ., fin; to describe subvarieties that will be factors
of a product variety By in JX, which under certain conditions for G and the
action will be isogenus to JX. We divide our method in four steps.

(1) Identification of the factors using Jacobians of intermediate coverings.
(2) Definition of distinguished subvarieties of JX.

(3) Construction of a product variety By of JX.

(4) Conditions for vy : By — JX to be an isogeny.

These concrete constructions will allow us to easily compute the order of the
kernel of the isogeny vy as the determinant of the coordinate matrix L of
the lattices of the factors in B,. We may choose an optimal set of those
idempotents in the sense of getting vy having a kernel of smallest possible
order.

A striking fact that our method reveals is that the chosen idempotents
vary among equivalent ones. That is, the corresponding subvarieties defined
by them are isomorphic, nevertheless we obtain different isogenies v, that
may have kernels with different order. We conjecture that the explanation
of this phenomenon is that isomorphic subvarieties of JX can have different
intersection with the other ones inside JX (see Remark 2.2.5}).

e Chapter 3 is an application of our method to trigonal curves. We start with a
short introduction to these curves and their history. We then study the group
algebra decomposition of the Jacobian of a trigonal curve. We obtain the
isogeny v, having kernel with smallest order. We also compute the induced
polarization on the factors. In some cases, we compute the Riemann Matrix
of the Jacobian.

o Appendix A is a summary of definitions, known results and examples concern-
ing compact Riemann surfaces and Jacobian varieties with group action.

e Appendix B contains parts of the proof of Theorem 2.1.8, which were skipped
in Chapter 3.

o Appendix C contains a small help with commands we used in MAGMA to
perform some of the computations.




CHAPTER 1

Background

We introduce here some of the background we need to present and develop our
results. To help the reader, we include more basic results in Appendix A.

1.1. Group algebra decomposition v of JX

Let us consider a Jacobian JX with the action of a group (, coming from its
(faithful) action on the corresponding Riemann surface X. It is known [4, Section
13.6] that this situation induces a morphism p : Q[G] -+ Endg(JX) in a natural way.

For any element o € Q[G] we may define an abelian subvariety

B, :=Imp(ma) C JX,

where m is some positive integer such that p(ma) € Endg(JX). This abelian subvariety
does not depend on m.

Q[G] is a semisimple algebra, so it decomposes as Q[G] = Qo X - - - X @r. The simple
algebras (; are in bijective correspondence with the rational irreducible representations
of G. That is, for any rational irreducible representation W; of G there is a uniquely
determined central idempotent

dim V;
geG

where V; is any complex irreducible representation associated to W,
and K; = Q(xw(g9) : 9 € G).

The idempotent ¢; defines an abelian subvariety namely A; = B,,. These varieties,
called isotypical components, are uniquely determined by the representation W;, and
the addition map

(1) prAgx o x A= JX

is an isogeny. This is called the isotypical decomposition for JX [21].

Moreover, the decomposition of every @; = Ly X - - - X L, into a product of minimal
left ideals (all isomorphic) gives a further decomposition of the Jacobian. This is called
the group algebra decomposition, because using the group,action you cannot decompose
it further. Therefore there are idempotents (not uniquely determined) fa, ..., fin, € @:
such that e; = f;; 4+ -+ + fin,;, where

12




1.2. RATIONAL IDEMPOTENTS 13

dimVj
n; = 3
m;
and m; = my, is the Schur index for the representation V; (see [7]).
The idempotents f;; define sub-varieties of A;, namely

Bz'j =B fie
Tt is known that the factor in the isotypical decomposition of JX associated fo the
trivial representation of G is isogenous to Jg = J(X/G). This factor will be denoted
by Ag. Therefore we have the isogenies

Vi By X ...Bp, = A;, for i=1.r,
and

(2) UIJ(;XH?IBU Koo XH?rBT—j—}JX.

REMARK 1.1.1. The decomposition (2) is called the group algebra decomposition of
JX, we use this name to refer to the isogeny v as well. Using that all the minimal left
ideals decomposing (}; are isomorphic, which implies that the sub-varieties defined by
the idempotents f;; are isogenous, we may write the group algebra decomposition as

(3} U:dgx BYf x---x Bl = JX,

which is the classical way of writing it. The problem with this is that one of our goals
is to minimize the order of the kernel of v, and there are examples (for instance [14])
where you may even obtain isomorphisms by changing the components in the same
isogeny class.

Therefore, we will stay with the decomposition (2) because it will allow us to reduce
the kernel of the isogeny.
1.2. Rational idempotents

We look for geometric information about the components appearing in the decom-
position of JX using the action of G. From [7] we get the following resulis.

DEFINITION 1.2.1. For any subgroup H of G, define
1
PH = 1H| hGEH h,
the central idempotent in QH] corresponding to the trivial representation of H. Also,
we define fi = pye;, an idempotent element in Q[Gle;.
REMARK 1.2.2. It follows that f}; satisfies [7, Theorem 4.4],
o hit = fi; = fihfor every h € H, and




1.3, SYMPLECTIC REPRESENTATION 14
e fi = 0if and only if dimV;# = 0 if only if {px, W;) = 0.

The following proposition gives us a decomposition of the Jacobian of an interme-
diate covering of mg : X — X [proposition 5.2, Section 5.1, [7]].

PROPOSITION 1.2.3. Let X be a Riemann surface with the action of a group G.
Consider the associated group algebra decomposition U of JX given by equation (. 32).

Let H be a subgroup of G and denote by wy + X — Xy the corresponding quo-
tient map, and by JX g the Jacobian variety of Xy. The corresponding group algebra
decomposition of J X is

dim V7 dim v
m
(4) JXHNJ(_;XBH t X---XB,.Im" s

where VJH is the subspace of V; fized by H, and m; the Schur indez.
Furthermore, setting py and f} as in Definition 1.2.1, we have

(5) Im(py) = 7p(J/ Xn),

where 75 (JXg) is the pull-back of J Xy by wy.
If dim VE #£ 0 then
dim v

Im(f) =By ™ .

1.3. Method: describing the factors via a symplectic representation of the
action

We are interested in describing the factors of the group algebra decomposition of a
Jacobian variety with group action given in the previous section.

The method we follow is to describe the lattice of such factors. We apply [19,
Section 2], but extended fo any symmetric idempotent oo = 3 e %99-

Let A = Hy(X,Z) denocte the lattice of JX and Ag = A®z Q. Let

e p, : Q[G] — End(Ag)} denote the morphism induced by the (symplectic) ra-
tional representation of G in A,

e p: Q[G] — Endg JX is the homomorphism given by the action of the group
Gon X,

e p, is the rational representation of Endg(JX) which completes figure 1.3 be-
low. Thus p, induces a rational representation of Homg(Il;;B;;, JX) given
by

V—F VA eiinj — A,

where v, is the restriction of v to the lattice @;;A;; of the product of the B;;
in v.
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End(AQ)

Ps

Q[d] Pr

EndQ(JX)

Figure 1.3

Then ps(c) € End Ag is given by

pola) =D agps(9)-

ge@
Therefore we have the following facts, analogous to [19, section 2].

PROPOSITION 1.3.1. Let o € Q[G]. The sublattice of A defining By = VafA, is
given by

Awi= py{e)(Ag) N A,
where the intersection is taken in Ag and ps(a) is the image of a by ps. In this case,
the C—vector space V,, is generated by ps(a)(Ag).

The previous construction is clearer in its matrix form, once bases are chosen. From
here to the end of this work, we use this form for determining the lattice of the factors
in v.

REMARK 1.3.2. Suppose we have I' = {a,...,a2,} a (symplectic) basis of the
lattice A of the Jacobian JX (assumed of dimension g). Consider p, in its matrix form
(with respect to to this basis).

For any g € G, we have that ps{g) is a square matrix of size 2g. Hence, for any
a € Q[G), we have associated a rational 2g x 2g-matrix

M = (my).
The j-th column of A corresponds to the element ps(g){a;) = Zfi , Myjoy and the

lattice A, of B, corresponds fo

Aa = ((M)Z ®Q) nA:
where (M)z denotes the lattice over Z generated by the columns of M.
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In other words, the lattice A, is obtained by considering the R-linearly independent
columns of M and intersecting it with A. Qur next step is to look for a basis of A,
which will be in terms of the elements of I". By computing its coordinates in the basis
T', we get a 2g x 2dim B, coordinate matrix of the lattice Aq.

Moreover, V, is the complex vector space generated by the column vectors of M.

ExAMPLE 1.3.3 (Decomposition of the Jacobian of a trigonal curve of genus 3
with an action of S3). Considering what was presented in section 1.1, the Jacobian
of a trigonal curve of genus 3 with an action of S3, with total quotient of genus 0,
decomposes as

JXNAIXAgNBIXBg,

where the second isogeny corresponds to 7.

As shown in Examples A.5.1, A.7.6 and A.8.2 below, we have that e; and e in the
symplectic basis
B= {051, az, (g, 431,52:53}
of Hi(X,Z) have matrix

111000
111000

[6]21 111000
118 000111\
000111
000111

2 -1 -1 0 0 0

-1 2 -1 0 0 0

fed] Il =1 -1 2 0 0 o0

218 = 0o 0 0 2 -1 -1

0 0 0 -1 2 -1

0 0 0 -1 -1 -2

The images of [ei]s and [eg]p, ie. the space generated by their columns, are

M,, = {o1,71) and M., = {€1, €2, 1, 02), where

_ mtaztaz

= B +ﬁ2+ﬁ3’

o= 3 ’ 3
o2fm e o3 —on 205 03
=73 T3 T 3T s 3 3’
281 B2 Ba =B, 2682 P
§p=2HA_ P28 5 TPl A2 P8
1=3 T3 3% 3 T3 73
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To obtain the lattices Ly, L of Ay, A3, we must take the intersection of M with the
lattice generated by B in each case. Therefore a basis for the lattice of A, is
By = {1 + az + a3, 51+ P2 -+ B},

and a basis for the lattice of Ao is
By = {a; — ap, 2 — a3, B1 — P, o — B3},

because
€ — €3 = (] — (g; €1 -+ 262 = o9 — 3,
81 — by =Py — By 01+ 202 = B2 — Pa.

The intersection product matrix for this basis of the lattice of A, is

0 3
B=( %)

Hence, the type of polarization of 4, is (3).
The intersection product matrix for A, is given by

0O 0 2 -1
0O 0 -1 2
Be=|_9 1 0 o
1 -2 0 0
Using the Frobenius algorithm, after a change of basis, we find that Fy is similar to

0 010
0 00 3

-1 0 00
0 300

Therefore, the polarization of As is of type (1, 3).
On the other hand, we know that Ay ~ B2. To describe By we can use proposition
1.2.3 with H =< b >. Then

pr=2(1+),
S0
i -1 0 0 0 0
-1 1 0 0 0 O
1] 0 0 0 0 0 O
Prls=51 ¢ 0 0 1 -1 0
0 0 0 -1 1 0
6 0 0 0 0 0

Hence a basis for B; is given by {a; — ag, f1 — f2}. With respect to this basis, the
polarization will be of type (2).
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1.4. The dimension of the factors of v

An important fact about the group algebra decomposition of a Jacobian variety is
that the varieties B; appearing in the Theorem 1.1, and particularly in the decomposi-
tion v, may be of dimension zero for some particular actions of a group G. In fact, we
know that the first one is given by By = J(X/G). If G acts on X so that g(X/G) =0,
then the dimension of By is zero.

In [31] a formula was given for computing these dimensions in terms of the action
of the group on the corresponding Riemann surface. We include it here because we use
it in several examples.

THEOREM 1.4.1 (Dimension of the B;’s). Let G be a finite group acting on a com-
pact Riemann surface X with geometric signature given by (v; [ma, G, ..., [, Cr]).
Then the dimension of any subvariety B; associgted to a non trivial rational irreducible
representation W; in the G—equivariant isotypical decomposition of the corresponding
Jacobian variety JX, is given by

1 T
dim B; = k,-(dim Vily—1)+5 Y (dimV; - dim Fixg, V,)),
k=1

where G, is a representative of the conjugacy class Cy, dim'V; is the dimension of a
complex irreducible representation V; associated to W;, K; = Kvy;, my is the Schur index
of V; and k; = m;[K; : Q).

We continue with example 1.3.3.

ExAMPLE 1.4.2. We compute the dimension of the factors in the group algebra
decomposition of a Jacobian variety of a trigonal curve of genus 3 with an action of
the group S3 and signature (0;3,2,2,2,2).

We know that JX ~ Ay X Ay ~ By x BZ. All rational irreducible representations
of 83 are completely irreducible [34], hence k; = m; = 1 for ¢ € {1,2}. Therefore, the
formula for the dimensions of the subvarieties B; in this case is

5
dim B; = —dim V; + %Z(dimv;; — dim Fixg, Vi).
k=1

Hence, we need to calculate dim Fixg, V; for i € {1,2} and for & € {1, ...,5}. Recall
that the dimension of Fixg, V; is equal to < Indlgk , Vi >

‘We had chosen
0; 38, < a>],[2,<b>],[2,<ab>][2,<ab>][2 < ab>])
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as a generating vector for the action of S; on X. Then G; =< a >, Gy =< b >,
Gz =< ab >, Gy =< ab > and G5 =< ab >.

It is not difficult to see, using the formula for the scalar product (see Definition
A.7.11 below), that
(1) if ¢ = 1 then dim Fizg, V4 = 1 and dim Fizg, V) =0 for all k € {2, ..., 5}.
(2) if i = 2 then dim Fizg,Va = 2 and dim Fize, Vo =1 for all k € {2,...,5}.

In the following table we summarize this. The second and the third column indicate
the dimension of Fixg, V; for ¢ =1 and i = 2, respectively.

()

[ ]
OO oo =
e

Considering Example A.7.6 and the previous table we have:

5
1
dimBy = —1+ > (1 — dim Fixg, Vi) = 1,
k=1
and
13
dim By = ~2+ 5 > (2 dimFixg, V2) = 1.
k=1
Thus any trigonal curve of genus 3 with an action of the group S3 and signature
(0;3,2,2,2,2) is decomposable (via isogeny) into a product of elliptic curves.

The former kind of decomposition, i.e., when all the factors in this decomposition
are elliptic curves, is a problem has been extensively studied ([12], [24], [25]}. In this
case, we say that JX is completely decomposable. Several examples of this sifuation
are given in the Chapter 3.




CHAPTER 2

Construction of a group algebra decomposition.

In this chapter we develop the core of our thesis. We present a method to concretely
build an isogeny v as in (2).

Given a compact Riemann surface X with the action of a group G, the general
theory presented in section 1.1 gives us the existence of a group algebra decomposition
for the corresponding Jacobian variety JX. The resulfs presented in section 1.4 allow
us to compute the dimensions of the factors. Nevertheless to describe further geomet-
rical properties such as induced polarization, period matrix, etc., we need an explicit
description of them. The method presented in section 1.3 gives us a tool to solve some
of these questions, under certain hypotheses for G.

We present here a method to find a set of primitive idempotents f;,..., fin, to
describe the factors in this decomposition, in order to extract properties of the decom-
position. This concrete construction will allow us to easily compute the order of the
kernel of the isogeny v. Hence we may choose an optimal set of those idempotents in
the sense of getting the smallest possible kernel. We show this last application in the
next chapter.

2.1. Method. A group algebra decomposition vy

We consider total quotient for the action of G of genus 0, for simplicity because it
is known that the factor in v corresponding to the trivial representation is the irnage
of pg, hence it is isogenous to J{X/G).

In the following, we consider Wi, e;, n; and V; as defined in section 1.1. As before,
VH will denote the subspace of V fixed under H.

Data: Let X be a Riemann surface of genus g > 2 with the action of a group G with
total quotient of genus 0. Assume that the symplectic representation p, for this action
is known.

1. STEP ONE: Identification of factors using Jacobians of intermediate coverings.
The following lemma gives us conditions under which a factor in the group algebra

decomposition can be described as image of a concrete idempotent, in particular when
it corresponds to a Jacobian of an intermediate quotient.

20
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LEMMA 2.1.1. Let X be a Riemann surface with an action of a finite group G such
that the genus of X¢ is equal to zero. Consider v the group algebra decomposition of

JX asin (2).
(i) If H < G is such that dime V7 = my, where m; is the Schur indez of the
representation V;, then for some j € {1,...,n;} we have that
Im(f}) = By,
where f& is as in Definition 1.2.1.
In addition,

(ii) if dime Vi¥ = 0 for all I, | # i, such that dimc A # 0 in the isotypical
decomposition of JX in Equation (1), then
J(X/H) ~Im{py) = B

PROOF. From Proposition 1.2.3 and the fact that dimg V# # 0, we get Im(f) =
1% B;;. Due to dimg V¥ = m; (by hypothesis), we obtain that k; = 1. Hence Im(f}) :=
Bz;r for some 7 € {1, .. ,n,}

If, in addition, dimg V¥ = 0 (equivalently dimg W}/ = 0) for all [ # i such that
dimg A; # 0, then f4 = 0 for all of them. Due to py = ZIE{I ) fH we obtain that

pa = fi. Moreover, by equation (4) we have J(X/H) ~ Im(pg) = O

REMARK 2.1.2. Observe that if /1 satisfies Lemma 2.1.1 for some ¢ € {1,...,7}, then
all its conjugates satisfy it for the same 4. To see this, consider H' = HY = gHg™ . It
is clear that for all 5 € (7, we have

dime VH = < Indla Vi >

= Z XInle (t)XVz( 1)

iEG

- IGlZ( S xals79))xult™)

te@ s~ Nsel

= Z |H [xv,(t ™)

tEG

~ & S ()
iEG

= [GI Z( Z XIHJ(S lts))XV,(t 1)
teG@ o ltseH!

= dich%H'.
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Our purpose is to use this result conversely to actually produce an isogeny v.
STEP TWO: Definition of certain subvarieties of JX.

DEFINITION 2.1.3. Let H be a subgroup of G satisfying condition (i) of Lemma
2.1.1 for some i € {1, ...,7}, define By as the image of fir = pye; (see Definition 1.2.1).

Note that depending on the geometry of the action, By can be trivial.
From Proposition 1.3.1, we get that its lattice corresponds to

(6) A = ({ps(fur))z ® Q) N Hi(X, Z).

Using the procedure described in Remark 1.3.2, we obtain the coordinate matrix
corresponding to a basis of the lattice of By. We use sometimes the same symbol Ay
to denote this matrix. An example of this coordinate matrix is given in 2.1.11.

COROLLARY 2.1.4. Let H be a subgroup of G satisfying both conditions of Lemma
2.1.1. Then g = pue; = py, and By is isogenous to the Jacobian of X/H.

PROOF. By Lemma 2.1.1, if H satisfies both conditions then the Jacobian of X/H
is isogenous to one of the factors in a group algebra decomposition for JX. This is
equivalent to the equality of their corresponding idempotents. |

3. STEP THREE: Construction of a product subvariety By of JX.

If we have enough subgroups from STEP TWO, we may construct the product of
all the subvarieties defined by those subgroups. This will be a subvariety of JX, its
lattice is described in the following definition.

DEFINITION 2.1.5. Let  + 1 be the number of rational irreducible representations
of G. Suppose for all i € {1,...,7} and all 5 = {1,...,n;} there is a subgroup H;;
satisfying condition (i) of Lemma 2.1.1. For each 4, j take one H;;, and let

S={Hy:ie{l...,rhi€{l,.,m})

be the set of these subgroups, where we do not consider subgroups H;; such that
Im(fp,,) = 0. We define Ls € May(Z) to be the coordinate matrix given by the vertical
join of the coordinate matrices of the lattices Ay, (see equation 6) for Hy; € S.

We recall here that ¢ = 0 corresponds to the trivial representation whose factor is not
considered here, n; = dim V;/m;, where m; is the Schur index of a complex irreducible
representation V; associated to the rational irreducible representation corresponding to
the factor B (from (2)).

The lattice A, defined by the matrix Lg, corresponds to the sublattice @;;An,, of
A = Hy(X,Z). Tt is the lattice of the following subvariety of JX
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Bx = Hz’,jBH,'_.,-a

where By, is as in Definition 2.1.3.

DErFINITION 2.1.6. With the above notation define a sum map vy : By = JX

Vx(blls aes ybrn,) == Zbij e JX.

i
STEP FOUR: Condition for v, to be an isogeny.

DEFINITION 2.1.7. Let S = {H;; : i = 1..1,j = 1.n;} be a set of subgroups of G
as in Definition 2.1.5. We say that & is an effective set for G if the determinant of the
corresponding matrix Lg is different from 0.

THEOREM 2.1.8. Let X be a Riemann surface of genus g > 2 with an action of a
group G with total quotient of genus 0. Let S = {Hy;}i; be an effective set for G, then
the map vy defined in 2.1.6 is an isogeny with kernel of order | det(Lg)|.

PRrROOF. As before, denote by A the lattice of JX. The map v, induces a homomor-
phism of Z~modules 5 : Ax — A. If the rank of Ay is 2g, then v, is a monomorphism
of lattices in C9. Moreover, all the sublattices Ay, decomposing A correspond to
subvarieties Bp,;. Therefore the dimension of By is g.

It remains to show either v, is surjective or its kernel is of finite order. For any
isogeny f: A; — As between two abelian varieties, it is known {[4], section 1.2] that

(7) |Ker(f)| = det p,(f),

where p,(f)} is the rational representation of the isogeny f. It is known that if the
kernel is finite, then its cardinality equals the index [A : Ay]. As the matrix Lg is non
singular, we have that A, is a lattice in C9, hence this index is finite. After columns
operations, the matrix Lg is the matrix of the rational representation vy, therefore its

kernel has order the absolute value of its determinant.
O

REMARK 2.1.9. (1) The isogeny from Theorem 2.1.8 corresponds fo a group
algebra decomposition isogeny » as in (2).

(2) If the total quotient is of genus greater than 0, then we just need to include
the lattice of the image of pg, which corresponds to the fixed (by G) sublattice
of H1(X,Z).

(3) The condition for a group G of having an effective set is not too restrictive,
we will exhibit in the next chapter several groups satisfying it.
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(4) We point out that the isogeny vx depends on the choice!of the subgroups Hj;
for the set S. Therefore, its kernel may change if we change these subgroups.
Our purpose is to move along different effective sets in order to achieve the
smallest possible kernel (in the sense of its order).

In the spirit of moving along different effective sets to minirnize the order of the
kernel, we have the following proposition.

PROPOSITION 2.1.10. If Hy = gH g7} for some element g € G, then

(i) pr, = gpn g™
(il) Im(pg,) is zsommphzc to Im(pm, ),
(iit) the exponents of Im(py,) and Im(ps,) are equal, and both equal |Hy| = |Hy|.

PRrROOF. Claims (i) and (ii) are clear. Claim (iii) is obtained from the definition of
the exponent of a abelian variety [4, Section 5.3}. In fact, it is obtained from the fact
that the least non negative integer m such that mpy is an element of Z{G] is equal to
|H|. Let f be |H|pg, then f2 = [H|f. It is known that f is prlmltxve and symmetric
(see [20, Prop. 2.2]), hence by Criterion {4, 5.3.4] f is the norm endomorphism of
Y =Impg. Finally by [4, Cor. 5.3.3], |H| is the exponent of Y. O

We include here a known and simple example where we apply our method to find a
concrete group algebra decomposition of a Jacobian with the action of G = GL(2, 3).
We calculate an effective set S for G such that the kernel of v, has the smallest possible
order.

ExaMprLE 2.1.11. Let X5 be a curve of genus two admitting an action of
GL(2,3) =< a,b : a® = B = (ab)? = ba~3ba™> = 1 > (see Table 2 in Chapter 3).
This curve is known as Bolza'’s curve with equation

2 =zt - 1).

A generating vector for this action is (a, b, (ab)) of type (08,3, 2) Using equation (2)
we obtain that the Jacobian variety JX assoclated to X is completely decomposable
i.e. isogenous to a product of elliptic curves. In fact, the group algebra decomposition
isogeny is v : By X By ~ JX, where the product By X By is invariant by the
irreducible rational representation V; of degree 2 (see Table 1}).

To apply our method to find an explicit decomposition vy, we first look for two
subgroups H, and H, of GL(2, 3) satisfying conditions of Lemma 2.1.1. To find these
subgroups, we use the symplectic representation of the action obtamed from the method
given in [3]. This allows us to write every element of GL(2,3) as a square symplectic
matrix of size 4.

We determine next the complex irreducible representation decomposition of the
induced representation Ind§1y in GL(2,3) by the trivial representation in H for each
H < G (See Table 2). We know that this decomposition of Ind§;1 into C—irreducible
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Class of elements 1123|4516 7 ¢ 8
Size of the classes 1112|1868 6 . 6
Order of theelements |12 | 2 |3 |41 6 8 1 8
W 1j1(1(1]1|1 1 1
Va 1|1p-1|1{1(1} -1:] -1
Va 2{210¢-1(2]-1| O 0
Vi 20210 |-1]0]|1]| ¢v2 |-iv2
Vs 20-2]0|-1|0|1]|-iv2]| iv2
Ve 331010 -1 -1
Vz 3131-1]0}-1]0 1+ 1
Vs 4(-4y0|1,0(-1f O .| O
TABLE 1. Character Table of GL(2, 3). ;
Classes of subgroups | Vi | Vo | Va | Va | Vs | V6| V2| Vs
Identity element ij1|2{2(2(3]|3]4
order 2, length 1 1|11]2(0}0[3]3{0
order 2, length 12 10111 ]1]2 1‘ 2
order 3, length 4 1{1]0(0]0}1¢11]2
order 4, length 3 1i1y2|]0]j0|1]|1}¢0
order 4, length 6 11011010 (2(|1/0
order 6,length4 {1 (10 |010[1I[1]0
order 6, length 4 i1jofojojoj1(o]1
order 6, length 4 1{0)10j(0j0|1}0(1
order &, length 1 1111206(0]0701]0
order 8, length 3 1]lofl1]loflojol1]o0
order 8, length 3 1joj1jo0j0p1301]0
order 12, length 4 1{0j0|0f0O|1]|0|0O
order 16, length 3 1yo0f(1]l0j0|OfO!O
order 24, length 1 1{1({0j0f(0|0O]O}O
order 48, length 1 1{0|j0{0|[0]0]|0]O

TABLE 2. Decomposition of the induced representation by the trivial
representation on each class of conjugation of subgroups of GL(2, 3).

25

representations is invariant under conjugation (see Remark 2.1.2). Table 2 shows the
multiplicity of each complex irreducible representation in the induced representation
Ind$ 1y, for all H < G up to conjugacy.

We observe that the only conjugacy class of subgroups of GL(2 3) whose elements
satisfy the conditions in Lemma 2.1.1 consists of the class of H =< ab >. For each
subgroup H in this class

!
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< Indng, Vi>=1.

By Lemma 2.1.1, each factor in the decomposition of JX is defined by By; = Im(py,) =
Vi, /Ag,, where H; is some subgroup in the class and j € {1,2}. We obtain vy :
B41 X Bp = JX, and its kernel depends on the choice of H; in this class.

To give an explicit description of the subgroups of GL(2 3) giving the smallest
order for the kernel of v, we consider the above presentation of GL(2, 3) and the same
generating vector (a, b,ab). Set H =< ab >, consider the followmg subgroups of order
2in GL(2,3) ‘

H = H'=<bdb>, ‘;’
Hy = H=<ab>, :

and write By = Im(pg,) and By = Im(pg,). Since i

0 00 O 1/2 1/28 0 0
1210 o0 1212 0 o0
ps(pH1)_ 0 00 1/2 ,Ps(sz)— 0 0 ,_1/2 1/2
0 00 1 0 0 11/2 1/2

and the coordinate matrices of their lattices are

0100 00
AH}._(OOlz))AHa_( 119;

we find that the matrix coordinate of the lattice of the product 1?41 % Byy is given by

1
0

o B

0100 ,
0012
Lime} =1 1 1 ¢ 0 ”
0011

i
In this case, choosing H; and Hj as before vy : By X By — JX is an isomorphism.
Hence IKer(V)I =1 ;

Note that we do not claim that the subgroups yielding an 1somorphlsm are unique.
In fact, there exist other subgroups in the same class such that tﬁhe |Ker(vy.)| = 1.

This example shows a particular but important case of Theorem 2.1.8, as in the
following corollary.

}

COROLLARY 2.1.12. Under the hypothesis in Theorem 2.1. 8,i the isogeny vy is an
isomorphism if and only if det(Lgp,;y) = £1.

j
l
i
f
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!
2.2. Induced polarization on the factors of Vx.

The coordinate matrix Ag,, of By, is of size 2 dimg By;; % 2g. This defines the
canonical embedding ¢ : By, < JX. We denote by Ejx the canomcal polarization of
JX of size 2g x 2¢ and by AHU’ the transpose matrix of Ap,,. I

0 I 5
B — g) 1
JX (_Ig 0

{
!
The next theorem provides the polarizations induced by Ejxiin the factors of the
[
§

isogeny v, of Theorem (2.1.8).

THEOREM 2.2.1. Let X be a Riemann surface of genus g > 2 with an action of a
group G such that the genus of X/G is zero. If S = {Ha, ... Hml} is an effective set
for v, then the induced polarization Ey; of the factor Bg,; in vy zs given by
(8) EZ.T - AH:JE‘IXAHt;

H
¢
l
§

PROOF. The proof follows the same steps as [19, Prop. 2.1]. By hypothesis (and
Theorem 2.1.8), we know By, = Im(fn,;) are enough to decompose the Jacobian
JX = C9/A of X. From equation 6 we have the coordinates of a basis for the lattice
A, with respect to the symplectic basis I' of A. Then we have a basis of the lattice
of each factor B, given by {7i1, - Wiz 83,1y -1 Oij2;; }» Where tzj, = dim¢ Ba,;-

The matrix F;; =< 4;,0;; > given by the mtersectlon produci; of those curves
defines the polarization in By,; induced by the canonical polarlzatlon of JX. This is
given by ¢*(E;x), which corresponds to the product Ag, Byx Al H O

REMARK 2.2.2. Note that the type of the polarization F;; is glven by the elementary
divisors of the matrix (8). :

Continuing with Example 2.1.11, we calculate the polarizatiofﬁ for every one of the

factors here. ;
;

ExXAMPLE 2.2.3. Recall the situation presented on example 2.1.11. Respect's to the
chosen basis for the lattice of the product By x Bya, we obtain the induced polarization
of each one of these factors, which are given by

¥
0 2 0 1\ !
E41=E42=(_2 O)ﬂz(_lo) ‘

i

REMARK 2.2.4. Note that as the genus of a curve increases the possibilities thaft,
using this method, its Jacobian can be shown as a completely decomposable vari-
ety decreases. In fact, if X be a curve of genus g which adrmts a (G-action, and

o e - —
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t BM x ... x BPr ~ JX, is a group algebra decomposition with g > Z n;. Then the
group algebra decomposltlon for JX will have factors of d1men31on greater than 1.

REMARK 2.2.5. Finally we point out that the principle of ouir method is to move
along isomorphic varieties By, choosing different subgroups H (even in the same con-
jugacy class) to construct the effective set S and the correspondmg isogenies vy, which
may have kernels of different orders. This shows that the geometry of the varieties By
as subvarieties of JX makes a difference. In fact the examples sugigest that this reflects
the way the subvarieties intersect each other.

T




CHAPTER 3

Application to p—gonal curves

3.1. Introduction

A compact Riemann surface X, admitting a cyclic group of automorphisms C,, of
order a prime number p and such that X/C, has genus 0, is called a cyclic p—gonal
curve. If p = 3 we say X that is a trigonal curve, or a 3—gonal curve.

The study of trigonal curves is a classical subject [28] [1], mainly concerned with
properties of their Jacobians. In {36] there is a classification of all non-normal p—gonal
curves. In [35] we find a method to compute a defining equation as a plane curve, in
the normal cyclic p—gonal case. Bartolini, Costa and Izquierdo [2] get the full group
of automorphisms of a p-gonal curve for all prime numbers p. Moreover, [10] treats
the case of non-normal p-gonal curves. In particular, they describe the Hurwitz space
of pairs given by a p-gonal curve and a p—gonal group.

In [12], among other questions, Ekedhal and Serre asked for the existence of com-
pletely decomposable Jacobians of any dimension g. That is they studied the existence
of Jacobians isogenous to a product of elliptic curves. In [26] Paulhus studies the
decomposition of Jacobians of hyperelliptic curves as a product of elliptic factors. She
develops 2 nice geometrical description for these Jacobians up to genus 10. Hence,
the natural next step is to study p—gonal curves. We focus our attention on trigonal
curves, to which we apply the method developed in the previous chapter.

3.2. Known facts about p—gonal curves and their automorphisms

If X is a p—gonal curve with an action of Cp, < Aut(X), the following facts are
known [36][35][2][10].

¢ The subgroup C, € Aut{X), called a p—gonal group for X, is not necessarily
unique.

¢ If C; and C}, are two p—gonal groups for X, then they are conjugate in Aut(X).

e The group K = Npuyx)(Cp)/Cp is isomorphic to a finite group of automor-
phisms of the Riemann sphere ¥ = X/C,. It is called the reduced group or
sphere group of X. Here Naux)(Cp) denotes the normalizer of C,, in Aut(X).

29
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Group | Branching data
C, {n,n)
D, (2,2,n)
A4 (2) 3; 3)
S4 (21 3, 4)
AS (21 3) 5)

TABLE 1. Automorphisms of the Riemann sphere and branching data.

The last fact implies that Ny x)(Cp) fits in the short exact sequence
1= Cp = Naw)(Cp) =+ K — 1,

for all p—gonal group C, for X. Therefore, K is one of the groups in Table 1. The
branching data is a vector whose length is the number of branch points of the map
7k + 5 —+ U/K and whose entries are the orders of the branch points (see Appendix
A for these definitions).

If X admits only one p—gonal group, it is called a normal p—gonal curve. A
consequence of [1] is the following.

THEOREM 3.2.1. (Wootton, [36, Thm 5.1]) If X is a cyclic p—gonal curve and
g > (p-—~1)2, then X is normal p—gonal.

We consider a trigonal curve X, i.e., X has a subgroup of automorphisms isomorphic
to Cs, which acts with total quotient X/Cs of genus 0. An immediate consequence of
Theorem 3.2.1 is the following.

COROLLARY 3.2.2. If X is a trigonal surface of genus g > 5, then X is normal
3—gonal.

Corollary 3.2.2 allows us to find a list of automorphism groups of trigonal curves
(see also [2]). This list is obtained by an easy combination of [[36], Table 7], [5, Table
1] and [22], plus the computation of the reduced groups which are not in the original
tables. We group the results in Tables 2 and 3. Some remarks about them are:

e Table 2, corresponds to non-normal trigonal curves. CD denotes the central
diagonal subgroup of SL(2,3) of order 2.

e Table 3, corresponds to normal trigonal curves with reduced group A4, Sy or Ag
[5]. We restrict to these reduced groups in the normal case mainly because the
results in [26] suggest that these families may have completely decomposable
Jacobians (at least for some dimensions of JX). In fact, [8] shows that curves
admitting a dihedral action tend to have no elliptic factors in the group algebra
decomposition of their Jacobian varieties.

» I'rom Table 3 we obtain that any trigonal curve with reduced group Sy, A4 or
As has even genus, and that there do not exist trigonal curves of genus 8 with
reduced group A4, 53 or As.
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Red. group | Automorphism group | Genus | Signature
Dy GL(2,3) 2 (0;2,3,8)
Cy SL(2,3)/CD 3 (0;2,3,12)
Dy Dy x Dy 4 (0,2,2,2,3)
Dy (C3 x C3) % Dy 4 (0;2,4,6)

TABLE 2. Automorphism group for non-normal trigonal curves.

K | Automorphism group Genus Signature
Ay C3 X Ay 12s-2, 5 > 0| (0;2,3,3,3%)
A4 03 X A4 12s5+4 (0;6,3,3,33)
A4 (02 X 02) A 09 12546 (0;2,9,9,38)
Ay (Ca x C5) x4 Cy 1254-12 (0;6,9,9,3°)
Sy Cy x Sy 24s-2, s > 0| (0;2,3,4,3%)
Sy Cy x 5y 245+4 (0;2,3,12,3°%)
Sy Cy % 54 245+16 (0;6,3,12,3%)
S4 Cy X 5y 243410 (0;6,3,4,3°%)
Sy U3 x4 54 24s-2, s > 01 (0;6,3,12,3%)
84 ((Cg X 02) A Og) x Cy 24516 (0;2,9,4,35)
Ag (3 X As 60s-2, s > 0 (0;2,3,5,38)
As Cs X As 60s+10 (0;2,3,15,3°%)
As Cz X Ag 60s+40 (0;6,3,15,3°)
A Cz x Ag 605428 (0;6,3,5,3%)

TABLE 3. Automorphism group for normal trigonal curves with reduced
group Ay, S; and As.

REMARK 3.2.3. ¢ Dimension 3 (see Section B.2). The genus-3 surface in
Table 2 corresponds to the curve with plane model y* = z® — 1 [22, Table
2] with an action of SI(2,3)/CD, where CD denotes the central diagonal
subgroup of order 2. We use the presentation

SL(2,3)/CD =< a,b: a'? = b* = (ab)® = a''b " aba 1ba™ " =1 > .
The generating vector for the action is (a, b, ab), of type (0;12,3,2).

¢ Dimension 4 (see Section B.3). The genus-4 surfaces in Table 2 correspond to
the cases studied in [1] and [9]. The surfaces admit four actions of Cs;. Two of
them are conjugate, with quotients of genus 0, and two are non-conjugate with
quotients of genus 2. Moreover, the one dimensional locus in A4 corresponding
to surfaces of genus 4 with automorphism group D3 X D3 consists of curves with
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equation az®y’ — (23 +3°)+a = 0, where a ¢ {0, %1, co}. This family contains
the surface with action of (Cs x C3) % Dy [22, Table 4]. The generating vector
for the action is (a, b, ¢, abc) of type (0;3,2,2, 2), where we consider D3 X D3
as

D3 x D3 = {a,b,cja® = b* = c* = (abc)? =

= a?ca Yoca b 'a? = a*catbab tac a7t = 1),

Dimension 4: (3 x A4 and C3 X 5S4 act in genus 4. The group C3 x Ay
is contained in (5 x 54, we study the possible actions of both in this genus.
Using {6] and [3], we note that they act on the surface with planar model
y? = z(z* 1) (see [27] for a reference). This result completes [1], where only
this last case was left without description, and coincides with {22] and [9].
The action of C5 x A4 (see Table 3) extends to the action of the group

C3 x 8y = (a,bla’” =1 = (ab)” = a™ba bab 'ab~'a™® = 1),

with generating vector (a,b, ab) of type (0;12,3,2) [9].

Dimension 6 (sce section B.4.1). The groups ((C; X C2) X Cy) x Gz and
(Ca x Cy) % Cy act in genus 6. The group (Cz x Cy) % Gy is contained in
((Ca x () x Cg) x Cy and we study their possible actions in this genus using
[6] and [3]. Both groups act on the trigonal curve [22] with planar model
y® = 2% + 142 + 1 [32]. The group

((02 x Cg) A Cg) b Gg =< a,b[a2 = bg = (ab)4 = ab3ab3 =1>

acts on the curve with generating vector (a, b, (ab)™?) of type (0;2,9,4).

We describe in detail the Jacobians of these curves in Appendix B.

3.3. Application of our results to 3—gonal curves

In this Section we apply our method (see Chapter 2) to trigonal curves. F; denotes
an elliptic curve and |Kernel| denotes the smallest possible order for the kernel of vy,
the isogeny defined in 2.1.6.

THEOREM 3.3.1. Let JX be the Jacobian variety of a trigonal curve X, of one
of the types detailed below. Then JX is completely decomposable, and a geometrical
description of the decomposition is in the following tables.

o If JX is the Jacobian variety of a non-normal trigonal curve, then we have
the following results:
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Red. | Automorphism | Genus | Decomposition | [Kernel] Induced
group group of JX of vy polarization
Dy GL(2,3) 2 B x B 1 (2)
04 SL(Z, 3)/CD 3 E1 X Ez x Eg 4 (2)
Dy D3 x Dy 4 Ey x -+ x By 9 (2), (6), (2), (6)
Dy (O3X03)><1.D4 4 Ey %o x By 9 (2)

e If JX is the Jacobian variety of a trigonal curve with reduced group A4, Sy or
As, then we have the {ollowing results:

Red. Automorphism Genus | Decomposition | [Kernel| Induced
group group of JX of vy polarization
Ag C'3 X Ag 4 1By xExEyxEy| 64 [(4)(3),(3),03)
34 03 X 84 4 El X Eg X Es X E4 16 (4)
Sa ((Cg X Cg) A Cg) bt Of)_ 6 By X% Eﬁ 64 (4)

PrOOF. We will show here the techniques applied to the group (5 x Ay, the rest
of the cases are proved following the same procedure. They are included in Appendix
B.

We use our method, presented in Chapter 2, all the computations were made on
the software MAGMA [6]. The subgroups we use to obtain the effective set giving the
decomposition are considering satisfying both conditions of Lemma 2.1.1. Hence, the
factors that will define By in the isogeny v« will correspond to Jacobian varieties of
intermediate coverings.

From Table 3, we know that the groups C3 x Ay and Cs x Sy act in genus 4, It is
known [22] that for genus 4 there is only one curve with the action of C3 x Sy, hence
also the action of C3 X A4. A planar model for this curve is [27]

X ={(z,y) eC?:y* =2° —x}.

The Jacobian variety JX of a curve X with action of G = C3 x A4 and signature
given by (0; 6,3, 3) is completely decomposable. This can be shown using, for instance,
Theorem 1.4.1. In fact the group algebra decomposition for JX has the form

: By x B3~ JX,

where B, Bs are elliptic curves, and G acts on each factor with the rational irreducible
representations of degrees 1 and 3 respectively; V4 and Vq; in the character table of
C3 x A4 are shown in Table 4.

Following our method, to construct an isogeny vy we look for four subgroups
Hy, Hy, H3, Hy of (G satisfying the conditions of Lemma 2.1.1 and Theorem 2.1.8. We
determine, for each H < (5 x Ay, the decomposition into complex irreducible repre-
sentations of the induced representation Indgl  of C3 x Ay, where 1y is the trivial
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Class |12 3 4 5 6 7 8 9 | 10 | 11 | 12
Size |[1[31] 1 1 4 4 4 4 4 4 3 3
Order (12| 3 3 3 3 3 3 3 3 6 6
Wi 111 1 1 1 1 1 1 1 1 1 1
Va 111 1 1 (-1-J1 7 {-1-d] F |-1-0] J 1 1
Va 1117 J | -1-J|-1-J| J 1 1 J -1 J | -1J
Vi 11 1 1 J -1 J --g T -1Jf 1 1
Vs 111 -1J J |-1-J) T J [-1-J] 1 1 |-1-J¢1 J
Ve (1f1| J |13 1|t |3 |2-3|a3] 3|3 |-1-3
Va T(1]-1-3| J J [-1-3] 1 1 |-1-J] J (-1 J
Vs 1]1]-1-4 J 1 1 4-1-Jf J | J1 | -J [-1-0] J
Vo 11 J (-1-J J |-145(-1-J| J 1 1 {-1-J| J
Vio 31-1| 3 3 0 0 0 0 0 0| -1 -1
Vit 31-11-3-3J| 3J 0 0 0 0 0 0 [1+J] -J
Via 31-1| 3J |-3-3J] O 0 0 0 0 0] -J{1+d
TABLE 4. Character table of C3 X A4, where J = —% + @
Classes of subgroups [ V3 | Vo [Va [ Vi [ V5 | Vs | V2| Ve | Ve | Vae [V [ Voo
Identity element 111111yt |1|1[3 |33
order 2, length 3 1j1jp1¢1 111 y1y11]1]1
order 3, length 1* 1(ofj1|0j0j0cjOo|lO|1|3|0foO
order 3, length 4 t{1{oloflojojrlofol1]1]1
order 3, length 4 1joejof{ojry1foqyo0foft1ji11]1
order 3, length 4 1jo(of1fofoforrro|l11]1
order 4, length 1* (1111112101 0f|o0
order 6, length 3 1{oj1jo0j0t0(0ojOoj1{1f|0O0]|0O
order 9, length 4 110(0(0jO0OfjO|O]|OfO]1|O0]O
order 12, length 1 110(0j0)j1f{TjO0|0fO]JO}O]O
order 12, length 1 ijoj1y0(o0jojojofr1jyo0f(0|oO
order 12, length 1 ij1fofofOofOf1|OjO|O|[O0]|O
order 12, length 1 iTjofof1fofofof{1|({0|l0O 00
order 36, length 1 1100000 |DjO]JO]JO0|0O]O

TABLE 5. Decomposition of Indgl o into C—irreducible representations.

representation of H. This corresponds to the dimension of V¥ (Frobenius reciprocity).
We include this information in Table 5.

We get from Table 5 that the following subgroups satisfy both conditions of Lemma
2.1.1, and hence the hypotheses of Theorem 2.1.8, are
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e the class of subgroups of order 4 and length 1 for Vj,
and

e the class of subgroups of order 3 and length 1 for V3.
Both are marked in Table 5 with a star *,

We now look inside these classes to find the subgroups H; corresponding to the
smallest order for the kernel of v,. To describe them, consider the presentation for G
G = {a,bla® =1 = (ab)® = ba®bla? = 1).

An effective set S for G is {H;, Hy, H3, H,}, where
Hy = < ba b 1a,a® >,
H, = < ba® >,
Hs= <ba™! >,
H,=< alb>.
Define By, = Im(py,), for i =1, ..., 4.
The matrix coordinate for the product B = By, X By, x By, x By, is

1 0 1 -1 0 0 -1 0

0o 2 1 -1 1 0 1 -1

1 0 -1 ¢ 1 0 0 ]
1 -1 -1 ¢ -1 -1 1 -1

Lin,. g = 01 1 0 0
1

1 -1 0

-1 1 1 0 1 0 1
01 0 -1 1 1 0 1
00 1 2 0 0 0 1)/

The determinant of L is 64. Therefore the isogeny

vx t By, x By, X By, X By, = JX
has kernel of order 64. Finally, using Theorem 2.2.1, we obtain that the polarization
types of By, Ba, B; and By are {4), (3), (3) and (3), respectively. O

REMARK 3.3.2. Combining Theorem 3.3.1, Remark 3.2.3, and the classification of

[22], we may describe part of the loci of Jacobians of trigonal curves for dimension
g <6.

g { Dimension of the family Locus description
2 0 one curve with action of GL(2, 3)
3 0 one curve with action of SL(2, 3)/CD
4 i 1-dimensional with action of D3 x D5
and one curve with action of C5 x Sy
6 0 one curve with action of ({Cy x Cy) x Cy) x Cy
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APPENDIX A

Basics.

We include here some of the fundamental concept needed to understand our prob-
lem. we give several referencle where the reader may find more details. We study a
known example of the action of the group S3 on a Riemann surface of genus 3 with com-
putations about the decomposition of the Jacobian of this family of Riemann surfaces.
This appendix is a complemelllt to Chapter 1.

A.1. Riemann surfaces
A Riemann surface is a topological space, Hausdorff and connected, with a complex

structure given by an atlas oflanalytic charts. In simple words, it locally looks like an
open disc in the complex plane.

DEeFINITION A.1.1 (Compl]ex chart). A complex chart on a topological space X is
a homeomorphism ¢ : 7 — V1 where

e [/ C X is an open set in X, and

e V C C is an open setl{ in the complex plane.

EXAMPLE A.1.2. Let X = R? and let U be any open subset. Define ¢(z,y) = z+iy
from U to C. This is a complex chart on R2,

DEFINITION A.1.3 (Complex atlas). A complex atlas A on X is a collection A =
{¢a : Uy = Vo } of pairwise compatible complex charts such that X = U, U (countable
union).

Compatible means that when U; N U; is not empty, the transition function

qftj o 65;1' : qﬁz(UQ n UJ) — QSj(Uz' n Uj)
is a biholomorphic function.

DEeFINITION A.1.4 (Riemann surface). A Riemann surface is a connected Hausdorff
topological space X together with a complex atlas on it.

It is not hard to see that ]every Riemann surface is an orientable differential real
two-manifold, due to Cauchy-Riemann equations for the fransition functions, hence

38
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appealing to the clasmﬁcatlon of compact orientable two manifolds, every compact
Riemann surface is dlffeomorphlc to a g—holed torus, for some unique g > 0. This g
is called the genus of X [23, Prop. 1.1.23).

REMARK A.1.5. To formally define a complex structure we need to be more careful.
In fact there is an equivalence telation between atlases: Two atlases on X are equivalent
if their union is also an atlas. [ There is a partial order relation in the set of equivalent
atlases, given by inclusion. By Zorn’s lemma, every atlas is contained in a umique
(equivalent) maximal atlas. Moreover, two atlases are equivalent if and only if they are
contained in the same max1m|al atlas. This (last) one is called the complex structure
of X.

We have the following exainples.

ExAMPLE A.1.6 (The complex plane). Here we have only one chart in the atlas.

o U = C with its natméal topology (induced by the Euclidean metric). ¢ given
as in the previous example: ¢ : (z,¥) = = + 1y

ExAMPLE A.L.7 (A com;jt‘[lex torus of dimension 1). Fix a; and 8; two complex
numbers which are linearly independent over R.

Consider I = {myay +n1p; : My, my € Z} a lattice in C, this is a discrete additive
subgroup of rank 2 in C (L &{Z?).

B

o

Figure A.1.7

We define T' = C/L, a conmplex torus of dimension 1.

To define an atlas on T’ we choose ¢ > 0 such that |a] > 2¢ for every @ € L. Then,
for every zp € C

D, =|D(z0,6) = {z € C: |z — 2| < e}

is an open set containing no equivalent points. Moreover,

7| p., : D(z0) = (D)
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is a continuous, open, bijective map. Hence for each z € T choose 2 € n71(z), the
homeomorphism ¢, : #(D,,) — D, given by the restriction 17[1_);, is a complex chart
at z.

A.2. Group action on a compact Riemann surface

We will define the group of automorphisms Aut(X) of a Riemann surface X as the
analytical automorphism group of X.

DerFINITION A.2.1 (Holomorphic map). Let X, Y be Riemann surfaces. A mapping
F: X =Y is holomorphic at p € X if and only if there exist charts ¢ : U} — V; on
X(pel)andy: U~ VaonY (F(p) € Us), such that ¢ o F o ¢! is holomorphic
at ¢(p). We say that F is holomorphic on an open set W C X if and only if F' is
holomorphic at each point of W.

Therefore,

Aut(X) == {F: X — X : F is a bijective (bi)holomorphic map}

REMARK A.2.2. When X is a compact Riemann surface of genus g(X) > 2, the
group Aut(X) is finite. In fact there is a bound, due to Hurwitz:

| Aut(X)] < 84(g(X) — 1).

DEFINITION A.2.3 (Group action on X). We say that a finite group G acts on
X if G can be mapped to Aut(X). This is, if there is a (group) homomorphism
p: G — Aut(X). We say that the action is effective if p is injective. We simplify
notation letting g.p := p(g)(p), for any g € Gand p € X.

The orbit of a point p € X is the set G.p = {g.p : ¢ € G}. The stabilizer of a point
p € X is the subgroup G, = {g € G : g.p = p}. It is often called the isotropy subgroup
of p.

We are interested in branched coverings, to study the Riemann surface X/G.

DEFINITION A24 (Branched covering). A branched  covering
f:U =V, between Riemann surfaces U and V), is a surjective holomorphic map.

- A point p € U is a branch point for f if f fails of being locally one-to-one in p.
The set of branch points is a discrete subset of U.

- The image of a branch point is a branch value of f. If U and V are com-
pact Riemann surfaces, then the set By of branch values is finite. We observe that
F:U\ f7YBf) = V' \ By is a holomorphic covering of finite degree.
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The quotient X/G is the set of orbits. It is a Riemann surface with complex atlas
induced by the holomorphic branched covering 7 : X — X/G (for details see [23]).
The degree of 7 is |G| and the multiplicity of 7 at p is mult,(7) = |G| for all p € X.

We will need the Riemann-Hurwitz formula [Corollary I11.3.7,[23]].

ProposiTioN A.2.5 (Riemann-Hurwitz). Let G be a finite group acting (holo-
morphically and effectively) on a compact Riemann surface X, with quotient map
m:X — X/G =Y. Suppose that there are v branch values yy,...,y, € Y with &
having multiplicity m; ot the |G|/m; points above y;. Then

o) = lel(ax/@) -1 +1+ 15 0 - L

A branched covering n¢ : X — X/G may be partially characterized by its signature
which is defined as follows.

DEFINITION A.2.6 (Signature of G on X). We define the tuple (¢(X/G); myq, ..., m,)
to be the signature (or branching dota) of G on X where r,m; are given as in Corollary
A.25.

We introduce now a generalization of this signature which was given in [31]. It is
a natural fusion between the definitions of signature in Definition A.2.6, and the type
of a branch value (see [31]).

DEFINITION A.2.7. (Geometric signature of G on X)) Let X be a compact Riemann
surface and G be a group acting on X. Let py,...,pr € X be a maximal collection of
non-equivalent branch points; i.e., points in different G—orbits and one by each orbit.
For each j = 1,...,7, we consider its stabilizer G; = G,. We define the geometric
signature of G on X as the tuple

('Y; [mls Ol]’ e [mﬂ CT])

where « is the genus of X/G, m; is the order of the stabilizer subgroup G; and Cj is
the conjugacy class represented by Gj.

DEFINITION A.2.8. (Generating vector of type (v;my,...,m}} A 2y + r tuple
(@1, ., 8, b1,...,by,¢1,...,¢r) of clements of G is called a generating vector of type
(v;ma, ..., m,.) if the following are satisfied:

i) G is generated by the elements (a1, ...,ay,b1,...,by,¢1,...,¢);

ii) order(c;) = my; and

iii) T17_;las, b [T:; ¢; = 1, where [a;, b;] denotes the commutator of a; and b;.

The following theorem {31] assures not only the existence of a Riemann surface with
the action of a given group, but also gives control on the behavior of the intermediate
quotients and on the dimensions of a subvarieties appearing in the decomposition of
its Jacobian. This is a subtle difference with the usual Riemann existence Theorem,




A.2. GROUP ACTION ON A COMPACT RIEMANN SURFACE 42

due to its consideration of the geometric signature instead of the usual one (see [31]
for more details).

THEOREM A.2.9 (Existence). Given a finite group G, there is a compact Riemann
surface S of genus g on which G acts with geometric signature (v; [my, Ci), ..., [my, Cr])
if and only if the following three conditions hold.

i) The Riemann-Hurwitz formula given in Corollary A.2.5.
ity The group G has a generating vector

(al, bl, ceey Qoyy baf, Clyeeny Cr)
of type (v;ma, oy my).
iii) The elements ¢, ..., of the generating vector are such that the subgroup gen-
erated by c; is in the conjugacy class C; for j € {1,...,r}.
ExaMPLE A.2.10 (action of S; in genus 3). S; has a presentation
Sy =< a,b:a’, b abab > .
A planar model for a compact Riemann surface X of genus g(X') = 3 with Sz—action
is
{(z,y) € C*: By*a® +y® + 2% L+ ayz + 1 =0},
where o, # € C*. Note it is a two parameter family.

bisa t L. aisarotation
reflexion 3§ of order 3

Figure A.2.10

The signature of the action of S3 on X is (0;3,2,2,2,2). This happens due to
Theorem A.2.9, because the Riemann-Hurwitz formula is satisfied, the vector

(a, b, ab, ab, ab)
is a generating vector for S; of type (0; 3, 2, 2, 2, 2). We can take the geometric signature

(0;[3, E—]’ [2, @_)—]’ [2, (ab)], [2, (a)], [2, {aB}]),
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where we use the overline to denote conjugacy class of the subgroup. Observe that the
branch values corresponding to branch points with stabilizer of order 2 are all of the
same type (there is only one conjugacy class of subgroups of order 2). We use different
representatives to see the relation with the generating vector.

Using the Riemann-Turwitz formula we can find the signature of the action of every
subgroup H < S3. We have only 3 classes of subgroups in S5 which are represented by
{e,< a >, < b>}. We obtain that

® < a > acts on X with signature (1;3, 3},
® < b> acts on X with signature (1;2,2,2,2).

In this case the calculation is simple because S3 is a group of small order. In general,
this is possible due to the formulas given in [31].

We quote here a proposition containing a formula for the genus of the intermediate
quotients.

PROPOSITION A.2.11 (Genus of X/H). Let X be a Riemann Surface with an ac-
tion of the group G and geometric signature (7v; [ma, C1, ..., [mr, Cy]). Then for each
subgroup H < G the genus of X/H is given by

a : 11
a(X/H)=[G: Hl(y—1)+1+ % 353 INTé(ig)l (i- l& G;J Hl)

j=1 IEQGJ.

where Gi; is a representative for the conjugacy class Cy, and g, is a left transversal
of the normalizer Ng(G;) of G; in G.

A.3. Complex tori and abelian varieties

It is possible to generalize the definition of complex tori of dimension 1 to higher
dimensions.

DEFINITION A.3.1 (Complex tori of dimension g). Fix 2g vectors
{01,y 0, B1y -y Bg}
in CY which are linearly independent over R. Consider
L= {mion + ... + mgog + .. By + ..ngBy : My, m; € Z}

as a lattice in C9. This is a discrete additive subgroup of rank 2g in €9, so L = 72,
as Z—modules. The quotient T, = C9/L is called a complex torus of dimension g.

T, is a compact, connected g—dimensional complex manifold.
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In order to describe T, we choose a C—basis {ey,...,e,} for C9 and write the
elements {ay, ..., aq, 1, ..., B¢} in terms of ey, ..., €.

g

; = E Wjifij
=1
g

Bi = Tye;
j=1

Il = ((m5) (752))
in M(g x 2¢,C) is called a period matrix for T,. The period matrix determines com-
pletely Ty, but certainly depends on the choice of the bases of C9 and L (for more
details see [4]).

The matrix

There are two special types of holomorphic maps between complex tori: homomor-
phisms and translations. A homomorphism between complex tori is a holomorphic
function which preserves the group structure. The translation by an element x4 € T is
defined to be the holomorphic map ¢, : zo = = + 0.

PROPOSITION A.3.2 ([4], Chapter 1, Section 2). Let T = C9/L and T' = C¥ /L' be
two complex tori of dimensions g and ¢’ respectively. Let h: T — 1" be a holomorphic
map between them.

(a) There is a unique homomorphism f: T — T’ such that h =ty f, i.e. h(z) =
flz) +h{0) forallz & T.

(b) There is a unique C—linear map F : C¥ — C9 with F(IL) C L' inducing the
homomorphism f.

REMARK A.3.3. Under addition the set of homomorphisms of T into 77 forms an
abelian group denoted by Hom(T, T'). Proposition A.3.2 gives an injective homomor-
phism of abelian groups

pa : Hom(T, T") — Homg(C?,C%), f— F,
called the analytic representation of Hom(T,T"). The restriction Fy, of F to the lattice
L is Z—linear. Fy, determines I’ and f. Thus we get an injective homomorphism

pr : Hom(T,T") = Homg(L, L), f— Fi,

called the rational representation of Hom(T, T'). We denote the extension of p, and p,
to Homg (T, T") := Hom(T, T") @z Q by the same letters. In particular, if T = T7, p,
and p, are representations of the ring End(T"), or Endg(T) := End(T) ®z Q.

Let f : T — T' be a homomorphism. With respect to the chosen bases the repre-
sentation p,(f) (respectively p.(f)) is given by the matrix A € My, ¢ (respectively
R e M(2¢' x 29,7)). In terms of matrices the condition p,(f)(L) C I/ means
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(9) All = IT'R,

where II € M(gx 2¢g,C) and II' € M(g¢’ x 2¢’, C) are period matrices for T and 7" with
respect to the chosen bases.

Conversely, any pair of matrices A € M{g'x g,C) and R € M(2¢' x 2¢, Z) satisfying
the above equality defines a homomorphism 7" — 7", '

There is a special type of homomorphisms among complex tori which we will use
throughout this thesis. 3

DEFINITION A.3.4 (isogeny). An isogeny between two complex tori 7 — 77 is a
surjective homomorphism with finite kernel. This implies that T and T” have the same
dimension as complex tori.

An important class of complex tori is given by abelian varieties, which are complex
tori admitting a polarization. An important property of these varieties is that they are
projective (see [4]).

DEFINITION A.3.5 (Polarization). A polarization of a complex torus T = C9/L
is a positive definite Hermitian form H on C¢ which is non degenerate and satisfies
S(H)L x L) CZ, where & denotes the imaginary part of H.

DEFINITION A.3.6 (Abelian variety). An abelian variety is a complex torus T' =
C9/L admitting a polarization.

PROPOSITION A.3.7. There exist a 1-1 correspondence between the set of Hermitian
forms H on €% and the set of real alternating forms E on C9 satisfying E(iv,iw) =
E(v,w) for all v,w € C9. The bijection is

E(v,w) = S(H(v,w)) and H(v,w) = B(iv,w) +iE(v, w) :
for all v,w € C9,

In general, an abelian variety can admif many polarizations. When we fix one of
them, we say that the pair (T, H) or (T, E) is a polarized abelian variety.

Due to the elementary divisor theorem it is possible to choose a base 8 of L with
respect to which F is given by the matrix

(5 2)

where D) = diag(ds,...,d,;) with integers d; satisfying dj|d;4, for all I € {1,...,9 - 1}.
The elementary divisors dy, ..., d, are uniquely defermined by E and L.

The vector (dy, ..., dg) is called the type of E and the basis 8 a symplectic basis of
L for E.




|
1‘5
L
i
DEFINITION A.3.8 (Principally polarized abelian variety). If (T, E) is polarized

abelian variety such that the type of Eis (1, ..., 1) then we say that (T, E) is a principally
polarized abelian variety.
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A.4. Jacobian varieties.

A special example of principally polarized abelian variety is the case of the Jaco-
bian varieties which admit a canonical principal polarization. Their construction is as
tollows (see [4, 11.1]).

Given a compact Riemann surface X of genus g, consider the g—dimensional
C—vector space H°(X, C) of holomorphic 1-forms on C, and the first homology group
Hy(X,Z), a free abelian group of rank 2g. For convenience we use the same letter for
(topological) 1-cycles on X and their corresponding classes in Hy(X,C). By Stokes’
theorem any element v € H\(X, Z) yields in a canonical way a linear form on the vector
space H'0(X,C), which we also denote by 7:

v: HYX,C) > C; w— /w
Y

REMARK A .4.1. The canonical map
¢ Hi(X,C) - HY(X,C)* = Hom(H (X, C),C)

given above is injective.

Since o(H1(X,Z)) is a lattice in HY(X, C)*, we have

DEFINITION A.4.2 (Jacobian varieties). The Jacobian variety of a compact Rie-
mann surface X or simply the Jacobian of X is

1,0 *

JX = M.
(H1(X,Z))
Note that

e If g =0, then JX =0, and
e If g = 1, then JX is a complex torus of dimension 1. Moreover, we have
JX £ X in this case [15] [23].

REMARK A.4.3. In all that follows, we assume g > 2 in order to avoid trivialities.

Let X be a compact Riemann surface of genus g. To describe JX in terms of period
matrices, choose bases {1, ..., I} of Hi(X,Z) and w, ..., w, of HO(X, C).

Let iy, ..., t; denote the basis of H¥*(X,C)* dual to wy, cey Wy, 1.y ti{w;) = 65 for
all 4, 7.
We have

1
i

i = zi;(/l wj)i;.

i
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i
Hence

J;l W eee aae ng Wy
It= : :
Juwe o fl, wo

is a period matrix for JX respect to these bases.

Fix {li = a1, ..., lg = g, lgy1 = Bi, -, log = By} a basis of H1{X, Z)} with intersection
0 I ‘

10 /s indicated in the following figure (which is called a symplectic
—ig

matrix (

basis).

Figure A.4

Denoted by FE the alternating form on H%%(X, C)* with matrix ( _(} ‘3” ) with
g
respect to these base and define
H{v,w) = E(iv,w) +iF (v, w),

which defines a principal polarization on JX, called the canonical polarization on JX.

A.5. Group action on JX

Every time that we have a Riemamm Surface X with G—action, we have associated
an action of G on the corresponding Jacobian [4]. Hence, by Remark A .3.3, we obtain
two representations for the action of G on its Jacobian variety JX:

(1) The Rational Representation, pr : G — GL(H(X,Z) @ Q).
(2) The Analytical Representation, p, : G — GL{H"*(X,C)).
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Where X denotes the corresponding Riemann surface.
Both are related by,

pr@C=p, ®p,

ExAMPLE A.5.1 (S3 on H{(X,Z)). Let us recall Example A.2.10. If we choose a
symplectic basis § = {ay, ..., 3, 81, ..., Bs} of H1(X,Z) then the action of S; on X is
represented by

001000
100000
o10000
ls=1060000 1
000100
000010

0 -1 0 0 0 0

1 0 0 0 0 0
[b]=00—1000
A 0 0 0 0 -1 0
0 0 0 -1 0 0

0 0 0 0 0 -1

A.6. Singular locus

Now we introduce the moduli space of principally polarized abelian varieties, some
of its properties and its singular locus [[4], Chapter 8].

DEFINITION A.6.1 (Moduli). The set of isomorphism classes of principally polarized
abelian varieties of dimension ¢ is called the moduli space of principally polarized
abelian varieties of dimension g. It is denoted by .A,.

Suppose that (T'= C9/L, H) is a principally polarized abelian variety. Then there
exists a symplectic basis ¥ = {y, ..., &g, B1, ..., By} of L for H such that the alternating
form E' = $(H) is given by the matrix

0 I,
~I, 0}

In fact, y can be chosen such that, if we define e, = o, for v € {1, ..., g}, then {ej, ..., e,}
is a C—basis for C9. Therefore, with respect to these bases, the period matrix of T is
of the form

(L, 2)
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for some Z &€ M,(C). The matrix Z satisfies

o Zt=Z and §Z > 0.
o (3Z)! is the matrix of the Hermitian form H with respect to the basis
{e1,...,e,} [4, Prop. 8.1.1]

DEFINITION A.6.2 (Siegel upper half-space). The set
Hy = {Z € My(C) : Z* = Z,37 > 0}

is called the Siegel upper half-space. It is a %g(g + 1)-dimensional open sub-manifold
of the vector space of symmetric matrices in M,(C).

We have seen that a principally polarized abelian variety determines a point Z € H,.
Conversely, any Z € H, determines a principally polarized abelian variety
T, =C%/Ly
where Ly is the lattice generated by the columns of II = (I; Z). We can define the
polarization Hz = (3Z)~! with respect to the standard basis of C%.
Then we have
Ag & Hgf ~
where ~ denotes the equivalence relation
Z'~ Z'if and only if Z' = M(2),
A B
C D
M € Spoy(Z), the symplectic group. This comes from Equation (9), with M being the

rational representation of the‘:; isomorphism between the variety with Riemann matrices

Z and M(Z).

REMARK A.6.3. It is known that the singular locus Sing(A,) of A, is the subset
which contains the principally polarized abelian varieties with non trivial automor-
phisms.

where M(Z) = (A+ ZC)~Y(B + ZD) with M = and A, B,C, D € My(Z).

In particular, the loci (singular locus) of Jacobian varieties of dimension g contains
the Jacobian varieties with non trivial group of automorphisms.

A.7. Representations of a finite group

DEFINITION A.7.1 (Representation of a finite group). Let G a finite group, K a
field and V" a finite dimensional K-vector space.

A representation of G with space of representation V is a homomorphism r : ¢ —
GL(V) which sends g to a linear transformation r, of V. We say the degree of r is
dimg V.
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Once a basis for V' is chosen, we have a matrix representation for every g€ G. We
say that the representation r is given in matrix form.

An important concept in group representation theory is the concept of irreducible
representations over K,

DEFINITION A.7.2. (Sub-representation) Let 7 : G — GL(V) be a linear represen-
tation and let W be a vector subspace of V. Suppose that W is stable under the action
of G (we also say invariant), i.e.

z € W implies ry(z) € W for all g € G,
then r|w : G — GL{W) is a linear representation of G in W and W is said to be a
subrepresentation of V.

DEeFINITION A.7.3. (Irreducible representation} Let r : G — GL{V) be a linear
representation of G, we say that r is érreducible if the only G-invariant subspaces of V
are V' y {0}. We denote the set of K —irreducible representations of G by Irrg(G).

DEFINITION A.7.4. (Equivalent representations) Let r : G — GL(V) and v : G —
GL(V’) be two linear representations of the same group G. These representations are
said to be equivalent (similar, isomorphic or equal) if there exists a linear isomorphism
71V — V' such that

Tor(s)=7r(s)r for all s € G.

If » and 7' are given in matrix form, the above definition means that there exists
an invertible matrix which conjugates r; to re for all s € G.

THEOREM A.7.5 (Maschke, Section 10.8, [11]). Every representation over a field
of characteristic 0 is a direct sum of irreducible representations.

We concentrate along this work in to study C—irreducible representations and the
@Q--irreducible representation of a given group, see {34} and [11] for references.

ExaMpLE A.7.6 (Representations of S3). Again we write
S3 =< a,b: a®,b%, abab >

The Q—irreducible representations of Sz are 3, two of degree 1 and one of degree
2. We give them here in its matrix form:

e the trivial one 7¢ : g — 7o, = Idg,

e the sign representation r, i.e r, =1 and r, = —1, and
e the geometric 2-dimensional representation ¢ with space of representation W =
Cc2.

This representation is defined by

w 0 01
ta=(0 wg)andtb—(l 0)
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2mi | o sy :
Here w = e™s is a primitive cube root of the unity.

It is a known fact that the C—irreducible representations of the group S; can be
defined, in fact, over the field of the rational numbers Q [34]. In fact, this happens to
every group Sp;n > 2.

We have that £ is equivalent to the following representation.

ro__ 0'_'1 ‘t’— 01
e\ 1 =1 )T 10

THEOREM A.7.7 ([34]). The number of complex irreducible representations of G
(up to isomorphism) is equal to the number of conjugacy classes of G.

THEOREM A.7.8 (Chapter 13, [34]). The number of rational irreducible represen-
tations of G (up to isomorphism) is equal to the number of cyclic subgroups of G up to
conjugation.

On the other hand, it is possible to study the representations of a group using the
following tool (see [34, 2.2.3]).

DEFINITION A.7.9. (Character of a representation) Let 7 : G — GL(V') be a linear
representation of a finite group G in the vector space V. We choose a basis on V' and
for each ¢ € G we define the character of r on g as

xr{g) = Trace(r,)
ExaMPLE A.7.10. Recall that the character table of S;3 is

Elements of G | xo | x1 | X2
e 1112
a, a2 1{1]1
a’b, ab, b 11-1]0

DEFINITION A.7.11. (Scalar product) Let x and X’ be two characters of a group
(. The scalar product between them is defined as

) =15 Zx(g)x

gea@
In all that follows K is a field of characteristic 0, in fact K is C or Q.

THEOREM A.7.12. (Orthogonality relations for characters)
1) If x is a character of a complez irreducible representation, we have (x, %) = 1.

2) If x and X' are characters of two non isomorphic complez irreducible representations,
we have (x, x') = 0.
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THEOREM A.7.13. [11, Thm. 30.15] Let U,V be absolutely irreducible representa-
tions of a finite group G with characters x, v respectively. Then U is equivalent to V
(see Definition A.7.4)} if and only if x = v.

THEOREM A.7.14 (multiplicity). Let V be a linear representation of G with char-
acter ¢, and suppose V' decomposes into a direct sum of irreducible representations:

V=W1@"'@Ws.
Then, if W is an irreducible representation with character X, the number of W, iso-
morplic to W is equal to the scalar product (¢, x).

COROLLARY A.7.15. The number of W isomorphic to W does not depend on the
chosen decomposition.

This allows us to make the following definition.

DEFINITION A.7.16 (Isotypical decomposition). Let V be a K —linear represen-
tation of a finite group G, with character x, and Wi,..., W, all the K —irreducible
representations of (G, up to equivalence. We call

V = Wl(x,xﬂ S D Ws(x,xs)
the isotypical decomposition of V, where the scalar products {x, x;) can be 0.
DEFINITION A.7.17. Given r € Irre(G), 7 : G — GL(V):
e Ly denotes the field of definition of V and

Ky =Qlxv(g): g € G)
denotes the field obtained by adjoining to the rational numbers @ the values

of the character v .
e my = mg(V) = [Ly : Ky] is the Schur index of V.

Note that we obtain the following extensions of fields over Q.
Ly
my

Ky =Q(xv(9) : 9 €G)

Q
Figure A.7

Note that, for all » (or V), all the field extensions in Figure A.7 are Galois ex-
tensions; this is because Ly, Ky are subfields of Q(&,), where &, is a primitive n root
of unity, for n equals to the exponent of the group G [11, Thm. 41.1]. Denote by
Gal(Ly /Q), Gal(Ly / Kv), Gal( Ky /Q) the respective Galois groups.
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For each complex irreducible representation V' of G (we denote the representation
r by its underlying vector space V'), we call the set

G(V) :={V7:0 € Gal(Ly/Q)}

the Galois class of V, where V7 is the complex irreducible representation given as
follows:

for each g € G, let V(g) denote the matrix obtained by letting g act on all the
coefficients of the matrix V{g). Note that the representation V7 is also defined over
Ly and both V' and V7 share the same field Ky. Furthermore, due to Theorem A.7.13,
V7 is equivalent to V' if and only if ¢ is in Gal(Ly/Kv).

The rational and complex irreducible representations of a group G are related by
the following theorem [11, Thm. 70.15].

THEOREM A.7.18. [11, Thm. 70.15] Let {V4, ..., V;} be a full set of representatives
of Galois classes from the set Iire(G) and let Kj := Ky,,Lj = Ly,. Then for each
rational irreducible representation W of G there exists precisely one V; satisfying

WeeCx B V= @ myy
seGal(L; /Q) cEGal(¥K;:Q)

Now we recall results regarding subgroups and induced representations [34, 3.3.3].

Let r € Irre(G) and let ry be its restriction to H. Denote by 6 : H — GL(W)
a subrepresentation of rg. For s € G; the vector space ;W depends only on the left
coset sH of s. In fact, if we replace s by st with £ € H, we have

raW = rasW = r,W
since W =W,
If o is a left coset of H, we can thus define a space W, of V to be r;W for any

s € o. It is clear that the W, are permuted among themselves by the r, for s € G.
Their sum

> w,

cEG/H
is then a subrepresentation of V.

DEFINITION A.7.19 (Induced representation). We say that the representation r of
G in V is induced by the representation 6 : H — GL(W) of H, if

V=Y W..

occG/H

We can reformulate this definition in the following way:
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If R is a set of representatives of G/H, the vector space V is the direct sum of the
r:W with ¢ € R. In particular, we have

dimV = Z*rtW =[G : H|dimW.
teR

§
We will use specially thef induced representation by the trivial representation of a
subgroup H of G. |

!
DEFINITION A.7.20 (Subspace of V fixed by H). Let V € Irrg(G), and H < G.
We define FixyV = V as the set of fixed points of V under the action of all h € H.

Due to the Frobenius recijprocity theorem (34, Chapter 7, Thm.|13] we have

PROPOSITION A.7.21. Given V a C~irreducible representation of G, we have
dimg V¥ = (Indg1g, V),

where Ind,g is the representation of G induced by the irivial represeniation in H, and
(, ) denotes the scalar product defined in Def. A.7.11.

We will use more known facts about representation theory such as: the regular
representation of a group, relations among the degrees of the representations, etc. For
references see [34] or [11].

A.8. The group algebra Q[G].

DEFINITION A.8.1. The set of the formal sums > ., a9, whete o € Q form an
algebra over Q which is called the group algebra of G over Q [11].

This is a finite dimensional vector space over Q, with the natural operations, and a
ring with unity, with the product extended from the product in G. Q[G] is a semisimple
algebra [34, Chapter 6, Prop. 9], so it decomposes as a product of simple algebras

Qo X -~ X Q;

where r +4- 1 is the number of rational irreducible representations ()Jf G, every Q; is a
simple algebra generated by a central idempotent element e;. This is, Q; = Q[Gle;
where ¢; is a central element (uniquely defined) of Q[G] which satisfies e? = ¢;.
Hence, we can write
1=60—|—...+6,..

ExaMPLE A.8.2. We have
@[53] = Qo x Q@ x Qg
where every Q; = Q[S;]e; with

> xlg™g

gea

€ =

dim x;
|G
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€ = %Zg

geG

Then we have

e = %(e +ata® 4 (=1)b+ (—1)ab+ (~1)a%h)

e = §(2e + (“Da+ (~1)a?)

It is not difficult verify that 1 = ey + €; + ea.
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APPENDIX B

Rest of the proof of Theorem 3.3.1

In this appendix we complete the proof of Theorem 3.3.1. We use the method
of Chapter 2 running on the computational program MAGMA [6] and the algorithm
given in [3]. A nice explanation and examples of this algorithm can be found in [33).

The notation is coming from Section 1.3 and Theorem 2.1.8. In particular, we
denote the factors in the isogeny v, by By = By, where 4 corresponds to the irre-
ducible rational representation W; acting on A; associated to one of the irreducible
complex representations V; for j € {1, ...,n;} that corresponds to W; under the Galois
group action (as in theorem A.7.18). The numbering and notation follow the MAGMA
database.

We divide our study into sections, according to the dimension of the Jacobian.

B.1. Dimension 2:

This case was presented m Example 2.1.11, we obtain an isomorphism r,. We use
this case to show that if we choose a different pair of subgroups in the same conjugacy
class, we obfain an isogeny with non trivial kernel. Set

H! = HW072a — o 232

and
Hy=H" =<ba>,

where H =< ab >. If B}, = im(pH{) and By, = Im(py;) then |Ker(r)| = 3. This due
to
/2 0 0 -1/2\
| =172 172 172 0
ps(Pry) = 0 1/2 1/2 —1/2

- \-12 0 0 12 )

: 0 -1/2 0 1/2)
; /2 1 -1/2 0

ps(pr;) = 6 ~1/2 0/ 1/2

\1/2 0 -1/2 1 }

56
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The matrix coordinate of the lattice of the product B}y x By, is given in this case

01 1 0
I 10 1 -1
WEY = 1o 1 0 1
1 -1 1 1

Continuing with the effective set for this group found in Example 2.1.11, the matrix
Ly, w3y provides the coordinate matrices of the lattices of By; and Bys. Then, if we
denote by {a, s, By, B2} the symplectic basis of A = H; (X,Z) we have that a basis
of the lattice of By; is given by Y155 Y25 for j € {1,2}. Where

Yin =g, yn =B +28 2= o+ o, Y2 = i1+ B

Moreover, we have obtafned, using the algorithm from [3], the Riemann matrix of

JX:
_ z  —z/2
Z= ( —z/2 2z )’
where 2% — 4/32 + 4/3 = 0.

Therefore we obtain vo; = 3/227v,; and Yoz = 2/2v2.

Then if we consider {vi1,7v12, V21, 722} as the basis of the lattice of the product
By X By and {11,712} as basis of the complex vector space which defines it as a
complex tori, we may compute its period matrix (see [[4], Chapter 1]) which is

103 0
HD:(O 10 T)’
where 7 = z/2.

We obtain the induced polarization of each of the factors By and By with respect
to the chosen basis for the lattice of By x Byy. They are given by

0 2 0 1
E41=E'42=(_2 0)=2(_1 0).

Moreover the matrix of the rational representation of By x By and the matrix of
its analytic representation must be (see [[4], Chapter 1])

0100
1100 0 1

B=1o0011 ’A_(ll)
0021

We verify the equation for the isogeny’s matrix form Allp = (7, Z)R (see [4], [30]
or equation 9 in this tesis).

Finally, we note that the Riemann matrix of JX depends on one parameter z € C
such that 2° ~ (4/8)z + 4/3 = 0. Then we have a priori two Jacobians of dimension
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Class [1]2]3] 4 5 6 78] 9 10 11 12 13 14
Size |1}j1(6]| 4 4 1 1[6] 4 4 4 4 4 4
Order [1] 22 3 3 |4 44786 6 12 12 12 12
Vi 1111 1 1 11171 1 1 i 1 1
Vh 1{1]-1] 1 1 [-1|-1(1] 1 1 -1 -1 -1 -1
Va 11110 I 1il1]1] 3 |13 12 i -1-J J
Vi D [ Q[ N A [, 1y S [ S O S P -J 14 -J 1+J
Vi |-t ]3] J {111 T {13 14d -J 147 | -]
Vi tl1{1]| J |33t f1f1]-1-T]| J J -1-3 J -1-J
\: 2120} -1 1| 2|of o1 1 i i - i
Vi 2|20 -1 1| #|-2|of 1 1 4 - i i
Va 2120 [2+F| -3 |-2|20]0]| J |-1-7| Z1 Z15 -Z1 | -2Z15
Vio 22|00 -7 [143| 2 |-2]0]|-1-3| 7 |-215| -21 Z15 | 71
Var 220 -3 [14+J|-2i|2{0]|-1-J] J Z15 721 | -z15% | 7
Viz 2|20 |HI| T |2 |=2{0o] J |-1-J| -Z1 | -215]| #Z1 Z18
Vis 331 0 0 f3f{3{-1| ¢ 0 0 0 0 ]
Via 33| o 0 3|3l o 0 0 0 0 0
TABLE 1. Character table of (Cy x SL(2,3))/CD, where Z1 = ¥ — £,
J=—}+%3

2 with action of GL(2,3). However, only when z = 2/3(1 + /2i) we obtain that the
imaginary part of Z is positive definite.
Then the Jacobian of the Bolza’s curve has Riemann matrix

Z_( 2/3(1 + Vi) —1/3(1+x/§i))
T\ —1/3(1+v25)  2/3(1+V2%) )

B.2. Dimension 3

The genus 3 surface on Table 2 corresponds to the curve with plane model (see [22,

Table 2J}.

X ={(z,9) 1" =2 — 1}
The full antomorphism group of X is G = (Cy x SL(2,3))/CD acting with signature
(0;12,3,2)

Using the formula for the dimensions of the factors in the group algebra decompo-
sition of JX (Theorem 1.4.1), we obtain that the Jacobian variety of X is completely
decomposable. In fact,

p: By x B} ~JX,

where B; and B> are complex elliptic eurves.
The irreducible rational representations of degree 1 and 2 of G, V53 and V; respec-
tively in Table 1, act on the factors B, and B2 respectively.

To compute the minimal kernel for the isogeny v, we consider three subgroups
Hy, Hy and Hj of G(48, 33) satisfying the conditions of Lemma 2.1.1.
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Subgroup classes
Identity element
order 2, length 1*
order 2, length 6%*
order 3, length 4
order 4, length 1
order 4, length 3
order 4, length 3*
order 6, length 4
order 8, length 1*
order 8, length 3
order 8, length 3
order 12, length 4
order 16, length 1
order 24, length 1
order 48, length 1

o
L~
“
o

[ 4.l il B P

b A

e e P S Y

COCOCOm N OO SR RR
COHORERORR O R M
OQHQHHHOI—IHHQH)—‘I—I;;
COCOOO=ROHOOO O N
CoCoOOoRCoOOOEO Mo KT
COCOO0OO0O OO NS

CO0O0COROROOO O MmN
CoOCCoOCO00OC OO NG N
OO O0OCO0OT OO MmO S
CCO0COOCOO00dHMO WS
- - R e

OOOO?—'OGHD—IMOI—‘MWWS
QOQI—IDI—‘QH#I—‘WHJ—‘WWS

e e i e

TABLE 2. Decomposition of Indf;l x in complex irreduciblé representations.
|

To find such subgroups Hj, Hy, Hs we use the symplectic | irepresentation of the
action given in [3]. This allows us to write every element of G’(48 29) as a square
symplectic matrix of size 6.

We determine the complex irreducible representation decomp031t10n of the induced
representation Ind$ 1y in G by the trivial representation in A for each H < @G.

Table 2 shows the multiplicity of the complex irreducible representatlons in Ind$ mly
for all H < G up to conjugacy.

|.
t

We get from Table 2 that the following subgroups satisfy both conditions of Lemma
2.1.1, hence the hypothesis of Theorem 2.1.8.

¢ For V: the classes of subgroups are given by subgroups of order 2, 4 and 8

(marked with *).
e For Vi;: the subgroups of order 2 and is of length 6 (marked with **).

We now move inside these classes to find the subgroups H; correspondmg to the
smallest order for the kernel of vyx. To describe them, consider the presentation for G

G =<a,b: a2 =0 = (ab)? = a'tblababa~" - =1>
Consider '
H) =sub< G:ba’ 10 >,

|
Hy = sub < G :ab >, 1
i
Hy =sub< G:ba>, !

subgroups of order 2 of G where H, and Hj are conjugates a:ad H; is the unique
subgroup in its conjugacy class. 1

Then an effective set .S for G is {H}, Ifs, H3} Define By, = Im(pH ), for = 1..3. Then
|Ker(vy)| = 4. This due to

it

e r—e — et e —y

.
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/2 1/2 0 0 -1/2 —1/2

0o 0 1/21/2 0 -—1/2

| -1/2 -2 12 12 172 0
polom)=| 0 1/2 1/2 0 -—1/2
o 0 1/21/2 0 —1/2

—-1/2 -1/2 0 0 1/2 1/2

0 0 -1/2 0 1/2 1/2
1/2 1/2 0 —1/2 0 1/2

12 12 12 172 172 0
plem) =1 4" 0 12 0 1/ 1/2
0 0 —1/2 0 1/2 1/2
/2 1/2 0 -1/2 0 1/2

0O 0 0 0 0 0

0 1/2 —-1/2 0 0 1/2

(om) = 1/2 0 1/2 0 —-1/2 0
P\PHI=1 0 1/2 —1/2 0 0 1/2
—-1/2 0 —1/2 0 1/2 0

/2 1/2 0 0 —1/2 1/2

Then the coordinate matrices of the lattices are

Aw =10 -200 -1
H=190p1 1 11 0
Ao (01 1 001
227V10-1110

1 1

1

010)

0
Affa:(o 010 -1

and the matrix coordinate of the lattice of the product Bs; X By X By is given by

10 -10 0 -1

01 1 1 1 0

, 01 1 0 0 1
Lmmar=| 19 211 1 o
61 0 1 0 1

00 1 0 -1 1

Therefore the isogeny

Vy :BHl ><BH2 XBHS—)JX

has kernel of order 4. Finally, using Theorem 2.2.1, we obtain the induced polarization
on each factor is (2).
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On the other side, the algorithm of [3] allows us to verify that the groups in Table
3 do not act on genus 3.

Moreover, working as in subsection 2, we find that the possible Riemann Matrices
of JX depends on one parameter z € C such that 22 +423 4222 — 42413 = 0. Then we
have a priori four Jacobians of dimension 3 with action of G with signature (0; 2, 3, 12).
However, we know from [22] that only one of this solutions correspond to a Riemann
matrix of JX.

The Jacobian of the trigonal curve of genus 3 is given by

a b ¢
Z=| b d e

c e z

where z = —1+ /2 +2iv/3), a = 1/422 + 1/22 +1/4, b= —=1/22 +1/2, c = 1/823 +
1/822 —5/82+3/8,d=1/43+1/222+1/4z+ 1y e =1/82% + 1/82% +3/8z + 3/8.

B.3. Dimension 4
We divide this subsection in two parts.

B.3.1. Non-normal trigonal curves. For this curves the groups acting are G =
D3 X Dg and G; = (03 X 03) x Dy,

We start the proof of this case with trigonal curves admitting a G;-action. We call
X to the curves with action of this group, which is with signature (0;3, 2, 2,2). This
curves form a one dimensional family with planar model

Xi={(z,y) €C*:as’y® — (2* +4°) + a = 0}
where a ¢ {0, £1,00}. As we explained in Remark 3.2.3, this family contains the sur-
face with action of (s.

We determine as in the previous cases that the Jacobian variety of a curve X, in
this family is completely decomposable. In fact the group algebra decomposition for
its Jacobian is

71 B} x B ~ JX3,
where Bi, B, are elliptic curves with the action of the irreducible rational representa-
tions V5 and V7 of i1, both of degree 2 with character shown in Table 3).

We follow the procedure as before. We search four subgroups H;, Ho, Hy and H; of
G satisfying the conditions in the Lemma 2.1.1.

We determine the dimension of the V¥ for all the subgroups and all the representa-
tions, although we are interested on V5 and V;. As before this is equivalent to compute
the complex irreducible representation decomposition of the induced representation
Indffl g In Gy, This information is in Table 4.
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Class |12 {3 |4|5]6|7]879
Size 11313922466
Order |12 (2233 [3]|6[6
Wi 11111111
Vo 11-111-1(1 ({171 (-1(1
Vi 1{-1|-1131 (121 (1]|-1}-1
Va 1l1q-1]-1|1]11({1]1/|-1
Vs 21-21010|-1]2}-1|11{0
Vo |2|2(0lol|1]|2]-1{-1]0
Vo 210(-2{0f2(-1]-1]10]1
Ve 2lo0fl2|02|-1)-1101-1
Vs 410|100 |-2[-2|11|0|0
TABLE 3. Character table of Gy = D3 x Dj.

Classes of subgroups

Identity element
Order 2, length 3**
Order 2, length 3*
Order 2, length 9
Order 3, length 1
Order 3, length 1
Order 3, length 2
Order 4, length 9
Order 6, length 1
Order 6, length 1
Order 6, length 3*
Order 6, length 3%*
Oxder 6, length 3*
Order 6, length 3**
Order 6, length 6
Order 9, length 1
Order 12, length 3
Order 12, length 3
Order 18, length 1
Order 18, length 1
Order 18, length 1
Order 36, length 1

HHHHHH)—\HHI—‘J—‘-HI—&HHHI—JHF—‘I—‘HHS
COCOHOOHOOHOOHOOR KHESD RO T
OHFCOOOHMHERFOOROOOHKRE R OO RS
COHOODODDOOHOOMROR=RGCOSH RS

COCOO0COCOROHODODINO = H O NS

COOOOHOOOHOHONKONO M = N |5

COOCOCOOOHOHOODOODO O - O = S

COOOMOTDOHOHONORDON N R RS

COCOOCOOROOOCOORNO S N RS

TABLE 4. Decomposition of Ind$ 1.
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i
We observe that the classes of subgroups of Gy satisfying the conditions of Lemma
2.1.1 for the representations we need are

(1) For V;: the classes of subgroups of order 2, 6 and 6 , all of them of length 3,
marked with *.

(2) For V: the clases of subgroups of order 2, 6, 6, all of them of length 3, marked
with **,

To give a deseription of the subgroups of G; which allow us to {ind the isogeny vy
with smallest kernel, we consider the following presentation of (7.

Gy =< a,b,c|a® =¥ = ¢ = (abc)? = a’ca thea b 'a? = acalbablac et =1 >

Consider

H = <e¢>

Hy, = <cb,(ab)* >
Hy = <a lbab,c>
Hy = <aba?!>

where Hy, H, are subgroups of order 2 of G in different conjugacy classes, and Hy, Hs
are subgroups of order 6 in different conjugacy classes.

If we write B51 = Im(le), B52 = Im(pHQ), Bn = Im(pHa) and Bm = Im(pH4) then
|Ker(2)] = 9. This is because

r

(00 0 0 0 0 00
101372 -1/20 0 00
00 0 O 0 0 00
oo 0o o 0o o oo
psP)=1 10609 0 0 0 0 o0 0
00 0 0 0 1 00
tfoo o 0 0 32 00
\N00 0 0 0 -1/20 0/
(16 12 23 ~1/3 0 0 0 0
/2,32 2 -1 0 0 0 0
~1/6 —1/2 —2/3 1/3 0 0 0 0
| o o0 0 0 0 0 0 0
polpm) = g 9 g g 1/6 1/2 —1/6 0
0 0 0 0 1/2 3/2 —1/2 0
0, 0 0 0 2/3 2 -2/3 0
\ 0 S0 0 0 —1/3 -1 1/3 0/
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(1/2 0 1/2 0 0 0 0 0\
/2 0 1/2 0 0 0 O 0
-1/2 0 -1/20 0 0 0 0
/2 0 1/2 0 0 0 0 ©
pler) =1 0" ¢ o 0 1/2 —1/2 1/2 1/2
0 0 0 0 0 0 0 0
0 0 0 0 1/2 —-1/2 1/2 1/2
\ 0 0 0 0 0 0 0 0
[1/301/3 -1/6 0 0 0 0\
-10 -1 12 0 0 0 0
2/3 023 -1/3 0 0 0 0
¢ 0 0 0 0 0 0 0
po(pr.) = 00 0 ©0 1/3 -1 2/3 0
00 0 0 0 0 0 ©
o0 0 0 1/3 -1 2/3 0
\o 0 0 0 -1/6 1/2 —1/3 0
Then the coordinate matrices of the lattices are
A _(0100000 0)
BTV 0000023 -1
A (1 3 -1 0000 0 )
=TV 00 0 01 34 -2
A (0 0 00101 0)
Ha=11 1110000
A H(o 0 00101 0)
B=l1 1110000
and the matrix coordinate of the lattice of the product Bs; x Bsa X By X B is
001 00000 0
00 0 0023 -1
1 3 10000 0
I 0 0 0 0134 —2
H-HE= 10 0 0 0101 0
1 -1 1 1000 0
00 0 0101 0
\1 -1 1 1000 o0/

We obtain the polarizations on each factor using Theorem 2.2.1, they are (2), (6), (2)
and (6), respectively.

Consider now trigonal curves with Gy-action. An affine model [27] for the unique
surface Xy of genus 4 with action of G35 is

Xp = {y = (@ = 1)(=* + 1)%}.




B.3. DIMENSION 4 65

{lass

1121345617181 49
Size |1{6|6[9|4]4]18]12]12
Order. 1221233461} 86
| 11|11 (111111141
| 1)j-1j1 (1|11 ]|-1]-1]1
V3 1|-1(-1{1|1|1§1¢}-1]-1
Vi If1)-1y1j111]-1)1]-1
V5 2100212121 0{0]0
Vs ‘lafol2|o|1l2l0l0]-
Vo i|4]lo]-2]o|1]2|0]0]1
Ve 4121002111 0¢-1|0
Vy 4(-210610}-211({0|1]0

TABLE 5. Character table of Gy = (C5 x C3) x Dy.

The Jacobian variety of Xs with this action is completely decomposable
7: B~ JX,,

where B is a complex elliptic curve with action of one of the irreducible rational rep-
resentations of degree 4 of Gy, Vs in Table 5).

Proceeding as before we compute the dimension of the fixed subspaces, these are
contained in Table 6. ¢

As the dimension of the subvarieties corresponding to representations different, from
Vs are 0, any class of subgroups with 1 in the column of V4 in Table 6 will contain
subgroups to be taken to construct the effective set.

We consider the class of subgroups of order 2 which has length 6. Then the sub-
groups fly, Ho, Hy and Hy of G2 will be in this class. We obtain

vy : JX/Hy X JX/Hy x JX/Hz x JX/Hy ~ JX,

where its kernel depends on the choice of the subgroups H;.

To give a description of the subgroups of (3 which allow us to find the isogeny vy
yielding in a kernel with smallest order, we consider the following presentation of Gs.

Gy =< a,b:ab=b! = (ab)? = abaZbab ™ a*h 'a™t =1 >
If we consider any subgroup Hi, Hy, Hs, Hy in the conjugacy class of
H=<ab>

and we write By, = Im(ps, ), Boz = Im(pr,), Bos = Im(pg,) and Byy = Im(py,) then
|Ker(vy)| = 9 which is the smallest possible order. In this case, we obtain the same
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Classes of subgroups
Identity element
Order 2, length 6
Order 2, length 6
Order 2, length 9
Order 3, length 2
Order 3, length 2
Order 4, length 9
Order 4, length 9
Order 4, length 9
Order 6, length 2
Order 6, length 2
Order 6, length 6
Order 6, length 6
Order 6, length 6
Order 6, length 6
Order 9, length 1
Order 8, length 9
Order 12, length 6
Order 12, length 6
Order 18, length 1
Order 18, length 2
Order 18, length 2
Order 36, length 1
Order 36, length 1
Order 36, length 1
Order 72, length 1

DC)}—‘H)—*HHHH!—‘!—‘I—*H)—\I—‘I—‘HHH)—‘I—‘D—*I—‘!—\I—‘HS
COCRHROHOROHRHHOHRFRORODORRMOR WX
OrRrHOOCOHOOOHHHOODOODCSHOHRKEOS o I
COOCORHEFDDIRHHRMOCOROOKME S HRO RS
COCOORHOHOONOOHHHEHROOOKRNS R SN
COCOOCOOHHOHROOHNONKFHOIN NN WSS
COOOCOCOOCOOOHOOHOOORHONMN KL AT
COOCOCOOOCOCHOOHFHDONHKLNNONWN &F
COCOOO0OOCOOOO—~R—ROOOHHONGNH N AE

TABLE 6. Decomposition of Indf,2 1y in complex irreducible representations.

order of the kernel of v, considering any of the subgroups in the conjugacy class of H.

If we take, for example, the following image by p, of idempotents elements pyr with
H' some element in the conjugacy class of H, we obtain
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and then the matrix coordinate of the lattice of the product By, x Bgg X Bgg X By, is
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Class | 1] 2 | 3 4 5 6 7 8 9 10 11 12 13 14 15
Size |1]3 {6 1 1 8 8 8 6 3 3 6 6 6 6
141 11111 1 1 1 1 1 1 1 1 1 1 1 1
V2 111¢-1 1 1 1 1 1 -1 1 1 -1 -1 -1 -1
Va )1 ]-1f-1J J 1] -] J |11 -1J J 1+1 | -3 | 14J -J
Vi 11| -1J J 1-L.J| J 1 -1J J -1-J J | -1J J
Vs 11111 J -1-J (1 J [-1-J )1 J -1-J J q-1-J J =1-J
Ve 1({1]-1 J 171 J |-1-J7]-1 J -1-J S I I R A I B |
Vr 21210 2 2 -1 .1 -1 0 2 2 o | 0O 0 0
Ve 21210 (-22)) 27 (-1 |10 | T | O [-227] 27 0 0 0 0
Va 2120 2] | -2-27 (-1 -J [14T | O 27 | -227) O 0 0 0
¥i0 3i-1]-1 3 3 0 0 0 1 -1 -1 -1 -1 1 1
Wi 31-111 3 3 0 0 G -1 -1 -1 1] 1 -1 -1
Viz 3|-1}(-1[-3317] 3J o 0 0 T i+d -1 I T | -14d J
Vis 3|1-1(-1| 3F {3370 0 0 1 -J 1+J I N O | -1-§
Vi 3(-1111]-337| 3J ] G 0 |-1]| 43 -J -1-J J 4] -J
Vis 31-111 3J [-331)0 0 0 |-1 -J 14J J S1F | -F ) 14]

TABLE 7. Character table of G(72,42), where J = —1 + ﬂgﬁ

{00110000\
00 0 1 0 1 1 1
006 0 1 0 0 0 0
I |1 -1 0 00 1 1 -2
HHY = 1 g 0 0 0 1 1 0 0
1 1 -1 0 0 0 0 0
1 0 0 0 0 0 0 0
\0 0 1 -12-10 0/

We obtain the polarizations of the factors using Theorem 2.2;%1, all of the are (2).

B.3.2. Normal trigonal curves with reduced group A,,S; and As. Now we
continue with the study of trigonal curves with full group of automorphisms Gy =
03 X 84.

Let X be a surface of genus 4 with action of Gj, it acts with SIgnature (0;12,3,2).
In [27] was determined a planar model for this curve

X ={(z,9): 4> =" —a}. i
Using the same process followed in the above subsections, we obtain that
B; x By ~ JX, {

where By, B, are elliptic curves with action of one of the 1rreduc1ble rational represen-
tations of degree 1 and 3; V3 and V32 in Table 7. ',}
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Classes of subgroups | Vi [ Va [Va [Va [ Vs [ Ve [ Ve | Va | Vo | Vio | Vi1 | Vaz | Vaa | Via | Vis
order 2, length 6** 1 1] 0 1 i3 0 1 1 1 1 2 1 1 2 2
order 3, length 8** 1f1jo}o|Jofjofo|1]1 1 1 1 1 1 1
order 4, length 1* 1 1 1 1 1 1 2 2 2 0 0 [¥] 0 0 0
order 12, length 1* 111 1 1(1]|r]o]lofo 0 0 0 1] 0 0

TABLE 8. Decomposition of Indg3 1y in complex irreducible representa-
tions for (s,

Proceeding as before, we consider four subgroups Hy, Hy, Hs and Hy of Gy such
that they satisfy the conditions of Lemma 2.1.1.

In the same way that in the previous subsection, we observe that there are two
classes (*} of subgroups of (i satisfying the desired conditions for V4, and two classes
of subgroups (**) of G satisfying them for Via. We show just these classes in Table 8,
for the sake of space (there are 24 conjugacy classes of subgroups in G(72,42)).

To give a description of the subgroups of G5 which allow us to find v, with smallest
kernel, we consider the following presentation of Gs.

Gz =< a,bla'® = b = (ab)? = alba tbab lab~la b =1 >

Consider

H, = <ba*ba®¥a’ba®?*(aba)?ba,
(@ 13 a W a3 et >

Hy = < (a* )3, ba*ba®v?0®bab%a >

Hy = < (a®0™')? ba*ba®b*a*ba’b’a(ba)? >

Hy = < (a® 1) ba*ba®ba 410 %! >

Where the last 3 subgroups, which are of order 2, belong to the same class of conjuga-
tion. The first group is a normal subgroup of order 4.

We write Bs; = Im(pg,), Bia1 = Im(pg,), Bios = Im(pgr,) and By = Im(pg,)
then |Ker(vy)| = 16.
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The image of the pg’s is given by

( /4 1/2 1/2 -1/4 0 -1/4 -1/4 0 \
0 1/4 1/4 0 1/4 0 0 —1/4
0 1/4 1/4 0 1/4 0 0 -1/4
| 14 12 <12 174 00 14 174 0
popm,) = 0 1/4 1/4 0 1/4 0 0 —1/4
~1/4 0 0 1/4 1/2 1/4 1/4 -1/2
~-1/4 0 0 1/4 12 1/4 1/4 -1/2
0 —1/4 —1/4 0 —1/4 0 0 /4 )

o 0 0 0 0 0 o 0\
/2 1/2 -1/2 1/2 0 0 0 0
~-1/2 —-1/2 1/2 ~1/20 0 0 0
6o 0 0 0 0 0 0 0
rslpm) = | g 0 0 0 0 1/2 -1/2 0
0 0 0 0 0 1/2 —1/2 0
0 0 0 0 0 -1/2 1/2 0
\ o 0 0 0 0 12 —1/20)
0 -1/20 0 0 0 0 -1/2)
0 /2 0 0 0 0 0 1/2
6 0 0 0 0 0 0 0
0 1/2 0 1/2 1/2 —1/2 0 0
polpm) = | 6 0 é é 0/ 0 0
0 0 0 0 -1/2 1/2 0 1/2
0 0 00 0 0 0 0
\0 1/2 0 0 O 0 0 1/2 )
[0 -1/20-1/2 0 0 1/2 1/2
0 1/2 0 1/2 0 0 1/2 1/2
/2 0 0 0 -—1/2 1/2 0 1/2
1/2 1/2 0 1/2 -1/2 1/2 —-1/2 0
polprs) = | 7 ~1/2 0 -1/2 0 0 1/2 1/2
/2 0 0 0 —1/2 1/2 0 1/2
0 0 0 0 0 0 0 0
\i/2 0 0 0 -1/21/2 0 1/2/

We calculate the coordinate matrices of the lattices A, in the same way that we

did before.

Then, the coordinate maﬁrix of the lattice of the product Ba; x Byg X Biog X Biog
is
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(100~10—1—10\
11 1 -11 1 1 =1
01 -1 0 0 0 0 0
I oo o 011 -1 1
me-Hd =10 0 0 1 0 -1 0 0
1 -1 0 0 0 -1 0 -1
1 -1 0 =11 0 0 0
\00110101}

We obtain the polarizations of the factors By, and Bis; using the Theorem 2.2.1.
They are all equal to (4). '

Moreover, we have that the Riemann Matrix for JX depends on one parameter
z € € such that —z* 4- 37/142% — 117/282% + 89/282 + 43/28 = 0. Then we have a
priori four abelian varieties of dimension 3 with action of G3. However, only one of
this solutions define the Riemann matrix of JX.

Then the Jacobian of this unique trigonal curve of genus 3 is given by

a b c d
| & e f g
=l ¢ fhj
d g 7 z

where z = 1 + /37 and

a = z—1
—364/4652° + 316/1552° — 471 /1552 + 1049 /465
448/4652° — 222/1552% + 377/1552 — 218/465
= —1372/13952° + 1358 /46527 — 1823/465z + 2702/1395
= 1064/13952" — 256/4652% + 256 /4652 + 1691 /1395
2128/13952° — 512/4652° + 512/465z + 1987/1395
812/13952° — 538/4652° + 538/4652 — 802/1395
56/2792° — 82/932% — 82/93z + 190/279
1372/13952° — 1358/46527 -1 1823/465z — 2702/1395

i T~ T
1 I

o,

B.4. Dimension g > 5

Due to Corollary 3.2.2 any trigonal curve with genus g > 5 is normal. As we said
before, we restrict to study normal trigonal curves with reduced group Ay, Sy and Aj
up to genus 10. As said in Remark 3 any trigonal curve with reduced group Ay, S; and
As has even genus. Then, to finish our goal of studying Jacobians of trigonal curves
up to genus 10, it remains to study trigonal curves of genus 6 because there are not
these kind of actions in genus 8, as explained in Remark 3.
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Class |1 2|3 |4|5]6] 7 8 9
Size |13 (18] 2|18]6] 8 8 8
Order |12 23|46 0 9 9
Vi if171)1[111 I 1 1
Va 111171 1-1]1 1 1 1
Va 2121012102 -1 -1 | -1
Vi 20210 |-1{0 (-1 Z1 | Z12| 2714
Vs 21210 |-110]-11Z12(2Z14) 71
Vi 21210 ¢-110|-1]7214| 21 | Z12
Vs 3[-1]1{3]-1|-1] 0 0 0
Vs 31-11-113111-1] o 0 0
Ve 6j-2101(-310]1( 0 0 0

TABLE 9. Character table of G4. Where Z1 = 2 cos(ZF).

order 4, length 9 1 111 ]1i1]0j1

Classes of subgroups | Vi | Va (V3 [ VA [ Vs [ Ve [V [ Vs [ Ve
0
order 4, length 9 1joj1 (1110 ({11!1

TABLE 10. Decomposition of Ind* 15 in complex irreducible representations.

B.4.1. Dimension 6. Now we continue with the study of trigonal curves of genus
6 which have the group Gy = ((C2x C2) X Cy) xS») as their full group of automorphism.
Let X be any of these curves, the group G4 acts on X with signature (0;9,4,2).

The Jacobian variety of X with such action is completely decomposable. Moreover,

p:B%~ JX,

where B is a complex elliptic curve with the action of the irreducible rational repre-
sentation of degree 6 of Gy4; V, in Table 9.

Proceeding as before we consider six subgroups Hj, ..., Hy and Hg of @ such that
they satisfy the conditions of the Lemma 2.1.1. To-do that, we use the symplectic
representation given by [3].

Now, we write the decomposition of the induced representation by the trivial one
for every conjugacy class of subgroup in Gy satisfying the conditions of Lemma 2.1.1.

We observe these are given by two classes of subgroups of order 4 and length 9,
Then the subgroups Hy, ..., Hg of G must be in these classes.

To give a description of the subgroups of G which allow us to find the isogeny vy
with kernel of smallest order, we consider the following presentation of Gy.

G(72,15) =< a,b,¢,d, e|a® = ¥° = (ab)* = abPab® = 1 >
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Consider
Hy, = <abc>
Hy = <adbd,ce>
Hy = <dece, ad™1b>
Hy = <dlce? abd>
Hy; = <dce™ abd >

Hy = <d e, abd >

The first three are conjugated among each other.

If we write By; = Im(py, )} for I € {1,...,6} then |Ker(v,)| = 64.

This because the matrix coordinate of the lattice of the product By; x Bgg X Bgg X
Bg4 x Bgs X Bgﬁ is

(000 0 1 0 0200 00 0\
2 -2 -1 -1 0 000 00 0 0
01 0 -1 2 0 00 0 0 0 0
0 0 0 0 1 —-100 0 0 2 2
002 1 1 -1 1 00 0 0 0 0
I 110 0 1 0 0 22 -22 0 0
H.Hb =1 g 1 1 1 —-1 1 00 0 0 0 0O
1 -1 0 1 1 —-122 -22 0 2
1 -1 -1 -1 0 0 00 0 0 0 0
1 00 0 0 0 ~120-20 10 2
01 0 -1 1 0 00 0 0 0 0
\1 1 1 0 0 1 00 -22 -2 —2)

which has determinant equal to 64.

We obtain the polarizations of the factors using the Theorem 2.2.1. They are all
equal to (4). We complete in this way the proof of Theorem 3.3.1.
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APPENDIX C

Help on MAGMA commands.

To perform some of the computatmns needed in the applications, we use the software
MAGMA [6]. We give in Ta.ble 1 a list of the groups we study with the identifier in
the Small Group Magma, Dath Base.

In the following we introduce some of the notations that we use to run our method
in MAGMA.

¢ SmallGroup Used for denote the group that we want to use. For example, if
g=C3x Ay we wrlte g := SmallGroup(36, 11). MAGMA give us the order of
the generators of g arlid the non-trivial relations of them in g.
¢ PermutationRepresentation Used to convert the group g in a permutation
group. We write '
G: —PermutatlonRepresentatlon(g)
In the case of g = 03 1X Ay, we have
G;
Permutation group G} acting on a set of cardinality 12
(2, 4, 3)(6, 8, 7)(10, 12 11)
(1, 9, 5)(2, 10, 6)(3, ]]1 7)(4, 12, 8)
(1, 3)(2, 4)(5, 7)(6, 8)(9 11)(10, 12)
(1, 2)(8, 4)(5, 6)(7, 8)(9 10)(11, 12)
e Subgroups Give thejcomplete list of the conjugation classes of a group. We

write
Group ID

GL(3,3) (48,29)

SL(2,3)/CD (48,33)

Dy x Dy (36,10)

Ziz % Zg) A D4 (72,40)

Cs x Aq (36,11)

(Cg X Cg) x Cy (36,3)

03 X S4 (72,4:2)

‘ ((C; X Cg) A Cg) A 02 (72,15)
s X As (180,19)

TABLE 1. Groups and their respective MAGMA ID.

T4
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s:=Subgroups(G};

o Setseq(Class())We use this command to get a complete list of each class of
subgroups of G. We Write
s1:=Setseq(Class(G,rs[1]));
where 1s[1] is the list jof all subgroups in the first conjugation class of G and
rs:=[x‘subgroup:x in s[;
¢ Group<:> Used to write the presentation of a group. For example, in the
case of the group G - Ca x Ay we write
G:=Group< a,bla® =b* = (a*xb)®> =bxa® s b 1xal =1 >;
e IdentifyGroup We use this command to identify the MAGMA ID of a group
given by its presentation. In MAGMA we put
IdentifyGroup(G);
As before, if G = (5 X A4 we receive
< 36,11 >;

-
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