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Resumen

En muchos casos una ecuacién diferencial parcial puede ser reescrita como una ecuacién dife-
rencial ordinaria tomando valores en un espacio vectorial de dimensién infinita. Esto motiva el
estudio de ecuaciones de evolucion definidas sobre espacios abstractos, en especial sobre espacios
de Banach. Fsta tesis forma parte de esta teoria. De hecho, nosotros investigamos existencia, uni-
cidad y propiedades cualitativas de las soluciones de algunas ecuaciones diferenciales abstractas
con valores en un espacio de Banach.

En relacion a las ecuaciones diferenciales en general, uno de los principales aspectos que se
debe estudiar es la existencia de soluciones. Por este motivo, nosotros establecemos condiciones
suficientes que garantizan la existencia de soluciones mild para dos ecuaciones de evolucién. Es-
pecificamente, estudiamos la existencia de soluciones mild de una ecucién integrodiferencial y de
una ecuacién diferencial no auténoma de segundo orden sometidas a condiciones iniciales no lo-
cales. Abordamos estos problema usando teoriza de operadores de evolucién, férmulas de varacion
de parametros y teoremas de punio fijo asociados al concepto de medida de no compacidad.

Ademds, es un hecho conocido que en relacién a ecuaciones diferenciales, otro tépico impor-
tante de estudio es el comportamiento cualitativo de las soluciones. Es por esto que estudiamos
existencia y unicidad de soluciones periddicas cldsicas de algunas ecuaciones de evolucién. En
concreto, hemos considerado una ecuacidn diferencial abstracta de tercer orden y una ecuacién
neutral de orden fraccionario con retardo finito. Ademds, estudiamos la propiedad de regularidad
maximal de estas ecuaciones en algunos espacios de funciones, como por ejemplo espacios perid-
dicos de Lebesgue, espacios periédicos de Besov y espacios periddicos de Triebel-Lizorkin. El
método que usamos para lograr nuestro cometido s una version operador—valuada del teorema de
multiplicadores de Fourier de Miklhin, En el caso de espacios periddicos de Lebesgue nuestros
resultados involucran la nocién de espacios UM D y el concepto de R—acotamiento de familias de
operadores. Por otro lado, en los casos de espacios periédicos de Besov y Triebel-Lizorkin nues-
tros resultados sdlo involucran acotamiento de familias de operadores y no imponemos ninguna
condicién adicional sobre el espacio de Banach donde las ecnaciones estén definidas.




Abstract

In many cases a partial differential equation can be rewritten as an ordinary differential equa-
tion taking values in an infinite dimensional vector space. This motivates the study of evolution
equations defined in abstract spaces, especially in Banach spaces. This thesis forms part of this
theory, Indeed, we investigate the existence, uniqueness and gualitative properties of the solutions
of some abstract differential equations with values in Banach spaces.

Regarding to general differential equations, one of the main subject of study is related with
the existence of solutions, For this reason, we establish some conditions which guarantee the
existence of mild solutions for two evolution equations. Specifically, we study the existence of
mild selutions for an integrodifferential equation and a second order non—autonomous differential
equation submitted to nonlocal initial conditions. Our approach is based on the theory of evolution
operators, variation of parameters formulas and fixed—point theorems associated with the concept
of measure of noncompactness.

Furthermore, it is a well known fact that concerning to differential equations, another impor-
tant topic of research is the study of qualitative properties of their solutions. Motivated by this,
we study the existence and uniqueness of periodic strong solutions for some evolution equations.
Moreover, we analyse the property of maximal regularity of these equations in periodic Lebesgue
spaces, periodic Besov spaces and periodic Triebel-Lizorkin spaces. In specific, we have studied
a third—order abstract differential equation and a fractional order neuntral equation with finite delay.
The main tool which we have used to achieve our goal is an operator—valued version of Miklhin's
Fourier multiplier theorem. In the case of periodic Lebesgue spaces our results involve the concept
of U M D spaces and the notion of R—boundedness for families of operators. In the case of periodic
Besov spaces and periodic Triebel-Lizorkin spaces our results only involve a boundedness condi-
tions for some families of the operators. Moreaver, we do not impose any additional condition for
the Banach space where the equations are defined.
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Introduction

Since many natural phenomena arising from applied sciences can be described by partial diffe-
rential equations or their generalizations, the study of existence and another interesting properties
of the solutions for these equations is a very important and active field of research in mathematics.
In many situations, a partial differential equation can be transformed into an ordinary differential
equation with values in an infinite dimensional vector space. This fact motivates the siudy of
evolution equations in abstract spaces, especially in Banach spaces. An amazing progress of
several powerful techniques for the study of this type of equations has been developed in the last
decades. In this thesis, we apply some of these techniques for studying the existence, uniqueness
and qualitative properties of the solutions for some abstract evolution equations. Specifically, most
of the material of the thesis is based on the following two methods:

s Theory of evolution operators and variation of parameters formula.
¢ Maximal regularity property and operator—valued Fourier multipliers.

This work is the outcome of the author’s research during his Math Ph.D. study at Universidad
de Chile (March 2009 — March 2013). The main results that have been obtained in this period are
available through the following four articles:

1} C.Lizamaand I.C. Pozo. “Existence of mild solutions for semilinear integrodifferential equa-
tions with nonlocal initial conditions”, Abstract and Applied Analysis, Volume 2012 (2012),
Article ID 647103, 15 pages doi:10.1155/2012/647103.

2) H.R.Henriquez, V. Poblete and 1.C. Pozo. “Existence of mild solutions for a non—autonomous
second order Cauchy problem with nonlocal initial conditions”, Subimitted.

3) V.Poblete and 1.C. Pozo, “Periodic solutions of an abstract third—order differential equation”.
Subimitted,

4) V.Poblete and J.C. Pozo. “Periodic solutions for afractional order abstract neutral differential
equation with finite delay”. Submitted.

It is well known that concerning to a general differential equation, one of the most important
subject of study is the existence of solutions. However, there exist several notions of solution
for an evolution equation. The concept of strong solution or classical solution includes the diffe-
rentiability of the involved function, so it is a demanding notion. A weaker concept of solution is

iii




INTRODUCTION v

the concept of mild solution. We remark that strong solutions are also mild solutions which satisfy
additional differentiability properties. Many aunthors prove the existence of strong solutions by
proving the existence of mild solutions and giving smoothness conditions in the initial value. The
reader can see the works [27, 52,55, 91] and references therein. Therefore, the establishment of
conditions which ensure the existence of mild solutions for evolution equations is a very important
problem.

The theory of evolution operators has been subject of an increasing interest in past decades,
because it is a central issue for studying existence of mild solutions of abstract differential equa-
tions. Indeed, the evolution operator is applied to the corresponding inhomogeneous equation to
derive various variation of parameters formula, In this direction, we mention the works made
by Agarwal, Cuevas and Dos Santos [2], de Andrade and Lizama [32], Grimmer and Priiss [45]
Lizama and N’Guérékata [80] and Priiss [97]. Moreover, there exist several methods for proving
existence theorems for the resolvent operators, for example operational calculus in Hilbert spaces,
perturbation arguments, and Laplace transform method. For more information see [98].

Another important subject of research in the theory of evolution equations is the study of quali-
tative properties of their solutions. In particular, the existence of solutions having a periodicity
property has been considered by many authors, the reader can see [7, 8, 15, 18, 53, 54, 66, 67,79,
81,82,95] and references therein. In the same manner, the study of some regularity properties of
solutions for evolution equations has been an active topic of research. In particular, the maximal
regularity property has received much attention in recent years, because it is an important tool for
studying of a lot of problems, such as;

» Existence and nniqueness of solutions of quasi-linear partial differential equations.
¢ Existence and uniqueness of solutions of Volterra integral equations.
« Existence and uniqueness of solutions of neutral equations.

¢ Existence and uniqueness of solutions of non-antonomous evolution equations.

Uniqueness of mild solutions of the Navier-Stokes equation.

Usually maximal regularity property is used in these applications to reduce, for example, a
non~autonomous cr a nonlinear problem via a fixed—point argument to an autonomous or, respec-
tively, a linear problem. In some cases, maximal regularity is needed to apply an implicit function
theorem. (See [30]).

Several techniques are used to study the property of maximal regularity for evolution equations.
One of these is the concept of Fourier multipliers or symbols. There exists an extensive literature
about operator-valued Fourier theorems and concrete applications. The reader can sce the works
made by Amann [3], Arendt, Batty and Bu [5], Arendt and Bu [7, 8], Bu [16], Bu and Fang [17,18],
Bu and Kim [19,20], Denk, Hieber and Priiss [34], Girardi and Weis [41,42], Kalton and Lancien
[62], Keyantuo, Lizama and Poblete [67], Lizama [79], Poblete [94,95] and references therein,

This thesis consists in the study of four problems, two of them are related with the existence
of mild solutions for an integrodifferential equation and a non—autonomous second order equation
submitted to nonlocal conditions; the other two problems are associated with the existence and
uniqueness of strong periodic solutions for a third order differential equation and an abstract frac-
tional neutral equation having the maximal regularity property. In what follows, we will describe
briefly each chapter included in this work.
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The chapter 1 contains most of the notation which we have used. Furthermore, for reader’s
convenience we have summarized some relevant concepts and important theorems related to gene-
ral evolution equation, as well as preliminary results and some background material which we have
needed to establish our main results.

In chapter 2, we study the following problem. Find conditions that ensure the existence of a
mild solution for the semi-linear integrodifferential equation with nonlocal initial conditions

4
u'(r) Au(t) +f Bt — syu(s)ds + f(t,u(t)y, t<[0,1], 1
0
u(0) gu).

where A : D(A) € X — X and for every ¢ € [0, 1] the mappings B(z) : D{B(1)) € X — X are
linear closed operators defined in a Banach space X. We assume further that D(A) € D{B(r)) for
every ¢ € [0, 1], and the functions f : [0,1] X X — X and g : C([0, 1]; X) — X are X—valued
functions which satisfy appropriate conditions, which we will describe later. Here C([0, 11; X)
denotes the space of all continunous functions from [0, 1] to X, endowed with the norm of uniform
convergence.

The initial condition involved in the equation (1) is known in the specialized literature as non-
local initial condition. The evolution equations submitted to nonlocal initial conditions are more
accurate for describing natural phenomena than the classical initial value problems, becaunse addi-
tional information is taken into account as initial data. For this reason, in recent decades there has
been a Iot of interest in this type of problems and their applications. The interested reader can see
[33,90, 109] and the references cited therein.

The first investigations in this area were made by Byszewski [23, 24, 25]. Thenceforth, many
authors have worked in evolution equations with this type of initial conditions, the reader can see
[27,57,60,73,116,117] for abstract results and concrete applications.

The classical initial valued problem (1), that is u(0) = up for some uy € X, has been the subject
of many research papers in recent years, because it has many applications in different fields such
as thermodynamics, electrodynamics, contimmum mechanics, heat conduction in materials with
memory, among others, see [98], Therefore, the study of the existence and another properties of
solutions for the equation (1) is a very interesting research problem.

The main tool that we have used for resolve this problem is the theory resolvent operators
or evolution operators, We achieve our goal by employing a mixed method. Specifically, we
have combined the existence of a family of operators denoted by {T'(¢}};e[p,1; 2nd called evolution
operator for the equation (1), a formula of variation of parameters and a fixed—point argument
related with the concept of measure of noncompactness. Using this method, we are able to prove
the existence of mild solutions of the equation (1) under conditions of compactness of the function
g and continuity in operator topology of the function r — T(#) for ¢+ > 0. Furthermore, in the
particular case B(#) = b(t)A for all ¢ € [0, 1], where the operator A is the infinitesimal generator
of a Co—semigroup defined in a Hilbert space #, and the kemnel & is a scalar map which satisfies
appropriate hypotheses, we are able to give sufficient conditions for the existence of mild solutions
only in terms of spectral properties of the operator A and regularity properties of the kernel b. We
show that our abstract results can be applied to concrete situations. Indeed, we consider an example
with a particular choice of the function & and the operator A is defined by

32 8

(Aw)(t,£) = a1(§) 5wz, £) + b1(§)a§

o w(t,£) + EE W, £),
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where the coefficients a;, by, ¢ satisfy the usual uniform ellipticity conditions. We remark that
the results of this chapter can be found in the joint work made by Lizama and Pozo [77].

The chapter 3 is devoted to study the following problem. Find sufficient conditions which
guarantee the existence of mild solutions for the second order non-autonomous equation submitted
to nonlocal initial conditions

wt) = A@Qu@)+ fe, N@)yw), te[0,al,
w0) = g, (2
W@ = hQ@).

In the equation (2), for each ¢ € [0, a] the map A(r) : D(A()) : X — X is a linear closed operator
defined in a Banach space X. Moreover, we suppose that D(A(r)) = D for all ¢ € [0, a}. Further,
as general conditions, we always assume that g, i, N(t) : C([0, a]; X) — X are continuous maps,
the function ¢ = N{#)(x) is continuous for each u € C{[0,a]; X}, and f : [0,a] X X — X isa
function that satisfies Carathéodory type conditions. Where C([0, ¢]; X) denotes the space of all
continuous functions from [0, a] to X provided with the norm of uniform convergence.

1t is a well known fact that the behavior of the first and second order differential equations is di-
fferent in many aspects, see [37]. For this reason the theory of second order functional differential
equations has been the object of several works in the past decades. In the autonomous case, this is
A(t) = A forall ¢ € [0, al, the existence of solutions of the second order abstract Cauchy problem
is strongly related with the concept of cosine functions. We refer the reader to [37, 102,103, 104,
105, 108] for basic concepts about the theory of cosine functions.

Similarly to what happens in the antonomous case, the existence of solutions for non—autone-
mous second order abstract Cauchy problems cormrespending to the family {A(#)};¢go,47 is strongly
related with the existence of a family of operators depending of two parameters denoted by
{S@,5) : t,5 € [0,a]} and called evolution operator generated by the family {A(t) : ¢ € [0, a]).
The interested reader can consult the works [52, 70, 71, 75, 101, 111] and the references cited
therein, for more information about evolution operators. Furthermore, in the literature there are
various techniques for establishing the existence of an evolution operator {S{¢, s} : £, 5 € [0,a]}. In
the chapter 3, we will adopt the concept of evolution operator introduced by Kozak [71]. Our main
results are based on the properties of this evolution operator and measure of noncompactness, We
apply our results to concrete situations, specifically we study some time dependent perturbations
of the wave equation submitted to nonlocal initial conditions. All these results can be found in the
joint work made by Henriquez, Poblete and Pozo [51].

In chapter 4 we find a characterization of maximal regularity property in several function spaces
for an abstract third—order differential equation.

Recent investigations have demonstrated that third—order differential equations can describe
several models arising from very interesting natural phenomena, such as wave propagation in
viscous thermally relaxing fluids, high—intensity ultrasound and flexible structures with internal
damping, for example a solar cell array, or a spacecraft with flexible attachments (cf. e.g., [12,43,
61,89]).

Motivated by this fact, many authors have worked in abstract third-order differential equations.
In particular, the following equation has been widely studied

aw’”’ () +u” () = BAu() +yAu' () + F(2), for t e RY, 3)
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where A is a closed linear operator defined in a Banach space X, the function F is a X—valued map
satisfying suitable conditions, and the constants ¢, 8,7 € R*. The equation (3) has been studied
in many aspects, we next just mention a few of them. Cuevas and Lizama [29] have obtained
a characterization of its solutions belonging to Holder spaces C*(R; X). Similarly, Ferndndez,
Lizama and Poblete [38] characterize the well-posedness of this equation in Lebesgue spaces
LP(R; X). In addition, the same authors [39] have studied somne regularity properties and qualita-
tive behaviour of mild and strong solutions in the space LP(R*; X} whenever the underlying space
X is a Hilbert space. On the other hand, De Andrade and Lizama [32] have analysed the existence
of asymptotically almost periodic solutions for the semi-linear version of the equation (3).

However, the existence of periodic strong solutions of the linear version of the equation (3) has
not been addressed in the existing literature. With this purpose, the chapter 4 is devoted to study
the existence of periodic strong solutions for the following abstract third—order equation

au’’ () +u” (1) = BAu(t) + yBu'() + f(r), t€]0,2x], @

with periodic boundary conditions 2(0) = u(27), #’(0) = ©’(27) and w/(0) = u"'(27), where the
operators A and B are closed linear operators defined in a Banach space X satisfying D(A) & D(B),
the constants @, 8,7 € RY, and f belongs to either periodic Lebesgue spaces , or periodic Besov
spaces, or periodic Triebel-Lizorkin spaces. We remark that the study of the existence of solutions
for equation (4) in the particular case A = B is a manner to study periodic strong solutions of the
equation (3).

Our approach is based on the maximal regularity property for evolution equations and operator—
valued Fourier multiplier theorems. In the case of periodic Lebesgue spaces, our results involve
the key notions of UM D-spaces and R-boundedness for the families of operators

{kB(iak® + k% + ivkB + BAY ™)) ez and [ik3Gak® + k2 + iykB + BAY ) ez

In the case of periodic Besov spaces or periodic Triebel-Lizorkin spaces, it is remarkable that
our results only involve a boundedness condition of the preceding families.

In general, it is not simple the verification of the R—boundedness or boundedness condition of
a specific family of operators, especially when two different operators are involved. However, we
verify our hypotheses in the particular case B = Al/% where A is a sectorial operator; the scalar
values a, £, and y related with the equation (3) play a crucial role in this proof. The results of this
chapter are available in the joint work Poblete and Pozo [93].

The chapter 5 is devoted to find sufficient conditions for the existence of a periodic strong
solution for & fractional neutral equation with finite delay.

The fractional calculus which allows us to consider integration and differentiation of any order,
not necessarily integer, has been the object of extensive study for analyzing not only anomalous
diffusion on fractals (physical objects of fractional dimension, like some amorphous semiconduc-
tors or strongly porous materials. See [4, 85] and references therein), but also fractional pheno-
mena in optimal control (see, e.g., [87,96, 100]). As indicated in [83, 86, 100] and the related
references given there, the advantages of fractional derivatives become apparent in modelling me-
chanical and electrical properties of real materials, as well as in the description of rheological
properties of rocks, and in many other fields. One of the emerging branches of the study is the
Cauchy problems for abstract differential equations involving fractional derivatives in time, In
recent decades there has been a lot of interest in this type of problems, its applications and various
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generalizations (cf. e.g., [9, 28, 56] and references therein). It is significant to study this class
of problems, because, in this way, one is more realistic to describe the memory and hereditary
properties of various materials and processes (cf. [58, 68, 87, 96]).

There are several systems of great interest in science which are modeled by partial neutral
functional differential equations, see [48, 113, 114]. Many of these equations can be written as an
abstract neutral functional differential equations. Additionally, as we have mentioned, it is well
known that one of the most interesting topics, both from a theoretical as practical point of view, of
the qualitative theory of differential equations and functional differential equations is the existence
of periodic solutions, In particular, the existence of periodic solutions of abstract nentral functional
differential equations has been considered in several works [40, 50, 54] and references therein.

Let 0 < § < & < 2. In chapter 5 we study the existence and uniqueness of streng solutions for
the following fractional order nentral differential equation with finite delay

D® (u(t) — Bu(t — r))= Au(t) + Fu, + GDPu, + (1), t € [0,2r), (5)

where the fractional derivative is taken in sense of Liouville-Griinwald—Letnikov, ¢ < r < 2x
is a fixed number, A : D(A) C X — X and B : D(B) € X — X are closed linear operators
defined in a Banach space X such that D(A) € D{B). For each ¢ € [0, 2x] the function u,, given
by u;(8) = u(t + ) for 8 € [—2x, 0], denotes the history of the function u(-) at time r and Dfu, (")
is defined by DPu,(-) = (DPu),(-). The delay operators F and G are bounded linear maps defined
on an suitable space and f is an X—valued function which belongs to either periodic Besov spaces,
or periodic Triebel-Lizorkin spaces.

Our approach is based on a mixed method. By proving and using the maximal regularity
property on periodic Besov spaces and periodic Triebel-Lizorkin spaces of an auxiliary equation
and a fixed-point argument, we demonstrate the existence and uniqueness of a periodic solution
of the equation (5). Here the auxiliary equation is given by

D%u(t) = Au(t) + Fuy + GDPuy + f(1), t €[0,2n], (6)

with boundary periodic conditions depending of the values of the numbers « and 8. All terms in
the equation (6) are defined in the same manner as in the equation (5).

Our main results involve, among other considerations, a boundedness condition for the family

{(F)® ((iK)® = Fr - (iKY Gy — A) ™Y e

and regularity properties for the families of bounded operators {Fy lrez and {Gr}zez, where for
k € Z the operators F and Gy, are defined by

Frx = F(epx) and Gpx = Glerx), for x € X and ¢t € [-2r,0].

Here, for all k € Z the X-valued function ey x is defined by ez x(f) = e~ x for ¢ € [-r,0].

Several particular cases of the equation (6) have been studied in recent years. In fact, if ¢ = 1
and F = G = 0, Arendt and Bu [7, 8] have studied L?-maximal regularity and B;",, q——maximal re-
gularity, and Bu and Kim [19], have studied F' ;, q—maximal regularity. On the other hand, Lizama
[79] has obtained a characterization of the existence and uniqueness of strong LP—solutions, and
Lizama and Poblete [81] study C*-maximal regularity of the corresponding equation on the real
line, In the same manner, if @ = 2 and £ = 1, Bu [15] characterizes C*—maximal regularity on R.
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Furthermore, if « = 2 and # = 1, Bu and Fang [18] have studied this equation simultaneosly in
periodic Lebesgue spaces, periodic Besov spaces and periodic Triebel-Lizorkin spaces. Moreover,
if 1 < @ < 2 and G = 0, Lizama and Poblete [82] study LP—maximal regularity for this equation.
The main results of this chapter have been established in the joint work Poblete and Pozo [92].




Chapter

Preliminaries

Most of the notation used throughout this work is standard, So, N, Z, R and C denote the set of
natural, integers, real and complex numbers respectively. In addition, Ny = N U {0}, R* = (0, c0)
and ]RE = [0, c0).

In this thesis X and Y always are complex Banach spaces with norms || - ||, and || - |I,; the
subscript will be dropped when there is no danger of confusion. We denote the space of all
bounded linear operators from X to ¥ by B(X,Y). In the case X = ¥, we will write briefly 8(X).
Let A be an operator defined in X. We will denote its domain by £(A), its domain endowed with
the graph norm by [D(A)], its resolvent set by p(A), and its spectrum by o-(A) = C\ p(A).

Let X be a Banach space and R > 0. By B [xp, X] we denote the closed ball with center xg and
radivs R in the space X. When the space X is clearly determined from the context, we abbreviate
this notation by B, [x¢]. Similarly, B, (xg, X} will denote the open ball with radius R and center
xg in the space X.

Let I = (a,b) € R be an interval of real numbers, with —co < a < b < +00. For 1 € p < oo,
we will denote by LP(I; X) the space of all (equivalent classes of) Bochner measurable functions
f I — X such that [[f (t)]lﬁ. is integrable in /. It is well known that this space is a Banach space
with the norm

T
P
Ifllea:x) = ( f! I EIE dS) :
The space L*™(1; X} consists of all measurable functions with a finite norm

Hf leorx)y = esssup l[f ().
tel

We denote by C(7; X) the space of all continuous functions f : I — X. This space is a Banach
space endowed with the norm

Ifllec = sup IF @Il
tel
Let 0 < 5 < 1, the Holder continuous functions space of index s is denoted by C¥(7; X) and it is
defined by

CSI:X) = {feC(I;X) : W)~ FOlle <oo}.

t,rel, t&r It —r|s

1
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This space is a Banach space endowed with the norm

Ifllcsasxy = sup lf @l +  sup M
ref t,56l, 1#r |t —r|
We will identify T with the group defined as the quotient R/27xZ and we shall identify the spaces
of vector or operator-valued functions defined on [0, 27} to their periodic extensions to R. Let
f € LY(T;X) and k € Z. We denote by f(k) the k-th Fourier coefficient of the function f. This
coefficient is defined by

—_ O
Fk) = — f e~ f()dt, for k€ Z.
2r Jo

1.1 Measure of noncompactness and fixed—point theorems

Let ¥ be a set and 2 function F : ¥ — ¥. We will say that F has a fixed-point in Y if there
is yp € Y such that F(yp) = yg. The existence of solutions for non—linear differential equations is
strongly related with the existence of fixed—points for some operators associated to these equations.

There exists a huge bibliography about fixed-point theorems, see [44] and references therein.
Many of the most classics fixed—point theorems, for example Krasnosel’skif fixed— point theorem
and Leray—Schauder alternative, exploit the notion of compactness of some operators arising in
the investigated equations. It is worthwhile mentioning that there are other methods which are
performed exploiting some compactness conditions. Fixed—point theorems associated with the
concept of measure of noncompactness conform the most important example of these methods.
The reader can see [76,99, 117] for some abstract results and applications.

In this thesis, mainly in chapter 2 and chapter 3, we apply some of the fixed—point theorems
related with Hansdorff measure of noncompactness in the study of the existence of mild solutions
for two evolution equations submitted to nonlocal initial conditions. With this purpose, we next
include some preliminaries concerning to Hausdorff measure of noncompactness.

Definition 1.1. Let S be a bounded subset of a metric space Y. The Hausdor{f measure of non-
compactness is defined by

nS) =infle >0 : S¢ OBg(y,-,Y), yi € ¥}.
i=1

Remark 1.1. We have summarized the most important properties of the Hausdorff measure of
noncompactness, for more details see [10]. Let S, S2 be bounded sets of @ metric space Y.

» IfS1 C Sz thenn(S1) < n(S2).

o 3(S1) = n(Sy), where Sy denotes the closure of Sy.

o 17(81) = 0if and only if S) is totally bounded.

¢ 77(51 U 82) = max{n(S1),n(S2)}-

s 7{S1) = n(co(S1)} where co(S1) is the closed convex hull of 81.

Moreover, if Y is a normed space then the following properties hold.
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o (A8 =S with A e R.
o 17(S1 + S2) < n(S1) + 1(S2), where §1 + 83 = {51 +52: 51 €81, 52 € S2).
The following definition is required for Theorem 1.1 and Theorem 1.2.

Definition 1.2. Let Y be a normed space. A continwous map F 1 Y — Y is said to be an n—k—set
contraction, for 0 < k < 1, if for ail bounded subsets S of Y, n{F(8)) < kn(S), and F is said to be
n—condensing if n{F(S)) < n(S) for every bounded subset § of ¥ withn(S) > 0.

The following two fixed—point theorems play a crucial role in the proof of our main results,
specially in chapters 2 and 3. The first one was proved by Darbo [31] in 1955 for n—k—set contrac-
tions. In 1967 Sadovskii [99] generalized Darbo’s result to 7—-condensing maps. The second one
is a sharpening of Sadovskii’s Theorem and it has been established in [76] by Guo et al.

Theorem 1.1. Assume that § is a nonempty bounded closed and convex subset of a Banach space
Y and suppose F : § — § is an j—condensing map. Then the operator F has a fixed point in S.

Theorem 1.2, Let § be a closed and convex subset of a complex Banach space Y, let F : § — §
be a continuous operator such that F(S) is bounded. For each bounded subset C C S, define

FYC)= F(C) and F™"(C)= Fco(F* 1(C))), n=2,3,...
If there exist a constant O < r < 1 and ng € N such that for each bounded subset C C §
nF™(C) < m(C)

then F has a fixed point in S.

1.2 M-bounded families and n-regular sequences

In order to develop some conditions that we will need in chapter 4 and chapter 5, we introduce
the following notation. Let X and ¥ be Banach spaces and let [Li}rez € B(X,Y) be a family of
bounded operators. For all k € Z we define

(A°Ly) = Ly, (ALg) =(A'Lp) = Lyyy - Ly

andforn=2,3,..., set
(A"Ly) = A(A" 1L,

Definition 1.3. [65] We say that a family of operators {L;rez < B(X,Y) is M-bounded of
ordern {(n € Np) if
sup sup [k (A" L)l < co. (LD

0gren ke

Remark, for j € Z fixed, sup sup [[k"(A"Lg)|} < co,ifand onlyif sup sup ||&"(A"Lgsj)|| < oo.
0gr<n keZ O<r<n keZ

The statement follows directly from the binomial formula.

In the preceding definition when n = 0, the M-boundedness of order n for {L }xez simply means

that {Lz }z <z is bounded.
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When n = 1, this is equivalent to

sup ||Lg|l < oo and sup ||k (Leg+1 — L)l < oo (1.2)
keZ keZ

When n = 2, in addition to (1.2), we must have

sup [|k% (Lisz — 2Lgs1 + Lyl < 0. (1.3)
keZ

When n = 3, in addition to (1.2) and (1.3), we must have

sup k3 (Lices — 3Lgen + 3Lge1 — Li)ll < 0. (1.4)
€

In the scalar case, that is, {az)rez © C, we will write A”%a; = AA" 1ay).
Definition 1.4. [63] A sequence {ay }ycz, © C is called

1
a) I-regular if the sequence {k Aa)

ar } e is bounded;

is bounded;

)
o }kez

2
b) 2-regular if it is I-regular and the sequence {kz(Aa—
&

¢} 3-regular if it is 2-regular and the sequence {ka-———-—}kez is bounded,

(A3ay)
ar

For useful properties and further details about n—regularity, see [67].

Remark 1.2, Note that if the sequence [ay rez is an I-regular sequence then, for all j € Z fixed,

Qp+j — Qg

the sequence {k is bounded. In the cases n = 2, 3, analogous properties hold.

af+j keZ

1.3 Vector-valued periodic Besov and Triebel-Lizorkin spaces

Periodic Besov spaces and periodic Triebel-Lizorkin spaces form part of functions spaces
which have a special interest in mathematics. They generalize a lot of important functions spaces
and have many interesting properties. For example, if 0 < s < 1, the periodic Holder continuous
functions space of index s, is a particular case of periodic Besov spaces, see [8] for more details,
However, the main reason for working in these spaces is that a certain form of Mikhlin's multi-
plier theorem holds for operator—valued symbols defined in a general Banach space X. This is a
dramatic contrast to Lebesgue spaces where the corresponding theorem merely holds for Hilbert
spaces even when p = 2 (for more information [42]).

Let X be a Banach space. Let S(R) be the Schwartz space of all rapidly decreasing smooth
functions on R. Let D(T) be the space of all infinitely differentiable functions on T equipped with
the topology given by the seminorms ||f]i, = sup |[f"™ ()], where n € N U {0}. Let D/(T: X) =

teT

B(D(T), X) be the space of all bounded linear operators from D(T) to X. The elements of
D*(T; X) are called X—valued distributions on T. Let ¢z be the function ex(z) = ¢* fork € Z
and ¢t € T. Forx € X and k£ € Z, we denote by (e; ® x) the X—valued function given by
{er ® x)(1) = ex(t)x. Consequently we have that (er ® x) € D’(T; X).
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In order to define the X—valied periodic Besov space, we denote by ®(R) the set of all systems
¢ = {¢;}i=0 € S(R) such that supp(¢o) € [-2,2], and forall j € N

supp(p;) € =274, =2 U L2, g0 =1, for teR,
20
and for @ € NU {0}, there is a Co > Osuch that _sup 21600 < Ce.
Jj=0,xeR
Where supp(f) denotes the support of the function f.

Definition 1.5. [8] Ler 1 < p,g < o0, s € Rand ¢ = {¢j}j20 € OR). The X—valued periodic
Besov space is defined by

By4(TiX) = {f € D(TX) : If g0 < oo},

where

Wlpge = (3279 ex 0 ,0070)() 7,

j=0 keZ

with usual modifications when g = co. The space B;,‘_‘Z is independent of ¢ € D(R) and different
choices of ¢ € O(R) generate equivalent norms. As consequence, we will denote || - | gs.0 simply
Py

byl - HB,’,_.,' Moreover, if r € T is fixed, we say that a function u : [r,r + 2n} — X belongs
to By ([r.r + 2x1; X) if and only if the periodic extension to R of the function u belongs to
By, o(T; X).

‘We recall some important properties of these spaces:

e Letl < p,g < 00,5 € R be fixed. The X-valued periodic space By, ,(T; X} is a Banach
space.

o Let1 < p, g < cobe fixed. If s > 0, the natural injection from By, (T X) into LP(T; X} is
a continuous linear operator.

e Let 1 < p,g < oo,5 € R be fixed. For all £ > 0, we have that Bf,’jg(']l‘; X) ¢ By, ,(I;X).
s (Lifting property) letl € p,g < 0,5 eR, f e D'(T; X)anda € Rthen f € By, (T, X}
if and only if Y zuper @ (k) F(k) € By (T, X).

To define the X—valued periodic Triebel-Lizorkin space, we use the same notation for S(R),
D(T), D’(T; X) and O(R) as those which we used in the definition of X—valued periodic Besov
spaces.

Definition 1.6. [20] Let ¢ = {$jl;z0 € P(R) be fixed, for 1 < p, g < oo, and s € R. The
X—valued periodic Triebel-Lizorkin space is defined by

R X) = {f € D'(T:X) : Ifllgga < oo),

where

>~ ec o701 )|

keZ

p!

Wz = (|3 27
=0
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with the usual modification when g = co. The space F;:f, is independent of ¢ € ®R) and

different choices of ¢ € Q(R) generate equivalent norms. Consequently, we simply denote [|-|| Foe
by |f - |[1.—’s,_q. Moreover, if r € T is fixed, we will say that the function u : [r,r +27] - X
belongs Fj  ({r.r + 2n1; X) if and only if the periodic extension to R of the function u belongs to
Fs (T; X).

P

Note that the X—valued periodic Triebel-Lizorkin spaces have similar properties to those of
X—valued periodic Besov spaces, the reader can see [20]. The following list summarizes the most
elementary properties of Triebel-Lizorkin spaces.

e Letl < p,g < o, 5 € R be fixed. The X-valued periodic space Fj; ,(T; X} is a Banach
space.

o letl € p,g € oo be fixed. If s > 0, then the natural injection from F;,q(T; X) into
LP(E; X) is a continuous linear operator,

e Ictl < p,g < 0,5 € R be fixed. For all £ > 0, we have that F;f;(’]I‘;X) C F_j,q('l['; x).

o (Lifting property) Let 1 € p,g L oo, s e R, f e D'(T;X)anda € Rthen f € F;,q('ll‘;X)

if and only if 3z .0 ex ® () F(k) € F57(T; X).

The following property is really important in the analysis of evolution equations with delay.
We will apply it in chapter 5.

Remark 1.3. It is simple to verify from the definition that if u ¢ B o(T;X) and 1y € [0,2x] is
fixed, then the function u,, defined on [-2n,0] by the formula u,,(9) = u(ty + 0), is an element of
the Besov space By, (T X), and |[uy|| B, = Ilullgf,.q. For periodic Triebel-Lizorkin, we have a
similar result,

1.4 Operator-valued Fourier multipliers

In this section, we recall some operator—valued Fourier multipliers theorems, that we shall
use for characterizing the maximal regularity property of the problems which we have studied in
chapter 4 and chapter 5,

Let X be a Banach space. We denote the space consisting of all 27r—periodic and X—valued
functions by E(T; X). The following definition will be used in this thesis with periodic Lebesgue
spaces, periodic Besov spaces and periodic Triebel-Lizorkin spaces,

Definition 1.7. Let X and Y be two Banach spaces. We say that the sequence {Lp}rcz € B(X,Y)
is an (E(X), EQY))— multiplier if for each f € E(T; X), there exists a function u € E(T,Y) such
that

W) = Lif k), forallk € Z.

In the case X =Y we will abbreviate this terminology writing that {Ly }rez is an E-multiplier.

The next theorem, proved by Arendt and Bu [7], provides a sufficient condition to guarantee
when a family {Lg}iez is a LP—multiplier. It is remarkable that for the demonstration of this
theorem the key concepts of family of operators R—bounded and UM D—-spaces are needed.
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Theorem 1.3, Let p & (1, 00), and let X be a UM D—space. Assume that {Liliez € B(X). If
the families of operators {Li)rez and {k(A'Ly))rez are R-bounded, then |Lilrez is an LP-
multiplier,

The following theorem, proved by Arendt and Bu [8], establishes a sufficient condition ensuring
if a family {Lz ez is a By, ,—multiplier. We remark that this theorem impose stronger conditions
than theorem 1.4 for family of operators {L; }r <z, however it is valid in a general Banach space X.

Theorem 14, Let 1l < p, g < o0, and s € R. Let X be a Banach space. If the family (L ez ©
B(X) is M-bounded af order 2, then {Lg)kez isa B;. g-multiplier.

The following theorem, proved by Bu and Kim [20] , establishes a sufficient condition that
guarantees if a family of operators {L }zcz isa F ;_ q—multiplier. ‘We remark, as well as in theorem
1,2, this theorem is valid for an arbitrary Banach space X, however additional conditions are
imposed for the family of operators {Lg }rez.-

Theorem 1.5, Let 1 < p, g < oo, and s € R. Let X be a Banach space. If the family |Li }rez C
B(X) is M-bounded of order 3, then {Li)rez isa F; ».g—multiplier.




Chapter

Mild solutions for an integrodifferential
equation with nonlocal initial conditions

As we have already mentioned in the Introduction of this thesis, the evolution equations sub-
mitted to nonlocal initial conditions generalize the classical initial value problems. Moreover, this
notion is more complete for describing nature phenomena than the classical one because addi-
tional information is taken into account. For the importance of nonlocal conditions in different
fields of applied sciences see [33,90, 109] and the references cited therein. For example, in [33]
the author describes the diffusion phenomenon of a small amount of gas in a transparent tube by

using a partial differential equation submitted to a nonlocal initial condition given by the formula
b

glu) = Z ciu(ty), wherec;, i =0,1,...,p,are givenconstants and 0 < fp < 5 < -+ < tp < 1.
i=0
The earliest works related with nonlocal initial conditions were made by Byszewski [23,24,25].
In these works, using semigroup methods and the Banach fixed point theorem the author has
proved the existence of mild and strong solutions for the first order Cauchy problem

u'(t)
u(0)

L

(2.1)

Au(t) + f(z,u(®), te[0,1], }
8w,

where A is an operator defined in a Banach space X that generates a semigroup {S(2)},>0, and the
maps f and g are suitable X—valued functions.

Thenceforth, the equation (2.1) has been extensively studied in many works. We just men-
tion a few of these works. Byszewski and Lakshmikantham [26] have studied the existence and
uniqueness of mild solutions whenever f and g satisfy Lipschitz—type conditions. Ntonyas and
Tsamatos [106] have studied this problem under conditions of compactness for the function g
and the semigroup generated by A. Recently, Zhu, Song and Li [117], have treated this problem
without conditions of compactness on the semigroup generated by A, or the function f.

On the other hand, the study of integrodifferential equations has been an active topic of research
in recent years because it has many applications in different areas. In addition, there exists an ex-
tensive literature about integrodifferential equations with nonlocal initial conditions, (cf. e.g.,
[27,57,60,73, 116, 117] and references therein). Our work is a contribution to this theory. In-
deed, this chapter is devoted to study the existence of mild solutions for the following semi-linear
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integrodifferential evolution equation

1
() Au(t) + / Bt — su(s)ds + f(r,u(t)), t<[0,1],
o (2.2)

u(0} g(u),

where A : D(A) € X — X and for every ¢ & [0, 1] the mappings B(¢) : D(B(#)) € X — X are
linear closed operators defined in a Banach space X. We assume further that D(A) € D(B(z)) for
every t € [0, 1], and the functions f : [0,1] x X — X and g : C([0, 1}; X) — X are X—valued
functions which satisfy appropriate conditions. In order to abbreviate the text of this chapter,
henceforth we will denote by 7 to the interval [0, 1].

i

The initial valued version of the equation (2.2), this is #(0) = up for some #p € X, has been
extensively studied by many researchers because has many important applications in different
fields such as thermodynamics, electrodynamics, continuum mechanics, population biology, heat
conduction in materials with memory, among others. For more information see [11] or [98]. For
this reason the study of existence and other properties of mild solutions for the equation (2.2) is a
very important problem.

2.1 Existence Results

Most of authors obtain the existence, uniqueness of solutions and well-posedness for the equa-
tion (2.2) by establishing the existence of an evolution operator {T(t)};«7 and applying a variation
of parameters formula (see [45,97,981).

We next include some preliminaries concerning to the theory of the evolution operator {T'(7)) ;¢ s
for the equation (2.2).

Definition 2.1. A family {T(t)):er of bounded linear operators on X is called evolution operator
Jor the equation (2.2} if the following conditions are fulfilled.

(T1) Foreachx € X, T(Mx =x andT()x e C(I; X).
(T2) Themap T : I — B(ID(A)]) is strongly continuous.
(T3) Foreachy € D(A), the function t & T(t)y is continuously differentiable and

d
SOy

4
AT(t)y + /0 B(t — s)T(s)yyds =
(2.3)

t
T()Ay + f T —-s)B(s)yds, tel.
1]

In what follows we assume that there exists an evolution operator {T(}}; <7 for the equation
(2.2). In the literature there are several techniques for proving existence theorem of this evolution
operator, for example operational calculus in Hilbert spaces, perturbation arguments, and Laplace
transform method. For more information see [45,97, 98].

As we have mentioned, the existence of mild solutions of the linear classical version of equation
(2.2}, this is

4
u'(r) Au(t) + fo Bt —su(s)ds +f(1), tel @2.4)
u@® = wupelkX,
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has been studied by Grimmer and Priiss. Indeed, by assuming that the function f € L}(J; X) they
prove that the function « given by

i
u(t) = T(up + / T(t — 5)f(s)ds, tel, (2.5}
0

is a mild solution of the problem (2.4). Motivated by this result, we adopt the following concept
of solution.

Definitien 2.2. A function u € C(I'; X) is called a mild solution of the equation (2.2) if satisfies
the equation

t
u(t) = T(g(e) + f T(t — 5)f (s, u(s))ds, tel, (2.6)
0

Obviously, a manner to get the existence of a mild solution of the equation (2.2) is by applying
fixed—point arguments. We will use the fixed-point theorem 1.2 and theorem 1.3. These theorems
are related with Hausdorff measure of noncompactness. For the rest of the thesis, mainly in chapter
2 and chapter 3, we have adopted the following consideration. Let X a Banach space and J any
interval of real numbers. When we need to compare the measures of noncompactness in X and
C(J: X), we will use { to denote the Hausdorff measure of noncompactness defined in X and y to
denote the Hausdorff measure of noncompactness of C(J; X).

Lemma 2.1. Let W C C(J; X). If W is bounded and equicontinuous, then the set co(W) is also
bounded and equicontinuous.

For the rest of the chapter we will use the following notation. Let W be a set of functions from
Jto X and ¢t € J fixed, we denote by W() = (w() : w € W}, The proof of the next Lemma can
be found in [10].

Lemma 2.2, Let W © C(J; X} be a bounded set. ThenZ (W(t)) < y(W) forallt € J. Furthermore,
if W is equicontinuous on J, then L (W) is continuous on J, and

y(W) = supl{ (W) @ 1 € J).

Definition 2.3. A set W C LI(J; X) is said to be uniformly integrable if there exists a positive
function k € LM(J;RY) such that |w@)|| < () a.e. forallw e W.

The next lemma was established in [49, Theorem 3.1].

Lemma 2.3. Assume that X is a separable Banach space. If W C L1(J; X) is uniformly integrable,
then L ({W (1)) is measurable and

{ ({/a w(s)ds:we W}) < /ag‘({w(s) tw € Whds.
0 0

The next property has been studied by several authors under different hypotheses, for example
see [13, 116]. We establish it here both for references purposes and to unify the presentation and
avoid some unnecessary hypotheses,

Lemma 2.4. Let (X, d) be a metric space and let § € X be a bounded set. Then there exists a
countable set Sy C § such that = £(5) < 2 (So).
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Proaf. Without lost of generality, we can assume that 7(D) > (. Let n € N be a positive integer
anddefiner, = (1- %l—)q(D) >0, Let x{‘ € D, clearly there exists x) € D~ B, [x], and hence
d(x{,x3) > rn. Applying repeatedly this argument, we can construct inductively a sequence
{x¢)een € Dsuchthatxy € D~ Uf.‘:lBrn [x{'] and d(x;’,x}‘) > ry forall i # j. Define the sets
Dy = {x : k € N} and Dg = U] | Dy,. Evidently Dy is a countable set and (Dy,) = % Since

D, C Dy forall n € N we have that n(Dy) = %" Therefore,

1
2Dy = (1 - m)’?(D),

and taking limit as n — oo we infer that (D) < 257(Dg). | ]

Corollary 2.1. Let a > 0 and denote by J the interval [0,a). Let F : LY(J; X) — X be the map
given by
a
F(u) =f u(s)ds.
0

IfW < LAN(J; X) is a uniformly integrable set of functions, then there exists a countable set Wy € W
such that

L) <2 ]D £ (Wo(s))ds. @7

Progf. Using the Lemma 2.4, we infer that there exists a countable set Wy = {w, :n e N} C W
such that
C(F(W)) < 20(F(Wo)).

It follows from [84, Proposition 2.2.6] that there exist Z,, C J with Lebesgue measure 4(Z,,) = 0
such that w,(Jf ~ Z,,) is separable. Redefining w,, on a set of measure zero, which does not change

(=)

the value F(w,), we can assume that the set Un=1 w,(J) is separable. Therefore, there exists a
separable closed subspace Xy of X such that Wp(J) S Xg.
We identify F with its restriction to L}(J, Xp). Since Wp is uniformly integrable, using Lemma 2.2

we obtain that

L < [ cOds,
which establishes the inequality (2.7). x

The main result of this chapter are theorem 2.1 and theorem 2.2. For its proof we impose some
conditions on the resolvent operator associated to equation (2.2) and the functions f and g, which
are listed bellow,

(HT) There exists an evolution operator {T(¢)};er for the equation (2.2) such that the function
t = T(¢) is continuous for ¢ > 0.

(HfI) The function f : I x X — X satisfies Carathéodory type conditions, that is, f(-, x) is
measurable for all x € X and f(z, -) is continuous for almost all £ € I,

(Hf2) There are a function m € L}(I; R*) and a nondecreasing continuous function @ : Rt — R*
such that
L, 0l < m@O(|x M)

forall x € X and almost alir € I.
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(Hf3) There exists a function H € L(Z; R*) such that for any subset of functions § < X, we have
(e, 8) < HO(S)
for almost all ¢ € I.
(Hgl) There exists a constant L > 0 such that £ (g(W)) < Ly(W) for all bounded set W € C(I; X).
(Hg2) The function g ; C(I; X) — X is a compact map.

Remark 2.1. Assuming that the function g satisfies the hypothesis (Hgl) or (Hg2), it is clear that
g takes bounded set into bounded sets. For this reason, for each R > O we will denote by g, to
the number

8x = sup{llgCl : llulle < R}.

In addition, for the rest of the chapter we denote by X the number K = sup{}|T(0)] : ¢t € I).

Theorem 2.1. Suppose that all the hypotheses (HT), (Hf1), (Hf2), (Hf3) and (Hgl) are satisfied,
Assume further that there exists a constant R 22 0 such thar

i
Kg, + K(D(R)] m(s)ds < R. 2.8)
0

If the following inequality holds

1
K(L+2 fo H(s)ds) <1, (2.9)

then the equation (2.2) has at least one mild solution.

Proof. Define F: C(I;X) = C(I; X) by

(Fu)(t) = T(t)g(u) + f T(t - Hf (s, u(sNds, tel.
o

Let {uty ) en be a sequence in C(J; X) such that u, — u, whenn — oo, for the norm of uniform
convergence. Since g is & continuous map,

glun) — gu} as n— oo,

It follows from (Hf1) that f(s, u,(s)) — f(s,u(s)), whenever n — oco. Moreover, in view of
condition (Hf2) we have that

f sy (s < ()P () < m(s)PC),

where C 2 ( is a constant such that {lu, |l < C, applying the Lebesgue dominated convergence
theorem we obtain that F(u,) — F(u)as n — oo,
On the other hand, if ||#{le < R, we have that

IEFDON < Tl +

ft T(t — s)f (s, u(s))ds
0

1
Kgp + KO(R) f (t — s)m(s)ds
0

<
<R,
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which implies that F(B,[0]) € B.[0].
Let now W be a bounded subset of C(f; X) with v(W) > 0. It follows directly from the
definition of the measure of noncompactness that

yUT(g@) 1 u € W} < K{(g(W)),

t
We define the map Fy : C(I; X) — C(F; X) by the formula (Fiu)(@@) = / T(t — $)f (s, u(s))ds,

0
Clearly the set {f(-,#(-)) : © € W} is a uniformly integrable set of functions over I. Thus,
applying the Corollary 2.1, there exists a countable set {1, },en € W such that

4
'y({FIu Tue W}) < 2K supf LUf(s,1,(8)) : n e N)ds
tel JO
i
<2 [ HOMs yluslaer)

1
< 2K / H(s)ds y(W).
0

Combining this estimate we conclude that

1
YEW) < K(W)+2K fo H(s)ds y(W)
< y(W),

which implies that F : B,{0] — B, [0] is a y—condensing map. The assertion is consequence of
the Theorem 1.1 |

The condition (2.9) used in the statements of Theorem 2.1 is some difficult to verify many
practical situations. However, if the function g is a compact map this condition may be omitted.
This motivates the following resuit.

Theorem 2.2. Suppose that all the hypotheses (HT), (HfI), (Hf2), (Hf3) and (Hg2) are satisfied.
If there exists a constant R 2 0 such that

1
Kgp + K(D(R)f mis)ds < R, (2.10)
0

then the equation (2.2) has at least one mild solution.

Proof. Wedefine themap F : C(I; X) — C(I; X) by

r
(Fu)(t) = T()glu) + f T(t —s)f(s,u(s)ds, tel.
0

Proceeding as in the proof of Theorem 2.1 we obtain that F is continuous and F(Bs[0]) € B [0).
Since the function g is a compact map, we have that 7'(-) is a uniform continuous function on
g(B.[0]). Hence, the set {T(-)g(u) : u € B.[0]} is an equicontinuous set of functions. Moreover,

t+h t
/ T(t +h = 5)f (s, u(s))ds — f T(t — s} (s, u{s))ds
0

!

4 r+h
< fo ITG +h = 5) = T = )| 1fCs.u(s))lds + f ITG + k= 5)f (s, u(s))] ds
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t+h

< fr NI+ h—s8)Y—T@¢ - IF(s, u(s)lds + K(I)(R)/ m(s)ds.
0 ¢

t+h
Since m € LI(I; R*) it follows that f m(s)ds — 0 as 2 — 0 uniformly for u € B, [0].
I3
On the other hand, for each & > 0 there exists a measurable set 2 c [0, 1] and a constant M > 0

such that m(s)ds <& and m(t) < M forall t € E. Thus,
[0,11~E

14 -3
fo T+ A =5y =T( = $)Il |If(s, usHllds < /0 WT@ +h—s)—T@— I Nf(s, uls)llds

} 4
+ f NTG + = 5) = TG = ) 1F (s, u(s)llds
t

~5
Therefore,
t
f TG +h —s) =T~ s)| §f (s, u(sHllds < R)M [T(+h—5)-T(t—s)|ds
0 EN[0,1-45]
+ 2K®(R) m(s)ds
E<n[0,:-5]
H
+ 2KD(R) / m{s)ds
-G

where E€ = [0, 1] ~ E. Since ¢ — 5 > & and using the absolute continuity of the integral we have

-6
that f T +h—5) =T = ) If (s, u(s))|lds — 0 uniformly onu € B [0] as ¢t — 0.
0

r
Furthermore, / m(s)ds — 0 as 6 — 0. Therefore, F(B,[0]) is an equicontinuous set of func-
-6
tions.

Define B = co(F(B.[01)). Since F(B,[0]) is an equicontinuous set of functions, it follows from
Lemma 2.1 that 8 is an equicontinuous set of functions. Let D be a bounded subset of 8.

Using the fact that g is a compact map, by properties of Hausdorff measure of noncompactness
we have that

Z{Fv)e) : ve Dy < 4] fo I T( - $)f (s, v(s))ds : v & D}).

Moreover,
4 4
Z({ fo T(t - 5)f (s, W(s)ds : v € D})< K¢ fﬂ Fls,v(s))ds : v e D))

By (Hf2) there exist 2 nondecreasing continuous function @ : R* — R* and m € L1(Z; R*) such
that |[f(s, u(s))l] < KO(R)m(s). Therefore the set of functions {f(-, u(-)) : u € D} is uniformly
integrabie in the interval /. By corollary 2.1 there exists a numerable subset {w, },en S D such
that

Z[(FW@ : ve D) <2K / L({f(s. wals))ds : ne N}).
1]
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It follows from condition (Hf3) that
ClFV(@) : veD} 2K fo ! H(s), ((wn($)}nen)ds
<2k [ HEs Ywnlner
< 2K A r H(s)dsy(D)
Since D is an equicontinuous set of functions, we have that
yEo) <2k | ' Hs)ds (D).

Using an inductive process we can conclude that

LFPD)EY) = L(FEo(F* (D))
< @Ky fu fo - " H(sg) - H(s)H(s1)dsy - - ds1 7(D)

n t n
- (ZK') ( f H(s)ds) ¥(D).
nl \Jo

Since for all n € N the sets F*(D) are equicontinuous sets of functions, we conclude that

n QK" (1 §
varon< EL( [ o) o

It follows from the fact that H € L'(I; X) that Qf!)" ( ﬁ; H (s)a's)irl — 0 as n — oo, Therefore,
there exists ng € N such that

n 1 1o
(2K)™ (f H(s)ds) =r<l,
0

(n0)!
and applying Theorem 1.2 it follows that F has a fixed point in 8. This fixed point is a mild
solution of equation (2.2). [

The hypothesis (HT) involved in the statement of the theorems 2.1 and 2.2 is really difficult
to verify. However, if for all £ € I we have B(f) = b{t)A this condition can be verified only in
terms of spectral properties of the operator A and regularity of the scalar function k. Consider the
following particular case of the equation (2.2)

i
u' (1) Aufr) + / bt — Au(s)ds + fe,u(t), tel
o 2.1
u(0) g{u).
where A is a closed linear operator defined on a Hilbert space # and the kernel » € L1(I; R).

To prove the existence of mild solutions for the equation (2.7), we will introduce the Laplace
transform of a X—valued function. Furthermore, the following definitions introduced in [98] will
be necessary.
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Let X be a Banach space. The Laplace transform of a function f € LI(R*; X) is defined by

F) = / me““"f(t)dt, Re(d) > w,
0

if the integral is absolute convergent for Re(1) > w. When the Laplace transform of a function f
is well defined we say that the function f is Laplace transformable.

Definition 2.4. Let f € LI(R*; R) be Laplace transformable and k € N, We say that the map [ is
k—regular if there exists a constant C > 0 such that

1A F()| < CIF)|
Jorall Re() 2w ,0<n< k.

Convolutions of k-regular kernels are again k—regular. Moreover, integration and differentiation
are operations which preserve k-regularity as well. See [98, pp. 70].

Definition 2.5. Ler f € C(R*;R). We will say that f is completely monotone if and only if
(-1)*f™2) > Oforall A > 0andn € N,

Definition 2.6. Let a € LY(R*;R) such that a is Laplace transformable. We say that a is com-

pletely positive if and only if
1 —a’(1)

awn @y

are completely monotone.

Finally, we recall that one-parameter family {S(#)};>0 of operators is said to be exponentially
bounded of type (M, w) if there are constants M > 1 and w € R such that

IS@I € Me™*, forallt > 0.

The next Proposition establishes the existence of an evolution operator for the equation (2.7),
furthermore the function ¢ - T'(r) is continuous for ¢+ > 0 in the operator topology. For this
purpose we will introduce the conditions (CZ) and (C2).

14
{C1) The kernel a defined by a(?) =1 + f b(s)ds, for all t € R*, is 2-regular and completely
0
positive,
(C2) The semigroup generated by A is exponentially bounded of type (M, w) and there exists

Ho > w such that

=0

. -1
1 [ Ho +ip —A]

lim ||=
lal=oo | Bpg + i) + 1 \b{pp +ip) + 1

Proposition 2.1. Suppose that the operator A is the generator of a Co—semigroup of type (M, w)
in a Hilbert space H. If the conditions (Cl) and (C2) are satisfied then, there exists an evolution
operator {T(t)}se; for the equation (2.7) such that the function t — T(t) is continuous in the norm
of operators fort > 0.
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Proof. Integrating in time the equation (2.11) we get

[ 4 H
ult) = fo alt — 5)Au(s)ds +/[; Jls,u(s)y+ glu). (2.12)

Since the scalar kernel « is completely positive and A generates a Cy—semigroup, it follows from
[98, Theorem 4.2] that there exists a family of operators {T'(¢));<s strongly continuous, exponen-
tially bounded that commutes with A, satisfying

t
Ttx=x+ f a(t — s)AT(s)xds, forallx € D(A). (2.13)
0

On the other hand, using the condition (C2) and since the scalar kernel a is 2-regular, it follows
from [78, Theorem 2.2] that the function ¢ — 7T(r) is continuous for ¢ > 0. Further, since a €
CL(R*;R), it follows from equation (2.13), that for all x € D(A) the map T(-)x is differentiable
for all ¢ > 0 and satisfies

t
%T(t)x = AT(t)x + f bt — $)AT(s)xds, tel. (2.14)
0

From the equality (2.14}), we conclude that {T'(¢)} ;s is an evolution operator for the equation (2.11)
such that ¢ = T'(¢) is continuous for the norm operator. )

Corollary 2.2. Suppose that the operator A generates a Co—semigroup of ype (M, w) in a Hilbert
space H. Assume further that the conditions (CI) and (C2) are fulfilled. If the hypothesis (HfI),
(Hf2), (Hf3) and (Hg2) are satisfied and there exists R > 0 such that

1
Kgp, + KO(R) f m(s)ds < R,
¢

then equation (2.11) has at least one mild solution.

Progf. It follows from the Proposition 2.1 that the (2.11) admits an evolution operator {7'(t)}er
such the function ¢ + T'(¢) is continuous for ¢ > 0. Moreover, since the hypotheses (Hf1), (Hf2),
(If3) and (Hg2) are satisfied, we apply the Theorem 2.2 and conclude that equation (2.11) has at
least one mild solution. o

2.2 Applications

In this section we apply the abstract results which we have obtained in the preceding section
to study the existence of solutions for a partial differential equation submitted to nonlocal initial
conditions. This type of equations arises in the study of heat conduction in materials with memory
(see [74, 88]). Specifically, we will study the following problem

g t
wgt 2 Aw(r, £) + 'L Be ™9 Aw(s, £)ds + pr(t)pa(w(t, €)), 1€,
w(t, ) = w(t,2m), forfel, (2.15)
1 r£
w(0.8) = f / gk(s, E)w(s, y)dsdy, 0 <& <2r,
0 JO

s
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where k : I x [0,2n] — R?* is a continuous function such that k{¢, 27} = 0 for all ¢ € I, the
constant ¢ € R* and the constants @, 8 satisfy the relation —~a < 8 < 0 < «@. The operator A is
defined by
B B2 b d
(AW, 6) = ai(f)a—ng(t,f) + 1(5)%
where the coefficients ai, b1 and ¢ satisty the nsnal uniformly ellipticity conditions. The domain
of A is defined by D(A) = {v € L¥([0,2x];R) : v"* € L*([0, 2x);R)). The functions p; : I — R*
and p; : R — R satisfy appropriate conditions which will be specified later.

w(t, &) + c(Ew(t, £),

Identifying u(f) = w(t, -) we model this problem in the space X = L%(T; R), where the group
T is defined as the quotient R/2xZ. We will use the identification between functions on T and
2x-periodic functions on R. Specifically, in what follows we denote by L*(T;R) the space of
2n—periodic 2-integrable functions from R into R. Consequently, the equation (2.15) is rewritten
as

i

u'(t)

Au(t) + /-r b{t — s)Aul(s)ds + f(t.u()), tel, } (2.16)
A .
u(0)

g(w),

il

1 p&
where the function g : C(I; X} — X is defined by g(w)}¢) = / f qk(s, &w(s, ydsdy, and
o Jo
J &, u(®)) = p1{t)pa(u(r)) where p; is integrable on I, and p; is a bounded function satisfying a
Lipschitz type condition with Lipschitz constant L.
We will prove that there exists ¢ > 0 sufficiently small such that equation (2.16) has a mild
solution in L*(T; R).

2 [l 172
With this purpose, we begin noting that ||g|] < g(27)!/? ( / f k(s,& )2dsd§) . Moreover,
o Jo

it is well known fact that the function g is a compact map.

Further, the function f satisfies ||f(z, u(2))l < p1(OD(|u(O]), with Oz} = |Ip2]| and
W, u1(0)) = £, 20D < Lpa@®lln — w2l Thus, the conditions (Hf1), (Hf2), (Hf3)and (Hg2)
are fulfifled.

i
On the other hand, define a(¥) = 1 + / Be™ds, forall t € R}. Since the kernel b defined

0
by b(t) = Be*f is 2-regular, it follows that a is 2-regular. Furthermore, we claim that a is
completely positive, Indeed, we have

— 0y _Atatp
a =T
Define the functions fi and f2 by fi(4) = 1 and (1) = :m respectively. In another
Lencs2 Y I = gy HRY T e ey
words ) )
_ A+e AT+ + P+ e v
fl(ﬂ)"/1+a+ﬁ and fo(d) = A+ +p8)?

A direct calculation shows that

D™ +B)n + 1)

-1 n+l 1 .
((ﬂ)-&af-(z;ﬂ) and fz( = for n e N.

P =

(A +a+pym2
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Since —a £ B < 0 < a, we have that f; and f> are completely monotone, Thus, the kernel a is
completely positive.

On the other hand, it follows from [35] that A generates an analytic, non compact semigroup
{T(#)}+>0 on L*(T; R). In addition, there exists a constant M > 0 such that

M =sup{|[T@Il : £ = 0} < +oo.

It follows from the preceding fact and the Hille—Yosida theorem that z € p(4) for all z € C such
that Re(z) > 0. Let z = g + ip. By direct computation we have

Re( o +ip ]_#S+#Sa+#3(a+ﬁ)+ﬂoa(w+ﬁ)+ﬂoﬂ2—ﬂ2ﬁ

Dluo + i) + 1 (@ +B)% +2n0(a + B) + pd + 2
Ho+ iy _ , Lo
Hence, Re | =—~————| > Oforall z = pg + iy, such that pg > 0. This implies that
blpg +ip) + 1

. -1
(:-w ~ A] e B(X), forall yp > 0.
B(uo +ip)+1

Since the semigroup generated by A is an analytic semigroup we have

e <
3(#0+ip)+1 ?@0+ip)+1 g +ip
Therefore, 1
lim e L (_ po + ip _A] o
ll=o || b(ug + ip) + 1 \b(up + ipt) + 1

It follows from Proposition 2.1 that the equation (2.16) admits an evolution operator {T(#)},es
such that ¢ > T'(¢) is continuous for ¢ > 0,

ol /2
Let K = sup{||T(")]l : ¢ € I} and ¢ = (2m)}/? f f k(s,f)zdsdf) )
o Jo
A direct computation shows that for each R > 0 the number g, is equal to g,, = gcR.

1
Therefore the expression (K gr + KO(R) f m(s)ds), is equivalent to (gcKR + ||p1 ||, LK).
0
Since, there exists g > 0 such that gcK < 1, we have that there exists R > 0 such that

gcKR + l|p1ll, LK < R.

From the Corollary 2.2 we conclude that there exists a mild solution of the equation (2.16).




Chapter

Mild solutions of a second order
non—autonomous Cauchy problem with
nonlocal initial conditions

The present chapter is dedicated to study the existence of solutions for the following second
order non-autonomous Cauchy problem submitted to nonlocal initial conditions.

u’(t) = A@Ou®+ . NOW), ted,
w0 = g, (3.1)
w0 = h@).

In this equation X is a Banach space and J is the interval [0, a] with ¢ > 0. Further, we assume
that the operators A(¥) : D(A(t)) € X — X fort € J are closed linear operators with domain
D(A(2)) = Dforallt € J. As general conditions, we always assume that & NE :ChX)—X
are continuous maps, the function ¢ — N(#)(x) is continuous for each u € C(J; X), and the
mapping f : J X X — X is a function that satisfies Carathéodory type conditions.

The second order abstract Cauchy problem represents numerous concrete situation modeled by
partial differential equations or functional differential equations with boundary conditions. More-
over, the behavior of first and second order Cauchy problems is different in many aspects, For
this reason, in the last 50 years has had a remarkable progress of the theory of second order
Cauchy problem. The development of this theory has followed a course parallel to the theory
of strongly continuous semigroups of operators. As general references we refer the reader to
[37,69,103, 104, 105, 108].

The existence of solutions for the autonomous second order Cauchy problem is closely related
with the concept of cosine operator functions, Similarly, the existence of solutions to the non-
autonomous second order abstract Cauchy problem corresponding to the family {A(f) : ¢ € J) is
directly related to the concept of evolution operator generated by the family {A(?) : r € J}. In
the literature can be found various techniques to establish the existence of an evolution operator
{S(t,5) : £, 5 € J} generated by the family {A(z) : ¢ € J). In particular, a widely studied situation is
the case when the operators A() are additive time perturbations of an operator Ag which generates
a cosine operator function.

20
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We will present an outline of the general theory of cosine functions, We will review their most
important properties to establish our main results.

Definition 3.1. Let X be a Banach space. An operator—valued map Co : R — B(X ) is called
strongly continuous cosine function of operators is the following conditions hold,

(@) Co(0)=1,.
() Co(t +5) + Co(t — 5) = 2CH(1)Co(s), s,t R
(¢) Foreach x € X the function t — Co(t)x is continuous.

Let {Co(t})zer be a strongly continuous cosine function of operators in X, Define the sine
fonction by

4
So(Hx = j Co(s)xds, xeX, reR,. (3.2)
0
We next mention some basic properties of cosine function and its associated sine function.

Proposition 3.1. Let {Co(t)}er be a strongly continuous cosine Junction of operators in X and
{So(®)}sem the sine family associated, The Jfollowing properties hold.

() Co(t) = Co(—t) and So(t) = —So(t), forallteR.
(it) The function So(°) is continuous for the norm operator.
(ifi) So(t + 5} = So(1)Co(s) + So(s)Colr), forallt,s € R.

(iv) There are constants M > 1 and w 2 0 such that

ICo < Me®¥!, teR.

v) }in}] -}Sg(t)x =x forallxeX

To relate the cosine function with abstract Cauchy problem we introduce the notion of infinite-
simal generator of a cosine function and differentiable vector space. We call infinitesimal generator
of {C(#)}:er to the linear operator Ag : D(Ag) € X — X defined by

@;“‘_’:, x € D(Ag),

Apx =Cy/(Qx =2 lir%
—
where D(Ag) is the subspace of vectors x € X for which there exists the limit in the above expre-
ssion. We denote by F the subspace consisting of elements x € X such the function Co()x is
continuously differentiable. The following proposition collect the most important relationships
between these concepts,

Proposition 3.2, Let {Co(T));er be a strongly continuous cosine Junction of operators with in-
Sfinitesimal generator Ag. The next properties hold.

(i) Aq is a closed linear operator and D(Ag) is dense in X. Moreover; D(Ag) is the subspace
Jormed by all x € X for which Co(-)x is a function of class C2, and D(Ag) C E.
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(i) Forall x € X and t € R, we have thar fgr So(s)xds € D(Ap), and
s
Co(t)x —x = Ap / So(s)xds.
0

(iti) Let x € X. Then x € D(Ag) if and only if there exists ¥ € X such that Co(t)x — x =
for So(s)yds. In this case y = Agx.

(iv) Forallx € Xandt € R, Sy(t)x ¢ E.
d
(v) Forallx € Eandt € R, Co(t)x € E, So(t)x € D(Ap) and -d?Cg(t)x = AgSo(t)x.

2
{(vi) If x € D(Ay), then Co(t)x € D(Ap), and %Cg(t)x = ApgCo()x = Co(t)Apx.

dZ
(vii) If x € E, then Sy(-)x is a function of class C? and Et_ZSO(r)x = AgSo(t)x.

(viii) If x € D(Aq), then Sp(t)x € D(Ap) and So() Aox = AoSo()x.
The following result has been proved by Kisinisky [69].

Theorem 3.1. Let {Co(t))ter be a strongly continuous cosine functions with infinitesimal genera-
tor Ag. Then the space E endowed with the norm

xlly = fix]l + sup [AgSo()xll, x € E,

Ol

is a Banach space, Moreover the operator-valued function

_ | Cor)  So(®)
G0 = [Ansn(z) Colt)

is a strongly continuous group of linear operators in the space E x X with infinitesimal generator

0 I
7o=[3

defined in D(Ag) X E.

For the rest of the chapter we consider E endowed with the norm || - i, A fundamental subject
is to decide when a linear operator generates a strongly continuous cosine function of operators.
We begin by establishing a few properties of cosine functions.

Proposition 3.3. Let {Co(t)},er be a strongly continuous cosine functions with infinitesimal gene-
rator Ao, such that ||Co())| < Me“V\. Let A € C with Re(d) > w. Then 12 € p(Ag) and for ail
x € X the following properties are fulfilled.

(i) A% - Ag)~lx = f7 e Co(r)xdr.
(i5) (22— Aoy "lx = f§~ e~V Sp(t)xds.

Mn!

Ee -y "N

(ii) I

a" 2 -1 <
a’/l_"/lu —Ap)7 £
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It follows from this proposition that if {C(£)},er is a strongly continuous cosine function of
operators uniformly bounded, then o(4g) C (—e0,0]. The following result, analogous to the
Hille-Yosida theorem for semigroups theory, has been established by Fattorini [37] and Sova
[102].

Theorem 3.2. Let Ag be a linear operator with dense domain. Assume that there are constants
M 2 0andw > 0 such that 2% € p(Ag) for all A > w and

" Mn!
dar (2 — w)ntl’

A(A% = Ap)!

< ne No.
Then the operator Aq is the infinitesimal generator of a strongly continuous cosine function of
aperators such that ||C@)|| < Me®!,

Next we return to the inhomogeneous abstract second order Cauchy problem. For this consider
a Banach space X. Let Ag : D(Ag) € X — X be a linear operator that generates a strongly cosine
function of operators and f € L!(I; X), where I is an interval of real numbers.

u’(t) = Agu(t)+f(), tel,
w0 = v, 3.3
(@ = =z

We will say that a function ¥ € C(J; X) is a mild solution of the equation (3.3) if it is defined
by the expression

ut) = Colt)y + Solt)z + fo Solt - E)E)dE, 1€l 3.4

Furthermore, if y € E, the function u(-) given by (3.4) is continuously differentiable, and

1
W(r) = AoSo(t)y + Col®z + fo Colt - £)f(©)dt, tel.

Moreover, if y € D(A), z € E and £ is a continuously differentiable function, then the function
u(-) is a classical solution of the problem (3.3).

Similarly, the existence of solutions and well-posedness for the inhomo ZENEOUS NON—autonomous
second order abstract Cauchy problem

w’'(t) = A@Ou@®+f(), telJ,
u(s) = y, (3.5)
w) = z,

is related with the existence of the evolution operator {S(2, s)}y,ses for the homogeneous equation

u”’(t) = A{u(), rel,
u(s) = vy, (3.6)
w'(s) = z.

In this chapter, we will use the concept of evolution operator {S(z, 5)); ses associated with
problem (3.6) introduced by Kozak in [70]. With this purpose, we assume that the domain of A(r)
is a subspace D dense in X and independent of ¢ € J, and for each x € D the function ¢ Alf)x
is continuous,
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Definition 3.2. Let ' ; J X J — B(X). The family (S(t, $))s,ses is said to be an evolution operator
generated by the family {A(t) : t € J} if the following conditions are fulfilled:

(D1) Foreach x € X the map (t, s) = S(t, s)x is continuously differentiable and

{(a) Foreachrc J, S(t,1)=0.
(b) Foralit,seJandeachx € X, ;%S(t,s)x lt=s = x and %S(r, SIX |p=s = —x.

(D2) Forallt,s €J,ifx €D, then $(t, s)x € D, the map (¢, 5) > S(t, $)x is of class C* and
(@) 238G, 5)x = A()S(t, 5)x.
(b) HSZS(t S)x = 8z, s)A(s)x.
(c) a,,g,S(t 5)X [r=s = 0.

D3) For all s,t € I, ifx € D, then %S(t,s)x € D. Further, there exist
===5(1, 5)x, and

312 -0, 8)x and
aszar
(@) ara;ass(t sx = A(I)EQES(“ s)x. Also, the map (¢, 5) — AU)%S(I, $)x is contfinuous.,
{b) 552,3!5(! 5)x = A(t)az S(t, 5)x.
Assuming that f : J — X is an integrable function, Kozak [70] has proved that the function
u:J — X given by

U = oS, Iy + 5, 5)2 + f St @),

is the mild solution of problem (3.5). Motivated by this result, we establish the following notion.
Definition 3.3. A continuous function u € C(J; X) is said to be a mild solution of problem (3.1) if

the equation

a I
w(t) = = 5-8(1, 0)g @) + SG, O)h(u)+£ S EE NEw)dE, t e,

is verified

Henceforth, we assume that there exists an evolution operator {S(z, Sk, ser associated with the
family {A(#) : ¢+ € J). To abbreviate the text, we introduce the operator C(z, §) = S(t s).
With this notation, a mild solution of the problem (3.1) is a continuous function u € C(J X } that
satisfies the equation

e
u(t) = C(z, 0)g(u) + S(t, OYa(u) + fo S@EOFE, NEYupde, teld.
In addition, we set K, Ky > 0 for constants such that

Ice 9l < K,
ses| < K,

|2
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for all s, ¢ € J. Since the operator valued map C(¢, ) is strongly continuous, for x € X, we have

I a e
S(t, )% = — f 5t ) = f (),

which implies that
1St x| < K|t —s], s,zel.

Moreover, it is clear that
”S(tZ:'S)_S(tI’S)” "*<--. KII’Z"]'- for all h,t,85€ J. (3'7)

It is well known that, except in the case dim(X) < oo, a cosine function {Cy(¢)};er cannot
be compact for all 1 € [#),#;], with £ — #; > 0 ([103]). In contrast to the cosine functions that
arise in specific applications, the sine function {Sy()};er is very often a compact operator for all
t € R, A similar situation occurs for the evolution operator {S(z, $)}t,ses generated by a family
{A() : t € J). We next consider a particular situation.

Assume that Ag is the infinitesimal generator of a strongly continuous cosine function of ope-
rators {Co(#)}rer. Let A(t) = Ao+ P(t)forallt € J,where P : J — B(E;X)is a map such
that the function ¢ +— P(r)x is continuously differentiable in X for each x € E, It has been
established by Lin [75] and by Serizawa and Watanabe [101] that for each (y, z) € D(Ag) X E the
non-autonomous abstract Cauchy problem

w’(ty = (Ao+POu(t), tel,
u@ = y,
W) = z

has a unique solution u(-) such that the function ¢ - u(¢) is continuously differentiable in E. Tt is
clear that the same argument allows us to conclude that equation

w’(t) = (Ao+P@u(), tel,
u@s) =
w(s) = z,

has a unique solution u(-, s) such that the function ¢ - u(t, 5) is continuously differentiable in E.
1t follows from (3.4) that

u(t, s) = Colt = s)y + Solt — s)z + f 'St - YPEE, ).
In particular, for y = 0, we have
ul(t,s) = Splt — 8)z + [gt So(t — EYP(E(E, s)de. (3.8)
Consequently,
e, 9y < 11506t — $)lsr, izl + f 106t = Ml I P@lce s luCe, .

Applying the Gronwall-Bellman lemma, there is a constant # 3> 0 such that lleeCt, )Mt < M)zl
fors,relJ.
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We define the operator S(z, s)z = u(z, 5). It follows from the previous estimate that S(z, s} is a
bounded linear map on E for the norm in X. Since E is dense in X, we can extend S(z, s) to X.
We keep the notation S(z, 5) for this extension. This motivates the following result established by
Henriquez in [52].

Lemma 3.1. Under the preceding conditions, {S(t,5)};,ses is the evolution operator generated by
the family (A(t) : t € J). Moreover, if So(t) is compact for all t € R, then S(z, s) is also compact
foralls,t € J.

3.1 Existence Results

In this section we will present our main results. Initially we introduce some conditions related to
function f.

(Cf1) The function f : J x X — X satisfies Carathéodory type conditions, that is, f(-, x) is
measurable for all x € X and f(z, -) is continuous for almost all ¢ € J.

(Cf2) There are a function m € L!(J;R*) and a nondecreasing continuous function @ : R* — R
such that
LG, ) < mPIx]D

forall x € X and almost all ¢t € J.

(Cf3) There exists a function H € L1(J; R¥) such that for any subset of functions § C X, we have
S 8N < HH (S

for almost all ¢ € J,

Before continuing our development, it is important to note that in the context of infinite dimen-
sional spaces conditions (Cf2) and (Cf3) are different. We will justify our claim exhibiting a few
elementary examples.

Example 3.1, Let f : C({0, 1]) — C([0, 1]) given by
FXE) = VIxE)l, £ €[0,1].

It is easy to see that f is continuous. In fact, if the sequence {xp}nen converges to x for the
norm of uniform convergence, then Uy Xn((0, 1D U ([0, 11) is @ compact set. Since the function
a(t) = VIi[ is uniformly continuous on compact sets, then flxp) =wox, 2 aoxasn — o0
uniformly on [0, 1), Moreover, [|f (x)|| < ©(||x|)), where ®(t) = V¥, for t = 0. Hence, the function
[ verifies condition (Cf2). On the other hand, assume that

{FW)) < HIW), (3.9)

Jor all bounded set W C C([0, 1]} and certain constant H > 0. For each n € N, we take the
constant function x,(t) = 1/n and the closed ball W = B, tn2[%n, CUO, 1D)]. We know that {(W) =
1/n?. Furthermore, it follows from (3.9) that there exist ¢, € By,2[0,C([0,1])] and s € [0,1]
such that l(s) — yr(s)| = 1/n% and

1 G + 0) — f(x +¥)| < 2H Z(W) = _H
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Hence

l(s) — @(s)l
VL +9(s) + L +4(s)

S WGn+9) - fln +9)ll <

1 1
l\/; +‘P(S)-\/; +i(s)

2H
n

This implies that

1
1< 2H(\/%+go(s)+\/;z- +(s)) = 0, n — oo,
which is a contradiction.

Example 3.2. [f a function f : X — X satisfies (Cf3), then f also satisfies (Cf2). In fact, it
Jollows from (Cf3) that f takes bounded sets into bounded sets. We define ¥ : [0, c0) - [0, o) by

Y& = SUD)|c|ie HF G
It is clear that ¥ is an increasing function and |[f (x)|| < Y(||x||). It is also easy to see that V

is left continuous. Now, we define @ : [0, 00) — [0, co) by
Y+ 1), ift e Nu {0}
@) =

Y+ 1)+ [Fn+2)-¥@n+ D]z —-n), iftcinn+1], neN.

Clearly © is a continuous and nondecreasing map, and ||f(x)]| < P(lx|) < ©(|x|)). Hence f
satisfies (Cf2).

However, for a function f : J X X — X the assertion does not hold. In fact, let f(t,x) =
a(Dfo(x), where fo : X — X is a completely continuous function and o : J — is a measurable
function such that & ¢ L'(J;R*). In this case, clearly f verifies condition (Cf3) but not (Cf2).

Next, we consider the following condition for the family of functions {N(z) : ¢ € J}.

(CN1) There exists a constant v > 0 such that
CUAN@@) : u € W) < vy(W),
for all ¢ € J and every bounded set W € C(J; X).

We point out that condition (CN1) implies that, for all ¢ € J, the functions N(f) take bounded sets
into bounded sets. Thus, in this case, for R > 0 we denote

Ng = sup{IN@)@) : t € J,u € C(J; X), [lulle < R}

Note that, if f satisfies conditions (CfI} and (Cf2), and u € C(J; X), then the X~valued function
t = f(z, N(t)(w)) is integrable on J.
‘We are in a position to establish the following essential result.

Theorem 3.3. Assume that the function f : J x X — X satisfies conditions (CfL), ( C12), (Cf3),
and that the family {N(¢) : t € J} satisfies condition (CN1). Let F : C(J; X) — C(J; X) be the
map given by

Fu(f) = ./0' f(s, N(s)(w))ds.

O
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Let W € C(J; X) be a bounded set. Then
a
YEW)) < vy (W) f H(s)ds.
1]

Proof. 1t is clear that the set of functions {f(-, N(-)()) : u € W} is uniformly integrable.
Therefore, according to Corollary 2.1, for each fixed ¢ € J, there exists a countable set Wy(r)
W(t) such that

t
(Ee) < 2 [ 2 NS
< o [ Bty
0

14
< 2y / H(s)dsy(W). (3.10)
0

On the other hand, it follows from (Cf2) that F(W) is equicontinuous. Consequently, using again
the Lemma 2.1, we have that

YEW) < sup PN <2 [ Hsy oD,
which establishes the assertion, u
In what follows, we need a slightly extension of this result.
Corollary 3.1. Assume that p : J xJ x X — X is afunction that satisfies the following conditions:
(Cpl) Foreacht € J, the function p(t, -, ) satisfies the Carathéodory conditions.
(Cp2) Let § < X be a bounded set. The set {p(t,-,x) : t € J, x € 8} is uniformly integrable.
(Cp3) Let§ C X be a bounded set. The set {p(-,s5,x) : s € J, x € S} is equicontinuous.
{Cp4) There exists a positive function H:J % J— suchthat H (t,") is integrable on J and
{Up(,s,x)  x € SH < H(E, 5)(S),
for each bounded set § C X,

Assume further that the family (N(¢) : t € J} satisfies condition (CN1). Let F : C(J; X) — CJ; XD
be the map given by

i
Fu(t) = f pt, s, N(s)(u)ds.
[}
Let W ¢ C(J; X) be a bounded set. Then

t —
y(F(W)) < 2vsup | H(z, s)dsy(W),
teJ Jo
Furthermore, if the function 1 — [ (N@) (W)} is measurable, then

: —
LEWE) <2 fo e, X (N W)ds, (3.11)

Jort el
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Proof. Applying Corollary 2.1, there exists a countable set Wy = {1, : # € N} C W such that
SEW)D) < 2L(FWo))

2 ({ft pt,s, NS)up)ds :n € N})
0

2 f PGt 5, N)tn)) : 1 € N})ds
0

F/AN

1
< 2 fo F(t, X (N(s)W))ds,

which shows that the inequality (3.11) holds. Now, by using the condition (CNI), we have

‘ —
LEW)®) < 2 fo H(t, s)dsy(W),

for r € J. In addition, combining conditions (Cp2), (Cp3) and (CN1) with the equality
45 i
./0 p@+5,&, NEYu)de — fo p(t. €, NEYa)de

’ t+s
= fo[P(t‘*'S’f,N(f)(u))"P(f,-f,N(‘f)(u))]df'l'f pt +5,£, NS,

we deduce that F(W) is an equicontinuous subset of C(J; X). The assertion is now a consequence

of Lemma 2.2, n

In order to show the generality of our presentation, we exhibit below a pair of simple examples
of maps that verify the condition (CNI).

Example 3.3, Let Q : J — B(X) be a strongly continuous operator-valued map. Then
N@)w) = Q()u(r), teJ,

satisfies the condition (CN1). In particular, this occurs for Q(t) = I,. In this case, the differential
equation (3.1) is reduced to the usual second order equation

u”’(t) = A(Ou() + £, u(1)).

Example 34. Letk : J X J x X — X be a continuous function. Assume that k takes bounded sets
into bounded sets, and that there exists a positive function yu € L\(J; R*) such that

{({k(s, 2, x) 1 x € SP < p(s)4(S),
for every bounded set S C X. Then

N@)(u) = ./: k(s,t,u(s)ds, t € J,

satisfies condition (CN1). In fact, it is clear that N(-Yu) is continuous for each u € C(J; X).
Moreover, applying again (3.10), we have

LN <2 fo p(s)dsy(W),
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for all bounded set W € C(J; X). In this case, the differential equation (3.1) is reduced to the
integro-differential equation

u” () = A(Out) + f(, ./0‘ ‘ ks, t, u(s))ds).

We next consider the following condition for the functions g and A.
(Cgh) There exists # > 0 such that
{(g(W)) + al(h(W)) < By(W),
for all bounded set W € C(J; X).

If the condition (Cgh) is fulfilled, then the functions g and & take bounded sets into bounded
sets. In a similar manner as in chapter 2, for R > 0, we use the following notation

il

B sup{llg@ll : lu]

| <R},
by sup{[lAGAIl : llull < R

].
Theorem 3.4. Assume that conditions (Cf1), (Cf2), (Cf3), (CN1) and (Cgh) are fulfilled. If

KB +2vf (a—)H($)ds) < 1, (3.12)
0
and there exists a constant M > 0 such that
K(gpr +ahar + (D(NM)f (a — syn(s)ds) < M, (3.13)
0

then the problem (3.1) kas at least one mild solution.

Proof. We define F : C(J; X) - C(J; X) by

!
(Fu)(t) = C(¢, 0)g(u) + S(z, 0)h(x) +f SG, )f (s, N&)))ds, tel, (3.14)
0

Since the function s — f(s, N(s)(u)) is integrable over J, we infer that F is well defined. We next
show that F is a continuous map. Let {1, },en be a sequence in C(J; X) such that u,, — u, n — oo,
for the norm of uniform convergence. Since g and h are continuous maps,

C(t, 0guy) + S, Ohu,) — C(,0)g() + S, OAW), n — oo,

uniformly for ¢ € J. Similarly, since N(s){,) — N(s)(w), n — o0, for each s € J, it follows from
(CfI) that f (s, N($)(t,)) — f(s, N(5)1)) as n — oco. Moreover, in view of that

G, N(sYun)ll < m(S)QUN (s)un)ll) < m(s)D(NR),

where R > 0 is a constant such that [ju,llc < R, applying the Lebesgue dominated convergence
theorem we cbtain that F(u,) — F(u) — 0asn — oo,
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On the other hand, if [#|l, < M, it follows from the inequality (3.13) that

t
ICFw)@I < 1€, 0)gCl + IS¢, ARG + /0 8(t, 5)f (s, N(s)())ds

t
< K(g,, +ah,)+ K(I)(NM)/ (t — )m(s)ds
0
a3
< K(g,, +ah,}+ KID(NM)f (g — sym(s)ds
0
<M,
which implies that F(Bs[0]) € Bps[0].
Let now W be a bounded subset of C(J;X) with y(W) > 0. It follows directly from the

definition of the Hausdorff measure of noncompactness that

YUCC, 0gw) : ueW)) < K(g(W)),
YUSC. Qh@) :u e WhH < Kal((W)).

We define the map Fy : C(J; X) — C(J; X) given by
I
Fio@) = /0 §(2, 5)f (s, N(s)(w))ds. (3.15)
Let p(z,s,x) = 8(¢, 5)f (5, x). It is easy to see that p satisfies the hypotheses of the Corollary 3.1.

Yurthermore, the function H involved in the statement of the Corollary 3.1 can be chosen as
H(t,5) = K(t — s)H(s). Therefore, we get

4
Y{Fi):ueW)) < 2Ksup f (¢ — $)H(s)dsy(W)
teJ JO

= WK f a(a -~ §)H(s)dsy(W),
0
and combining the preceding estimates, we have
YFW)) < K{(gW))+al(hW)) + 2 _/0- (a = s)H()dsy(W))
< yW),

which implies that F' : Bps[0] — Bas{0] is a condensing map. The assertion is a consequence of
Theorem 1.1, (]

Corollary 3.2. Assume that conditions (CfI), (Cf2), (Cf3) and (CNI) are fulfilled and that S(t, 5)
is compact for all s,t € J. Assume further that the following conditions are satisfied:

(@) The map g : C(J; X) — X is continuous and verifies

LGV < 2y W),

Jor all bounded set W € C(J; X) such that y(W) # 0.
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() The map k ; C(J; X) — X is continuous and takes bounded sets into bounded sets.

If there exists a constant M 2 O such that the inequality (3.13) holds, then problem (3.1) has
at least one mild solution.

Progf. Wedefine F as in the formula (3.14). Proceeding as in the proof of Theorem 3.4 we know
that F is continuous and F : Bs[0] — Bs[0].
Let W € Byr[0] with y(W) > 0. It follows from (a) that

YUCC, Wglu) : u e W < K{([g(w) @ u € W) < y(W).

Moreover, since each operator S(z, 0) is compact and the operator-valued map S(-, 0) is continuous-
ly differentiable, and  takes bounded sets into bounded sets, a direct application of the Arzeld—
Ascoli theorem allows us to conclude that {S(-, 0)k(u) : u € W} is relatively compact in C(J; X).
This shows that condition {Cgk) holds with 8 = 1/K.

Let p(¢, 5, x) = 5(t,5)f (5, x). As was mentioned in the proof of Theorem 3.4 the function p
satisfies the hypotheses of Corollary 3.1. In this case, the function H involved in the statement of
Corollary 3.1 can be chosen as H (t,5) = 0. Therefore, if Fy is the map defined in Theorem (3.4)
by the equation 3.15, we have

y(F1(W)) =0,

and

YFEW) < yUCC,00g() + SC, 0() : u € WH +y(F1(W)) < y(W).
This implies that condition (3.12} is verified. The assertion is a consequence of the Theorem 3.4.
n

The condition (e) used in Corollary 3.2 is difficult to verify in concrete situations. For this
reason, we modify slightly the statement of the Corollary 3.2 to get the following result.

Corollary 3.3. Assume that conditions (Cf1), (Cf2), (Cf3) and (CN1) are fulfilled and that 8(t, 5)
is compact for all s,t € J. Assume further that the following conditions are satisfied:
{a) The map g : C(J; X) — X verifies the Lipschitz condition

llg(uz) — gDl < Lgliuz — uill,

Jorall uy,us € C(J; X).
{b) The map h : C(J; X) — X is continuous and takes bounded sets into bounded sets.
If KLg < 1 and there is a constant M 2 0 such that

E(L M+ gD + ak,, + (D(NM)-/[;a(a — sym(s)ds) < M, (3.16)

then problem (3.1) has at least one mild solution.

Proof. It follows directly from the Definition of the Hausdorff measure of noncompactness that
{(g(W)) < Lgy(W),
for every bounded set W € C(J; X). Moreover, since

llg@all < llgGe) ~ gD + 8O < Lellull + (O,

‘ it follows that g,, < LgM + ||g(0)||. Proceeding as in the proof of Theorem 3.4, we obtain
F(Bp[0]) € By[0)]. The assertion is now a direct consequence of Corollary 3.2. [ ]

e




¥ o

CHAPTER 3. MILD 50LUTIONS OF A NONLOCAL SECOND ORDER NON—AUTONOMOUS PROBLEM 33

Corollary 3.4. Assume that conditions (Cf1), (Cf2), (CNI1) and (Cgh) are fulfilled and the set
{f(s, N(9X@) : u € W) is relatively compact for each bounded set W € C(J; X). If KB < 1 and
there exists a constant M 2 0 such that (3.13) holds, then the problem (3.1) has at least one mild
solution,

Progf. Initially we argue as in the proof of the Theorem 3.4 to obtain
Y(FW)) < KBy(W) +y(Fi(W)).

Now, arguing as in the proof of Corollary 3.3, we define p(z, 5, x) = S(z, s)f (s, x). Since the set
{S(t, s)f (s, N(s)(w)) : u € W} is relatively compact, we can take H(f, s) = 0 in the statement of
Corollary 3.2 to conclude that y(F; (W)) = 0. Hence, we get

y(FW)) < Kpy(W) <y(W),

and we complete the proof as in Theorem 3.4. |

For our next results we need to strengthen the condition (CN1) for the family of functions
[N(@) : teJ). Forabounded set W ¢ C(J; X) and ¢ € J, we denote

YW, [0,1]) = y({wlo,n : w € W}).
{CN2) There exists a constant v > 0 such that
CN@OW) <vy(wlo,n: we W)
for each bounded set W € C(J; X).

Example 3.5. Let N(t)(u) = u(t) be the map considered in Example 3.3. It is clear that th family
[N() : t € J) satisfies condition (CN2).

Example 3.6, Let
t
N((w) = f kit,s,u(s)ds, teJ,
0

where k : {(t,5): t € J,0 < 5 < t} x X — X is a continuous function. Assume that k takes
bounded sets into bounded sets, and there exists a positive function u € LY(J;R*Y such that

Lk, 5,x) 1 x € 8]) < ) (S),
Jor every bounded set S C X. Then (N(t) : t € J) satisfies condition (CN2). In fuct, it is clear

that N(-)(u) is continuous for each u € C(J; X). Moreover, proceeding as in Example 3.4,

{N@W) <2 j(; u(s)dsy(W, [0, 1]),

for all bounded set W < C(J; X),

Theorem 3.5. Assume that conditions (Cf1), (Cf2), (Cf3) and (CN2) are fulfilled, and that g, h
are compact maps. If the inequality (3.13) holds, then the problem (3.1} has at least one mild
solution.
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Proof. 'We define the map F as the expression (3.14). Proceeding as in the proof of Theorem 3.4
we obtain that F is continuous and F(Bps[0]) € Bar[0].

Moreover, F(Bps[0]) is an equicontinuous set of functions, In fact, since g(Bar[0]) is relatively
compact and C(-, 0) is strongly continuous, applying the Arzeld—Ascoli theorem, we infer that the
set {C(-,0)g(z) : u € Bpy[0]) is relatively compact in C(J; X). Using the same argnment we can
establish that the set {S(:, 0)h(u) : u € Bps[0]} is relatively compact in C(J; X).

Let Fy be the map given by the expression (3.15)). Proceeding as in the proof of Corollary 3.2
with p(t, 5, x} = S(t, §)f (s, x) we infer that the set F1(Bar[0]) is equicontinuous.

We define B = ¢o(F{Bps[0])). Since B C Byp[0], then F ; B — 9B, and it follows from the
previous assertions and Lemma 2.1 that the set ‘B is equicontinuous.

Let D) C *B. Since D is a equicontinuous set, it follows from Lemma 2.2 that

¥(D,[0,¢1) = sup {(D(s))

O<s<r

is a continuous function. By using the general properties of the Hausdorff measure of non-com-
pactness and Corollary 3.2, we have that

S(F(D)) < £{C(2,0)g(DY) + (S, Or(D)) + ¢ ( -/0. S(t, 5)f (s, N(s)(D))ds
={ ( _/ S, 5)f (S,N(S)(D))dS)
0

< 2vak / H(s)y(D, [0, s])ds

[

4

< ek [ Hdsy(D, 0.1

0

and
H
Z(F(eo(DN({)) < 2vakK / H(syy(co(D), [0, sDds = 2vaK f r H(sYy(D, [0, s]ds.
0 0

proceeding inductively, and arguing as above, we can show that

LEMDY®) = LFF GEDW®)
< (Qvakyr f f o [T By B H(s1)dsy - sy y(D, [0,1])
D Jo 0

- @raky ( f ' H(s)ds) D, [0, 1]).
nl! 0
Therefore,
wak)" { [t "
v(F™(D)) = sup L(FM(DY1) € ¢ va1 ) ( f H (s)a's) ¥(D).
ret n: 0

nopt

Since (w:f) ( f H(s)ds)" — 0 as n — oo, there exists ny € N such that
b "Jo

M(fﬂ(s)ds) <l
0

ng!
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and applying Theorem 1.2 it follows that F has a fixed point in 5. This fixed point is a mild
solution of equation (3.1). ]

The condition (3.13) is some difficult to verify. We next state a case where the verification of
this hypothesis is immediate.

Corollary 3.5, Assume that conditions (Cf1), (Cf2), (Cf3) and (CN2) are fulfilled, and that g, h
are bounded and compact maps. If

l m() sup{ QN (@) : u € C(J; X)}dr < o0,

then the problem (3.1) has at least one mild solution.

Proof. In this case the condition (3.13)) is verified for any constant M > 0 such that

K( swp lg@l+a sup Ih@l+a f m) sup  SUNGGI) < M.
uwel(J,X) ueC(J:X) 0 ueC(;X)

The assertion is an immediate consequence of Theorem 3.5. =

3.2 Applications

The one—dimensional wave equation modeled as an abstract Cauchy problem has been studied
extensively. See for example [115]. In this section, we apply the results established in preceding
section to study the existence of solutions of the non—-autonomous wave equation with nonlocal
initial conditions. Initially, we will study the following problem

*w(t,£) 8*w(t,£) w(t,§) =
- t T ) ¥ e 1
32 P +b(t) pE +fle,w, &), tel
w(®, 0 = w(t,2m), tel,
m
w©,6) = D giwté), > (3.17)
i=0
w0,8) <
= = Zhiw(fi,f),
i=0 J
for 0 < £ < 2. Here b : J — R is a continuous function, f : J x R — R satisfies appropriate
conditions which will be specified later, 0 < tg < -+ < ty, S a,and g;, h; €, fori =0,1,...,m.

We model this problem in the space X = L2(T, R), where the group T is defined as the quotient
R/2rZ. We will use the identification between functions on T and 2x—periodic functions on
R. Specifically, in what follows we denote by L*(T, R) the space of 2mr—periodic 2—-integrable
functions from R into R. Similarly, H*(T, R) denotes the Sobolev space of 2r—periodic functions
u : R — R such that u”’ € L¥T, R).

‘We consider the operator Ag defined by

_ d%z(9)
=

.

Aoz with domain D(4p) = H2(T, R).
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It is well known that Ag is the infinitesimal generator of a strongly continuous cosine function
Co(?) in X. Moreover, Ap has discrete spectrum, the spectrum of 4¢ consists of eigenvalues —n?
for n € Z with associated cigenvectors

@) = ——e"™, nel.

V2

Furthermore, the set {z, : n € Z} is an orthonormal basis of X, In particular,

Agz = Z -1z, 20)2n,

nez

for z € D(Ap). The cosine function {Cp(#)};er is given by

Colt)z = ), cos(uie, zu)zn, ¢ E€R,

neZ
with associated sine function

sin(nr)

So(N)z = £(z, zo)z0 + Z

neZ~ [0}

(Z:Zn)Zn. te R

It is clear that [|Co(z)ll < 1 forall + € R. Thus, Cy(-) is uniformly bounded on R. Hence,
[1Sa() < |tf, for all ¥ €. Moreover, Sp(¢) is a compact operator.
For ¢t € J the operators P(¢) are defined by

dz(£)

a with domain D(P(z)) = H(T, R).

P(t)z = b(1)
Let A(r) = Ag + P(¢), ¢ € J. It has been proved by Henriquez in [52] that the family {A{?) : £ € J}
generates an evolution operator {S(¢, 5)},ses. From Lemma 3.1 we have that the operators S(z, )
are compact. We now estimate the constant K involved in our statements. For z € E, we abbreviate
x(t,5) = S(t,5)z. We decompose x{t,5) = Y,z Xn(t, 8)zn, Where x,(2,5) = {(x{t,8),z,). It
follows from 3.8 that

Z Xn(t, 5)zn

r
Sp(t — 5)z + f So(t —T)P(T) Z xn(T, $)z,dr

nek neZ
= (t- S)(Z, ZO)ZO + Slnn(t — S)<Zs zn>zn
neZ~ {0}
3 4
+ f Sot = TIbE) D xn(r, $)zhdr
s nez
= (r—s5)z.20)20 + Z M(Za2n>2n
neZ~.{0}
4
+ Z in f BE)xn(T, $)So(t — T)zpdt
ned s
= (t—s)Xz,z0)z0 + Z S—lilm(zr,zn)zn

neZ~{0
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it
+i Z f b(t)x,(t, 5) sinnt — 1)z,.d7,

nezZv s

which implies that

x(t,5) = (t—sXz,z0)
: _ t
xp(t,5) = w(z,zn) + z'f b(T)sinn(t — T)xu(T, $)dr,
dxn(t,
forn € Z, n # 0. Since C(¢,5)z = _3S(r;;s)z’ we define v, (¢, 5) = —% forne Z. It

follows from the above expressions that

volt,s) = {(2,20)

I
vu(2,5) = cosn(t —8$)z,2z,) -H'/ b@)sinn(t —v)v, (v, s)dr, n#0.

Hence we obtain that
I
vt < e,z + [ IBOlbate, e, 0.5 < 1.n %0,
5
Applying the Gronwall-Bellman lemma, we obtain

u(t, )] < els 1P@dTyz 2 5]

which implies that
IC@, 5)zl| < els 1BENdT )|

Therefore, since t € J, wecantake K = elo 16@ldr
We assume that f : Jx — is continuous and

Fa,n <m@lrl, 1€, re,

where m € LI(J : R*).
To complete our construction we define the functions f, N, g and & by

W) = Fewe, ),
NOHWE) = w8,
gWNE) = D aiw(i,6),
i=0
Rw)E) = D heow(e,£).
i=0

Using this construction, and defining u(r) = w(z,-) € X, the problem (3.17) is modeled in the
abstract form (3.1)). Itis clear that f satisfies conditions (CfZ} and (Cf2), with ®(r) = r; the family
{N(t) : t € J} satisfies the condition (CNI), with v = 1 and N, = R, and the functions g and
h are bounded linear maps with ||g]l = 2,72, [g:] and ||A]| = 2120 |Asl. Therefore, the following

result is an easy consequence of Corollary 3.2.




L
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Corollary 3.6. Under the above conditions, assume further that
m a
KQ (el i+ [ (@ = simionds) <1, (3.18)
=0

then problem (3.17)) has at least one mild solution.

Proaf. Tt follows from our preceding considerations and Lemma 3.1 that S(z, s) is compact.
Moareover, condition (3.13)) is an immediate consequence of 3.18). Since g is a bounded linear

map,
n

1
2@ < legllyW) < ZO lgilyW) < v (W),

for all bounded set W < C(J; X). Therefore, the hypotheses of Corollary 3.2 are fulfilled. |

‘We now are concerned with the problem

Fwt,g) w8 ow(t,§)
ar . - e PO
w(t,0) = w(,2n), ted,

+ft, i plsyw(s,€)ds), ted,

a ré S 3.1
w(0,£) = fofqu(s,f)w(s,r)drds, (3.19)
6L6(:’§—) = qi{s)w(s, £)ds.
¢} /

for 0 € ¢ & 2. To study this problem we keep the notations and conditions introduced in the
analysis of problem (3.17)). Additionally, we assume that p,g; : J = R and gp : J x [0, 27]
are continuous functions, and that gz, 27} = Oforallz € J.

On the other hand, in this case, we define

,
NOWE = fo PSW(s, E)ds,
& ra
g0)E) = fo fo qols, £w(s, p)dsdy,
how)E) = fo Qi(s(s, £)ds.

It is clear that N(¢), g, h are bounded linear maps with
4
NI fo Ip(s)lds,

27 a 172
gl < @ra)f? ( fo fo qo(s,g)zdsdz;) ,

f l1()lds.
1}

&l

Moreover, the function g is a compact map. Therefore, using again the Corollary 3.2, and arguing
as above, we can state the following result.
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Corollary 3.7. Under the above conditions, assume further that
o
K(llgll + allfl +v fﬂ @ = mis)ds) < 1,

wherev = fﬂa {p(s)ids. Then problem (3.19) has at least one mild solution.




Chapter

Periodic solutions of an abstract
third—order differential equation

Recent investigations have demonstrated that third—order differential equations describe several
models arising from natural phenomena, such as wave propagation in viscons thermally relaxing
fluids or flexible space structures with internal damping, for example, a thin uniform rectangular
panel, like a solar cell array for more information a spacecraft with flexible attachments. For more
information see [12,43,61, 89] and references therein.

Considering the influence of an external force, many of these equations take the abstract form
' () + '’ (t) = BAU(E) + yAu' (1) + F(t,u(t)), for t e R*, 4.1

where A is a closed linear operator defined in a Banach space X, the function F is an appropriate
X—valued map, and the constants o, 8,y € R,

The equation {4.1) has been studied in many aspects, we next just mention a few of them.
Cuevas and Lizama [29] have obtained a characterization of its solutions belonging to Hélder
spaces C*(R; X). Similarly, Fernindez, Lizama and Poblete [38] characterize the well-posedness
of this equation in Lebesgue spaces LP (R; X). In addition, the same authors in [39] have studied
some regularity properties and qualitative behaviour of the mild and strong solutions in the space
LP(R*; X) whenever the underlying space X is a Hilbert space. On the other hand, De Andrade
and Lizama [32] have analysed the existence of asymptotically atmost periodic solutions for the
equation (4.1).

As we have said in the Introduction of this thesis, concerning to general abstract evolution
equations, the study of solutions having a periodicity property has yielded many research papers.
However, for the abstract third—order differential equation (4.1) this aspect has not been addressed
in the existing literature. For this reason, this chapter is dedicated to study the existence and
uniqueness of a periodic strong solution for the abstract third—order equation

au"’ () + u”(t) = BAu(t) + yBu' () + f(t), 1t €[0,2n], 4.2)

with boundary conditions 1(0) = u(21), #’(0) = u’(2x) and u’’(0) = u’/(2n). Here A and B are
closed linear operators defined in a Banach space X with D(A) € D(B), the constants @, 8,y € R,
and f belongs to either periodic Lebesgue spaces , or periodic Besov spaces, or periodic Triebel~
Lizorkin spaces. Our approach is based on operator—valued Fourier theorems and the maximal

40
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regularity property. It is clear that the study of the existence of periodic solutions for equation
(4.2), in the particular case when A = B, leads to the study of the existence of periodic solutions
of equation (4.1).

With a specific norm, we will denote the Banach space consisting of all 2r—periodic, X—valued
functions by E(T; X), and denote the space consisting of all functions in E(T; X) which are n—
times differentiable with respect to the norm in E(T; X) by E"(T; X). The following definitions
will be used in subsequent sections with either periodic Lebesgue spaces, periodic Besov spaces
or periodic Triebel-Lizorkin spaces.

Definition 4.1. We will say that a function u is a strong E-solution of the equation (4.2) ifu €
EXT; Xy n ENT; [D(B)]) N E(T; [D(A)]) and the equation (4.2) holds a.e. in [0, 27].

Definition 4.2. We will say that the equation (4.2) has E~maximal regularity if for each f €
E(T; X), there exists a unique strong E-solution for the equation (4.2).

For the rest of this chapter we introduce the following notation. Let three constants @, 8,y > 0,
and two closed linear operators A and B defined in a Banach space X such that D{A) € D(B). For
k € Z, we will write

ap =ik’ and by =iek® + £, 4.3)

and, if the inverses are well defined, the operators
Ny = (b +ivkB+ A" and My =arN;. 4.4)
Furthermore, we denote

p(A,B) = [k € Z : Ni exists andis bounded] and o(A,B)=Z\ p(A, B).

4.1 L?-maximal regularity

The LP—maximal regularity property is a very important topic of evolution equations because it
is a fundamental tool for the study of non-linear problems. It is remarkable that classical theorems
on LP-multipliers are no longer valid for operator-valued functions unless the underlying space
is isomorphic to a Hilbert space, However, Weis in [110] gives a characterization of LP-maximal
regularity in UM D—spaces using the key notion of R-boundedness and Fourier multipliers tech-
niques, Thenceforth, many authors have used these concepts for studying LP-maximal regularity
property. The reader can see [7,17, 18, 38,41, 66,95] and references cited therein. In this section
we characterize L”—maximal regularity of a third-order differential equation in U M D-spaces,
using R-boundedness for some families of operators. We next state the necessary definitions.

Let S(R; X) be the Schwartz space, consisting of all the rapidly decreasing X—valued functions.
A Banach space will be called a UM D-space if the Hilbert transform defined on S(R; X) can be
extended to a bounded linear operator in L?(R; X), for some (and hence for all) p € (1, o). The
Hilbert transform H of a function f € S(R; X) is defined by

(HF)(s) = lim L =9,

=0T a<]r[<% f
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Examples of M D-spaces include Hilbert spaces, Sobolev spaces W;(Q), with 1 < p < oo,
the Schatten—von Neumann classes Cp,(H) of operators on Hilbert spaces for 1 < p < oo, the
Lebesgue spaces LP(Q, z) and LP(Q, 43 X), with 1 < p < oo and whenever X is a UMD-
space. Moreover, every closed subspace of a UM D—space is a U M D-space. On the other hand,
every UM D—space is reflexive, and therefore, L1(£, ), (€, u) (if Q is an unbounded set) and
periodic Holder spaces of index s with 0 < s < 1, C5([0, 2x]; X) are not U M D—spaces. For further
information about these spaces, see [14,21].

The preliminary concepts for the definition and properties of R—~boundedness that we will use
may be found in [34,62].

Let j € Np, we denote by r; the j—th Rademacher function on [0, 1]. These functions are
defined by r;(¢) = sgn(sin(2/xt)). For x € X we will write r;jx for the vector-valued function
t =~ r;(t)x. The definition of R—boundedness is given as follows.

Definition 4.3. Let X and Y be two Banach spaces. A family of operators T < B(X,Y) is
called R-bounded if there exist a constant C > 0O and p € [1,c0) such that for each n €
N, (N, 7, - . Tp} €T and {x1,x2," -+ ,xn} C X the inequality

n n
”,Z—; riTx) [LP((O.I);Y) <€ “,Z—:' Tj%i I

holds. The smallest such C > 0 is called the R-bound of 7", and it is denoted by R (7).

LP((0,1),X)

Remark 4.1. We remark that large classes of operators are R-bounded, (the reader can see [41,
59, 107] and references therein). Several properties of R-bounded families can be found in the
monograph of Denk-Hieber-Priiss [34]. For the reader’s convenience we have summarized the
most important of them.

(i) If 7 € B(X,Y) is R—bounded, then it is uniformly bounded with

sup{|Tl : T € T} < Rp(T).

(ii) The definition of R-boundedness is independent of p € [1, o0),

(iii) When X andY are Hilbert spaces, T C B(X, Y} is R-bounded if and only if T~ is uniformly
bounded,

(iv) Let X, Y be Banach spaces and T, S € B(X,Y) be R—bounded. Then
T+8=[T+8§:Te7,5¢S85}
is R-bounded as well, and R, (T + 8) < Rp(T) + Rp(S).
{v) Let X, Y and Z be Banach spaces and T € B(X,Y), and S € B(Y, Z) be R—bounded. Then
TS={TS:TeT,5c8}
is R—bounded as well, and Rp(T"S) < Rp(T)Rp(S).

(vi) Let X, Y be Banach spaces and T © B(X,Y) be R-bounded. If {op}rez is a bounded
sequence, then {a; T + k€ Z, T € T} is R-bounded.
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The next proposition proved in [7] relates LP-multipliers and R-bounded families of operators.

Proposition 4.1. Let p € (1, o), and let X be a UMD-space. Assume that (Ly)rez € B(X). If
the family {Li ez is an LP—multiplier, then {Ly)rez is R-bounded.

In order to work with LP—maximal regularity for evolution equations, various researchers in-
troduce the following vector—valued spaces of functions, See [7, 65, 67].

Definition 4.4. Let p € [1,00), and let n € N, Let X and Y be Banach spaces. We define the
Jollowing vector—valued function spaces,

HpR(X.Y)={u e LP(T;X): 3 v e LP(T;Y) such that Wk) = (ik)"Ti(k), forall k € AR
In the case X = Y, we just write H ;,’;‘; (X). We highlight two important properties of these spaces:
o Letn,me N. If n < m, then HpF(X,Y) € Hp (X, Y).

o Ifu € Hp (X)), then for all 0 < k < n - 1, we have u®)(0) = u®(2n).

Remark 4.2. For1 < p < oo, by [7, Lemma 2.2), for all n € N the family of operators {k”Lk Yeez,
is an LP—multiplier if and only if for each function f € LP(X) there exists a functionu € H pe,. £(X)
such that u(k) = Lrf(k) forallk € Z.

Now present a characterization of LP-maximal regularity for the equation (4.2). Our main

result is theorem (4.1). The proof of this theorem is based on properties of R-bounded families of
operators, which are presented below.

Lemmad.1. Leta, B,y > 0, and let A and B be closed linear operators defined in a Banach space
X such that D(A) € D(B). If (M }zez and {kBNi)rez are R-bounded families of operators, thern

{kar(A'Nkez and (K*BA'Nphez
are R—-bounded families of operators.

Proof. 'We begin noting that {ayNi}xez is R—bounded if and only if {b3 Ng ez is R—bounded.
Furthermore, for all j € Z fixed, we have {a;Ni,jlxez and that (kBN j}rez are R-bounded
families. For all £ € Z, we have

(A'Ni) = Ni1(br = brar — iy BNy = —(A'bg )N Ny — iy Ny BNy (4.5)
Hence, for all k € Z ~ [0} we have

A'b) b
kar(AlNy) = (b—kk)—kaka-uMk — tyap Nr+1k BN},

and,

K*B(AINy) = —k(Alb)k BN+ N — ivk BNy kBN,

Alby) b
= <k - ) ikBNka — iykBNy1kBNy.
k

A direct computation shows that if & = 0 the operators kaz(A!Ny) and k2B(A! N, ) are bounded,

In addition, {bg }xcz is a I-regular sequence and  sup |bk/ak| < oo, The assertion follows from
keZ~{0)
the properties of R-bounded families of operators. | |
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Lemma 4.2. Let p € (1, ), and let X be a UMD—space. If «,B,¥ > 0, and A and B are
closed linear operators defined in X such that D(A) € D(B), then the following two assertions
are equivalent.

(i) The families of operators (kBNp}icz and {M;.}rez are R—bounded.
(ii) The families of operators (kBN lrez and {My ez are LP—multipliers.

Proaof. (i) = (ii). By hypotheses we have that { M }recz and {k BNt }iez are R—bounded families
of operators. According to Theorem 1.4, it suffices to show that the families of operators

(k(A'Mp))kez and {K(AYkBN)hrez
are R—bounded. For this, note that for all £ € Z it holds
(Ala)
ar

KAIM) =k arNis1 + kap(A'Ny) .

and
k(A'kBNy) = E2B(A'NL) + kBNp,.1.

Since {az lrez is a 1-regular sequence, statement (ii) follows from Lemma 4.1 and the proper-
ties of R-bounded families.
(i) = (f). Statement (7) follows from the Proposition 4.1. n

Theorem 4.1. Let p € (1,00), and let X be a UM D-space. The following two assertions are
equivalent.

(i) The equation (4.2) has LP—maximal regularity.

(ii) The set o (A, B) = 0. The families {Mi Viez and (kBN lyez are R--bounded,

Proof. (i) = (if). Letk € Z and x € X. Define h(f) = e’**x. A direct computation shows that
h(k} = x. By the hypotheses, there exists a fanction u € Hy(X)NH 5 (X; [DBYDOLP (T; [D(A)])
such that, for almost all ¢ € [0, 2n], we have

au™’ () +u’ (t) = BAu(®) +yBu' (t) + k(1) .
Applying Fourier transform to both sides of the preceding equality, we obtain
(~iak® — k% — iykB — BAYAK) = x.

Since x is arbitrary, we have that (—by, — iykB — SA) is surjective.

On the other hand, let z € D(A), and assume (=bg — iykB — BA)z = 0. Substituting u(r) = %'z
in the equation (4.2), we sce that « is a periodic solution of this equation whenever f = 0. The
uniqueness of the solution implies that z = 0.

Now suppose (b + iykB + BA) has no bounded inverse. Then for each k € Z, there exists a
sequence {Yk,n}nez S X such that

nell <1 and ||Neyen| = n® forall nez.
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Write Xz = g . We obtain ||[Nexe]| 3= k2, forall k € Z.
Let g(t) = Z x—keﬂ“ . Note that g € LP(T; X). By the assertion (f), there exists a unique

2
keZ~[0}
strong LP-solution u € LF(T;X). Applying Fourier transform to the equation (4.2), we have

uik) = —Nzgk), forallk € Z. We know

u(t) = Z —i—;"e"k’Nk, for almost ¢ € [0, 2r].
keZ~[0}

Since for all k¥ € Z, we have that ";—’;Nk" = 1. Therefore, u ¢ LP(T; X). Since u is a strong

LP—golution of equation (4.2), this is a contradiction. Hence N;, € B(X), for all £ € Z. Thus,
a(A,B)=10.

Next let f € LP(T; X). It follows from the hypotheses that there exists a unique function
ue HS;“;(X) N H},'ﬁ.(}{ s [D(B)])y N LP(T; [D(A)]) such that

au’”’ () + 1" (1) = BAu(t) + yBu' (1) + f(t)

for almost all ¢ € [0, 2x]. Applying Fourier transform to both sides of the preceding equation, we
have
(—by — iykB — BAYIK) = fk), forallk e Z.

Since o7(A, B) =, we have
W) = (=by — ivkB - BAY 'F(k), forallk e Z.
Multiplying by iyk on both sides of the preceding equality, we obtain
iykiitk) = —iyk(by + ivkB + BA) "' F(k).

Sinceu € H;;";(X ; [D(B))), there is a function v € LP(T; [D(B)]) satisfying (k) = iyku(k), for
all k € Z. Therefore,

Wk) = —iyk(br + ivkB + BA) " F(k), forall k € 7.

Define w = Bv. Since v € LP(T; [D(B)]}, we conclude w € LP(T; X). Since B is a closed linear
operator, it follows from Lemina [7, Lemma 3.1] that,

W(k) = —iykBNif(k), forall ke Z.

This implies that the family {¢BNy}rez is an LP—multiplier.

On the other hand, since u € LP(T; [D(A)]), we define r = —8Au, and we have r € LP(T; X).
Since A is linear and closed, it follows from Lemma [7, Lemma 3.1] that

k) = —BANF(K), forallk € Z.

Hence, the family {—-SAN Jrez is an LP-multiplier. Now for all k € Z, we have

b Ny = I ~ ivkBN; — BAN,.
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Since the sum of LP—multipliers is also an LP—multiplier, we conclude that the family {bg Ny ez
is an LP—multiplier. Since, the sequence {ax /by }, cz~(0} is bounded and g—z b Ni = My , we have
that (M }rez an LP—multiplier. It now follows from Proposition 4.1 that {My }rez and {kBNz }rez
are R—bounded families of operators,

(if} = (i). By the hypotheses all the conditions of the Lemma 4.2 are fulfilled. Therefore, the
families of operators {My ez and {kBNg)gez are LP—multipliers. From the Remark 1.1 we
conclude that the family of operators {(~by ~ iykB — SA) 1}rez is an L? {X)-multiplier, such that
for each function f € LP(T; X), there exists a functionu € Hg’e’f,(X ) such that

Wk) = (b — BA— iykBY'Fk), forallkeZ (4.6)

Moreover, from Lemma [7, Lemma 3,1] we have that 1(¢) € D(A) for almost all ¢ € [0, 2r].
As we have shown that the family {ikB{—by — iykB — ﬂA)‘l lkez is an LP—multiplier, there exists
a function v € LP(T; X) satisfying

(k) = ikB(=by, — iykB — BA) (k)

for all k. According to equality (4.6), we have W(k) = ikBu(k), forallk € Z.
On the another hand, since Hg;?,(X) c H;;’,’,(X), there exists a function w € LP(T; X) such that
Ww(k) = iku(k), for all k € Z. Since B is closed linear operator, we have

k) = B(iki(k)) = Bw(k) = Bw(k), forallk e Z.

By the uniqueness of the Fourier coefficients, v = Bw. This implies that w € LP(T;[D(®)]).
Therefore, i € H, :,;f; (X; [D(B)]). We claim that u € LP(T; [D(A)]). Indeed, using the identity

BA(b + ivkB + BAY™! = I — by(by + iykB + BAY "' — iykB(by, + iykB + BA)™!

we conclude that {BA(by. + iykB + BAY™1) xez 18 an LP—multiplier. Thus, there exists a function
h € LP(T; X) satisfying

h(k) = A(b + iyB + BAY 1 f(k), forall k e Z,

It follows from identity (4.6) that 'I;(k) = Autk), for all k € Z. By the uniqueness of the Fourier
coefficients, we have A = Au. This implies that ¥ € LP(T;[D(A)]) as asserted. Therefore,
u € Hyb(X) 0 HER.(X; [D(B)]) N LP(T; [D(AD).

We have shown that u € H;;’,’,(X). Thus, u(0) = u(2r), w'(0) = v’ (Zr), and ©”’(Q) = u”’(2n).
Since A and B are closed linear operators, it now follows from equality (4.3) that

aw’ (k) + u'(k) = BAuk) +yBu(k) + f(k), forallk e Z.

From the uniqueness of the Fourier coefficients we conclude that equation (4.2) holds a.e. in
[0, 27]. Therefore, u is a strong LP—solution of equation (4.2). It remains to show that this solution
is unique. Indeed, let f € LP(T; X). Suppose equation (4.2) has two strong LP-solutions, #; and
12, A direct computation shows that

(=bx — iykB - BA)[u1(k) - #3(k)] = 0
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for all k € Z. Since (—by — iykB — BA) is invertible, we have #,(k) = (k) for all k¥ € Z. By
the uniqueness of the Fourier coeflicients, u#; = ua. Therefore, the equation (4.2) has LP—maximal
regularity. |

Although our next corollary imposes additional conditions on the operators A and B, these
conditions are easier {0 verify than those included in the statement of theorem (4.1). For this

b -1
purpose, consider A : D(A) € X — X and for k € Z the operators Sy = (—Fk - A) .

Corollary 4.1. Let 1 < p < oo, and let X be a UMD-space. Suppose that for all k € T we
have that —Tbk € p(A). Assume further that the families of operators F| = {akSk tk e Z} and
Fa = {ik:’—;BSk 1k e Z} are R-bounded. If Rp(F2) < 1, then equation (4.2) has LP-maximal

regularity.

; -1
Proaf. According to [50, Lemma 3.17], the family {(I - %BS;C) } z is a R—bounded family
ke
of operators. Moreover, note that for & € Z the operators

. -1 , -1
My = a5 (1 - ﬂBsk) and kBN = kBS, (1 - %BS;C)

B
1t follows from the properties of R-bounded families of operators that {M; Jzez and {kBNi)iez
are R—bounded. The Corollary follows from Theorem 4.1. |

By using the following corollary we present an answer for the study of the existence of periodic
solutions for the equation (4.1). With this purpose, we denote the complex sequence {d; }rez given

by
iak? + k?
dp = ——+ Z.
E vk + B for ke
Corollary 4.2. Let p € (1,0), and let X be a UMD-space. The following two assertions are
equivalent,

(i) The equation (4.2), with B = A, has LP—maximal regularity,
(if) The sequence {di}rez C p(A) and the family of operators {dp(dy — AY " )iez is R~bounded.

Proof. (i) = (ii). According to Theorem 4,1, we have that (A, A) = @ and for all k¥ € Z the
operators (iak> + k2 + iykA + BA)™! € B(X). Furthermore, (ik>(fek® + k2 + iykA + BAY Yiez
is a R-bounded family of operators, then it is bounded. Hence there exists a constant C > 0 such
that for all & € Z [[ik*(iak® + k* + iykA + pA)™Y]| < C. This implies

ltds — A1 < % C, forallk € Z~ (0},
Since 0 € p(A4, 4) if and only if 0 € p(A), we have {dilrez & p(A). It follows from the

properties of R~bounded families and the identity

fr k3 2
di(dy — A = %‘—ikf‘(iakf‘ +E 4 Gyk+p)A), forallk e Z,

s
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that {dy(dr — A) ! )zez is a R-bounded family of operators.

{{f) = (7). For this, note that assertion (ii) guarantees that condition (ii) of Theorem 4.1 is satisfied.
In fact, we know that dy. € p(A) for all k € Z, which implies that (dz — A)~! is well defined in
B(X). Since {dx(dy — A) " }rez is R—bounded, there exists a constant C > 0 such that

sup ||dr(dr — A7 = sup liak® + k3] [|Gak® + k2 + (ivk + B)A Y < C.
keZ keZ

Then, for all k € Z ~ {0}, we obtain

C

—iak — K - Gyk+ DA € ———— .
l(—ick” — k° — (iyk + B)A) "“|ia»k3+k2]

Since 0 € p(A) if and only if 0 € p(A, A), we have (A, A) = 0. We combine properties of
R-bounded families with the identities

i (fak® + k% + iykA + BA) ! = ik? di(dy, — A)7?

ik’ (jak” + k° + iykA + BA) i k(de — A)

and

—k
- k3 2 . -1 = d _ A -1 - I
kAGiak” + k* + iykA + BA) P ﬁ( k(dr — A) )
to get that the families of operators {ik3(bg + ivkA + BA) ' rez and (kA(br + ivkA + BAY ez,
are R—bounded. x

4.2 Bj —maximal regularity

In this section, we present a characterization of the B, ~maximal regularity property of the
equation (4.2). As we have mentioned in the Preliminaries of this thesis, in contrast to what
happens for LP—maximal regularity, there is not any restriction for the Banach space where the
equation (4.2) is defined. The main result of this section is the theorem 4.2. To establish its proof,
we need several properties of bounded families of operators, which are developed below.

Lemma 4.3. Let @, 8,y > 0, and let A and B be closed linear aperators defined in a Banach
space X such that D(A) © D(B). If My ez and {kBNy ez are bounded families of operators,
then

(K*ar(A*Np)lkez and (K*BA’Nilkez

are bounded families of operators.
Proof. Bellow we make similar considerations as those made in the proof of Lemma 4.1. We

have that {ay Ny }xez is bounded if and only if {b Ni }rez is bounded. Further, for all j € Z fixed,
we have that {a; Ny, i1 rez and {kBNy. )k cz are bounded families. For k € Z . {0}, we have

) A%by) b
K2ay(APNy) = ivkay(Ni - Nes2eBNiay — My 12808 N

by
(Albgsr) by

5 A Nia1
£

+ kap(Nis2 — Npk
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and

AZbi) b
k*B(AZNL) = k*B(Ny — Np+2)kBNis1 — kBN kz(b—") a—kakaH
k k

(A1) by N
Taak k+1.

— kK*B(Ns2 — Ni)k
If k = 0, a direct computation shows that the operators k%a; (AZNy) and k3 B(A?Ny) are bounded.
Since {by }rez is a 2-regular sequence and by similar calculations as those made in the proof of
Lemma 4.1 we obtain that the families of operators {k%ax(AZNi ) rez and (k3B(A2NL)} ez are
bounded. u

Lemmad4d, Let1 < p,g < oo, ands > 0 Lete,B,y € Ry, and let A and B be closed linear
operators defined in a Banach space X such that D(A) € D(B). The following two assertions are
equivalent.

(i) The families of operators {kBNylrez and {My ez are bounded.
(i) The families of operators (kBNy)xez and {My ez are B;_q—multiplien

Proof. (i) = (ii). According to Theorem 1.2, we need to show that the families {Mp Jrez and
{kBN)rez are M-bounded families of order 2. The same calculations made in the proof of
Lemma (4.1) show that

1) b
kar AN = kB PO o N My — iyay Nt kBN,
by ax
and
1) b
K2BAIN) = —k%—k—) kaNkﬂMk —~ iyk BN 1k BN;.
k k

Furthermore, the same computations made in the proof of Lemma 4.2 show that for all k € Z~. {0}

(Alag)
a

k(A'My) =k arNis1 + kap(A'Ny)

and
k(A'kBNy) = E*B(A'NL) + kBNpy1.

Since {by)xez is a 1-regular sequence we conclude that {k(A'M;)}xez and {(k(A'kBNi)}ez are
bounded families of operators. Now we pursue by noting that for all k£ € Z ~ {0},

E2(AMy) = ap(A’Ny) + k2 kap(A'Npyp + AN,

AZ 1
( aak)akaH +k(A at)

ar

andforallk e Z
kXA BN) = kPB(ANy) + k*B(A Np.oy + AN,
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A direct verification shows that if k = 0 the operator 2(A”M}) is bounded. Therefore, it
follows from Lemma 4.1 and Lemma 4.3 that the families of operators {My }rez and {kBN }rez
are M-bounded families of order 2.

(if) = (i). It follows from the closed graph theorem that there exists a C = 0 (independent of f)
such that, for f € Bf,‘ q(']I‘; X)), we have

||]§Zek ® Mif®),, < Cilflag,, -

Let x € X, and define f(¢) = e**x for k € Z fixed. The preceding inequality implies
lexllzs N Mexllss, , = llexMexllss , < Cllexls;  Ixlizg, -

Hence for all ¥ € Z we have ||M;]| < C, and consequently sup ||[Mg|| < oo. Similarly we
keZ

conclude that sup ||[kBNg|| < oco. x
keZ

The following theorem characterizes the maximal regularity property on periodic Besov spaces
for the equation (4.2). Its proof is very similar to that carried out to establish Theorem 4.1, so we
omit it

Theorem 4.2, Let 1 < p, g < oo, and 5 > 0. Let X be a Banach space. The following two
assertions are equivalent,

(i) The equation (4.2) has By, ,—maximal regularity.

(ii} The set o(A, B) = @ and the families (M }rcz and (kBN \iez are bounded.

Proceeding as in the previous section, our next corollary imposes additional conditions on
the operators A and B, however these conditions are easier to verify than those included in the
statement of Theorem 4.2 . We will omit its proof because it follows the same lines as those of the
proof of the Corollary 4.1,

Corollary 4.3. Let 1 < p,q < oo, s > 0 and X a Banach space. Suppose that for allk € 7

-b fyk
we have 7’5 € p(A). Assume that the families {akSk} ez and %BSk} are bounded. If
keZ
sup llaxSk|| < 1, then the equation (4.2} has By, ,—maximal regularity. ©

keZ

The following corollary studies the equation (4.2) in the particular case A = B. lIts proof follows
the same lines as those of proof of Corollary 4.2, so we omit it.

Corollary 44. Let X a Banach space and 1 < p,q < o and s > 0 The following assertions are
equivalent,

(i} The equation (4.2) with B = A, has B}, ,~maximal regularity.

(ii) The sequence {di ez © p(A) and {di(dy — A) ez is @ bounded family of operator.
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4.3 F, ,~maximal regularity

In this scction, we establish a characterization of the F, ,—maximal regularity property for the
equation (4.2). In a similar manner to what happens for By, ,—maximal regularity, the Banach
space where the equation is defined does not have any additional condition. The principal result
of this section is the Theorem 4.3. To prove it, we need the following results related with bounded
families of operators, which we describe bellow.

Lemma 4.5, Leta,B,y > 0, and let A and B be closed linear operators defined in X such that
D(A) € D(B). If (M )rez and [k BN ) ez are bounded families, then

(Far(A*Nilkez and (k*BA3 N ez
are bounded families.

Proof. Bellow we make the same considerations as those made in Lemma 4.1 and Lemma 4.3.
The family of operators {ay Ng }xez is bounded if and only if {h Ny }rez is bounded. Further, for
all j € Z fixed, we have that {az Ni+;); ez and {(BNps;liez are bounded families.

For k € Z ~ {0}, we have

K ap(ANe) = Kay (A2Nga) + (A°Np)Y k (—(Abry2) — iy BYNeaz @.7
A2
— kag (N2 — Ni) kzﬂ%akﬁ’kﬂ
bk ar

+ kag(Npsz2 — Np) K2 (~(Abre1) — iy BYA Niy1)

Adb A2b
- ks% ax N1 b Npy2 — kz(—b’:k—) kag(A Ni) by Ngyo

AZp
- kz( bkk)kak karp(Nis2 — Ni),

and
k*B(ANi) = k* B(A?Ng41) k(—(Abgs2) — iy B)Nesa (4.8)
+ K3 B(A?Ni) k(=(A%bs2) ~ iy B) N4z
A%b
+ BNz ~ N RS2 by oy
k+2
= k2 B(Nis2 ~ Ni) KA (~(A%Bre2) — iyB)(Nisa — Ni)
(A3 kXA

+ ) ar Ny +1bp Ngaa — R K*B(A' Ni)by Ni+2

by 73
_ k2(A%b)

bk BN k*(Ni42 — Ng).
k

A direct computation shows that if k = 0 the operators k3a;(A3Ny) and k*B(A3Ny) are
bounded. Since [bglrez is a 3-regular sequence, it follows from Lemma 4.3 that all of the
terms on the right hand side of identities (4.7) and (4.8) are uniformly bounded. Consequently,
(KPar(A3Np))kez and {k*B(A’ Nyi))rez are bounded families of operators. N
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Lemma4.6. Let 1 < p, g < oo, and s > 0, and let A and B be closed linear operators defined in
a Banach space X such that D(A) € D(B). The following two assertions are equivalent,

(i) The families (kBN ez and {Mp) ez are bounded.
(ii) The families (kBN ez and {Mi ez are Fp, g—multiplier.

Proof. (i) = (ii). The proof of Lemma 4.4 shows that { M. }rez and (kBN )rez, are M-bounded
families of order 2. Moreover, we have

(A3 My) = BPar(B3Ne) + k3 (ares — ad(A2Nes1) + B(A2ag21)(A Niar)
= 2B (A%a A Nigr) + (Aap )N,
and
B (AKBN) = E*B(ANL) + 3K3 B(AY N 11).

It follows from Lemma 4.3, and Lemma 4.5 that { M };.ez and {kBN;} are M-bounded families
of order 3. The statement (ii) now follows from Theorem 1.3.

(if) = (§). The proof follows the same lines as that of Theorem 4.4. [ ]

With the following theorem we establish a characterization of maximal regularity for solutions
of equation (4.2) on periodic Triebel-Lizorkin spaces. The proof of this theorem is analogous to
the proof of Theorem 4.2, so we will omit it.

Theorem 4.3. Let 1 < p,g < oo, If s > 0 and X is a Banach space, then the following two
assertions are equivalent.

(i) The equation (4.2) has F p,q—maximal regulariry,
(ii) The set o (A, B) = 0 and the families My )xez and {kBNy, }xez are bounded,

Following the same ideas of previous sections, the next corollary imposes additional conditions
on operators A and B. However, these hypotheses are simpler to verify than statement described
in Theorem 4.3. We will omit its proof because it is similar to the proof of Corollary 4.3,
Corollary 4.5, Let 1 < p,q < oo, s > 0 and X be a Banach space. Supose that for all k € 7Z
we have —% ¢ P(A). Assume that the families of operators {aySi}, o, and {%BS’C}I;EZ are
bounded. If sup |laxSi]| < 1, then the equation (4.2) has F p.g—Tnaximal regularity.

keZ

With the next corollary we study the existence of periodic solutions of equation (4.2) in the
particular case A = B. We omit the proof because follows the same lines of the proof of Corollary
4.4).

Corollary 4.6, Let X a Banach space and 1 < p, g < oo and s > 0. The following two assertions
are equivalent.

(i) The equation (4.1) with B = A, has F,,  ~maximal regularity.

(ii) The sequence {dy ez € p(A) and {di(dy — A )ez the family of operators is bounded.
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4.4 Applications

To finish this chapter we apply our results to some interesting exatnples,

Example 4.1. Let o, 8,y € R*. Let 1 < p, g € o, and s > 0. Consider the abstract equation
au’’ () +u” (1) = BAu@) +yAW (@) + f(2), for t €[0,2x] (4.9)

with boundary conditions u(0) = n(2rx), ' (0) = u'(2n) and v’ (0) = v’ (2x). The operator
A Is a positive selfadjoint operator defined in a Hilbert space H such that N ian){/l} # 0. If
€r

f e By (T, H), then the equation (4.9) has B.f,,q—maximal regularity.

. . _ —(ayk*+BKY - (y—a B3
Proof. Using the same notation of the Corollary 4.2, we have d;, = vy aall v iy 2

Since the operator A is a positive selfadjoint operator such that 5 in%’A) Al # 0, we know that
ET

o(A) C [g,+o0), with e > 0. This implies that the sequence {dilrez € p(A). Moreover, by
. 1
[64, Chapter 5, Section 3.51, we know that for k € Z, |[(dex — A)7']| = m There-
fore, sup ||dx(dx — A7) < eo. According to Corollary 4.4 the quation (4.9) has By, g-maximal
keZ

regulariry. =

For the next example we need to introduce some preliminaries about sectorial operators. This
type of operators form a very important class of closed but unbounded linear operators in analysis.
Most of the closed linear operators appearing in applications are sectorial. The definitions and

results which we use in our work are available in the work of Denk, Hieber and Pritss [34].
Denote by Z; € C the open sector

Zp ={AeC~ {0} : |argd] < ¢}

We denote
H(Zy) = {f : £4 — C holomorphic}

and
H™¥(Zp) = {f : Zy — C holomorphic and bounded }.

The space H(Z4) is a Banach space endowed with the norm
I 1% = sup LFEDI.
A€y
We further define the subspace Hy(2y) of H(Z,) as follows:

HoEs) = | {f e HEp) 1 17125 < 0}

a,f3<0
where

IflZs = sup [A°F(D) + sup |A~2F(A)].
|2]<1 13121

Definition 4.5. [34] A closed linear operator A in X is called sectorial if the following two con-
ditions hold.




L
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(SD) D(A) = X, R(A) = X, and (=o0,0) € p(A).
(52) sup,.qlltt + A7 < M, for some M > 0.

The operator A is called R—sectorial if the family {t(t + AY )0 is R-bounded. We denote the
class of sectorial operators (resp. R—sectorial operators) in X by S(X) (resp. RS(X)).

Note thatif A € S(X), then 4 C p(—A), forsome¢ >0 and sup [|A(d + AN < o0,
AEE¢
We denote the spectral angle of A € S(X) by

=inflp : Zrp Cp(-A), sup JAQA+ A < o0}

AEE,, -¢

The next theorem proved by Denk, Hieber and Priiss [34] allows to us use the functional cal-
culus for sectorial aperators.

Theorem 4.4. Let A € S(X), fix any ¢ € (pa,n] and let Hy(Zy) be defined as above. Then,
with I'= (co, 0]e¥ U [0, co)e ™ where pa < < ¢, the Dunford integral

£ = fr FO@=-A'L, f € HoEy),

defines via D4 (f) = f(A) afunctional calculus © 4 : Hy(Zs) = B(X) which is a bounded algebra
homomorphism. Moreover, we have

lim f(45)=f(4) in BEX),

and {f(Ag)les0 € B(X) is uniformly bounded for each f € Ho(Zy).

Definition 4.6. Let A be a sectorial operator. If there exist ¢ > ¢ 4 and a constant Ky > 0 such
that

IF (I < Kl forall f € Hy(Ey), (4.10)

then we say that a sectorial operator A admits a bounded H “-calculus.

We denote the class of sectorial operators A which admit a bounded H “—calculus by H*°(X).
Moreover, the H **—angle is defined by

¢4 =inf{g > ¢4 : Inequality (4.10) holds}.
Remark 4.3. Let A be a sectorial operator which admits a bounded H “—calculus. If the set
{h(A) : h e H=Zg) , RIS < 1}

is R—bounded for some ¢ > 0, we say that A admits an R-bounded H *—calculus. We denote
the class of such operators by RH* (X). The RH “—angle is analogous to the H*®—angle, and is
denoted 9 . For further information about sectorial and R—sectorial operators see [34].

We state the following proposition from functional calculus theory without proof (compare
[34, Proposition 4.101). The proof of Lemma of 4.7 depends on this result,
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Proposition 4.2, Let X be a Banach space and A € RH™(X) and suppose that {h;}ien €
H(Zg) is uniformly bounded for some 6 > 9“:"" . Where A is an arbitrary index set. Then the
Jamily {ha(A)) 1en is R—bounded.

Lemma 4.7, Let @, 8 € R*. Assume that X is a UM D—space. Suppose that A € RH (X)), with
RH ™ —angle 9§°° < %, then the families of operators

213 5 12 -1 c 1312 -1
{ik3 (_M _ A) } and {,-kAllz (_M — A) }
ﬁ keZ ﬁ keZ

are R—bounded.
Proof. Forall k € 7. we define the functions Fé 123 — C and Ff : Zys3 — C given by

iBkz}/?
—(iak? + k2 + Bz)

ipk?
—(iak3 + k2 + Bz)

Flz)y= and Fi(z) =
where z!/2 is defined in € . {0} and it is holomorphic in the principal branch C ~. (—c0, 0.
Furthermore, for all £ € Z and for all z € Z,;3 we have that (fok> + k> + 8z) # 0. Therefore, for
all & € Z the functions F ,i and Ff are holomorphic in the region Zy/3.

/3
We claim that for j € {1, 2} there exist a constant M > 0 such that sup"Fi“n < M.

A
Indeed, note that for all k¥ € Z < {0} we have

;13,2 PL S Bz
—(lﬂ’k +k +ﬁZ) = —(zak +k )(1 -+ m)
Z

Since for all k£ € Z ~ {0} and for all z € £,/3 the fraction T]‘g;’-‘—f € X 3+n/2 and the distance of

. . ‘s /3
—1 to this sector is positive we have that sup ”F ,i" < M, for some M; = 0.
keZ~(0}) o
Note also that for all £ € Z ~. {0} we have

—(iok? 2 = —=\J7 3 2,172 iﬁ”ZZ]'Iz Viek3+k2 _:nlp2
(iak” + k* + Bz) = —Viek? + k?z (1+ '_"_fak3+k2)( L2 iB )

Forall k € Z~ (0} and forall z € £,/3 we have that the fraction 222

Voo © 2Zrj24n/6+n /4, and the
Viaki i

fraction ——i77— € Xn(6+ns4. Since the distance of —1 to the sector 311,12 is positive and the

. . . . i /3
distance of i to the region Y5,/ is positive we have that  sup "F,f“ < My for some My = 0.
kEeZ~[0) oo

In addition, for all z € X,/3 the functions Fol(z) =0= Fg(z). Therefore, there exists M > 0 such
that sup"F;:"::s < M, for j = 1, 2. With a direct computation for all X € Z and z € X, ;3 we have
keZ

3 o 1)2

Lrn ik 20\ ikz
F@=—mm . and  F@) = —os
8 -5 Z

. -1
Since A € RH*(X) we have that and for all k € Z the operators Fj(A) = ik (—“”‘,# - A)

. 1
and FZ(A) = ikAl/2 (—L’ifﬁ - A) . Tt follows from proposition 4.2 that the families of opera-
tors {F{(A)} ez and {FZ(A)} ;. are R-bounded. n
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Example 4.2. Let X be a UM D-space, and let p € (1, 00). Suppose A € RH™(X), with RH *-
angle Hﬁ"“ < 5. Consider the family of operators

iok3 + k2

F = {ikA”z(— uA)Hl ke Z}

withe, > 0. If y > 0 is such that %RP(T) < 1, then the equation

au’'(t) + u”’ (1) = BAu() +yAY2u' (1) + F(), fort €[0,2x] 4.11)

with boundary conditions u(0) = u(2x), u’(0) = v’(27) and u”(0) = u”’(2n), has LP—maximal
regularity.
Proof. According to Lemma 4.7, the families of operators

k3 + k2 -1 iak3 + k2 -1
pal2(JBY R4 } and {ik3 TR A)
{ ( B ) keZ ( B }kEZ

are R-bounded. Since }—;R p(F) < 1, it follows from Corollary 4.1 that the equation (4.11) has
EP—maximal regularity. n




Chapter

Periodic solutions of a fractional order
neutral differential equation with finite
delay

The fractional calculus which allows us to consider integration and differentiation of any order,
not necessarily integer, has been the object of an extensive study for analyzing not only anoma-
lous diffusion on fractals (physical objects of fractional dimension, like some amorphous semi-
conductors or strongly porous materials. See [4, 86] and references therein), but also fractional
phenomena in optimal control (see, e.g., [87,96, 1001). As indicated in [83, 85] and the related
references given there, the advantages of fractional derivatives become apparent in medelling me-
chanical and electrical properties of real materials, as well as in the description of rheological
properties of rocks, and in many other fields. One of the emerging branches of the study is the
Cauchy problems for abstract differential equations involving fractional derivatives in time, In
recent decades there has been a lot of interest in this type of problems, its applications and various
generalizations (cf. e.g., [9, 28, 56] and references therein). It is significant to study this class
of problems, because, in this way, one is more realistic to describe the memory and hereditary
properties of various materials and processes (cf. [58,68, 87, 96]).

In the same manner, several systems of great interest in science are modeled by partial neutral
functional differential equations. The reader can see [1,47, 112]. Many of these equations can
be written as an abstract neutral functional differential equations. Additionally, it is well known
that one of the most interesting topics, both from a theoretical as practical point of view, of the
qualitative theory of differential equations and functional differential equations is the existence of
periodic solutions. In particular, the existence of periodic solutions of abstract neutral functional
differential equation has been considered in several works [40, 50, 54] and papers cited therein.

Let 0 < § < @ < 2. This chapter is devoted to the study of sufficient conditions that gua-
rantee the existence and uniqueness of a periodic strong solution for the following fractional order
abstract neutral differential equation with finite delay

D (u(t) ~ Bu(t — r))= Au(t) + Fu; + GDPu, + £(t), ¢ € [0, 2], (5.1)

where the fractional derivative is taken in sense of Liouville~-Griinwald—Letnikov, the delayr > 0
is a fixed number, 4 : D(A) € X — Xand B : D(B) € X — X are closed linear operators

57
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defined in a Banach space X such that D(A) € D(B). The function , is given by u,(8) = u(r + 6)
for & € [~2r,0], and denotes the history of the function u(-} at ¢t and DPu,() is defined by
DPu,(-) = (DPu),("). The operators F and G are called delay operators, and they belong to
appropriate spaces, which will be described later. The map f is a X—valued function which belongs
to either periodic Besov spaces, or petiodic Triebel-Lizorkin spaces.

We prove the maximal regularity property of an auxiliary equation, on periodic Besov spaces
and periodic Triebel-Lizorkin spaces, and using this result together with a fixed—point argument
we show existence and uniqueness of periodic solution of the equation (5.1). Here the auxiliary
equation is described by

D%u(t) = Au(t) + Fu, + GDPu, + f(), 1 €[0,2x], (5.2)

with boundary periodic conditions depending of the values of the numbers  and 8. The other
terms in the equation (35.2) are defined in the same manner as in the equation (5.1).

In recent years, several particular cases of the equation (5.2) have been studied. If ¢ = 1 and
F = G = 0, Arendt and Bu [7, 8] have studied ZP-maximal regularity and Bp, q—maximal regu-
larity, and Bu and Kim [19], have studied F »,g—THaximal regularity. On the other hand, Lizama
[79] has obtained a characterization of the existence and uniqueness of strong LP—solutions, and
Lizama and Poblete [81] study C*~maximal regularity of the comresponding equation on the real
line. In the same manner, if @ = 2 and 8 = 1, Bu [15] characterizes C*—maximal regularity on R.
Furthermore, if @ = 2 and 8 = 1, Bu and Fang [18] have studied this equation simultaneosly in pe-
riodic Lebesgue spaces, periodic Besov spaces and periodic Triebel-Lizorkin spaces. Moreover,
if1 <a <2and G = 0, Lizama and Poblete [82] study Z.P—maximal regularity for this equation
in the periodic case.

There exist several notions of fractional differentiation. In this chapter we use the fractional
differentiation in sense of Liouville-Griinwald-Letnikov. This concept was introduced in [46, 72]
and has been widely studied by several authors. In these works the fractional derivative is defined
directly as a limit of a fractional difference quotient. In [22] the authors apply this approach based
on {ractional differences to study fractional differentiation of periodic scalar functions. This idea
has been used to extend the definition of fractional differentiation to vector-valued functions, (see
[66]). In the case of periodic functions this concept enables one to set up a fractional calculus
in the LP setting with the usual rules, as well as provides a connection with the classical Weyl
fractional derivative (see [100]). Next we present the most important preliminaries concermning to
fractional derivative in sense of Liouville-Griinwald—Letnikov,

Leta > Oand f € LP(T; X) for 1 < p < oo, the Riemann difference of f is defined by
co e ]
ATF) = Y (-1 (J.)f(x ~ 1),
7=0

where (j) = w is the binomial coefficient, The Riemann difference of the function

J exists almost everywhere, (see [22]). Moreover, Z}Zo |(;f)[ < oo, and

()
J

The following definition is a direct extension of [22, Definition 2.1] to the vector—valued case.
See [66] for its connection with differential equations.

IIf llzrer ).

IAE Fllzer < D
J=0
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Definition 5.1, Let X be a Banach space, « > Oand 1 < p < co. Let f € LP(T; X). If there is
g € LP(T; X) such that lim, o+ t"®ASf = g in the LP(T; X) norm, then the Juncion g Is called
the a**—Liouville-Griinwald-Letnikoy derivative of f in the mean of order p.

We abbreviate this terminology by a*#—derivative and we denote it by D*f = g. We also
mention here a few properties of this fractional derivative. The proof of the following proposition
follows the same steps as in the scalar case given in [22, Proposition 4.1].

Proposition 5.1. Let 1 < p < co and f € LP(T; X). Fora,B > 0 the Jollowing properties hold:
o IfDf € LP(T; X), then DFf € LP(T; X) forall 0 < B < a.

o D®DEf = DB f whenever one of the two sides is well defined.

Remark 5.1. Let f € LP(T;X) and @ > 0. It has been proved by Butzer and Westphal [22)
that D°f € LP(T; X) if and only if there exists g € LP(T; X) such that for all k € T, it holds
(k)" f (k) = gtk), where (ik)* = |k|"e™5 "%} Iy this case Df = g.

In order to abbreviate the text of the present chapter, we introduce the following notation. Let
l<p,g<ooands>0and0 < 8 < a < 2. Assume that A is an operator defined in a Banach

space X, and that F, G € :B(B;’fg([—er, 0 XynX)or F,G e .‘B(F;fg([—Zn, 0]; X); X) are linear,

bounded operators. For &k € Z, we will write
ar = (ik)* and by = (ik)?, (5.3)

where ({k)Y = Ikl”ex_;t‘g“(k). Note that {a;}xez and {b )z ez are 3—regular sequences.
Moreover, if there exist the inverses, we will denote

Ni = (axd = Fi = bp G — A)7), (5.4)
and
My = ap(apl — b Gy — Fp — A)_l = az Np. (5.5)

Now, the bounded linear operators Fy and Gy, are defined by Frx = F(erx) and Gpx =
Glerx), where (exx)(t) =e**x forallt € [-2r,0] and x € X.
For reference purposes, we introduce the following conditions for the families {Filrez and |G )rez.
. k4 k2
(F2) The family of operators (A Fk) and {—
keZ~[0}

— (A2 F k) } are bounded.
ay a

keZ~[0)
3

(F3) The family {Fy)rez satisfies the condition (F2) and the family {ﬁ—(&Fk)} is
k

keZ~0)
bounded.

b 2p
{G2) The families of operators {k—i (AIGk)} and { k——i"- (Asz)} are bounded.
ar keZ~{0) g keZ~{0)

3
(G3) The family (G Jrez satisfies the condition (G2) and the family { ]—ca—bk(A3Gk)} is
k

keZ~.[0}
bounded.




CaaPTER 5, PERIOBIC SOLUTIONS OF A FRACTIONAL ORDER NEUTRAL EQUATION WITH FINITE DELAY 60

5.1 Maximal regularity in periodic Besov spaces

Letl < p,g < o0,5>0and0 < B < < 2. The first objective of this section is the study of
B, ,—maximal regularity of the fractional neutral equation

D%u(t) = Au(t) + Fu, + GDPu; + f(1), t€[0,2x], (5.6)

where the fractional derivative is taken in sense of Liouville-Griinwald-Letnikov. The operator
A1 D(A) € X — X is aclosed linear operator defined in a Banach space X. The function u, is de-
fined by u,(8) = u(t +8) for 6 € [-2x,0], and denotes the history of the function u(-) at z. Further,
DPy,(-) is defined by DPu,() = (DPu),(-). We suppose that F,G € B(B;fg([—br, 01; X); X).
The mapping f is a X-valued function which belongs to the periodic Besov space By, o(T; X).
Moreover, we assume that this equation has periodic boundary conditions depending of the num-

bers v and . This conditions are

u(0) = u(2n) if0<B<a<l,
w(0) = u(27) and D*~14(0) = D=~ 1u(2r) if0<f<l<axg?,
w(@®) = un) , D*1u(0) = D*~lu(2n), DA w0 = DF"u(2n)  if l<fB<a <2

Let @ > 0. We establish a characterization of the periodic Besov space BT, X) in terms of
the fractional derivative.

Proposition 5.2, Let X be a Banach space and 1 € p,g < o and 5 > 0. If > 0 then
Ba(T;X) = {u € By (F;X): D*u € BS (T; X)}.
Proof. Suppose thatu By, o(T; X) and D"u € By, _(T; X). By the lifting property we have that

D ex ® Deu(k) € B, (T; X).
k#0

Since s > 0, we have that D%y € LP(T; X) then D_‘;Et(k) = (ik)*dck), for all k € Z, hence

D ex ® (K)TK) € BS, ,(T; X).
k#0

Using again the lifting property we obtain that u € BT, X)

Reciprocally, let u B}“‘,‘fg (T; X), itisclearu € B;',vq(’]I‘; X). Furthermore,

D ex ® (h)7iHk) € BS, (T3 X) € LP(T; X) (5.7)
k#0

It follows from [22, Theorem 4.1] that there exists g € LP(T; X) such that (k) = (kY utk)
for all k¥ € Z. From (5.7) we have that g € By, ;(T; X). Therefore D%u € By, o(T;X) and
Deu(k) = (ik)*u(k) for all k € Z.

Let s > 0, using the previous characterization we define the concept of B}, ;~maximal regular-
ity of the equation (5.6).
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Defimition 5.2. Let 1 < p,g < o0, s > 0andlet f € By, o(I; X). A function u is called strong
B‘ g—solution of the equation (5.6) ifu € B”"(’JI‘ n BS q('I[‘ [D(AY) and u satisfies the equa-
tton (5 6) for almost t € [0, 27] and the ﬁmcnonst + Fuy, t = GDPu, belong to BS, B.q (L X). We
say that the equation (5.6) has By, j—maximal regularity if, for each f € B p.g(T5 X ) the equation
(5.6) has unique strong By, , —solunon

One of the main results of this paper is the Theorem 5.1. Its proof depends of our next results
related with some bounded families of operators.

Lemma 5.1. Let X be a Banach space. Consider 1 < p,q < 00, s> 0,and0 < f < a < 2. Let
Ge B(B”“([ 2m,0]; XY, X). If the family (G ez satisfies the condition (G2) then

k2
{£ (Alkak)} and {-—(Azkak)}
ax keZ~(0) ak keZ{0)

are bounded families of operators.

Proof. Isclear that (A'B,Gy) = (A'B)Grs1 + b (ALGY), for all k € 7. Therefore,

k(Alp
i(&kak) _ k(Ahi) by kbk
ar bk

G—GM (Ale) forall k € Z ~. {0}.

On the other hand, a direct computation shows that
(A5G} = (A'brsa) [(A'Gran) + (A'G)] + (A%Br)Gy. + bs1 (A%Gy), forall k & 2.
Now, forall k € Z ~. [0}, we have

2ra2
"B Grr) + (MG NACCOL PN ”’““
by o

k(A bk+1)kbk

2
b ——(A%G).

k2
—(A*hGy) =
ax

Since the sequence {by}xez is 2-regular and sup |G|l < CIG]|| for some C > 0, all terms
keZ

€
included in the right hand side of the preceding identities are uniformly bounded. Hence, the
families of operators

k 2
{—~(A1kak)} and {k—(AZkak)}
ak keZ~(0) ax kEZ~{0)

are bounded. -

Lemma 5.2, Consider 1 € p,g € 00,5 > 0, and 0 < 8 < o < 2. Let A be a closed linear
operator defined in a Banach space X. Assume F,G € .‘B(B“‘"([ 2m, 0%, X); X), and that the
operators Ni € B(X), for all k € Z. If the families {Fi)rez and {Grlrez satisfy the condition
(F2) and (G2) respectively, and the family of operators { M. )xez, is bounded, then

{kar (A'N) ez and  {k*ar (A2Ni)} ez

are bounded families of operators.




g
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Proof. Observe that the equality

(ATNR) Npii(ar = Fr = brGi ~ ag1 + Frag + b1 Gra1 ) Ny

(~Alay) Ne+1Ni + Nee1 (A1 Fr) Ni + Niyt (1B Gy Ni..
holds for all £ € Z. Therefore, for all k € Z ~. {0}, we have

(—Alag)

(5.8)

kar (AINg) = k

k k
ar N My + aaka-:-l (A'F) My + akaHa(Alkak)Mk-

Is obvious that if £ = 0 the operator kay (AINk) is bounded. Since the sequence {ag Jrez is
2-regular and the families of operators {Fi }rez and [Gy )zez are bounded, it follows from Lemma
5.1 that {kay (A'Ni)}, <z is bounded family of operators.

On the other hand, for all £ € Z, we have

(AN} = [(A'WNre1) + (AN [(~AYags1) + (A Fry1) + (Albrs1Grst) | Nkst
+  Ni[(-Alap) + (A*Fr) + (A%5Gr)] Niat.

Therefore, for all £ € Z ~ {0}

5.9

k
Kar(ANi) = kag [(A Nesr) + (AN - [~ (Aager) + (A Frr) + (Abgi1Gran)] @ Niar

©? (—Azak) + __Ifi
ax ag

2
+ My (A%Fy) + f—(Azkak)] ax N1,
&

Is clear that if k = O the operator k%a; (A%Ny) is bounded. Since the sequence {azliez is 2—
regular, the families {F }zez and {Gy Jxcz are bounded and satisfy the conditions (F2) and (G2)
respectively, and the family {kai(A'Ni)}rez is bounded, it follows from Lemma 5.1 that the
family of operators {k2ay, (A%*Ny)} ez 15 bounded. n

Lemma 5.3. Consider 1 < p,q < 00,5 > 0, and 0 < 8 < a < 2. Let A be a closed linear
operator defined in a Banach space X. Assume F,G € B(Bf,’jg([—Zyr,O]; X)) X), and that the
operators Ni € B(X), for all k € Z. If the families {Fi)rez and {Gilrez satisfy the condition
(F2) and (G2) respectively, and the family of operators {My ez is bounded, then the family
{FpNileez isa Bf,‘q—-multiplier:

Proof. According to Theorem 1.4, it suffices to show that the family of operators {F; Ng)xez is
a M-bounded family of order 2. With this purpose, note that sup || F¢|| < C||F|| for some C = 0,
keZ

and sup ||N;[| < co. Therefore the family of operators {Fz N}, oy is bounded.
keZ

On the other hand, for all £ € Z we have
k(ALFLNg) = %(Ale)akaﬂ + %Fkkak (A'NL),
and
K> (A2FeNy) = imlk'”"ak (A%Np) + g(AZFk)Mk + %(A‘Fkﬂ)kak (A Npa1) + (ATNR)).

It follows from Lemma 5.1 and Lemma 5.2 that {F Ny Jzez 8 a M—bounded family of order 2. m
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Lemma 5.4. Consider | € p,q < 00,5 > 0, and0 < 8 < @ < 2. Let A be a closed linear
operator defined in a Banach space X. Assume further that F,G ¢ B(B;";f'g ([-27,0); X3 X).
Suppose that the operators Ny € B(X), for all k € Z. If the family {F} \xcz satisfies the condition
(F2), {Gp\rez satisfies the condition (G2), and the family of operators { M}, \rcz is bounded, then
the family {(ik)? Gy N )rez is a BS, ,~multiplier.

Proof.  According to the Theorem 1.4 it suffices to show that the family {(ik)? G Nilrez is a

M-bounded family of operators of order 2.

For this, note that sup [|Grl] < C||G]| for some C 2= 0 and sup ||bpNi[| < sup ||Mg|| < oo
keZ keZ keZ

Therefore the family of operators {(ik)# G Ni) .z is bounded.
On the other hand, for all k € Z ~. {0} we have

b
k(A'b,GLNy) = aﬁ(AIkak)akNm + a—kakak (A'Ny)
k k
and
2,52 ko1 1 1 k5
k*(A*brGrNy) = a;(ﬂ brs1Grs)kap [(A' Nee1) + (AN + a(ﬂ by Gr )My
b
+ ;—:‘Gk“kzak (A%N).

Writing in this manner the preceding families, it follows from Lemma 5.1 and Lemma 5.2 that the
family {(ik)*Gi Ny }rez is a M-bounded family of order 2. =

Lemma 5.5. Consider 1 < p,g < 00,5 > 0, and 0 < § < @ < 2. Let A be a closed linear

operator defined in a Banach space X. Assume F,G € B(Bf,’fq“({—-%r, 01; X); X, and that the

operators Ny, € B(X), for all k € Z. If the families {Filrez and {Gi)rez satisfy the condition
(F2) and (G2) respectively, then the following assertions are equivalent.
(i) The family of operators {My }xez is bounded.

(i) The family of operators (M rez isa By, -multiplier.

Proof. (i) = (ii). According to Theorem 1.4, it suffices to show that { M} }rez is a M-bounded
family of order 2. From the hypotheses we already know that sup {|M¢|l < co. Moreover, for all
keZ

k € Z ~ {0} we have the identity

k(Alag)
a

k(AMy) = apNiy1 + kap (A N).

On the other hand, we have

k(AIak_,_[)
ax

2/a2 _ 1 1 k(M) 2 2
E4(A°M;) = kar [(A*Nes) + (AN 1 + —ak—-—Mk +k ag. (A°Ng).

Since the sequence {ag }rez is 2-regular, it follows from Lemma 5.1 and Lemma 5.2 that {Mr ez
is a M-bounded family of order 2.
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(i1 = (i). It follows from closed graph theorem that there exists C = 0 (independent of f) such
thatfor f € Bf,‘q('ll‘; X) we have,

I3 xomie,,, <l

Let x € X and define f(r) = e¢’*x for k € Z fixed. Then the above inequality implies
llexllss,, IMixliss , = lexMixllus, , < Cliexllss,, Ixllss.,

Hence for all k € Z we have ||M]| < C. Thus sup ||M|| < oo. ]
keZ

The next theorem establishes a characterization of By, ,—maximal regularity for the equation (5.6).

Theorem 5,1. Consider I < p,gq < oo, 5> 0,and0 < B8 < @ £ 2. Let A be a closed linear
operator defined in a Banach space X, If the families {Fi.}rez and |G lrez satisfy the conditions
(F2) and (G2) respectively, then the following assertions are equivalent,

(i) The equation (5.6) has B}, ,—maximal regularity.
(it} The families {Ny ez and {My}rez are bounded.

Proof. (i) = (ii). We show that for k € Z the operators (({k)°] — (ik)PGy — Fi — A) are
invertible. For this, let k € Z and x € X, and define 2(¢) = ¢’*'x. By the assertion (i) there exists
ue Bf,"‘g('ll'; X} n By, ,(T; [D(A)]) such that the functions £ — Fu, and 1 GD#?u, belong to
B3, ,(T; X) and the function « satisfies the equation

D%u(t) = Au(t) + Fu; + GDPu, + h(). (5.10)

Since the function Fu_ € B}, ;(T;X) and s > O, we have that Fu_ € LP(T, X). Hence, by
Fejér’s Theorem (see [6]), we have Fu (k) = Fru(k) for all £ € Z. In the same manner, we
have that (TJ"B-B_L:_(]C) = Gkﬂﬁ—;t(k) forall & € Z. It follows froma > Band u € Bf,fg(’]I‘;X),
that u € B;fg (T; X). Therefore @(k) = (ik)Pu(k) for all k € Z. Consequently, (_?—55;; (ky =
(k)P Gruik) forall k € Z.

Applying the Fourier transform on both sides of the equation (5.10), we obtain
(GR)* = Fy, = (k) Gy = AY(k) = k) = x,

since x is arbitrary, we have that for k € Z the operators ((ik)* — Fy. — (ik)* Gy, — A) are surjective.

On the other hand, let z € D(4), and assume that ((ik)* — Fy. — (ik)? G — A)z = 0. Substituting
u(t) = ¢z in equation (5.6), we see that u is a periodic solution of this equation when f = 0.
The uniqueness of solution implies that z = 0.

Since for all k£ € Z the linear operators Ny, are closed defined in whole space X, it follows from
closed graph theorem that N € B(X). Thus {Ni)zez G B(X).

Letf e B;‘ qr('JI‘; X). By (i), there exists a function u Bf,fg (T XN B:f,' q(’]I‘; [D(A)D) such that
the functions ¢ = Fu, and ¢t > GDPu, belong to B3, (T, X) and u is the unique strong solution
of the equation

Du(t) = Aut) + Fu; + GDPu, + f(r), t € [0, 2n).
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Applying Fourier transform on the both sides of the preceding equation, we have
((GK)™ — Fy, — (ikYP Gy —~ AYk) = f(k), forallk € Z.

Since for all k € Z the operators((ik)“ — Fy — (ik)PGy. - A) are invertible, we have

wk) = ((ik)® - Fy — (kPG — A7 f k), forallk ¢ Z.

Hence, (ik)? (k) = Dou(k) = (ik)° Nif (k) = Myf (k) forall k € Z.

Since u € B”" (T; X), it follows from Proposition 5.2 that D%y € BS (11‘ X). Therefore, by
definition the famxly [{Milrcz isa B} 4 —multiplier. It follows from Lemma 5.5 that {Mp Jrez is a
bounded family of operators.

(if) = (i). We are assuming that the hypothesis and (ii) condition of Lemma 5.5 are satisﬁed
Therefore, {Mp ez is a B g—multiplier. Define the family of operator {/¢}rez, by Iy = T A),, =1
whenk # Oand Iy = I It follows from Theorem 1.4 that {Jx}zez is a B;, g—multiplier. Since
Ny = My forall £ € Z ~ {0} we have {Np}iez is a B —muItlpher Accordingly, for an
arbitrary function f € B? q(’II‘ X) there are two functions u, w € f,,q('ﬁ‘, X)) such that

k) = Nef(k) and (k) = Gk)*Nif(k) forall k ¢ Z. (5.11)

Therefore, W(k) = (ik)*a(k) = Deu(k) for all £ € Z. By the uniqueness of the Fourier coef-
ficients, D"u = w. This implies that D%y € By, o(T; X). It follows from Proposition 5.2 that
u € B3T(T; X).

On the other hand, it follows from Lemma 5.3 that {Fz Ny }rez is a2 B“'r -—multiplier. Conse-
quently, there exists a function g € BS q('l[' X) such that
gk) = FeNif(k) forall ke Z,

By equality in (5.11) we have g(k) = Fru(k) forall k € Z.

As we have shown, F‘; (k) = Fpu(k) for all k € Z. By the uniqueness of the Fourier coefficients,
Fu = g. This implies that that Fu, € By, ,(T; X). Hence, the function ¢ - Fu, belongs to
By, 4(T5 X).

In the same manner, it follows from Lemma 5.4 that {({k)’ G Ny Jrez isa B}, ,—multiplier. Hence
there exists a function 1 € Bf,, qT('JI'; X) such that

(k) = (k)P GiNef(k) forall k e Z.
Using again the equality (5.11) we have
h(k) = (k)P Gtk forall k e 7.
Since (k)P Grutk) = (—}BE;,(k) for all £ € Z. By the uniqueness of the Fourier coefficients we
have that GDPu_ = h. This implies that that GDPu, € B3 (T; X), and the function ¢ — GDPu,
belongs to By, (T; X). It follows from equality (5.11) that

k) = () — Fr ~ (PG — A) " Fek).

]
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Thus, _
(k)" —~ Fy — (k)P Gy — AYulk) = f(k)
for all k£ € Z. Using the fact that A is a closed operator, from the fact that B, (T, X} is con-

tinuously embedded into L7(T; X) and [7, Lemma 3.1] it follows that u(z) € D(A) for almost
t € [0, 2x]. Moreover, by uniqueness of Fourier coefficients we have

DEu(t) = Au(t) + Fuy + GDPuy + £(1)

for almost ¢ € [0, 2x]. Since f, Fu.,, GDPu_and D% € Bf,,q(']I‘; X)), we conclude that Au €
B}, 4(T;X). This implies that « € By, 4(T;[D(A)]). Therefore, u is a strong By, ,~solution of
equation (5.6).

Since ((ik)*I - (k)Y? Gy — F.~ A) ~1is invertible for all & € Z, this strong By, g—solution is unique.
Therefore the equation (5.6) has B}, ,—maximal regularity. |

When the operators A, F and G satisfy some additional conditions, our next corollary provides
a simple criterion to verify that the family {Ng}zez is bounded. Let & > 0, for & € Z, we define
the operators 8; = ((ik)™ — A)~L,

Corollary 5.1, Let 1 < p,g < o0, s > 0and0 < 8 < a < 2. Let X be a Banach space.

Assume further that the sequence {(ik)* }xez C p(A) and the families | Fy)rez and (G Yrez satisfy

the conditions (F2) and (G2) respectively. If the family of operators {(ik)® ((ik)* - A)_llkez is

bounded, and :ug” (kY Gy, + Fr) (GK)* - A)_]" < 1, then the equation (5.6) has B, ,-maximal
€

regularity.
Proof. Since sup||(((R)* Gy + Fi) ((%)® — A)™"|| < 1, we have that the family
keZ
-1
{(r- @wPoi+ Fysy) }
keZ

is bounded, In addition
Ni = [(@0)7 - AU~ (@PGe+ F)SO] " = U = (@G + Fo)$) ™ (0% - ).

Therefore the family {(ik)* Ny }zez is bounded. Since the families {Fy. )zez and {Grlrez satisfy
the conditions (F2) and (G2) respectively, it follows from Theorem 5.1 that the equation {3.6) has
By, ;~maximal regularity. |

5.2 Existence and uniqueness of periodic strong solution of a neutral
equation in Besov spaces

Letl <p.g<oo,s>0,and0<fB<e<2,and0<r <2 Consider A: D{A)C X — X
and B : D(B) € X — X linear closed operators such that D{A) < D(B), and the Operators
F,.Ge B(B;fg {[—2x, 0]; X); X). In this section we use the results about Bf,, g—Mmaximal regularity
of the equation (5.6} to prove that the abstract fractional neutral differential equation

D% (u(t) — Bu(t — r))= Au(t) + Fu, + GDPu, + £(1), t e [0,2n], (5.1)
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has a unique periodic strong By, ~solution, provided that f € B (T; X).

Let] < p,g < oo and s > 0. Suppose that the equation (5.6) have By, ,—maximal regularity,
hence for each g € B}, ,(T; X) there exists a unique strong B, ,—solution v of the equation

D%y = Av + Fv, + GDPy, + g(). (5.2)

Denote by ¥ the operator ¥ ; Bf,_q('ll‘; X)— Bf,_q(T; X) defined by the formula ¥(g) = D%y,
where v is the unique strong B},  —solution of the equation (5.2). This linear operator is well
defined. Moreover, by the closed graph theorem there exists a constant M > 0 such that for all
f € By, ,(T; X) we have

ID%ullgy , + lAullps, , + IFu gz, + 1GDPu llps . < MIIfllgs,, -

LemmaS5.6, Let1 < p,g < 00,5 > 0,and0 < 8 < £ 2. Let be X a Banach space. Assume that

B is a bounded linear operator such that ||B)| [|¥]| < 1 and Ny € B(X), for all k € Z. Suppose

Jurther that the families {Fi }icz and (G lrcz satisfy the conditions (F2) and (G2) respectively. If

{(ik)* Ni ez is a bounded family of operators, such that sup Jk]%||B||[|N¢ll < 1, then the family
keZ

I = e~ (ik)* BN;) ")rez is a BS, ,~multiplier

Proof. Denote Ry = (I —e~ ™7 (ik)* BN;) ! for all k € Z. Since sup 1B Ne]l < 1, the fam-

ily of operators {Rp}zez © B(X). Let f € B 5.q (L X) fixed. Deﬁne the map P : B, (T, X) —
BS (T; X) by
Pe(t) = BY(@) - r) + f(1).

By Theorem 5.1 the map P is well defined. Moreover, this mapping is a contraction, thus there
exists a fonction g € By, o(T; X) such that

gt) = BY(@Q-n+f() = BD%u(t-r)+f(), (5.3)

where u is the unique strong B}, ,—solution of the equation
D%u(t) = Au(t) + Fu, + GDPu, +g(t), te[0,27], 0<B<a<2 (5.4)
Applying the Fourier transform to the both sides of equation (5.3) we have
) = e i) Butk) + f(k), forallk € Z. (5.5)
On the other hand, applying the Fourier transform to the both sides of equation (5.4) we have

u(k) = Nigk), forallk e Z. (5.6

Therefore, g(k) = e~ *7(ik)* BN g (k) +ﬁk), for all k € Z. This implies that g(k) = ka(k) for
all k € Z. Hence, the family of operators (( — e~ (i)*BNy) ' Jrez is a BS, ,~multiplier. =

The following theorem establishes the existence and uniqueness of a strong By, ;-solution for
the equation (5.1). We use the same notations introduced in the preceding lemma.
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Theorem 5.1. Let 1 € p,g < 00,8 >0, and 0 < f < < 2. Let be X a Banach space. Assume
that B is a bounded linear operator such that || B]| |'¥|| < 1 and Ny € B(X), forallk € Z. Suppose
further that the families (Fi.)rep and (G ez satisfy the conditions (F2) and (G2) respectively.
If [(GK)Y* Ny Ve ez is a bounded family of operators, such that sup [k || B[||| Nt ]l < 1, then for each

keZ
f € By, ,(T; X) there exists an unique strong By, .—solution of equation (5.1).

Proof. 1t follows from Lemma 5.6 that the family of operators {(I — e~ " (ik)* BN;.) " Jrez is
a Bf —multiplier. Denote Ry = (I — e=**(ik)*BN;)™!. Let f € BS (T; X). Since {RyJrez is
B;_q—multiplier, there exists g € By, g,(']1‘; X) such that

k) = Ref(k) forallk e Z. (5.7
On the other hand, by Theorem 5.1, there exists a function # € B}, (T; X) such that u is the
unique strong B, ,—solution of equation

D%u(t) = Au(t) + Fu, + GDPu, +g(t), t€[0,2n], 0<B<a <2 (5.8)

Applying the Fourier transform to the both sides of the preceding equality we have u(k) = N g(k)
forallk € Z. .
It follows from equality (5.7) that #(k) = N Ry f(k) for all k € Z. Note that

NiRi = (GB)® - ™ (ik)* B - GEYPGr — Fr, — A)™! forallk ¢ Z.

Thus, ((ik)* — e~ *7(ik)* B — (ik)’ Gy — Fy — A)atk) = f(k) forall k € Z.
Since A is a closed linear operator, it follows from uniqueness of Fourier coefficients that u
satisfies the equation

D° (u(t) — Bu(t — r))= Au(t) + Fu, + GDPu, + f() for almost 1 € [0, 27].

Hence u is a strong Bj, ,—solution of equation (5.1). It only remains to show that the strong
B}, g—solution is unique. Indeed, let f € By, (T X). Suppose that the equation (5.1) has two
strong By, —solutions, u; and up. A direct Computation shows that

()" — &7 (ik)* B — (ik)P Gy, ~ Fy, — A) (@i (k) — ii(k)) = 0

forall k € Z. Since ((k)® — e~ *7 (ik)* B — (ik)P Gy, — Fy — A} is invertible, for all k € Z we have
that iz (k) = it2(k). By the uniqueness of the Fourier coefficients we conclude that 1y = us. |

5.3 Maximal regularity on periodic Triebel-Lizorkin spaces

Let1 € p,g < 00,5 >0and0 < 8 < @ < 2. In this section we study Fj; ,—maximal
regularity of the equation

Du(t) = Au(t) + Fu, + GDPu, + (1), 1el0,2nx], (5.1)

where the mapping f is a X—valued function belonging to the periodic Triebel-Lizorkin space
F ;'Q(T; X) and the delay operators F,G € B(F s"'“([—ZJr 0]); X). The rest of the terms of this
equation are defined as those of the equation (5. 6) For this reason we present a characterization of
the periedic X—valued Triebel-Lizorkin 3 S+ (']11 X) using the fractional derivative of Liouville—
Griinwald—Letnikov ,
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Proposition 5.3, Let X be a Banach space, 1 € p,g £ oo, ands >0, If ¢ > 0 then

F”“(’Jl‘ Xy={ueF, (T;X): D% € F, (T; X)}.
Proof. The proof follows the same lines as those made in the proof Proposition 5.2 | |
Using this characterization we define the F, ,—maximal regularity for the solutions of equation
(5.1) in the particular case s > 0.

Definition 5.3. Let 1 < p,g € oo, 5> 0andlet f € F" g(T; X). A function u is called strong
Fy, g—solution of equation (5.1) ifu € F, ”“(T XnFs q(']l‘ [D(A)]) and u sattsﬁes the equation
(5.1) for almost t € [0, 2n] and the functzonst - Fu,, t = GDPy, belongs 1o F,, (']1‘ X). We
say that the equation (5.1) has Fy, —maximal regularity if, for each f € F,, (T; X) the equation
(5.1) has unique strong F, ,—solution.

One of the most important results of this chapter is the theorem 5.1. To prove it we need the
following results which are related with bounded families of operators,

Lemma 5.7. Let X be a Banach space. Consider 1 € p,g € 00,5 > 0and0 < 8 <a £ 2
Assume further G € .‘B(F ’*‘”([ 2m,00; X); X). If the famz[y {Gr Yrez satisfies the condition (G3),

then
B,
{—(A kak)}
Ck keZ~ (0}
is a bounded family of operators.

Proof. Tt is clear that, for all k € Z, we obtain
(A3biGr) = bi(A3Gr) + (Brsa — bp)(A2Gr11) + (A%Drs1)(A'Gray)
+ (A3b)Graz — 2(0%bE)A Gryy).
Now, forall k£ € Z ~. {0} we have the identity

K3 kb k(bys3 — by) kKb k2(A2byi1) kb
G = (R Gy + RO 26, ) 4 HE DD B g
ag ag by ar. by
K (A%B) b K2(A2by) kb
4 KX k)_kaz k(A8°Dy) k(AG+)

bk ar bk

Since the sequence (b Jrcz is 3-regular and {Gy Jrez is a bounded family satisfying condition
(G3), it follows from Lemma 5.1 that

{gmf*bkck)}

is a bounded family of operators. |

keZ~{0}

Lemma 5.8. Consider 1 < p,g < 00,5 > 0, and 0 < B < @ £ 2. Let A be a closed linear
operator defined in a Banach space X. Assume further that F,G € B(F;77([-2x,0]; X); X).
Suppose that the operators N, € B(X), for all k € Z, and the families [F;c ez and {Grlrez
satisfy the conditions (F3) and (G3) respectively. If the family of operators |My )<z is bounded,
then

{ksak(AaNk)]sz

is a bounded family of operators.
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Proof. Note that, for all k € Z, we have

(A3Nk) = [(A*Nia1) + (A2NR)] [(~Alags2) + (Al Fri2) + (Albrs2Gre2)] Nest
+[(A! Np1) + (AIND)] [(=A%ap50) + (APFy) + (Abp 11 Gra))] Nt
+[(A'Nis1) + (AINQ] [(—Alare1) + (ATFr) + (Albia Graa J(A Ny
+(AINE) [(~A%ak11) + (A2Fra1) + (A2D141Gr41)] Nicsz
+Np [(~APap) + (A F) + (A%BrG)] Niro
+NL[(—A%a) + (A2 Fi) + (8%BrGi)] (A Ng41).

From the preceding identity, we conclude
Kap(8°Ne) = Kap [(A*Near) + (A°Ni)] i[(—A‘am) + (A Fran) + ('brs2Gis2)] 0k N
+ kag [(A' Nger) + (AT Ng)] g [(~A%are1) + (A*Fr) + (A%brs1 G ax Nis1
+ kag [(A' Npa) + (A'N)] %I(‘Alakﬂ) + (Al Fp) + (A'Bra1 Grea) k(A Ny)
+ kak(AlNk)g [(~A%ag41) + (A*Frer) + (A?bis1Grar)] axNiaa
+ ng [(—Aar) + (B3Fp) + (BB Gi))ar Neaz

k2
+ Mka [(—A2ar) + (A2Fy) + (A2brG)] kar (A Npy1),

forall k € Z~{0}. Since the sequence {az Jzez is a 3—regular sequence, it follows from Lemma 5.1
and Lemma 5.2 that all the terms in the right hand of the preceding equality are uniformly bounded.
Moreover, for k = 0 is clear that k3a;(A3Ny) is a bounded operator. Therefore, {k3ar(A*Np)), z
is a bounded family of operators. u

Lemma 5.9. Consider 1 € p,q € 00,8 > 0, and0 < 8 < a £ 2. Let A be a closed linear
operator defined in a Banach space X. Assume further that F,G € B(F;f;’ ([-p, 01; X}, X).
Suppose that the operators Ny, € B(X), for all k € Z. If the families {Fy }yez and (G lrez satisfy
the conditions (F3) and (G3) respectively, and the family of operators { My rez is bounded, then
the family {FiNilrez isa F ;_ q—mulriplier:

Proof. According to the Theorem 1.5, it suffices to show that the family of operators {Fr N )rez
is a M-bounded family of order 3. It follows from Lemma 5.3 that {Fy Ny ez is a M-bounded
family of order 2. It remains to show that {k3(A%Fi Ni))rez is bounded. To prove this we first
observe that for all £ € Z we have

(A3FeNi) = Fr(A3Np) + (Fres — FR)(A2Ngar) + (A2 Fr A Ny2)
+ (A’ Fp)Nps2 — 2A2F)(A Nivr),

Thus, for all k € Z ~ (0}, it holds
3,23 1 3 .3 k 2 a2 [P0 1
k*(A°FyNy) = aFkk arp(A°Ng) + E(Fkﬂ — Fp)k“ar(A°Npy) + a(A Fra1kap (A Ney)

& k2
+ —(A*Fp)ag Ny — 2— (A FrYear (A Nio1),
ap (2473




e
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Since the family (Fp}irez satisfies the condition (F3), and clearly, when & = 0 the operator
k3(A3F V) is bounded, the family {Fy Ny }rez is 2 M-bounded family of order 3. "

Lemma 5,10, Consider 1 < p,gq € 00,5 > 0and 0 < 8 < a € 2. Let A be a closed linear

operator defined in a Banach space X. Assume further that F,G € B(F ;*g {[-2r,0]; X); X).

Suppose that the operators Ny € B(X), for all k € Z. If the families |Fy}r ez and (G rez satisfy
the conditions (F3) and (G3) respectively, and the family of operators {My ez is bounded, then
the family (b Gy Ni)rez isa F ;, q—multiplien

Prggf. According to Theorem 1.5, it suffices to show that the family of operators {br G Nt lrez is
M-bounded of order 3. It follows from Lemma 5.4 that {b; G Ny }zez is M-bounded of order 2.
It remains to show that {k3(A3b; G Ni)}rez is bounded. Note that, for all k € Z,

(A3brGrNE) = brGr(A3Ny) + (bra3Grea — brGr)(A2Ng11) + (A%bps1Grs1)(A Near)
+ (A*BrG)Nisa — 2007 Br G )(A Nieyr).

Therefore, for all k € Z ~ {0}, we have

b k
K (A*BrGNy) = ink3ak(A3Nk) + a(bkq-sGms — bGP ax (A’ Nys1)
P 1 K 3
+ a(A b1 GreDkar (A Neyr) + a(A biGrlarNeso

k2
- 25(A2bk6k)kak(A1Nk+1).

Since {Gy )rez satisfies the condition (G3), it follows from Lemma 5.1, Lemma 5.2, Lemma
5.7 and Lemma 5.8 that all the terms in the right hand of the preceding identity are uniformly
bounded. In addition, k*(A3b;GwNy) is a bounded operator when k = 0. Consequently, the
family {bp Gy Ny Jrez is a M-bounded family of order 3. [

Lemma 5.11. Let1 < p,g € oo,5 > 0and 0 < 8 < a < 2. Let A be a closed linear operator

defined in a Banach space X. Suppose that F,G € B(F ;f; ([—2s,0]; X); X). Assume that the

operators Ny € B(X), for all k € Z. If the families {Fy)rez and |G lrez satisfy the conditions
(F3) and (G3) respectively, then the following assertions are equivalent.

(i) The family of operators {My }icz is bounded,
(it} The family of operators (Mg ez isa F p.g-multiplier.

Proof. (i) = (ii). According Theorem 1.5 it suffices to show that {My )iz is M-bounded of
order 3. It follows from Lemma 5.5 that {My lrcz is a family of operators A—bounded of order 2.
It remains to show that {k*(A*M})}xez is a bounded family of operators. For this we note

MMy = ap(A3Np) + (@43 — ax)A*Nes) + (A%ars1)(A N sy)
+ (A3ar)Ngs2 — 2A%ap YA Npa).
Therefore, for all £ € Z ~. {0},

klarz—a k2
BUM) = BaN) + S =B (1) + —(Wa ks8N
E3(A3 2k2(A%ay
+ Makaﬂ - ﬂkak(AlNkﬂ).
ay a
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Since the sequence {ay Jrez is 3—regular, and all hypotheses of the Lemma 5.2 and Lemma 5.7 are
fulfilled, we conciude that all the operators included in the right hand side of the equality above are
uniformly bounded. Additionally, when & = 0O the operator k3(A®My) is bounded. In consequence,
the family of operators (Mg }zez is a M—bounded family of order 3.

(7i) = (i) This proof is analogous to the proof of the implication (if) = (¢) of the Lemma 5.5, so
we omit it. x

‘We are now ready to prove the main results of this section. We omit their proof because are
analogous to the proof of the Theorem 5.1 and Corollary 5.1, respectively.

Theorem 5,1, Let 1 € p,g < o0, 5§ > O, Let be X a Banach space. If the families {Fr.)rez
and (G )i ez satisfy the conditions (F3) and (G3) respectively, then the following assertions are
equivalent.

(i) The equation (5.1) has F} ,—maximal regularity.

(ii) The families {Ny}irez C B(X) and {My ez are bounded.

Our next objective is to give other conditions on the operators A, F and G that imply the
hypotheses of Theorem 5.1 and are easier to verify in applications. With this purpose, for k € Z
we define the operators S, = ((ik)" — AL

Corollary 5.2, Let 1 < p,g < o0, § > 0. Let be X a Banach space. Assume that {(ik)*}rez C

p(A) and the families {Filrez and {Giliez satisfy the conditions (F3) and (G3) respectively.

If the family of operators {(ik)® Sk }xez is bounded, and sup"((ik)ﬁ G + Fk)Sk” < 1, then the
keZ

solution of equation (5.1) has ¥ ,~maximal regularity.

5.4 Existence and uniqueness of periodic strong solution of neutral
equation in Triebel-Lizorkin spaces

Letl € pg € o0,8s>0and0 < B <a g2 Letd :D(A)C X - Xand B ;
D(B) € X — X linear closed operators such that D(A) € D(B). By using the results about
Fp ,~maximal regularity of the equation (5.1) obtained in section 5.3, we prove that the fractional
neutral differential equation

D® (u(f) — Bu(t — r))= Au(t) + Fu, + GDPu, + (), t € [0,2n], (5.1)

has a unique periodic strong F  —solution. Suppose that the equation (5.1) have F, —maximal
regularity, then for each g € Fj (T, X) there exists a unique strong F}, ,—solution v of the equa-
tion

D% = Av + Fv, + GDPv_+g(1). (5.2)

Denote by ¥ the operator ¥ ; F f,,q(']I‘; X)— F;,q(‘ll‘; X) defined by the formula ‘¥(g) = D*v,
where v is the unique strong F; ~solution of the equation (5.2). This linear operator is well
defined. Moreover, by the closed graph theorem there exists a constant M = O such that for ail
f € Fj (T X) we have

ID%ullgs,, + Aulizg,, + IFulipg,, +1GDPu gz, < MUflgs, .
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With the following two results we study the existence and uniqueness of a strong Fy, g—solution
for the equation (5.1). We omit the details of their proofs because the are analogous to Lemma 5.6
and Theorem 5.1 respectively.

Lemma 5.12, Let 1 < p,g € o0, 5 > 0, and 0 < B < a < 2. Let be X a Banach space. Assume

that B is a bounded linear operator such that || B|| ||'¥]] < 1 and Ny, € B(X), forallk € Z. Suppose

Jurther that the families {Fy Jx ez and |Gy Jxez satisfy the conditions (F3) and (G3) respectively. If

{Gk)" Nilkez is a bounded family of operators, such that sup |k|*||B||\Nll < 1, then the family
keZ

(( — e ™" (ik)* BNy) " Vez is a F3 ,~multiplier.

Theorem 5.1. Let I < p,g < o0, 5> 0,and 0 < 8 < a < 2. Let be X a Banach space. Assume

that B is a bounded linear operator such that |B|| I'Vll < 1 and Ny, € B(X), forallk € Z. Assume

further that the families {Fylrez and {Gy)iez satisfy the conditions (F3) and (G3) respectively.

IF{GI)® Ni lkez is a bounded family of operators, such that sup [k|® || B||[|Ni || < 1, then for each
keZ

€
f € F, o(T; X) there exists an unique strong Fjy —solution of equation (5.1).

5.5 Applications

In this last section we present an application of our results to partial neutral functional differen-
tial equations, As we have already mentioned, equations of type (5.1) and (5.2), have been studied
by several authors to model important physical systems. Next we consider an integro—differential
perturbation of the equation studied in [1,36].

Example 5.1, Let1 < p,g £ 00, 5> 0andl < f <& <2and0 < r < 2. Consider the
following neutral fmctzonal d;ﬂ”erential equation with finite delay

32 0

a—gzw(t &) +f_2 qry(s)w(t + 5, &)ds

f qg'y(s) i FW(t + 5,€)ds +f(1.8), 1 eR, £ €[0,x], (5.3)
2

a:a D (e, 8~ bwte — 7, £)]

+

0, £=0,m, teR.

W(t,g) - bW(t = r:f)

In order to rewrite the equation (5.3) in the abstract form of the equation (5.1), we consider X
as the space L2([0, #]; R). The operators A and B are defined by

_ Pe©) o ,
p= Py with domain D(A) = {p € L([0,7n];R) : " € L¥([0,7]; R), ¢(0) = p(x) = 0},

By = by, where the constant b is a positive number.

We assume that the function y : [-2#,0] — R is a function of class C?, and the operators
F,G: Byte(-2x,01; LA([0, ]; R)) — L¥([0, x]; R) are described by the formula

0

0
(Fg)E€) = q1y(s¥r(s)€)ds and (GY)(€) = f o q2y (W (s)(€)ds.

-

It follows from Cauchy-Schwartz inequality that Fi and Gy are elements of L2([0, 7]; R). More-
over, since B”’“([ 2, 0]; L([0, n1]; R)) is continuously embedded in C([-2n,01; L2([0, 1 R)),
the maps F and G define bounded linear operators from B”"([ 2m,01; L2([0, 7]; RY) to L2([0, x1; ).
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Let identify f(t) = j?(t, -), and assume that f(t, £) is 2Zr—periodic at the variable .
With all these considerations the equation (5.3) takes the abstract form of the equation (5.2).

We will show that there exists b > 0 sufficiently small such that there exists a unique strong
Bf,,q—solution of equation (5.3), whenever f € B}‘,‘q('ll‘; L2([0,x])). For this purpose, we assume
that g and g, are positive numbers such that

lﬂh +q2cos(%)| < qu cos(ﬁ—;-)l and K < sin(%),

where K is a constant satisfying ||F|| < K and |G|} £ K .
Note that for & € Z the operators F;. and Gy, take the form

0
qzy(s)(erw)(s)ds.
27

0
Fryp = [ , gry(sMerp)s)ds and  Gryp = _/

By using the Cauchy-Schwartz inequality we conclude that ¥, € B(L2([0, n]; R)) and Gy €
BULH[0,z1;R)) for all k € Z. Integrating by parts twice, we obtain the following representation
for the operator Fi and Gy.

iq1[y(~2m) - (O (0) -y (=2 iq1 f° :
Fro = 01/ 272 YOle a1y’ kz( mle _ :1_21 / Y ()e*0ds,

—2r
and 0
igaly(-2x) — y(0)] 'O -y (2mlp i oy piks
Grp = 121V g vyOle | aily sz tp_%f_zny (e s,

With this representation, by a direct computation, it follows that the families {Frlrez and {Gglrez
satisfy the conditions (F2) and (G2) respectively.

On another hand, the spectrum of A consists of eigenvalues —n2, for n € N. Their associated

eigenvectors are given by
2,
xn{f) = \/; sin(nf).

Moreover, the set {x, : n € N} is an orthonormal basis of L2([0, ]; IR). In particular
Ap = —n¥p, xa)xs,  forally e D(A). (5.4)
n=1
Therefore {(7k)* Jrez C p{A) and

(I~ A= "

neN

W(ﬁp,xn)xn. (5.5)

Since 1 < @ < 2 we have that Re(tk)* < O for k # 0. Thus, fork € 7 ~. {0} and # € N we have
GE)® + 12| = [Im(GR))| = 1kI sin(%).
Hence, for &k # 0 we have the following estimative

1

“((ik)"l - A)-l” < m (5.6)
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It is clear from equality (5.5) that ” (k)T — A)~! ” < oo, in the case k = 0. On the other hand, for
all k& # 0 we have that

[G&PGr + Fil} < 1KY g2 + 11K < qa2l(RVPIK = galkPK. (5.7)

Hence, we have that
sup [|(i)® (k)7 T = A) 71| < oo,
keZ
and [k]ﬁ
N ﬂ . aI _ —.l < q2 K
|rfer + oy @mr - 47 < T st

Since 2K < sin(%Z) we have sup |[(()P Gy + Fi)S¢|| < 1. From Corollary 5.1, it follows that
keZ

fractional delay equation
D%u(t) = Au(t) + Fu; + GDPu, + f(t), 1 €[0,2n], (5.8)

where the operators A, F and G are described as above, has By, q~maximal regularity. Thus the

mapping ¥ : B, o(T; X) — B}, ¢(T; X), defined by ¥(f) = D*u where « is the unique strong

By, ,~solution of equation (5.8), is a bonnded linear operator. Therefore there exists C; 3 0 such

that |['¥]| < Ca.

Moreover, there exists C1 2 0 such that sup |7 |[N¢]] < C;. If the constant b > 0 satisfies the
keZ

condition b < min {l, l} we have
C1’ Cy

sup blk|*||Ng|l <1 and B||¥| < 1.
keZ

It follows from Theorem 5.1 that equation (5.3) has a unique strong By, g—solution.
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