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ABSTRACT

Extrasolar planets are formed by accretion of the material available in the initial
molecular cloud that forms the protoplanetary disk, which includes silicates, irom,
graphite and polycyclic aromatic hydrocarbons. Since direck observation or mea-
surement of the composition are not yet possible, several models for the internal
structure of a planet have been built on the basis of measurements of its mass and
radius, coupled with a possible range of compositions. These models rely on the
knowledge about the properties of the materials that are part of the composition,
which are known to be under very high pressures and temperatures in the different
layers that form the planct. Hence, these models and our understanding of planetary
evolution will be more accurate to the extent that we know the changes induced by
pressure and temperature on these materials and the interactions carried out between
them at the extreme conditions reached in their interiors.

This thesis presents a succession of ab initio studies about materials relevant for
planctary interiors, which include iron and silica, aimed to address different scenarios
inside gas giants and super-Earths after its formation. The first study deals with the
erosion of the rocky core of gas giants due to the presence of metallic hydrogen, where
silica, one of the main candidates for the rocky-core composition, has been chosen
as a representative material. In this study, the free energy of solvation of silica into
metallic hydrogen was calculated, using the thermodynamic integration technique to
get the Helmholtz free energy from molecular dynamics simulations. The study re-
veals that, for the thermodynamic conditions present in the core-mantle boundary of
the gas giants of our solar system, crosion is energetically favored, in good agreement
with calculations performed for other rocky core materials, like water ice, periclase

and iron, which can also be dissolved by hydrogen. These results have major im-




plications for the evolution of giant planets, since erosion, coupled with convection,
may explain the enrichment in heavy elements in giant planet atmospheres.

The second study addresses the melting properties of silica for pressures relevant
to the core of giant planets and the mantle of super-Earths, where silica is also
expected to be very abundant. The results of this study reveal an abrupt increase
in the melting curve previously reported by other studies, and extend the curve up
to 6000 GPa. The implications of this study modify the picture of stable rocky
cores in giant planet interiors, since they may not only be dissolving, but they may
also be melting. For our solar system’s giants, this study concludes that the silica
component is not molten at their cores, and the curve itself provides a constraint
for planetary interior models, which allows more accurate predictions and, therefore,
better understanding of their structure and evolution.

The structure of iron at the center of Earth was also studied in this thesis. There
have been persistent arguments that the stable phase of iron at Earth’s inner-core
conditions is bee, but these studies suffered irom misinterpretation of the require-
ments of mechanical instability and the use of classical many-body potentials, the
accuracy of which is untested in studies of the mechanical instability of bcc iron. In
this study, different distortions were performed over the system in order to calculaie
mechanical stability properties, like stress and shear anisotropies and mean square
displacement of the atoms. The results point toward a close-packed crystalline struc-
ture for Earth’s inner core (hcp and/or fee), rather than bee. The importance of this
studies lies in the fact that it indicates that iron will melt in hep phase because
bec structure is mechanically and thermodynamically unstable at 360 GPa to the

temperatures of 7000 K.
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Chapter 1

Introduction

1.1 Planet formation

Planetary systems are formed from the gravitational collapse of a region within a
large molecular cloud that contains hydrogen, helium and some amounts of heavy
materials, fused by previous generations of stars. As the nebula collapses, the system
starts spinning and, due to the conservation of angular momentum, it begins fo rotate
faster and flattens into a protoplanetary disk. The center, where most of the mass
is collected, becomes increasingly hotter than its surrounding environment, giving
birth to the host star. Accretion takes place in the disk, where formation of dust is
promoted and, as it collides, the small grains stick to one another via electromagnetic
force and grow until they are massive enough to attract via gravity, forming pebbles
and rocks. Gravity helps to atiract more rocks and forms kilometer sized rocky
bodies called planetesimals. If the mass of rocks is big enough, it attracts gas, which
is the origin of gas giant planets. When the mass is not enough to accrete gas,
this planetesimal turns into an Earth-like body. Beyond the frost or snow line, the
distance from the host star where it is cool enough for hydrogen compounds such

as water, ammonia and methane to condensate into solid ice grains, there are many




more solid grains available for accretion due to the presence of ices, resulting in bigger
planetesimals that can accrete gas. Therefore, it is widely believed that gas giants
are formed in the outer parts of the disk, while smaller rocky planets are formed in
the inner parts of the disk. However, gas giants have been found inside the frost line
(it is thought that later inwards migration takes place), reaching higher temperatures

and called, therefore, hot Jupiters.

43 2008 Pearson Education, Inc.. publishing as Addison Wesley

Fig. 1: Protoplanetary disk. The formation process of a planet depends
on its location respect to the frost line. Image from The Essential Cosmic
Perspective, 2005 Pearson Education.

In 1995, Michel Mayor and Didier Queloz made the first discovery of a planet
outside our Solar System (exoplanet), in orbit around a Sun-like star in the constella-
tion of Pegasus. Despite controversy over similar, earlier claims, Mayor and Queloz’s
discovery has withstood the test of time. Their Jupiter-sized planet completes its
orbit every 4.2 days — placing it at a distance from its star, 51 Pegasi, that is much
less than the Sun-Mercury distance [1]. Since those early days of exoplanet hunting,

the number of such planets identified by scientists has pushed beyond a thousand [2]




thanks largely to the advent of high-tech space observatories, such as the Kepler and
CoRoT Space Telescopes. Exoplanet discoveries have been full of surprises from the
outset. Nobody expected exoplanets around the remnants of a dead star (i.e. PSR
1257+12), nor Jupiter-size orbiting close to their stars (i.e. 51 Pegasi). We also know
today of stellar systems packed with exoplanets (i.e. Kepler-11), around binary stars
(i.e. Kepler-16), and with many potentially habitable exoplanets (rocky planets at
a distance from its star where it is not too hot and not too cold for liquid water to
exist on the surface). Figure 2 shows the number of planets by size for all known

exoplanets and how the number increased considerably in the last report by NASA.

l Today (Kepler)

v (Al

Fig. 2: Amount of confirmed exoplants until February 26th, 2014. The
blue bars on the histogram represents all the exoplanets known, by size,
before the Kepler Planet Bonanza announcement on Feb. 26th, 2014.
The gold bars on the histogram represent Kepler’s newly-verified planets.
Image from www.nasa.
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Nowadays, it is possible to know not only the mass and radius of a planet outside

the solar system, which determines its mean density, but also its atmospheric com-




position. The thermal evolution of a planet depends on its atmospheric properties,
initial state, dynamical evolution and internal composition, which is the focus of
this thesis. We are entering an era of planetary characterization, with more than
1800 exoplanets already discovered, and that is the reason why it is so important
to understand how can we link composition and internal structure of planets to the

formation mechanism.

1.1.1 Interior structure of planets

Using probe missions, like Pioneer, Voyager and Galileo, and spectroscopic observa-
tions, scientists have been able to study the atmospheres of planets other than Barth.
It has been determined that the atmospheres of Jupiter and Saturn, for example, are
enriched in heavy materials like carbon, krypton, nitrogen and oxigen. Constraints
on the interior structure of the giant planets of our solar system — Jupiter, Saturn,
Uranus, and Neptune — are derived from knowledge of their mass M, equatorial
radius a, and gravitational moments Ja, Jy, and Js measured by these probes (see
appendix A.1). One of the reasons to study giant planets is because they shape the
architecture of planetary systems, since they form very fast and have large masses.
They are responsible for the excitation of small bodies in the inner protoplanetary
disk and delivery of volatile material in the inner solar system. Since they have gas,
they give us constraints on the composition of protoplanetary disks. The models
for the structure and evolution of gas giant planets that are used in the scientific
community to interpret these observations are essentially based in the concept that
an atmosphere model is coupled with an internal structure model, which usually
includes a layer of metallic hydrogen and an upper envelope of H and He with some

amount of heavy elements (others than H and He}, with a core that can be made




of rock, ices and eventually, iron. Figure 3 shows the current accepted structure
(roughly) of the interior of our solar system giants, and prevalent pressures and

temperatures in each layer. There is still uncertainty on the structure of our giant
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Fig. 3: Schematic representation of the interiors of Jupiter, Saturn,
Uranus, and Neptune [3]. The range of temperatures is estimated using
homogeneous models and including a possible radiative zone indicated by
the hashed regions. Helium mass mixing ratios Y {mass of helium atoms
over total mass) are indicated. The size of the central rock and ice cores
of Jupiter and Saturn is very uncertain. In the case of Safurn, the inho-
mogeneous region may extend down all the way to the core which would
imply the formation of a helium core.

planets regarding the equation of state (pressure/temperature and pressure/density
relations for hydrogen-helium mixtures and heavier elements) but also regarding the

transport of energy and whether the layers are homogeneous or not.




Models that explain the internal structure of these planets must take into account
the constraints obtained through observation and measurements, such as the mass,
radius and gravitational moments of the planet. These parameters are boundary
conditions that these models, based in equations of state (EOS), must reproduce.
The uncertainty on the equation of state used will be reflected in different predictions
for the core mass and the amount of heavy material present in the planet. The more
accurate the EOS, the more reliable the prediction about the internal composition
will be.

Models usually assume that the mixtures of H and He are fully adiabatic and
homogeneous, which means that the convective transport is supposed to be very
efficient. More accurate models consider an inhomogeneous distribution of heavy
elements, which hampers large-scale convection that turns into double-diffusive con-
vection, yielding an inner thermal profile that departs from the traditionally assumed
adiabatic interior and affecting these planets heat content and cooling history [4].
The idea that some layers in Uranus and Neptune may not be homogeneous was
confirmed by Fortney et al. [5] at 2011. Looking at cooling models they show that
Uranus is far cooler than the evolutionary models predict, which can be interpreted
in terms of layers that are not homogeneous, which means that convective transport
may not be as efficient as previously thought.

There has been a lot of progress in terms of structure of the planets because there
has been quite a lot of progress on equations of state for hydrogen and helium, and
also for heavy elements like water and silicates. It is possible to derive first-principles
equations of state and this new models change the picture. For example, Jupiter has
always been predicted to have a relatively small rocky core (between zero and seven

Earth masses [6,7]), which is surprising because similar theories predicted between




10 and 25 Earth masses for the core in Saturn [7]. The small core hypothesis for
Jupiter has been challenged in a paper by Militzer et al. [8], who used first-principles
computer simulations of hydrogen-helium mixtures in a two-layer model to compute
the EOS in the interior of Jupiter. This work predicts a large core of 14-18 Earth
masses for Jupiter, which is in line with estimates for Saturn and suggests that both
planets may have formed by core-accretion. The paper further predicts small fraction
of planetary ices in Jupiter’s envelope suggesting that the ices were incorporated into
the core during formation rather than accreted along with the gas envelope. Jupiter
is predicted to have an isentropic and fully convective envelope that is of constant
chemical composition. In order to match the observed gravitational moment Jy,
the authors suggest that Jupiter may not rotate as a solid body and predicted the
existence of deep winds in the interior leading to differential rotation on cylinders.
This result has been recently contradicted by recent calculations by Nettelman et
al. [9], who have also built models based on first-principles equations of state for
hydrogen, helium and water, but using a three-layer model: core of rocks/ice + inner
isentropic envelope. They confirm the previous results of a small core, with a mass
ranging from 0-8 Earth masses. Interestingly, they conclude that the difference
between both predictions does not depend on the amount of layers used.

This example ilustrates that there is progress going on, in particular, in the devel-
opment of first-principles equations of state. For rocky planets, the EOS of different
rocks is also important to build internal structure models (see appendix A.2), which
rely on the knowledge about the properties of materials [10-13]. It is known that
a rocky planet that has accumulated too much material can shrink due to gravity,
increasing the pressure inside and altering the inner structure. This is a challenge

for experiments and simulations, since more studies at high pressure are required in




order to understand how materials behave at the interior of these planets. These
models and our understanding of planetary evolution will be more accurate to the
extent that we can characterize the materials relevant to planetry composition, which
requires the calculation of different equations of state.

The progress is every day taking place at a higher base because of the development
of high pressure experiments, using anvil cells and laser heating and shockwaves,

which can test the validity of these equations in the laboratory.

1.2 Quantum mechanics explains matter

In the early 20" century, a new theory, called guanium mechanics, emerged from
experiments that contradicted Newton’s theory, classical mechanics, which was a
successful, precise mathematical model to describe reality for almost 300 years. The
development of quantum mechanics is one of the most profound scientific advances
of the twentieth century, and also the repeated experimental observations that con-
firmed that this theory of matter describes, with astonishing accuracy, the universe
in which we live. This new theory provided a mathematical framework that cor-
rectly explained properties of matter at the atomic level, the dual particle-like and
wave-like behavior and interactions of energy and matter. Quantum theory has pre-
vailed as a rigorously tested and robust mathematical description of the behavior of
microscopic, atomic matter. There is no doubt that it is a theory that allows scien-
tists to accurately predict and understand properties of materials and has played a
significant role in the development of many modern technologies.

Physicists, geophysicists and mineralogists need to understand and predict the
properties of solids and liquids at normal and at high pressures and temperatures.

For example, they need to know the equilibrium structure, equation of state, phase




transitions, and vibrational properties of solids, and the interatomic or intermolecular
interaction needed for a molecular dynamics study of liquids. This information, in
sufficient detail, is not always available {rom experiment. Quantum Mechanics allow
us to predict such properties. It accurately describes the structure of atoms, bonding
of atoms in molecules and solids, behavior of electrons and, in fact, can describe
all properties of matter. The main aim of this thesis is to obtain properties of
matter, regarding planetary interiors, by means of solving the equations of quantum

mechanics.

1.3 Numerical quantum-mechanics simulations

The equation that rules the behavior of matter in quantum physics is the Schrodinger

equation,
y av
W =ih— .
H ih 57 (1.1)
which, in its time-independent form reads
HU = BU. (1.2)

This equation relates the properties of a system of particles, described by a wave
function ¥, to its energy, F, through the system’s Hamiltonian H. In practice,
these equations are very difficult to solve, and analytic solutions are available only
for noninteracting electron systems. Interacting electrons have a correlation energy,
because of the Coulomb interaction, and a quantum mechanical ezchange energy,
that arises from the Pauli’s exclusion principle. The Coulomb interaction between
electrons leads to a term in the Hamiltonian that cannot be separated and, hence, the
wave function camnot be written as an analytically solvable product of independent

functions. This fact rules out any simple approach to a highly accurate solution.
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However, the development of powerful computers has allowed scientists to build
programs that can are able to find numerical solutions to physical problems, in par-
ticular, to the Schrodinger equation. A number of numerical techniques have been
developed offering various levels of treatment of the troublesome exchange and corre-
lation interactions of electrons. These are sometimes referred to as electronic struc-
ture caleulations. These accurate electronic structure methods are classified as first-
principles or ab initio, which means they are numerical simulations of Schrédinger’s
equation that have no experimental input or adjustable parameters that require pre-
vious knowledge of the system properties.

Despite of the availability of this numerical approach, exact, unapproximated
first-principles simulations are still too difficult for all but the smallest systems.
Although ab initio methods are technically able to exactly compute properties of
materials, the computational fime required for such a calculation often scales expo-
nentially with system size, taking longer than the lifetime of the researcher. The
caleulations are said to be computationally expensive. In general, a method trades
off accuracy for the ability to study larger system sizes.

Consequently, a highly active area of computational physics research involves de-
veloping approximations that speed up ab initio methods, but only negligibly reduce
the accuracy and predictive power. It is the electron interactions in materials that
are most computationally cumbersome and require approximations. One of the most
popular and successful ab initio methods is density functional theory (DFT) [14], de-
seribed in the next chapter, which is an exact theory.

In this thesis, we will make extensive use of DFT to solve the Schrédinger’s

equation of different systems, which will allow us to obtain their properties.
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1.4 Organization and Thesis accomplishments

The research presented in this thesis uses knowledge and tools developed in various
scientific communities. Chapter 2 introduces the electronic structure models, and
how to perform molecular dynamics within the density functional theory which allows
to understand the foundation for the research in this thesis. The first sections of
chapter 2 give a brief description of the many-body problem, and the following
sections describe the Hartree-Fock and Density Functional Theory approximations,
two of the most common approches to solve the many-body Schrédinger equation.
In chapter 3, a thermodynamical approach to compute solubility is discussed, which
will be the basis of the study in the following chapter. The first sections correspond
to the definition of Gibbs free energy of solvation, which is coupled with the free
energy of mixing correction, while in the last section the thermodynamic integration
technique is described, which is a fundamental procedure to compute Gibbs free
energy in molecular dynamics simulations.

This thesis is motivated by the increasing understanding in planetary formation
and evolution, and aims to connect what we are able to know about matter from a
condensed matter point of view with the bulk bebavior of planets. Thus, chapter 4
turns to focus on the calculation of the solubility of silica into metallic hydrogen, a
phenomenon that has not been previouly been analyzed in the study of the interiors
on gas giants, like Jupiter. We discuss the consequences of this study on the evolution
and formation of gas giant planets.

The majority of new and original research within this thesis is presented in
chapters 4, 5 and 6. These chapters involve the application of condensed matter

techniques to evaluate properties of materials concerning to planetary interiors. In
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chapter 4 the possibility of solvation of silica into metallic hydrogen is analyzed.
Thereafter, in chapter 5, the attention is focussed on the melting behavior of silica,
which becomes relevant for understanding rocky planets, like super-Earths, as well
as the core of gas giants. In this chapter, calculations of the melting temperature
of silica in the multimegabar pressure range, where no previous data existed, are
presented. The content of chapters 6 correspond to a study related to the Barth'’s
inner core, in which the stability of the bec phase of iron is analyzed in detail from
many points of view. The chapter shows how the bec structure is located in a saddle
point of the energy surface, and shows how the addition of deformations at high
temperature indicate that this structure cannot be stable at the Earth’s core.

Some appendices follow chapter 6, providing details about astrophysical models
for understanding the internal structure of planets, atomistic method for determining

crystal structures, and additional details about solubility and tetragonal strains.




Chapter 2

Ab Initio Simulations

Computer simulations have become a powerful tool to solve complicated equations
that model the behavior of physical systems. In particular, solving the Schrédinger
equation for complicated atomic systems was not feasible until computational tech-
niques were developed to solve it. In this chapter we will describe the principal
methods for solving the Schrodinger equation, being the density functional theory

the method chosen in this thesis to perform all caleulations.

2.1 The Many Body Problem

If we have M atomie nuclei at positions Ry, ..., Ras, then we can can express the
ground-state energy, F, as a function of the positions of these nuclei, E(Ry, ..., Ra)
This function is known as the adiabatic potential energy surface of the atoms. The
situation we are interested in where multiple electrons (V) are interacting with mul-

tiple nuclei (M) is described by the following Hamiltonian:
o Z14;
H=- Vit —
> v 2 SRI LT

I=1 J#I
s N N
+ EZZ ZZ IIR; —rzll (2.1)

i=1 j#i |3 —r,]] I=1 i=1
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Here, My and Z; are the mass and atomic number of the nucleus I , m is the electron
mass and £ is the Plank’s constant. The terms in this equation define, in order, the
kinetic energy of the nuclei, the kinetic energy of the electrons, the interaction energy
between the different nuclei, the Coulomb interaction energy between the different
electrons, and the interaction energy between each electron and the collection of

atomic nuclei. Using this Hamiltonian in the Schrédinger equation
HU(R,r) = BY(R,1), (2.2)

results in an 3(M + N) - dimensional eigenvalue problem, where R = (Ry, ..., Ra)
is the collective coordinate for the M nuclei, and r = (ry,...,ry) the collective
coordinate for all the N electrons. In practice, this problem is almost impossible
to treat within a full quantum mechanical framework. Only in a few cases, such
as hydrogenoid atoms or the Hj molecule, a complete analytic solution is available.
Exact numerical solutions are also limited to a few cases, mostly atoms and very
small molecules. There are several features that contribute to this difficuly, but the
most important is that this is a multi-component many-body system, and the two-
body nature of the Coulomb interaction makes the above Schrédinger equation not
separable.

Most materials of interest contain a large number of interacting protons and
electrons, which means that approximations must be made in order to reduce the
complexity of the problem and be able to find the wave-function and energy. Once
the wave-function and energy is known for a system, many properties may be cal-
culated. However, the various approximations made in a particular method have
significant impact on the accuracy of the predictions. The following sections discuss

two principal approaches to approximating the solution of the Schrédinger equa-
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tion: Hartree-Fock Theory (HF), an orbital based method that approximates the
wave function for the electrons as a Slater determinant of single particle orbitals,
and Density Functional Theory (DFT), which is based fundamentally on the charge

density rather than a many-body wave-function.

Born—-Oppenheimer Approximation A first approach to reduce the complex-
ity of the problem above is to comsider that the nuclei are much more massive than
electrons (1800 times heavier), which means that electrons move much faster. In this
spirit Born and Oppenheimer (1927) proposed a scheme for separating the motion of
the nuclei from that of the electrons. In this scheme, nuclei positions are considered
a constant of motion for the system and a the electrons can be thought of as in-
stantaneously following the motion of the nuclei, while remaining always in the same
stationary state of the electronic Hamiltonian. A solution to (2.2) is then proposed

in the form
T(R,r,t) = Y, On(R, )¢n(R, 1), (2.3)

where ©,(R, t) are the wave functions describing the evolution of the nuclear sub-
system in each one of the adiabatic electronic eigenstates ¥, (R, r). These satisfy the

time-independent Schrédinger equation

ﬁgq,bﬂ(R, 1') = EH(R)@bn(R’ l'), (2~4)

where

fle“Z;f—mV? ZZnr—r.-,u ZZIIR:—rll (23)

i=1 j#i I=1 i=1

is the electronic Hamiltonian. Although the complexity of the problem has been
reduced to a 3N-dimensional problem, the equation (2.4) is still difficult to solve,

with no analytic solution for more than one electron, since the second term in (2.5)
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makes impossible to separate the Hamiltonian in a sum single-particle Hamiltonians.
This leads to & simple solution, which is that ¢ is the product of individual wave
functions, ¥ = 11s,...,%¥n . However, the Born-Oppenheimer approximation is
used as a base to build the mean field theory, which will be described in the following

section.

2.2 Mean Field Theory

2.2.1 Hartree Approximation: No Exchange, Averaged Cor-
relation

Separating the nuclei from the electrons through the Born-Oppenheimer approxi-
mation is the first step in solving the many-body problem. The next step is how to
deal with the electron-electron interaction. The first approach may be considered to
be the one proposed by Hartree (1928}, in the very beginnings of the age of quantum
mechanics. The basic assumption is that the many-electron wave function can be
written as a simple product of one-electron orbitals,
N
T(r) = H’l/)i(l‘z'), (2.6)
i=1
which is exactly what would happen if the elecirons were noninteracting. While this
is not realistic enough for general electronic systems, it is included here to ilustrate
the basic features of the one-electron approches.
In order to break down the Schrodinger equation into many simpler one-electron
equations, Hartree proposed that the electrostatic field felt by an electron in an
atom was due to the central potential of the nuclei together with the field created by

the other electrons. That is, each electron at a position r; experiences a mean-field
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electron-generated potential

u(r;) = € [ WLj)wdﬁr (2.7)

usually called the Hartree potential, and the electron-nucleus interaction potential,

VR, 1) = — EMZ _ (2.8)
o IR, — ra”

whose sum over all N electrons gives rise to the third term in (2.5). The electronic

density n(r) that appears in the Hartree potential is given by

=2 Z W (r)i(r) = 22 | (1) 2. (2.9)

This summation goes over all the individual electron wave functions that are occupied
by electrons, so the term inside the summation is the probability that an electron in
individual wave function 1;(r) is located at position r. The factor 2 comes from the
Pauli exclusion principle, which allows 2 electrons in the same state with opposite
spin.

Employing the variational principle, Slater (1928) was able to demonstrate that,

in order to find a solution ¥ for the Hamiltonian in (2.5), which can be rewritten as

Aes B X 1
h.(R.r) = hi+322m, (2.10)
i=1 =1 g N0t T3
where
g he .
h; = -——V2 + V(R,13), (2.11)
2m

the orbitals ¢; in (2.6) must satisfy, as originally proposed by Hartree,

(—h—zvz + V(R / Zf’f” it ” r') Wi(r) = eii(r). (2.12)

2m |l —¢

The set of N one-particle equations in (2.12) are known as the Hartree equations.
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2.2.2 Hartree—Fock Approximation: Explicit Exchange, Av-
eraged Correlation

The Hartree approximation treats the electrons as distinguishable particles. Elec-
trons, however, are indistinguishable spin-1/2 particles (fermions) and Pauli’s ex-
clusion principle states that two fermions cannot occupy the same ¢quantum state
because the many-fermion wave function has to be antisymmetric upon particle ex-
change. This means that, if two electrons are exchanged, the wave function must
change sign. For two electrons in the same quantum state the only antisymmetric
wave function is the null wave function. The Hartree approximation does not con-
tain this feature and, as a consequence, the description of the electronic component
is incomplete.

Introducing Pauli’s principle can be easily done proposing an antisymmetrized

many-electron wave function in the form of a Slater determinant:

(1) Pa(l) - dn(D)
1| %i(2) (2) - ¥n(2)

‘I;(xlvx%"-rxN) = J_V'_f (2‘13)

Pu(N) Po(N) -+ Pn(N)

where ;(7) refers to the ith one-electron spin orbital, i.e. composed of spatial and
spin components, and (j) indicates the spacial and spin coordinates of electron j
condensed in a single variable x; = (r;,0;). This determinant ensures that the wave
function changes sign when exchanging the coordinates of two of the electrons. Al-
though not yet completely general, this wave functions introduces particle exchange

in an exact manner.

Applying the variational principle to the Hamiltonian with respect to variations in
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the one-clectron wave functions, results in the one-electron, Hartree—Fock equations:

N *
(—%vz +V(R,r)+ VH(r)) Pi(r) — ;am,. f d*r’ %ﬁl—)%(r) = exi(r),
(2.14)
where V(R,r) and Vj(r) are the electron-nucleus interaction and the Hartree po-
tential previously defined in (2.7) and (2.8), while the last term is called ezchange
term. As written, the Hartree term includes an unphysical self-interaction of elec-
trons. This term is cancelled in the exchange term. The exchange term results
from our inclusion of the Pauli principle and the assumed determinantal form of the
wavefunction. The effect of exchange is for electrons of like-spin to avoid each other.

Each electron of a given spin is consequently surrounded by an “exchange hole”, a

small volume around the electron which like-spin electron avoid.

2.3 Density Functional Theory

Density functional theory is a phenomenally successful approach to finding solu-
tions to the fundamental equation that describes the quantum behavior of atoms
and molecules, the Schrodinger equation, in settings of practical value [14]. This ap-
proach has rapidly grown from being a specialized art practiced by a small number of
physicists and chemists at the cutting edge of quantum mechanical theory to a tool
that is used regularly by large numbers of researchers in chemistry, physics, mate-
rials science, chemical engineering, geology, and other disciplines. DFT is currently
one of the most sucecessful and popular electronic methods available for computing
properties of real solids. It allows for a great simplification in solving the many-body
problem based on functionals of the electron density. The theory, while based on a

mean-field approach, is formally exact and, as a result, some consider DFT as its
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own class of method. Density Functional Theory will be the scheme to perform most
of the calculations in this thesis, so we will give a more detailed description.

The entire field of density functional theory rests on two fundamental mathe-
matical theorems proved by Kohn and Hohenberg [15] and the derivation of a set
of equations by Kohn and Sham [16] in the mid-1960s. The first theorem, proved
by Hohenberg and Kohn, states that The ground-state energy from Schrodinger’s
equation is a unique functional of the electron density. Then, the energy E of the
system can be expressed as a functional E [n(r)], where n(r) is the electron density
function defined in (2.9). This is why this field is known as density functional theory.

Unfortunately, although the first Hohenberg-Kohn theorem rigorously proves
that a functional of the electron density exists that can be used to solve the Schrodinger
equation, the theorem says nothing about what the functional actually is. The sec-
ond Hohenberg-Kohn theorem defines an important property of the functional: The
electron density that minimizes the energy of the overall functional is the true elec-
tron density corresponding to the full solution of the Schridinger equation. If the
“true” functional form were known, then we could vary the electron density until the
energy from the functional is minimized, giving us a prescription for finding the rele-
vant electron density. This variational principle is used in practice with approximate
forms of the functional.

A useful way to write down the functional described by the Hohenberg-Kohn
theorem is in terms of the single-electron wave functions, 1, (r). These functions
collectively define the electron density through (2.9). The energy functional can be

written as

E [n(r)] = Eknown [n(r)] + Exc [n(r)], (2.15)

where we have split the functional into a collection of terms we can write down in a
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simple analytical form, Eynown [2(r)], and everything else, Exc. The “known” terms

include three contributions:
Broows (0] =T @] 4 Valn@)] + [ Vi@ &', (216)

which correspond to the electrons kinetic energy, defined by

hZ
TnE)] = —— Z f W} Vi, dor, (2.17)
the Coulomb interactions between pairs of electrons (Hartree potential)
1‘)’1’1(1‘ 3, J3pd
Vi [n(r)] = T=rl d*r &r', (2.18)

and the Coulomb interactions between the electrons and the nuclei. The other term
in the complete energy functional, Exg [n(r)], is the exchange-correlation functional,
and it is defined to include all the quantum mechanical effects that are not included
in the “known” terms. Kohn and Sham showed that the task of finding the right
electron density could be done by means of solving a set of single-electron equations,

now known as Kohn—-Sham equations:
hz
[—%Vz + V{(r) + Vu(r) + ch(r)] Pi(r) = enpi(r), (2.19)

In these Schrodinger-like equations the potential energy operators Vg and V, defined
in (2.7) and (2.8), appear. They include & self-interaction contribution in the Hartree
potential Vg, because the electron we are describing in the Kohn—Sham equation is
also part of the total electron density, so part of Vi involves a Coulomb interaction
between the electron and itself. The self-inferaction is unphysical, and the correc-
tion for it is one of several effects that are lumped together into the final potential
in the Kohn-Sham equations, Vxg, which defines exchange and correlation contribu-

tions to the single-electron equations. Vxg can formally be defined as a “functional
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derivative” of the exchange-correlation energy:

8 Exc(r)

Vxe(r) = ()

(2.20)

but true form of the exchange-correlation functional whose existence is guaranteed
by the Hohenberg-Kohn theorem is simply not known. Furthermore, to solve the
Kohn-Sham equations, we also need to define the Hartree potential, and to define
the Hartree potential we need to know the electron density. But to find the electron
density, we must know the single-electron wave functions, and o know these wave
functions we must solve the Kohn-Sham equations. To break this circle, the problem

is usually treated in an iterative way as outlined in the following algorithm:
1. Define an initial, trial electron density, n(r).

2. Solve the Kohn—Sham equations defined using the trial electron density to find

the single-particle wave functions, ¥;(r).

3. Calculate the electron density defined by the Kohn-Sham single-particle wave
functions from step 2, nxs(r) = 23, ¥} (r)hi(r).

4. Compare the caleulated electron density, nxs(r), with the electron density used
in solving the Kohn-Sham equations, n(r). If the two densities are the same,
then this is the ground-state electron density, and it can be used to compute the
total energy. If the two densities are different, then the trial electron density
must be updated in some way. Once this is done, the process begins again {from

step 2.

Prescriptions to choose the new electron density nks(r) in order to be closer to

the actual electron density n(r), how close do the two electron densities have to be
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before we consider them to be the same, and others details like these are implemented
in different manners in DFT-based softwares. We will now briefly discuss a part of
the theory which we must solved before getting into the algorithm: the exchange-

correlation functional.

2.3.1 Local Density Approximation

As we mentioned, the true form of the exchange-correlation functional, whose exist-
ence is guaranteed by the Hohenberg-Kohn theorem, is simply not known. But there
is one case where this functional can be derived exactly: the uniform electron gas.
For the electron gas, the electron densify is constant at all points in space; that is,
n(r) = constant. This situation may appear to be of limited value in any real material
gince it is variations in electron density that define chemical bonds and generally
make materials interesting. But the uniform electron gas provides a practical way to
actually use the Kohn-Sham equations. To do this, we set the exchange-correlation
potential at each position to be the known exchange-correlation potential from the

uniform electron gas at the electron density observed at that position:
Vxo(r) = Vg™ = [n(r)] - (221)

This approximation uses only the local density to define the approximate exchange-
correlation functional, so it is called the local density approzimation (LDA). The
LDA gives us a way to completely define the Kohn-Sham equations, but it is cru-
cial to remember that the results from these equations do not exactly solve the
true Schrédinger equation because we are not using the true exchange-correlation
functional.

Although LDA leads to some known errors, like the underestimation in Band gap

values, overestimated binding energies and bulk moduli and underestimated volumes
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of 3d solids; LDA has enjoyed considerable success and is still being widely used.

2.3.2 Generalized Gradient Approximation

The best known class of functional after the LDA uses information about the local
electron density and the local gradient in the electron density; this approach defines a
generalized gradient approzimation (GGA). It is tempting to think that because the
GGA includes more physical information than the LDA it must be more accurate.
Unfortunately, this is not always correct.

Because there are many ways in which information from the gradient of the elec-
tron density can be included in a GGA functional, there are a large number of distinct
GCA functionals. Two of the most widely used functionals in calculations involving
solids are the Perdew—Wang functional (PW91) and the Perdew—Burke-Ernzerhof
functional (PBE). Each of these functionals are GGA functionals, and dozens of
other GGA functionals, like the Minnesota Functionals, have been developed and
used, particularly for calculations with isolated molecules. Because different func-
tionals will give somewhat different results for any particular configuration of atoms,
it is necessary to specify what functional was used in any particular calculation rather

than simple referring to “a DFT calculation”.

2.3.3 Reciprocal space and k-points sampling

Another important issue regarding electronic structure calculations, in particular
DFT, is the k-points sampling, which is fundamental to gef reliable results. It is
not our aim here to give here a complete description on the concepts related fo
the reciprocal space (the mathematical space of all k-points), since several standard

solid-state physics texts cover this subject, but we will review the basic concepts.
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When DFT is used to study periodic systems, which represent bulk materials, a
primitive cell with a basis of atoms is chosen. This cell, characterized by cell vectors
usually called a, b and ¢, is enough to represent the whole crystal (peridic, infinite
systems) through replications along the cell vectors. The linear combinations of these
vectors through integer numbers defines the lattice points, the mathematical places in
which the basis of atoms are placed to form the crystal. The collection of all lattice
points is known as real lattice (or just lattice), and any point between the lattice
poinis, the real space. In similar fashion, the reciprocal lattice, built from reciprocal
vectors, is the collection of all reciprocal lattice points. Any point between reciprocal
lattice points (lattice points included) are regarded as k-points. The name comes
after the Bloch’s theorem, which arises from the periodicity of the system. This

{heorem states that the electronic wave functions must satisfy
h(r) = exp(ik - r)u(r), (2.22)

where uy(r) is periodic function evaluated in a vector of the real space with the same
periodicity as the primitive cell, and k is a vector that differentiates the different
wave functions, with units of inverse length.

Tt turns out that many parts of the mathematical problems posed by DF'T are
much more convenient to solve in terms of k than they are to solve in terms of r.
Because the functions exp(ik - r) are called plane waves, calculations based on this
idea are frequently referred to as plane-wave calculations. The space of vectors r
corresponds to the real space, and the space of k, to the reciprocal space (or simply
k-space).

The reciprocal vectors, defined by

bxe cxa axb

=22 == 2.
by =21 bs =21 oy (2.23)
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define a primitive cell in the reciprocal space, which has many properties and is known
as Brillouin zone (BZ). Several points in the Brillouin zone with gpecial significance
are given individual names. The most important of these is the point where k = 0;
this location in k-space is called the I" point. The volume of the Brillouin zone and

the volume of the primitive cell in real space are related by

(2m)°

Vaz = )
v::ell

(2.24)

which means that the bigger the cell in real space, the smaller the Brillouin zone.
In a practical DFT calculation, a great deal of the work reduces to evaluating

infegrals of the form

= Ve
0= fB o) dk, (2.25)

where g is the property to be calculated. The key features of this integral are that
it is defined in reciprocal space and that it integrates only over the possible values
of k in the Brillouin zone. This integrals are evaluated through numerical methods,

which allow to replace the integral by a finite sum of the form

> ciglis)- (2.26)

The problem of calculating the integral is therefore simplified to evaluate g only in
certain k-points and sum over them. To reduce computational time, the evaluation
of these integrals must be efficient, and doing so has been studied very carefully
through time. Many methods are available nowadays, and the Monkhorst and Pack
scheme, developed in 1976, is one of the most used methods. Another famous and
useful one, is the tetrahedron method, specially suited to deal with metals, since the
Fermi-Dirac occupation function goes abruptly to zero at the fermi energy, which
makes the integral particulary difficult to solve for this cases. Through this thesis,

we will use these methods depending of the type of material analyzed.
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As we mentioned, the volume of the Brillounin is inversely proportional to the
volume of the real space cell. This means that big cells will have 2 small Brillouin
zone, and a smaller number of k-points will be needed to evaluate the integrals.
Although a thumb rule is that the I’ point is enough to sample the Brillonin zone of
supercells (cells obtained from finite replications of primitive cells), this is not always
guaranteed, and A-points convergence tests (increasing the mumber of k-points until

the energies do not vary) are always recomended before performing a calculation.

2.3.4 Molecular Dynamics

The atoms of materials are in constant motion, and this is what we know as temper-
ature. The most common approach to study the effect of temperature on the proper-
ties of a material at atomic level is known as Molecular Dynamics (MD), a technique
that tracks the position of the atoms over time and allows for the characterization
of material properties, like radial distribution of atoms, diffusion, melting, study of
amorphous phases, atoms coordination and characterization of atomic neighborhood
among many others.

Many of the relevant thermodynamic properties of a material can be obtained
from MD through statistical mechanics, which relates the positions and velocities
of atoms, calculated by MD, to macoscopic properties like energy, temperature and
pressure. We will now give a brief description of how positions and velocities are

obtained during the simulation and how properties are calculated.




28
Microcanonical Ensemble

In classical mechanics, a system of M atoms at positions Ry and with velocities Vi
has a kinetic energy

1 M
=3 > Mpvi, (2.27)

I=1
where M; is the mass of the atom associated with the I'th coordinate, and an infer-

action energy given by a certain potential energy,
U=URy,...,Ru). (2.28)

In this classical mechanics approach, Newton's laws of motion apply to these atoms.

That is,
dVy
Fr= M— 2.
where
Fr= —VRIU(Rl, ...,Rar) (2.30)

is the force applied to the Ith atom. These relationships define a set of 60 coupled

first-order differential equations

dR;

— =V (2.31)

dV; 1 3U(Ry,...,Ru)

avr o 32
dt M; 9R; ’ (2:32)

which can be solved using numerical integration algorithms, like Verlet, Beeman and
others. These equations conserve the total energy F = K + U and thus define the
framework of the microcanonical ensemble.

The temperature is defined as the ensemble average of the kinetic energy,

M
(K) = <§ IE=1 MIVI> = EN]GBT, (2.33)
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but in practice, the ergodic hypothesis is used and this ensemble average is replaced
by a time average, provided the simulation time is enough to let the property con-
verge. Removing the brackets gives a definition of instantaneous temperature,

M
1
= — V2 34
Tup 3NkBIZ___;MI T (2.34)

which is not physical, but very useful to check its convergence to a mean value, which

is the actual temperature. The pressure is also defined through averages, using the

Clausius virial theorem:

M
1
PV = NkgT + 3 <;2=:1 Ry f1> , (2.35)

where f; is the force exterted to the Ith particle by its surrounding particles. The
brackets can also be removed to define an instantaneous pressure, which is equal to
the one third of the trace of the stress tensor, defined by ifs components
1 & 1 o
S = I_/'.ZMIWIV}I + Vzrir-fin (2-36)
I=1 I=1
where i and j are equal to z, v, z, that is, P = (Szz + Sy + 522)/3.
In quantum mechanics, the Hellmann-Feynman theorem,

dE\ 94,
D <W> ’H

'l,b()\)> , (2.37)

allow us to get the forces choosing A = Xj;, where Xz is the Jth coordinate of Ry.

oE
FXIJ = -—m = — <'[!)

This leads to
8H
0X1s

¢> , (2.38)

which is the Jth component of the force exterted over the Ith atom. The wave
function used in this equation correspond to the ground state of the system, obtained

by means of the Kohn-Sham equations, and expressing this expectation value in
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position representation, results in integrals of the electron density, that is, Fx,, =
Fx,, [n(r)]. The force obtained this way replaces the derivative on the right hand
side of equation (2.32), and advance the position of the nuclei as if they were classical
particles with the same integration algorithms used for classical MD, like Verlet. This

is what we know as Born-Oppenheimer molecular dynamics.
Canonical Ensemble

The equations of motion can also be obtained from a Lagrangian approach, where

the Euler-Lagrange equations,

d (0L 0Z
— (=)= 2.
dt (8V}J) Xy’ )
lead to (2.31) and (2.32). The Lagrangian of the system, in this case, is
LM
L=K-U-= 5ZM,W—U(Rl,...,lfw). (2.40)

I=1

Under typical experimental conditions, the atoms of a material of interest are
able to exchange heat with their surroundings. In this situation, the atoms exist
in a canonical ensemble, where the number of particles, volume, and temperature
are constant. There are a number of ways to adapt the microcanonical MD method
outlined above to mimic a canonical ensemble. One of the most elegant was originally
introduced by Nosé, who began by using the Lagrangian for the microcanonical

ensemble, and forming an extended Lagrangian:

Q (ds
2 \ dt

M 2
1
£=3 > MV -URy,...,Ru) + 5 —) — gkgTns. (2.41)
=1
Notice that if s(t) = 1, then this extended Lagrangian reduces exactly to (2.40).

Applying the Euler-Lagrange equations (2.39) to this extended Lagrangian, leads to

the equations of motion for the system. These equations were written by Hoover [17]
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in a convenient form using slightly different variables than the extended Lagrangian

above:

dXp;
dt = ¥IJs

dVis _ _L@U({Xnm}) B _f_
dt M 0X1J M;

M
1 )
B - [2 M, V2 - 3NksT|
I=]

V}J:
(2.42)
dt  Q
dlns
dt =&

The first and second equations correspond to (2.31) and (2.32), but the last one,
the acceleration, has a “friction” term that either increases or decreases the velocity,
depending on the sign of £. The third equation looks more meaningful when we write

it down in terms of (2.34),

e M (Tmp —T], (2.43)

since it means that the rate of change of £ depends on how far is the instantaneous
temperature from the target temperature, therefore, £ acts as a feedback control to
hold the instantaneous temperature of the atoms in the simulation. The parameter Q
determines how rapidly the feedback between the temperature difference Thyp — T is
applied to £&. These equations are, again, solved by numerical integration algorithms.

In this thesis, all simulations performed in the canonical ensemble used this Nosé-
Hoover thermostat. In this ensemble, the pressure fluctuates, and a desired mean
pressure is obtained by an adequate choice of the volume of the simulation cell. This
is subjected to the simulation time, which has to be enough to allow the pressure to

converge.
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Car—Parrinelo Molecular Dynamics

Although all the molecular dynamics simulations in this thesis were performed using
the Born-Oppenheimer molecular dynamics (BOMD) explained above, it is worth to
mention an approximation to BOMD, that was a key breakthrough that changed ab
initio MD from simply an interesting idea to a powerful and useful method: the Car-
Parrinello molecular dynamics (CPMD) [14]. They introduced an algorithm in which
the separate tasks of following the motion of nuclei and finding the electronic ground
state given the nuclear positions are treated in a unified way through an extended
Lagrangian. The central idea in this approach is to define equations of motion for
both the nuclei and the electronic degrees of freedom that are simultaneously followed
using molecnlar dynamics. Car and Parrinello’s extended Lagrangian is cleverly
constructed with nuclear equations of motion, similar to Born-Oppenheimer and the
introduction of the electronic degrees of freedom as fictitious dynamical variables.
Schematically, this extended Lagrangian is
1 ,
Z=3 ; MVi—-URy,...,Ru) + 22;1 f drfih;i? 4 Lorthos (2.44)
= 3

where the first two terms on the right-hand side are the same as in equation (2.40),
while the last two terms introduce fictitious degrees of freedom. The third term,
that has the form of kinetic energy introduces a fictitious mass, u, while the final
term above is required to keep the one-electron wave functions orthogonal. When the
velocities associated with the dynamics based on this lagrangian are used to assign
a temperature and scaled to bring T — 0, the equilibrium state of minimal F is
reached and the Lagrangian describes a real physical system on the potential energy
surface.

In contrast to Born—Oppenheimer molecular dynamics, wherein the nuclear de-
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grees of freedom are propagated using ionic forces which are calculated at each iter-
ation by approximately solving the electronic problem as explained in the previous
sections, the Car—Parrinello method explicitly introduces the electronic degrees of
freedom as (fictitions) dynamical variables, writing this extended Lagrangian for the
system, which leads to a system of coupled equations of motion for both ions and
electrons. In this way, an explicit electronic minimization at each time step, as done
in Born-Oppenheimer MD, is not needed: after an initial standard electronic mini-
mization, the fictitious dynamics of the electrons keeps them on the electronic ground
state corresponding to each new ionic configuration visited along the dynamics, thus
yielding accurate ionic forces. In order to maintain this adiabaticity condition, it is
necessary that the fictitious mass of the electrons is chosen small enough to avoid a
significant energy transfer from the ionic to the electronic degrees of freedom. This
small fictitious mass, in turn, requires that the equations of motion are integrated
using a smaller time step than the one commonly used in Born-Oppenheimer molec-
ular dynamics. Because the nuclear and electronic degrees of freedom are propagated
simultaneously during a CPMD calculation, the total energy that is calculated at
each time step does not correspond exactly to the true Born-Oppenheimer potential
energy surface for the nuclear coordinates. It is also important to realize that the
dynamics of the electronic degrees of freedom during CPMD cannot be interpreted
physically as the dynamics of electrons; the equations of motion for the electrons are
merely a mathematical device to allow the dynamics of the nuclei to be generated in
a numerically efficient way.

At the time it was introduced, the Car—Parrinello method was adopted for ab
initio molecular dynamics as well as for determination of the Kohn—Sham ground

state (because their technique was faster than contemporary methods for matrix di-




34

agonalization). This situation changed in the 1990s, as 2 variety of efficient numeri-
cal methods for solving the Kohn-Sham equations based on iterative lincar algebra
methods were developed and widely applied. When used appropriately, the electronic
information from 2 previous MD step can provide a good initial approximation for
the ground state of the updated nuclear positions, enabling the energy and forces
for a new time step to be computed in an efficient way. Although the extended
Lagrangian approach of Car and Parrinello remains influential, calculations based
on direct minimization of the Kohn—Sham equations at each time step are now more

widely used.
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Chapter 3

Computing Properties

3.1 Solubility

Determination of stable phases of solids, clusters and other systems rely of the capac-
ity of determining the configuration of minimum energy, which determines the most
stable phase of the system. The solubility of a given material on a given solvent can
also be determined using an energetic approach, computing the Gibbs free energy of
solvation, corresponding to the change in Gibbs free energy when a molecule or unit
of the material is removed from the pure crystal phase and dissolved in the solvent.

At a given pressure and temperature, this change is given by
AGeq = G(A : nB) — [G(A) + G(nB)], (3.1)

where A corresponds to one molecule (or formula unit) of the solute, dissolved into
n atoms of the solvent, B, at a concentration of 1 : n. The material will dissolve if
this difference is less than zero, and becomes more negative as solubility increases.
The first term at the right hand side of equation (3.1) represents a challenge for
ab initio simulations, since it involves calculation of the electron density of a system
with at least one unit of material A (2 or more atoms) and n atoms of a solvent B,

where n must be large (usually more than 200). For this reason, we take the low
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concentration limit, where we can split this term into a sum of energies of smaller

systems by means of the free energy of mixing, which we will explain below.

3.1.1 Free energy of mixing

According to classical statistical mechanics, the single-particle partition function of
an ideal 3-dimensional gas of N indistingnishable particles of mass m at a tempera-
ture T', confined to a volume V', reads

VN (mksT\
2=\ ) (3.2)

from which the Helmholtz free energy can be calculated and, in the Stirling’s ap-

proximation, takes the form

F = —kgThZ (3.3)
— kT | NI [ v (k2L : ~NmN+N 3.4)
- B . 2wh? (3

3
_ Ve {mkgT\?
- —kBTNln[ - ( zﬂﬁg) ] (3.5)

where kg is the Boltzmann constant. Therefore, if we have a system of three species,
with atomic masses m,, mp and m,, and number of atoms per species Ng, Np and

N. in a container of volume V, its free energy will be

Ve Ve Ve
Py =—kgT [N In (NA3) + Npln (NAS) + N¢1n (NA3)] (3.6)

where e = exp(l) and A, = 1/m2:;ch32T’ Ay = /-2 and A, = /-2 are the

'mckBT

thermal de Broglie wavelengths associated with each type of particle. The expression
above corresponds to the free energy of a solution containing atoms of types a, b and

C.
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Consider a system formed by one atom of type b and N, /2 atoms of type a, and
another with one atom of type ¢ and N, /2 atoms of type a. Let the volumes of these

systems be V; and V,, respectively. Their respectives free energies will be

e[ (e Vie

B = "’”BT[z 1“((Na/2)Az)+N”m(NbA§)]’ ®.7)
N, V.e V.e

Fo = kT [?‘“((N;/zmz)+N°1“(NCA§)]’ (38)

where N, = N, = 1. If systems b and ¢ are mixed together, as shown in figure 4,
we will have a solution in a volume V = V, + V., with N, atoms of type a, N =1
atoms of type b and N, = 1 atom of type ¢, which represents a molecule, formed by
one atom of type b and one of type ¢, dissolved in a solvent formed by atoms of type
a. The free energy of this system will be given by equation (3.6), representing the
final energy of the system, Fgna = F1. The free energy of mixing, AF, can be found

by substracting Fiyivet = Fp + F¢ from Fana:

2
AF = Fapal — Finitiat = —k5T | NeIn —T{T +In ( 4 ) . (3.9)
QI/LEV? VeVe

For V; = V,, we will have a final container of volume V' = 2V}, and the expression

above reduces to

AF = —2k5T In(2). (3.10)

If we have more than one atom of a given species in the solute, say 2 atoms of type
¢, in & diluted system of a-type atoms, we will consider this system as the final state
of three different systems mixed together: the first one with one atom of type b and
N,/3 of type a, confined to a volume Vj; the second with one atom of type ¢ and
N./3 of type a, confined to a volume V.; and the third one identical to the second
one. To calculate the free energy of the mixed system in this case, we have to add a

fourth term to equation (3.6) (Ngln (e V/NyAg); Ng = 1) where Ag and the energy
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Fig. 4: Two systems mixed together, one containing one containing N, /2
atoms of type a and one atom of type b, an the other containing N,/2
atoms of type a and one of type b.

of the new third container, Fy, are defined analogously to equations (3.7) and (3.8).

This additional term results in a free energy of mixing

V V3
AF = Fﬁnal - Enitial = _kBT [Naln (_-L__l—l) +In (—_)] ) (311)
3%3 V.3 V;ia QVbVCVd

which, for V, = V. = V; = V/3, reduces to

AF = —kgTIn (32?) . (3.12)

3.1.2 Gibbs free energy of solvation

Now we have an expression for the free energy of mixing, and we can split the first
term on the right hand side of (3.1). We are interested in solutes of the type A = M X
and A = MX,, where M and X are two different atoms (Mg and O, for example).

We will consider the dissolved system, with Gibbs free energy G(A : nB), as the final
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state of two smaller systems mixed together, each with one atom of the solute, as
depicted in figure 4. The energies of the initial systems are & (Bn/2M) and G(Bn/2X),
and when the systems are mixed together, considering that the volume of each one

is approximately the same at a given pressure, the total Gibbs free energy will be
G(MX :nB) ~ G(B,2M) + G(B,/2X) — 2kpT In(2). (3.13)

The last term arises from the free energy of mixing (3.10). If we have a solute of the
type A = M X3, like SiO; or FeO,, the free energy of mixing will be given by (3.12),

which leads to

G(MX; : nB) = G(B,sM) + G(BnsX) + G(BnysX) — kgTIn (%) . (3.14)

3.1.3 Solvation at different concentrations

When the Gibbs free energy of solvation AGy; is obtained for a given concentration,
it can be used to calculate which will be the free energy of solvation at other con-
centrations. The difference between the free energy of solvation at a concentration

1 : n and energy of solvation at a concentration 1 : m is given by
AG(n,m) = AGe(A : mB) — AG(A : nB), (3.15)
which can be expressed, as a summation of Hemlholtz free energies:
AG(n,m) = Fo(A : mB) — Fy(A : nB) — Fy((m — n)B), (3.16)

that can be approximated by

mVeg + Vi nVg + Vi mVe + V3
, = (—kT n|——) —nln | ———— 3In | —
AG(n,m) = ( ) [m n ( — ) nln ( Ve ) +3 (nVB TV, )] ;

(3.17)
where V and Vj are the solute and solvent effective volumes, respectively. A detailed

derivation of these expression can be found in the appendix B.
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3.2 Thermodynamic Integration

Since the Helmholtz free energy F' of a system is not simply a function of the phase
space coordinates of the system, but is instead a function of the Boltzmann-weighted
integral over phase space (i.e. partition function), it cannot be calculated directly.
Therefore, the Gibbs free energy G = F + PV = U —T'S+ PV, needed to calculate
solvation energies, is not directly accessible in standard molecular dynamics simu-
lations either. One way to address this problem is by means of a technique called
thermodynamic integration (TDI), a method that yields the difference in Helmholtz
free energy AF = Fg — Fa between two given systems: a reference system A and
a system B, whose potential energies U4 and Ug have different dependences on the
spatial coordinates. The basis of this technique is that AF is the work done on
reversibly and isothermally switching from the reference total energy function Uy to
the total energy Ug. This technique has been widely used {18-24], and will play the
most important role in this thesis regarding to the calculation of solvation energies.

In TDI, a hybrid potential that connects the states A and B is defined by
U()\) =Us+ A(UB - UA), (3.18)

where Uy = Ua({R;}) and Ug = Ug({Rs}) depend on the instantaneous positions
of the atoms, {R;}. For a given value of }, the free energy of a system governed by

this potential will be defined by
F(N,V,T,)) = —kgTIn Z(N,V,T, ), (3.19)
where Z the partition function of the system,

Z(N,V,T,\) = > e 0:kaT, (3.20)

g
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In these notation, U,()) is the potential energy of a state s in the canonical ensemble
with potential energy function U(A) as defined above. Then, if we take the derivative
of F with respect to A, we will get that it equals the ensemble average of the derivative
of potential energy with respect to , and its integral corresponds to the change in

free energy AF between states A and B:

B
AF(A = B) = f dF (3.21)
A
- / dAE (3.22)
0
B LBTBZ
- f g (3.23)

RN 1w
= -/(; d\ Zexp —Us(A)/ksT] PN (3:24)

- /ﬂ dA <3g§’\)>. (3.25)

For the particular choice of the hybrid potential shown in (3.18), the last equation

reads

AF = f " (Us - Ua) (3.26)
[

where the angle brackets denote an average, that depends on A, taken over trajecto-
ries generated in the system governed by the hybrid potential energy function U(A).
The figure 5 shows a typical example of the variation of < Ug —Ua > as A increses.
For A = 0, the particles are interacting only through the potential U, and the inter-
action is changed smoothly through ), until the system interacts completely through
the potential Ug for A = 1.

The practical feasibility of calculating ab initio free energies of liquids and an-
harmonic solids depends on finding a reference system A for which Fj4 is readily

calculable and the difference Ug — Uy is very small. When AF is obtained through
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Fig. 5: Thermodynamic Integration: Variation of < dU(A)/9A > with
respect to A for a silicon oxide (SiOz) system calculated in this thesis (see
chapter 4), when the reference system A is an ideal gas, and the system
of interest B is a liquid. The area below this curve represents AF'.

equation (3.26), the free energy of the system interacting though the potential Ug

can be obtained by
Fg = Fa+ AF. (3.27)

For liquid systems, the reference system A is usually chosen as a noninteracting

system (ideal gas, U4 = 0), with free energy

V (2nmkgT 3 )
F;dea] gas = —NATBT (1 + In (ﬁ (T) )) 3 (328)

while for solid systems, A is chosen to be a system of non-interacting, three-dimensional

harmonic oscillators (Ua = 3mw?r?), with free energy

hw
Fharm-osc = NA'.BT In (m) " (329)
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In both cases, B is the ab initio system with unknown free energy, which we want
to obtain. To reduce the fluctuations and make the difference Ug — Uy small, an
intermediate step can be considered, in which the system is taken from the reference
system A to a classical system interacting via a pairwise potential, whose parameters
are fitted from the ab initio simulations. For solid systems, inverse-power models (like
Lennard-Jones potential) are usually not good enough, but adding a contribution of
a harmonic term represents the anharmonic solid more accurately [18, 25]. When the
free energy of this intermediate system is determined, it is used as a new reference
system to determine the free energy of the ab initio system, given by Fppr = Fap -+
AF, g + AFy_,prr, where Foy = Fy is the analytically known free energy of the
reference system A, Fyy that of the classical-pairwise-potential interacting system,
and Fopr = Fg the free energy of the ab initio system to determine. This two-step
thermodinamic integration is the procedure considered for the calculations in the

following chapter.




Chapter 4

Rocky Core Erosion in Jupiter and
Giant Exoplanets

Silica (Si0;) is an abundant component of the Earth whose crystalline polymorphs
play key roles in its structure and dynamics. Together with ices, is also one of the
most important ingredients of the central solid core of giant planets and part of the
bulk composition of the so called super-Earths and ocean planets [26]. Experiments
on silica has been carried out for decades, but planetary conditions are often hard (or
impossible) to reach, and the thermodynamic properties of silica at high pressure re-
main elusive. This chapter describes calculations of the Gibbs free energy of solvation
for silica dissolved into metallic hydrogen to determine if the solid core of gas giants
can be eroded. The chapter starts with an introduction to the significance of silica for
planetary science and goes over previous theoretical work and challenges. In the final
sections, computational details and results are discussed. The calculation of the free
energy of solvation indicates that solubility takes place over 5000 K when pressures
exceed 1000 GPa, which contributes to dissolve the core of gas giants and provides
an alternative explanation for the observed heavy element enrichment in giant planet

atmospheres, which is currently attributed to late-arriving planetesimals [27,28].

+4




4.1 Introduction

Most of the information we have about materials that make the rocky bodies in
space comes from the study of meteories [29,30]. The library of meteorites that
have fallen to Earth provide a range of plausible starting compositions for plane-
tary accretion and degassing. The chondrites are the least processed and therefore
most primitive meteorite class. Chondrites contain a variety of silicate components,
including chondrules (perhaps the earliest condensed material from the planetary
nebula), minerals such as olivine and pyroxene, silicates, silicate glass, and in some
cases water or carbon-rich veins, indicating alteration after formation [31]. In these
meteorites, water is most often in the form of OH within a silicate mineral crystal.
The reason the OH within the mineral is called water is that it likely existed as
water when the mineral formed and if the mineral melts the OH is released as water.
Many chondrites have low oxygen contents and thus also contain metallic iron and
nickel. A second class of meteorites is the achondrites. Achondrites generally lack
metallic iron and are thought to represent the silicate remnants of planetesimals that
accreted and differentiated into metallic iron cores and silicate mantles, only to be
broken apart in later collisions. Achondrites have far lower water contents than do
most chondrites. Achondrites can contain up to ~3 mass% water, although many
have no water at all. More modern simulations of accretion indicate that planets
form from differentiated planetary embryos on the scale of thousands of kilometers
in radius and that these embryos move radially in the solar system during accretion
and so form planets that are mixtures of material from the inner and outer disk.
Even assuming planetary formation from differentiated material only, the range of

possible bulk compositions for terrestrial planets in our solar system is extremely
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wide.

Many of the confirmed 1700 extrasolar planets are gas giants that are primar-
ily composed of dense fluid hydrogen and helium. Furthermore the Kepler mission
has detected 3846 planet candidates and has measured their radii and orbital peri-
ods within 22 months of observations [32]. In a few cases with multiple planets in
close orbits, masses have been inferred from transit-timing variations [33]. The Juno
mission is scheduled to arrive at Jupiter in 2016 and will measure the gravitational
field of our largest local gas giant with an unprecedented accuracy, revealing clues
about its inner mass distribution. Existing core-accretion models for gas giant for-
mation [34] hold that these planets form from the rapid accretion of gas around a
rock-ice protocore (planetary embryos). Therefore, according to our understanding,
the evolution of giant planets starts with a differentiated rocky core surrounded by
an envelope of hot, dense hydrogen-helium gas. The temperature in the envelope
rises, and the gravitational energy from accretion is converted to heat. An adiabatic
temperature is rapidly established. The evolution of a giant planet is controlled by
the energy loss due to thermal radiation [35]. Conventional giant planet models as-
sume a stable core and a sharp core-mantle boundary instead of taking into account
the possibility that the metallic hydrogen layer may act as solvent for the initial
protocore. Answering the question of whether giant planet cores remain stable on a
billion year time scale may also provide an alternative explanation for the observed
heavy element enrichment in giant planet atmospheres, which is currently attributed
to late-arriving planetesimals [27,28]. If a core dissolved, it would lead to double
diffusive convection [4, 36-38] because gravity opposes the redistribution of heavy
core materials. This would introduce compositional stratification and significantly

reduce the rate at which heat can be transported out of the interior, with substantial
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implications for the thermal evolution and radius contraction of giant planets [39].

4.2 Previous work and motivation

The importance of silica as a prototype and potentially key member among super-
Earths mantle minerals and as a rock-forming element of the cores of gas giants, has
prompted a number of theoretical studies [30,40-48]. Since the rocky components of
the initial cores of giant planets are likely to be dominated by iron and magnesium
silicate minerals, silica appears as an important, representative material. It was
shown by Umemoto et al. [47] that post-perovskite MgSiO; separates into MgO and
Si0, beyond ~ 10 Mbars and ~ 10000 K, which are conditions that are expected
to be exceeded at the core-mantle boundaries of typical gas giant planets. Recent
ab initio calculations predicted a substantial solubility of MgO, water ice, and iron
in fluid metallic hydrogen for the core-mantle boundary of Jupiter and Saturn 21,
22,49]. Therefore, this study is focused on the solubility of remaining core material,
Si0,, which will allow us to obtain a more complete picture of the behavior of metallic
hydrogen as a solvent for planetary core materials.

At the core boundary of giant planets, the temperature and pressure conditions
are estimated to be on the order of 10-40 Mbar and 10000 to 20000 K. Because
such extreme conditions cannot yet be probed with laboratory experiments, we use
ab initio (DFT) computer simulations that can be used directly to characterized

material at such P-T conditions [20,23,50,51].

4.3 Computational Methodology

This section discusses the general computational methods and choices made for all

silica calculations. The first section describes how the free energy of solvation was
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calculated, and the second section gives the details of the pseudopotentials, Brillouin

zone sampling and crystal structure used in the DFT calculations.

4.3.1 Free energy of solvation

We have calculated the Gibbs free energy of solvation AGsq of SiO; into metallic
hydrogen which, as described in section 3.1, is given by the difference between the
Gibbs free energy of the dissolved system and that of the separate compounds at

fixed pressure-temperature conditions:
AGSD](SiOQ . 384H) = G(H3848102) - [G(H354) + G(SlOz)] (41)

We begin by computing the free energy of solvation of Si0, for a mixing ratio of
one solute atom per 128 hydrogen atoms (i.e., one SiO; formula unit to 384 H)
and later generalize our results to other concentrations. Given the large quantity of
hydrogen gas in giant planets, we are primarily concerned with the low-concentration
limit. Thus, we can assume that solute atoms do not interact with each other,
approximating the energy of the dissolved as a sum of the energy of two independent
systems, taking into account the free energy of mixing, as described in section 3.1.1

and 3.1.2, that is,
G(H;;g_r;SiOg) ~ G(HuﬁSl) + QG(Hugo) — kT 10g(27/2) (42)

Since the entropy term in the Gibbs free energies, G = E+ PV =TS = F + PV,
is not directly accessible in standard molecular dynamics simulations, we used the
thermodynamic integration (TDI) technique, described in section 3.2, which allow
us to calculate the Gibbs free energy through the addition of PV to the Hemlholtz
free, F. The splitting of the Gibbs free energy of solvation now depends on the

energies of four different, independent systems: pure silica (G(Si0y)), pure fluid
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hydrogen (G(Hzss)), fluid hydrogen with one O atom (G(H;250)) and fluid hydrogen
with one Si atom (G(H;2¢Si)). This significantly reduces the size of the system to be
simulated and the need to wait for the dissolution process to happen, which would
be extremely time-consuming. Therefore, we need to perform four separate sets of
simulations at each pressure and temperature. In TDI, we took five equally spaced A
values between 0 and 1 for each of them to get a smooth curve of (Ug — Ua) versus A
that can be interpolated via quadratic interpolation to determine the integral. Once
we have obtained AF = Fg — F4, we add the known free energy F4 to determine
the energy of the system, Fg, governed by the potential Ug.

The TDI is performed in two steps: first from a system governed by DFT forces to
a system interacting via a classical pair potential and then from the classical system
to a reference system with a free energy that is known analytically. For fluids, we
chose an ideal gas, given by equation (3.28), while for solid systems we selected a
system of independent harmonic oscillators as the reference system, whose free energy
is given by (3.29). For the fluid systems, we constructed the classical two-body
potentials by fitting to the forces of a DFT-MD trajectory using the force-matching
methodology [52,53]. In the case of a solid SiO; system, we first determined the
harmonic spring constants from mean squared displacement from an atom'’s lattice

site and then fitted the residual forces with pair potentials.

4.3.2 DFT Calculations

Pseudopotentials We used pseudopotentials of the projector-augmented wave
(PAW) type [54] provided by the VASP code [55], choosing the GGA-based exchange-
correlation functional of Perdew, Burke and Ernzerhof (PBE) [56]. The silicon po-

tential has a Ne core, and takes the 3s and 3p semi-core electrons in their valence
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configuration, while the oxigen pseudopotential has a He core with the 2s and 2p
semi-core electrons in their valence band. For hydrogen, the pseudopotential with
one 1s electron provided by VASP was used, which gives excellent description of
the bond length for the Hy dimer, and for H on C surfaces. An energy cutoff of
900 eV was used for the plane-wave expansion to ensure convergence do to the high

temperatures analyzed.

K-point sampling For sampling the Brillouin zone of the hydrogen and hydro-
gen-+(Si,0) supercells, we implemented a 2 x 2 x 2 Monkhorst-Pack k-point mesh [57],
while for the SiO, supercell we used T’ point only. An MD time step of 0.2 fs was
used, and the simulation time ranged between 0.5 and 2.0 ps. The simulations are
confined to the Born-Oppenheimer surface, and the effect of finite temperature on
the electronic structure is included through Mermin’s formalism [58]. The AGsq
values were confirmed to be well converged with respect to these parameters for the

purpose of this dissolution calculation.

Crystal structure For pure solid SiO, we used a 72-atom supercell in the FepP-
type structure (space group P-62m), recently predicted by Tsuchiya [46] to be the
ground-state structure at pressures above 7 Mbar. For liquid SiO,, we used a cubic
cell with 96 atoms. We analyzed stability of each material phase at pressures ranging
from 10 to 40 Mbar and temperatures ranging from 3000 to 20000 K and confirmed
that the structure remained solid for all cases under consideration, except for 20000 K

and 20 Mbar, where we found liquid SiO; to be the stable phase.
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P T G(Hizs) G(His0) G(HizsSi) G (SiO2)
(Mbar) (K) (eV) (eV) (eV) (eV)
10 3000 6714(2) 688.6(2) 7054(3) 63.3(1)
10 5000 559.0(5) 573.5(4)  590.5(5)  60.2(1)
90 3000 1270.7(2) 1304.7(2) 1330.1(3) 121.0(1)
90 5000 1170.8(4) 1202.4(5) 1228.2(3) 118.4(1)
20 10000 843.2(4)  868.3(4) )
20 20000 17.3(5)  26.9(6)  53.6(7)  81.8(1)
40 3000 2131.4(2) 2191.8(2) 2229.4(1) 211.3(1)
40 7000 1936.2(3) 1991.4(3) 2030.7(3) 206.0(2)
40 10000 1747.4(1) 1799.0(6) 1837.6(9) 200.6(3)
40 15000 1384, 3(8) 1427.9(4) 1467.6(8) 190.1(4)

893.8(2) 109.1(4

Table 4.1: Gibbs Free Energies of pure hydrogen, hydrogen with oxygen,
hydrogen with silicon, and SiO (solid in all cases, except for 20 Mbar
and 20000 K).

P p(Hizs)  p(Hi2s0) p(Hi2sSi) p (SiO2)
(Mbar) (gem™3) (gem™) (gem™®)  (gem™®)

10 1.88 2.05 2.19 9.52
20 227 2.49 2.66 11.19
40 3.48 3.80 4.06 15.36

Table 4.2: Densities of metallic hydrogen (Hjss), Hi2sSi, Higs0 and 5i0;
systems at 10, 20 and 40 Mbar. The density of silica at ambient pres-
sure (quartz) is 2.66 gem™3, while the density of pyrite-type silica is
6.58 gem™3 at 271 GPa (2.71 Mbar) and 300 K [43]. Beyond 40 Mbar,
its density is greater than that of lead (11.35 gem™3).

4.4 Results

Gibbs energies were computed for the following system sizes: Hygs, Hi2sSi, Hyzs0O,
solid SiOs,, which are summarized in Table 1.1. These results are used in conjunction
with the equations (4.1) and (4.2) to obtain the Gibbs free energies of solvation in
Table 4.3, and plotted as function of temperature in figure 6. We also show the
density p of each system in Table 4.2 for reference.

The error bars on the G values are dominated by two terms, the more significant
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P (Mbar) T (K)  AGsa (eV)
10 3000  4.92+0.69
10 5000  0.324+1.90
20 3000  6.35+0.78
20 5000 218+ 1.63
20 10000 —8.37 1.45
20 20000 —26.47+2.14
40 3000  7.40£0.63
40 7000  —0.93 +£1.19
40 10000 —T7.13+1.60
40 15000 —19.50 2.55

Table 4.3: Gibbs free energies of solubility for 8iO; into hydrogen at a
concentration of one part in 384 hydrogen atoms.

one being the uncertainty in the volume at the desired pressure due to finite simula-
tion time and the other being the uncertainty in the (Uprr — Uctassica) terms in the
TDI.

A negative Gibbs free energy implies that the dissolved state has a lower Gibbs
free energy than the separate phases, demonstrating that solvation is preferred at
a concentration of 1:384. A positive free energy indicates that the fluid system is
supersaturated and that deposition of fluid SiOs, or formation of solid grains, will
be thermodynamically favored.

Qibbs free energy of solvation can be generalized to other concentrations without
performing additional DFT-MD simulations if the average separation between solute
atoms is large enough so that their interaction can be neglected. Under this assump-

tion, the free energy of mixing yields the difference of AGy, between a solution of
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one SiO, formula unit in m versus n hydrogen atoms (see section 3.1 3),

AGe[m] — AGsailn] ol (mVH + Ve + QVO)
Ii’.BT a '

mVy
(nVH + Vi + QVO)
—nln
TlVH

. mVa + Vi + 2Vo
+31n ,
nVu + Vs +2V0

(4.3)

where Vi, Vo and Vg are the effective volumes of the H, 0, and Si atoms that we
obtained by comparing the volumes of the different fluid simulations at the same
pressure and temperature. Using a linear interpolation for the data in Table 4.3, we
can determine the saturation concentration for SiO; in fluid hydrogen as a function
of temperature and pressure throughout the 10-40 Mbar and 3000-20000 K range.
A contour plot of constant saturation solubility is shown in figure 7. Solute con-
centrations higher than 1:100 are not shown because they may lead to interactions
between solute atoms. Despite error bars of approximately 1000 K that should be
considered to be uncertainties of the contours, these results show that SiO; is highly
soluble at both Jupiter’'s and Saturn’s core-mantle boundary conditions. This is in
contrast to MgO, which may be not be as highly soluble at Saturnian core conditions.
Therefore, there exists the possibility that SiO; may dissolve from Saturn’s core but
leave solid MgO behind.

The Gibbs free energy of solubility AG may be split into three components: an
internal energy component AU, a volume contribution PAV, and an entropic term
—TAS, which lead to AG = AU — TAS + PAV. The PAV and AU wvalues can
be directly extracted from standard DFT-MD simulations. The remaining term is
—TAS, which is obtained by substracting AU to the calculated AF in TDI. All
terms are shown in figures 8, 9 and 10 as a function of temperature for 10, 20 and

40 Mbar. The PAV term was comparatively close to zero but, in the 20 Mbar
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case, shows a slight preference of approximately 0.5-3.5 eV for materials to remain
separate, suggesting the dissolution reaction is not a pressure-driven process. The
AU term also shows an energy barrier against dissolution that is slightly larger
than the PAV term. For all temperatures under consideration, the entropic term
_TAS is negative, confirming that more disorder is present in the dissolved state.
The —TAS term exhibits a steep negative slope as a function of temperature that
introduces a sign change into the Gibbs energy balance at T' = 6000 K for 20 Mbar.
Above this temperature, dissolution is favored, which can be considered to be an
entropy-driven process similar to HO and MgO [21,22]. For iron, the —T'AS term
also favors dissolution, but there is no energy barrier to overcome because at megabar
pressures, hydrogen and iron are both metals that mix at low temperatures [49].
Figure 9 shows that the Gibbs free energy of solubility depends linearly on tem-
perature. This trend continues into the liquid phase, as our 20000 K data point
confirms. For the temperature interval from 10000 and 20000 K where one expects
Si0s to melt at 20 Mbar [59], this trend implies that the Gibbs free energy difference
between the solid and liquid phases is small compared with the Gibbs free energy
change induced by dissolution. If SiO; melts in the vicinity of the dissolution tran-
sition, one would expect this transition to introduce only a modest change in slope
into saturation solubility curves in figure 7 because the Gibbs free energy changes

continuously across the melting transition.

4.5 Astrophysical Implications

Our results have important implications for the evolution of giant planets. We predict
that the SiO, component has been eroded from the cores of Jupiter and Saturn (see

figure 3) while MgO in Saturn’s core may remain stable. Therefore, a partial solvation
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of the Saturnian core could have taken place, taking away more volatile materials like
Si0, and water ice and leaving behind less soluble materials like MgO. Because of
the differences between the solubility curves of MgO and SiO; in figure 7, partial core
erosion may also occur in extrasolar gas giant planets that are smaller than Saturn
but still large enough to contain metallic hydrogen. In general, larger and hotter
interiors are expected to promote core erosion and a greater degree of redistribution
of heavy material [36]. Provided the necessary energy for convection, the material
may be redistributed throughout the entire planet, leading to an enrichment in heavy
elements in giant planet atmospheres that have previously been attributed to late-
arriving planetesimals.

Alternatively, the rate of redistribution may be hampered by compositional strat-

ification that is the result of double-diffusive convection [4,36,37]. The stratification
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Fig. 9: Splitting of AG at 20 Mbar into its three constituent components:
the internal energy term AU that represents differences in chemical bind-
ing, the PAV term that arises from volume differences, and the remaining
—TAS term that represents entropic effects. The arrow denotes the tem-
perature above which dissolutions are favored at the concentration of one
Si0O; in 384 hydrogen atoms.

would also limit the heat transport from the core, delay a planet’s cooling, and pos-
sibly explain the inflated radii that have been observed for a large of number giant
exoplanets [39].

Our results confirm that the core erosion must be taken into account when future
models of giant planet interiors are constructed. The redistribution of heavy elements
has important implications in the heat transport and mass distribution, and core
erosion plays a fundamental role in this aspect since it may be the source of the
presence of these elements in the outer layers. Further models for the upconvection
of core material are also necessary to understand the present structure of Jupiter
and other planets, whose effects may be reflected on the gravitational moments to

be measured by the Juno mission.
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4.6 Conclusions

This chapter has presented DFT calculations of the Gibbs free energy of solvation
of silica into metallic hydrogen for different pressures and concentrations. This work
provides expand our comprehension of the environment inside gas giants, demon-
strating that that metallic hydrogen is a good solvent for silica at megabar pressures
for temperatures above 5000 K. This result is consistent with recent ab initio solu-
bility calculations that predicted HyO to dissolve into metallic hydrogen at 2000 to
3000 K [22] and MgO at 6000-8000 K [21]. This suggests other insulating materials
may dissolve at a comparable temperature range. We have assumed that there is

sufficient hydrogen available for the approximation of noninteracting solute atoms
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to remain valid. Also, other stoichiometries of 5iOz have not been considered, as-
suming Si and O to dissolve in a one-to-two ratio according to the charge balance.
Tron was found to dissolve at low temperatures because it is a metal [49]. Since
all materials that have been analyzed up to date dissolve into metallic hydrogen, it
suggests that hydrogen will spontaneously react with any material that is used as
confinement during dynamic shock wave experiments that reach megabar pressures
and high temperatures. Our findings indirectly place a limit on the time scale of

such experiments before a significant contamination of the sample sefs in.




Chapter 5

The Melting curve of Silica

The objective of this thesis is to understand how the properties of materials are
affected by pressure and what is their impact on the evolution of solar and extrasolar
planets. In chapter 4, we have reviewed the importance of silica as a key mineral
for gas giant planets formation, and realized that it can be dissolved from their
rocky core by metallic hydrogen. We also realized that silica was liquid beyond
20000 K at 20 Mbar, but since no studies of the melting behavior of silica has been
performed for this regime, we had no clue of the stability of the Fe,P phase of silica
in this context. Establishing the boundary between solid and liquid silica in the
pressure—temperature diagram will provide more information for planetary models,
and increase our understanding regarding the considerations that must be taken into
account when studying the interior of massive rocky planets, like super-Earths, and
gas giants. Thus, this chapter focuses the attention on the melting curve of silica
for the highest pressures ever reported, presenting the melting curve of SiOs up to
6000 GPa (60 Mbar) and covering the range of pressures and temperatures that exist
at the interiors of gas giants and massive super-Earths. According to our ab initio
simulations, silica, if present, is in solid state in the core of all gas giants of our Solar

System.
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5.1 Introduction

The quest for extrasolar planets has revealed hundreds of worlds of different classes,
inspiring novel concepts about planetary formation and composition [60]. Hundreds
of gas giants and super-Earths have been found among them in the last decade [2,61],
providing enormous datasets of their atmospheric composition, size and mass. Esti-
mating the internal composition of these planets is based on planet’s mass to radius
relationships that relies heavily on equations of state (EOS) of materials like hy-
drogen, helium, “ices” such as water, ammonia, methane and silicate rocks [62-64],
which are calculated from electronic structure theory and sometimes measured ex-
perimentally on Earth. In this sense, the giant planets resemble natural laboratories
for studying the behavior of materials at high pressure and temperature [35], which
typically reach values outside the realm of experiment on Earth. This leaves theo-
retical approaches, such as ab initio calculation, as our only window to understand
the properties of matter in these extreme regimes [63].

The models for planetary interiors are constrained by the bulk composition and
distribution of certain chemical species, particularly silicates, which are among the
most common rock-forming elements [65, 66]. Robust models need to include the
EOS for perovskites, magnesiowustites and silicates, and more specifically their phase
transitions and melting curves at high pressures. Approximations like uniformlow
temperature for the whole planet are used as a practical simplification when modeling
rocky planet interiors because the full temperature-dependent EOSs for the materials
of interest are either unknown or highly uncertain at the temperatures massive solid
planets can reach in their interiors and in the pressure range beyond the reach of

static compression experiments (<300 GPa) and the analytical high-pressure laws
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of plasma physics (10000 GPa) [62]. Such knowledge would allow us to predict, for
instance, whether the lowermost mantles of super-Earths, whose bulk composition
consist of silicates, can easily melt or not [11,31,45] and the influence of silica on the
existence of liquid cores [67]. In this context, the phase diagram of silica becomes
fundamental. Currently, the melting curve for silica is known only up to 200 GPa
(2 Mbar) [48]. To our knowledge, no calculations have been reported for the so called
“multimegabar regime” (> 1000 GPa), which corresponds to the conditions found
in the core of many giant planets and some super-Earths [47]. The extreme pressure
and temperature conditions prevalent in giant planet core—mantle boundaries (8000—
12000 K and 800-1800 GPa for Saturn, 18000-21000 K and 3500-4500 GPa for
Jupiter) and supermassive exoplanets, are not yet obtainable in the laboratory.

On the other hand, the melting process is probably one of the most complex
phase transitions in Condensed Matter Physics in terms of basic understanding of
its origins and mechanism. It is a critical process that is responsible for both the
formation of the iron-rich core and volcanism of rocky planets that transfers gases
dissolved in the mantle to the atmosphere [68]. Experiments can only give indirect
evidence of melting by characterizing the atomic neighborhood through diffraction,
for example, but cannot track the atoms position while a solid is melting. On the
other hand, standard molecular dynamics simulations allow us to track the trajectory
of each atom, giving a detailed information about the process of melting, to decide
when the crystalline lattice has became a liquid. However, it is well known that if a
crystal is heated in a completely homogeneous way, it can reach temperatures above
the melting temperature T,, without melting, a phenomenon known as overheating.

Lindemann [69] gave an estimation of the melting temperature in terms of the

vibration amplitud of atoms, establishing that the melting process starts when the
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amplitude of vibration of each atom from its position in the crystalline structure be-
comes so large that it begins to “invade the space” of its nearest neighbors. Assuming
a single frequency of vibration » for all atoms (the Einstein approximation) and us-
ing the equipartition theorem from Statistical Mechanics, the melting temperature
can be obtained by

kT, = 4n%v%mfa?, (5.1)

where m is the atomic mass, a is the distance between nearest neighbors and f is
Lindemann’s allowed threshold of vibration, such that the mean square displacement
of each atom is given by {r(t)%) = fa?.

Another rough criterion to estimate the melting temperature was postulated by
Born in 1939 [70]. He assumes that melting is produced at a point when the crystal
completely loses its resistance to shear stress, becoming mechanically unstable and
then collapsing into a disordered liquid structure. It is usually assumed that the Cyy
elastic constant, is the first to vanish with temperature, and in this case the condition
for T, is simply,

Cu(Ty) = 0. (5.2)

However, both the Lindemann and Born criterion have shown to fail in funda-
mental ways by molecular dynamics, since they are a very simplified view of the
melting process which do not take info account the cooperative nature of the pro-
cess. In particular, neither the Lindemann nor Born criteria conditions are fulfilled
when the liquid starts to nucleate, triggering the melting process, while for a finite
crystal, where the melting process starts at a temperature lower than the one needed
to make the shear resistance equal to zero, the Born criterion is not fulfilled.

Some techniques have had to be developed for molecular dynamics in order to

overcome the overheating problem and predict more accurate melting temperatures,
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which have been extremely successful in determining the melting curve of various ma-
terials. Two of the most common approches to calculate melting curves are described

in computational methodology, known as two—phase simulations and Z method.

5.2 Previous work and motivation

Ab initio techniques like DFT have been extremely successful in determining the sta-
ble structure of various materials. They have allowed scientists to confirm and make
interpretation of the diffraction patterns seen in experiments, or predict new phases
not previously seen, and to identify the phase boundaries where phase transitions
take place. For instance, it has been determined that MgSiO3 becomes unstable and
dissociates in the cores of gas giants and terrestrial exoplanets [417], leaving SiO,
and MgO as separate compounds that form the rocky interior of these planets. In
the case of silica, its ambient phase, quartz, is a fourfold coordinated, hexagonal
structure with nine atoms in the primitive cell [71]. At higher pressures there are a
number of denser phases. The mineral coesite, also fourfold coordinated, is stable
from 2-7.5 GPa, and has a large, complex structure, which is a 24 atom monoclinic
cell [72]. Further compression transforms coesite to a much denser, sixfold coordi-
nated phase called stishovite, stable up to pressures near 50 GPa. Stishovite has a
tetragonal primitive cell with six atoms [73]. In addition to the coesite-stishovite
transition, quartz metastably transforms to stishovite at a slightly lower pressure
of about 6 GPa. Near 50 GPa, stishovite undergoes a ferroelastic transition to a
CaClz-structured polymorph via instability in an elastic shear constant [74,75]. This
transformation is second order and displacive, where motion of oxygen atoms un-
der stress reduces the symmetry from tetrahedral to orthorhombic. Stishovite and

poststishovite phases of silica, in particular, are geophysically important due to its
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wide range of stability in the mantle, the possible chemical reactions of silicates
with liquid Fe at the Earth’s core-mantle boundary (CMB) and its presence in im-
pact craters [76] and meteorites [77]. Experiments and computations [77-79] have
reported a further transition of the CaCly-structure to an a-PbOs-structured poly-
morph at pressures near the base of Earth’s mantle. Above 250 GPa, a tranformation
to a pyrite structure takes place, a 5% denser phase in which the silicon coordination
number increases from 6, in the a-PbO,, to 8 [43]. This number is increased to 9 in
the cotunnite (a-PbCly) phase, that takes place at 700 GPa [47,79]. The first evi-
dential result of a pressure-induced phase transition to the Fe,P-type structure was
reported by Tsuchiya [46] in 2011. The crystal structure consists of closely packed,
fairly regular SiOg tricapped trigonal prisms with a significantly compact lattice,
being the stable structure of silica at the highest pressures ever reported.

Studies about the melting of silica have been carried out through experiments and
MD simulations by many authors [40,44,48,80-83]. The melting curve is extended
to higher pressures as new phases are discovered, but no studies about melting have
been performed for phases beyond the a-PbO; phase (160 GPa), where the pyrite,

cotunnite and Fe;P become the stable phases.

5.3 Computational Methodology

The aim of this chapter is to determine the melting curve of silica for high pres-
sures. We have chosen the Z method, which has received a lot of attention in the
recent years and seems to be a promising method for calculating melting curves of
materials, since it allows to reduce the amount of atoms required to perform the sim-
ulations, compared to the two-phase coexistence method, by using a single phase.

Both methods are explained below.
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5.3.1 Two—phase simulations

A common, simple and widely used approach in atomistic simulations to determine
the melting temperature of a substance at a giving pressure (melting point), is the
two—phase simulation technique [82,84-86]. Its main idea is the direct simulation of
coexistence of the two phases, liquid and solid, at a given temperature and pressure
(NPT ensemble). The simulation cell is divided into two halves, one is filled with
atoms arranged in a solid structure and the other with atoms from a liquid simulation
of the same system, both at the same density. If we perform NPT molecular dynamics
on this composite system for sufficiently long times, we can find upper and lower
bounds for 7T), at the chosen pressure: if the applied temperature is lower than 7,
the solid phase will start to grow, finally filling the whole simulation cell (the liquid
half freezes). If the temperature is higher than 7,,, the liquid phase fills the cell
instead (the solid half melts). This technique has been used extensively on different
kinds of materials, but requires a large amount of atoms (enough for both liquid and
solid halves), and a large amount of simulation steps, which is a common problem
with the melting process. Sometimes a classical potential is fitted to an ab initio
simulation [87] in order to be able to simulate larger systems, but this may introduce
undesirable effects that may result in a different melting curve to that one obtained

by pure ab initio simulations.

5.3.2 Z method

This novel method has recently received a wide application in melting studies [88-
106]. and does not require the coexistence of two phases. Based on the microcanon-
ical ensemble, this method relies on the fact that there is a maximum energy Ejg

which a solid of N atoms confined to a volume V can have, before tranforming com-
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pletely into the liquid state. This defines a critical temperature, known as the limit
of superheating, and denoted by T}g, above which the crystalline structure cannot
survive. A system simulated in the NVE ensemble slightly above T1g will melt, its
temperature dropping naturally to T,, at the pressure fixed by the chosen density.
The idea is giving different initial energies to a crystal with a defined volume (dif-
ferent initial temperatures) and plotting the temperature against energy or pressure.
The locus of points will be an isochore in the T-P and T-F diagram, which will have

a Z shape, as shown in figure 11.
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Fig. 11: Example of an isochore in Z method, used to determine the
melting temperature in the microcanonical ensemble. The left branch
correspond to simulations of the system in solid state, and extends up to
the superheating temperature 71s, where the system has an energy Fps.
Then, with an energy slightly higher, the equilibrium temperature drops
to the melting temperature 7,,.
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5.3.3 DFT Calculations

We used the same PAW pseudopotentials with the PBE exchange-correlation fune-
tional for silicon and oxigen that were used for the calculation of the solvation energy
in the previous chapter. The time step used for all MD simulations was of 0.2 fs. The
simulations were found to be well-converged within a time of 1 ps. A cutoff energy
of 900 eV for the plane wave expansion of the wavefunctions was chosen. More than
10 constant energy simulations of 1 ps were performed for different volumes, until
we get a defined slope in the liquid and solid branches.

We used the Z method to obtain the melting points. No fictitious forces or
rescaling of velocities were introduced in order to keep a constant temperature, since
the simulations are performed in the microcanonical ensemble. Since long waiting
times are required in the Z method for the system to melt when it is overheated [88],
in which cases the temperature drops to another equilibrium temperature during the
gimulation, we are not able to know what the melting temperature of the system is
for sure. Therefore, we made corrections of the melting temperatures according to a
Bayesian analysis, as described in [101], in order to infer the melting point and its

uncertainty from the simulation data.

Crystal structures We used three high-pressure phases of silica: the Fe;P-type
structure, and the previously known cotunnite-type and pyrite-type structures. The
supercells used contain 72 atoms in the case of Fe;P phase, and 96 in the case of
pyrite and cotunnite. A I'-point sampling for the Brillonin zone was used for the
pyrite and FesP structures, while a 1 x 1 x 2 k-point mesh was used for the case of

cotunnite-type SiOs.
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5.4 Results

The following section presents the results comparing the melting points obtained for

the three structures of silica chosen, namely, pyrite-, cotunnite- and Fe,;P-type silica.
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Fig. 12: SiO; melting curve. Green triangles, black squares and red
circles represent the melting conditions for the pyrite, cotunnite and Fe,P
structures of silica. The fitted SiO, melting curve is shown as a blue solid,
thick curve. The magenta thick curve corresponds to the melting curve
of SiO; at lower pressures, predicted by Usui & Tsuchiya using two-
phase MD [48] method. The yellow area corresponds to the core-mantle
boundary conditions (CMBs) for Uranus and Neptune, while the blue
and red areas correspond to the CMB conditions of Saturn and Jupiter,
respectively [60]. Errors bars indicate the uncertainty in the melting
temperature computed by the Bayesian procedure.

Figure 12 shows the melting curve of SiO, for an ultra-high pressure regime, up to
6000 GPa. The symbols represent the calculated melting point for pyrite (triangles),

cotunnite (squares) and Fe;P (circles). Errors bars indicate the uncertainty in the




71

melting temperature computed by the Bayesian procedure [101]. At low pressure
(~ 300 GPa) pyrite points are above the other two phases. Then, at slightly higher
pressure (~ 500 GPa) cotunnite overcomes pyrite. Finally, in the high end pressure
range, Fe;P points are above the others. In order to draw the solid-liquid boundary,
we chose the more stable phase, that is, the structure corresponding to the higher
melting temperature at a given pressure. The melting curve thus obtained, and fitted
accordingly [107], corresponds to the blue line in figures 12 and 13.

The range of pressures and temperatures covered by the calculated melting curve
is relevant for giant planet interiors. Although the pressures present at the Earth's
deep interior are about a few megabar (~ 300 GPa), some super-Earths might over-
come this limit and have core-mantle boundary conditions around and above 1000
GPa [47]. Moreover, the pressures reached at the rocky core of giant planets might
exceed 4000 GPa. Our results show that the silica melting curve lies above the core-
mantle boundary of the giant planets of our solar system. Thus, silica is expected to
be in solid state at the very interior of these planets. This is in perfect agreement
with the calculations of the solubility of silica in metallic hydrogen performed in
chapter 4, where silica was found to be liquid at 2000 GPa and 20000 K [108].

Figure 13 shows a zoom of the SiO; melting curve between 0 and 1500 GPa. We
observe that a discontinuity in the slope of the curve occurs at 330 GPa, independent
of which initial structure is used (pyrite, cotunnite or Fe;P). The PbOs—pyrite bound-
ary has been estimated at 200 GPa [46]. The picture that emerges from our results is
that the stability region of pyrite extends up to 480 GPa, at which point it is replaced
by cotunnite. Considering the Clausius-Clapeyron equation dP/dT = AS/AV, and
taking into account that at high pressure AS =~ kgln2 [109], the change in the

slope of the melting curve at around 480 GPa is indicative of a volume reduction of
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Fig. 13: SiO; melting curve. The legend is the same as figure 12. Black
lines indicate the solid-solid phase boundaries according the calculations
of Taku Tsuchiya and Jun Tsuchiya [46]. The dashed, black line is an
extension to the cotunnite-FeoP boundary predicted by them using a
cubic fit, in order to reach the melting curve calculated in this work. The
dashed magenta line is an extrapolation the SiO; melting curve predicted
by Usui & Tsuchiya [48], with overlaps with our melting curve. The green
line represents the calculated MgO melting curve reported by Boates [41]
for comparison.

AV = 0.114 A3 per SiO, unit. The stability of the cotunnite phase ends at 900 GPa,
where the Fe;P type phase begins. Thus, our simulation suggests that the boundaries
of the cotunnite phase occurs between 480 and 900 GPa and that at higher pressures,
the stable phase is Fe;P. A previous study by Tsuchiya et al. [46] used MD and meta-
dynamics simulations to estimate the pyrite-cotunnite boundary at low temperature
around 650 GPa. The extension of this boundary to high temperature intersects with
our melting curve at 600 GPa (figure 13), generating a pyrite-cotunnite-liquid triple

point. An extrapolation of their cotunnite-Fe;P boundary hints at another triple
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point around 1400 GPa. However, according to our results, both triple points occur
at lower pressures than predicted by Tsuchiya et al. This suggest a displacement of
both solid-solid boundaries but, as in their case, it also confirms that the stability
range of the cotunnite phase increases with increasing temperatures.

Finally, an analysis of the melting curves for MgO and SiO; might be very useful
to predict whether the interiors of gas giants consist of stable rocky cores, if both
materials are present within them. We used the MgO melting curve published by
Boates et al. [41], up to 600 GPa, which we compared to our obtained SiO; curve
(figure 13). It is clear that all the MgO values remain above those of SiO; for
the points shown in figure 13. Although the MgO melting curve remains unknown
for pressures higher than 600 GPa, it has been reported that no further solid-solid
transitions take place up to 4000 GPa [21]. It is quite possible, then, that MgO
melting curve may continue to increase monotonically, staying always above the

SiO; values, up 1600 GPa (figure 13).

5.5 Astrophysical Implications

Our results have important implications for the interior of super-Earths. The interior
of supermassive rocky planets, such as CoRoT-7b, CoRoT-3b, Kepler-10b and GJ
1214b, exhibit pressures that can easily exceed 1000 GPa [63,110], where magnesium
perovskite dissociation is promoted and the properties MgO and SiO; become rele-
vant. We predict that the SiO; component will remain as an stable rocky component
in the deep interior of super-Earths, since beyond 700 GPa, a temperature greater
than 10000 K is needed to melt it, which is too high for the interior of a rocky
planet [13]. Since planets with mantles have hotter interiors due to their insulat-

ing character, the knowledge of the melting point of rocks becomes crucial. Studies
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about the melting behaviour of post-perovskite and MgO at these pressures must be
performed since, coupled to our results, they could finally clarify if the lower-most
mantle of super-Earths can easily melt or not [11,31,68] and give valuable informa-
tion to the study of plate tectonics, where the inclusion of melts significantly impacts
cooling and modulates hence the thermal evolution [111,112].

Formation of magma oceans is also dependent on the melting properties of rocks,
like silica. The difference between the melting temperature of silicates and the
geotherm of a planet becomes more significant in planets with high surface grav-
ity, since the pressure increases more rapidly with depth than on Earth, like in
CoRoT-7b, where the surface gravity is 22.4 m s=2 [67]. The abrupt increase in the
slope of the SiO; melting curve obtained in this study confirms the assumption that
the temperatures found through the deep mantle are not high enough to allow the
silicates to be stable in a liquid state at depth if they are not already molten at the
surface. As a consequence, there should be no underground oceans, or even large
magma reservoirs, on the planetary scale [67].

On the other hand, the conditions at the interior of giant planets lies in the
megabar to gigabar pressure range, at temperatures on the order of 10* K [35] which,
according to our study, is just the region where silica is expected to melt. This is
an interesting scenario, since the rocky core of gas giants with interiors hotter than
Jupiter, but with similar pressures at the core-mantle boundary, may partially melt
their core, with substantial implication in the evolution of the planet; while larger
gas giants, with higher inner pressures, should at least have a solid silica component.
In the case of the gas giants of our Solar System, silica is expected to be in solid
state in their core, as shown in figure 12, although this does not mean that the core

remains stable, since it can be affected by the solvation effect of metallic hydrogen
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as demonstrated in chapter 4.

5.6 Conclusions

We have presented the SiOs melting curve by using ab initio caleulations and the
Z method, up to 6000 GPa and 20000 K. The results allow us to determine the
regions in which this important component of the mantle of rocky planets and of the
core of gas giants can become liquid, providing consiraints in the studies of these
bodies that allow more precise frameworks to understand their evolution. We have
also estimated that the pyrite-cotunnite phase transition at the melting point may
happen at 480 GPa, while the cotunnite-FesP transition may take place at 900 GPa.
This promotes further studies of the solid-solid phase {ransitions of silica in order to
determine more precisely where are the boundary for these high pressure phases.
The reliability of our calculations, though, depends on the exchange-correlation
functional used. LDA and GGA have shown differences in the predicted melting
temperatures [113]. However, in spite of this choise, or the grid of the Brillouin zone
used, or the amount of atoms used to get more precise results, we believe that it is
very unlikely for DFT to be so much in error in the present case, since an error bar
of approximately 1000 K or more should always be considered to be uncertainties
of the conditions found inside planets, and whether experiments may confirm our
results or not in a near future, the trend of our curve will not be very different from

the one obtained by other methods.




Chapter 6

Mechanical instability of
body-centered cubic iron at
Earth-core conditions

The solid inner core of Earth was discovered in 1936 [114] and, with a radius of
1220 km (see figure 14), is thought to consist almost entirely of iron [115], with
less than 10 weight percent alloying elements. Clarifying the phase diagram of iron
therefore has important implications for understanding the structure and origin of
the inner core, and the energy sources that drive the geomagnetic dynamo. Precise
knowledge of structure of iron at inner core conditions is essential for explaining the
seismologically observed pattern of the inner core’s seismic anisotropy, with longi-
tudinal PKIKP waves travelling 3% faster in polar (along the rotation axis) than
equatorial directions [116]. In this chapter we review theoretical evidence pointing
to bee iron being unstable at 300-1500 GPa based on first-principles calculations,
both for the static lattice and via molecular dynamics. The strongest arguments
for high temperature stabilizing bce Fe come from studies using classical many-body
potentials or weak requirements of mechanical stability in ab initio simulations, such

as hydrostatic stress, a situation that does not occur in a free energy minimum only;
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Fig. 14: Interior of planet Earth, showing the different layers and the
solid inner core. Image from www.solarviews.com.

but also in a local maximum, where the structure can be unstable under tetragonal
strain. We show that despite of taking into account tetragonal distortions in the bee
cell, it is still possible to erroneously find stability of bee Fe at Earth’s core condi-
tions if the accuracy and convergence are not fulfilled. We find, from fully converged
and highly accurate ab-initio calculations, that bec phase of Fe is unstable at Earth
inner core (around 300 GPa) for temperatures in the 5500-7000 K range. Ironi-
cally, recent theoretical work shows that, at zero temperature, the bee structure is in

fact stabilized again at much higher pressures, above 20 TPa (200 Mbar); however,
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this is because of the engagement of core electrons in the interatomic bonding of
iron [117,118]. Thus, both theory and experiments [119-124] confirm that Fe forms
in a close-packed structure at the conditions of Earth-like planetary interiors. The
chapter starts with an introduction to the significance of iron for planetary science
and goes over previous theoretical work and challenges. We review some criteria to
deterime stability and suggest new ones. In the final section, the possibility of having

a bee phase for iron at higher temperatures and densities is discussed.

6.1 Introduction

There has been longstanding controversy about the stable crystalline phases of iron
at conditions of Earth’s inner core, 329-364 GPa (5150-6371 km depth) and ~ 5500
(£1000) K [125], and at high pressures in general, with claims that at the center of
Earth the body-centered cubic (bec) structure may be stable at temperatures close to
the iron melting point [126-139], which has been estimated to be 6700 K [18] at these
pressure conditions. The theoretical rationale is that entropy associated with atomic
vibrations might stabilize the bec relative to close-packed structures at combined
high pressures and temperatures. Recent experiments [110,120,122, 123,140, 141] do
not reveal evidence for the bec phase at these conditions, but instead point to the
hexagonal close-packed (hep) structure being stable. These results have implications
for disciplines ranging from applied physics and engineering to the geophysics of
planetary cores. In particular, the discovery of large numbers of extrasolar planets
provides motivation for understanding the properties of Fe — a key planetary core-
forming element — at high pressures and temperatures [11, 13,49, 62, 142, 143].

The elastic constants of the hep phase of iron, combined with plausible mech-

anisms for producing lattice preferred orientation in polycrystals, are capable of
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explaining the seismic anomaly. However for the cubic phases of iron (fcc and bec)
which also are elastically anisotropic, the pattern of anisotropy is very different
and no plausible mechanism has been advanced to explain the dominant pattern
of inner-core anisotropy in terms of a cubic polycrystal [144, 145]. Mechanical and
thermodynamic stability in iron is strongly influenced by pressure, temperature and
composition. The bee phase of iron, the stable polymorph near ambient conditions,
transforms to a hexagonal close-packed phase near 10 GPa, and becomes mechani-
cally unstable at higher pressures and low temperatures [146]. Nevertheless, there
have been persistent arguments that the stable phase of iron at inner-core conditions
is bece. The strongest arguments for a mechanically stable bee phase at high pressures
and temperatures come from theoretical calculations (ab initio and classical-potential
based molecular dynamics simulations) [131, 136-138]. These past studies suffered
from limited reliability of classical many-body potentials, the accuracy of which is
untested in studies of the mechanical instability of bec iron, and also from focusing
on the hydrostatic nature of the stresses for inferring mechanical stability. However,
hydrostatic equilibrium inferred from inspection of stresses does not need to corre-
spond to a free energy minimum; it can instead be due to a local maximum, with
the unit cell metastable with respect to a finite tetragonal strain. On this last point,
Vocadlo et al. [132] ab initio free-energy calculations for the bce phase do consider
tetragonal distortions, and using a 128 atoms cell, they find bee Fe becoming mechan-
ically stable above 6000 K at Earth-core density (vs. 4500 K found in a previous
paper [130]). However, this study lacks the necessary accuracy and convergence.
Similarly, Bouchet, et al. [139] work is inadequate in using hydrostatic equilibrium
to determine mechanical stability of the bec structure. Using thermodynamic in-

tegration based on first-principles molecular dynamics simulations, Cui et al. [147]
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analyzed the combined effects of high temperature and impurities on the stability of
bee structure of iron with respect to tetragonal strain at Earth inner core pressures.
Based on their results for temperatures close to 7000 K they find that although the
small amount (6.25 at.%) of silicon or sulphur increases the stability of bcc phase
it fails to achieve the complete stability. Contrary to these studies, we find from
more accurate and fully converged ab initio calculations, that the bce phase of Fe is
unstable to temperatures of 7000 K at inner-core densities.

We have carried out studies for the mechanical stability of bee phase under tetrag-
onal and, reported for the first time, orthorhombic strains, employing 128 and 180
atoms cells, respectively, using a 2k-point mesh in each case, which provides much
better accuracy not studied so far. Our fully converged calculations carried out over
10 ps demonstrate the instability of bee phase under tetragonal and orthorhombic

distortions beyond the temperature of 6000 K.

6.2 Computational Methodology

Electronic-structure based total-energy calculations were carried out using the pro-
jector augmented-wave (PAW) method as implemented in VASP [55, 148], based
on density-functional theory (DFT) with the generalized-gradient approximation
(GGA) of Perdew, Buke and Ernzerhof (GGA-PBE) [56]. The PAW is closely re-
lated to the ultra soft pseudopotential method, and gives results that agree with
those of all-electron methods. The 3p and 4s semi-core electrons were taken in
their valence configuration in generating the pseudopotential, and an energy cutoff
of 350 eV was used for the plane-wave expansion. The simulations are confined
to the Born-Oppenheimer surface, and the effect of finite temperature on the elec-

tronic structure is included through Mermin’s formalism [58]. We implemented an
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18 x 18 x 18 Monkhorst-Pack k-point mesh [57], and Brillouin-zone (BZ) integration

was carried out with the linear tetrahedron method [149].
Tetragonal distortions

For tracking the structural transformation from body-centered cubic (bcc) to face-
centered cubic (fec), known as the Bain path transformation [150], we used a body-
centered tetragonal cell (bet, space group I4/mmm) at the volume of 7.2 A3/atom, a
cell which is able to represent both bee and fee structures by means of a tetragonal
distortion of the cell vectors (see table 6.1). The same volume was preserved for

every distortion performed.

Structure | b/a | c/a
bee 1 1
fee 1 V2
fec V2 1
fec 1/vV2 [ 1/v/2

Table 6.1: Unit cell values for bee and fee in a tetragonal cell with cell
vectors a, b and ¢ (bet, space group I4/mmm).

Orthorhombic distortions

For the bcc-hep transition path under orthorhombic distortions we used an or-
thorhombic cell with 4 atoms (space group Cmem, lattice vectors a, b and ¢) and
placed Fe atoms at the 4c Wyckoff positions: (0,y,1/4), (0,—y,3/4); (1/2,1/2 +
y,1/4), (1/2,1/2 — y,3/4) [151,152]. This cell is able to accomodate fec, hep and
bee structures and we allowed for changes in the cell shape (but not in volume) and
relaxation of internal degrees of freedom. When y = 1/4, this cell corresponds to

a face-centered tetragomal (fet) cell if b/a = 1, being able to transform from bec
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(¢/a = V/2) to fec (c/a = 1). We get hep choosing b/a = V3 and ¢/a = /8/3 for
y = 1/3 (see table 6.2).

Structure | y | b/a

cla

bee 1/4 | V2 V2
1

8/

fee /4] 1
hep 1/3 V3 3
opt. hep | 1/3 | v/3 | 1.593449

Table 6.2: Unit cell values for bee, fee, hep and optimized hep in or-
thorhombic cell with cell vectors a, b and ¢, and atoms in the 4c Wyckoff
positions of the space group Cmem.

Molecular dynamics

For molecular dynamics simulations, we used the NVT ensemble (N, number of
atoms:; V., volume; T, temperature), with a Nosé thermostat [153] and supercells
containing 128 (4x4 x4 bet unit cells) and 180 (5x3x3 orthorhombic unit cells) atoms
for tetragonal and orthorhombic distortions, respectively. We sample the Brillouin
zone on a 2 X 2 X 2 k-point mesh, and assume thermal equilibrium between ions and
electrons via the Mermin functional [58] (i.e., we set the electronic temperature T, =
T). The calculations were carried out for volume of 7.2 A3 /atom for temperatures
varying from 5500 to 7000 K. Using a time step of 1 fs, we find that 15000 time
steps (=15 ps) yield converged values of the stress tensor, with the final 10 ps used
for accumulating averages. The uncertainty in the components of the stress tensor
due to thermal fluctuations is evaluated with the blocking method [154]. Although
possibility of magnetism is considered in recent paper by Ruban et al. [155], all our
calculations are based on PAW approach described above and are non-spin polarized,
as previous calculations have shown that the phases of iron are non-magnetic for the

pressure-temperature conditions we have considered [130, 146].
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6.3 Results

6.3.1 Static Electronic Structure Calculations (T = 0)

The total energy was calculated for both tetragonal and orthorhombic distortions
by varying ¢/a as well as b/a, keeping a constant volume of 7.2 A3/atom (equivalent
to a pressure of ~300 GPa). In figure 15 we show the energy surface obtained

from electronic structure calculations at T = 0 K for tetragonal distortions. Under

== Baln Path

12
¢la

Fig. 15: Energy surface obtained from electronic structure calculations
for static ions, using tetragonal (bet) cell at 7.2 A3 /atom and electrons
at T,; = 0 K. At this volume, the pressure is ~300 GPa. The black
dashed lines indicate the bee-fec Bain paths, and the labels show how bee
structure is located in a saddle point, while fec is located at local minima.

tetragonal distortions, the bee phase occupies a local energy maximum at bja =
¢/a =1, and the minima, corresponding to the fec phase, are located at ¢/a = V2,
bla=1;cla=1bla= V2:and c/a =b/a= 1/+/2 (see table 6.1). The bet structure
is located at a saddle point at ¢/a = 0.9 and b/a = 1.0, from which the total energy

decreases as the b/a ratio is changed. An energy surface with similar topology 1s
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well known in other transition metals [156], including in iron from a tight-binding
model [157]. Our energy surface agrees with a recent ab initio re-determination of
the b/a-c/a energy surface [138].

Total energy calculations along bec-hep path using orthorhombic cell (see ta-
ble 6.2) further reveal stability of the fec (b/a = c/a = 1) and hep (b/a = V3 =

1.732, ¢/a = /8/3 ~ 1.632) structures, as shown in figure 16, The bee structure

== Baln Path
1.8

14
cfa

Fig. 16: Energy surface obtained from electronic structure calculations
for static ions, using the orthorhombic cell at 7.2 A3 /atom and electrons
at T,; = 0 K. At this volume, the pressure is 300 GPa. We notice the
stability of fec and hep structures, located in energy local minima, respect
to the bee, located in a saddle point and, therefore, unstable.

(b/a = ¢/a = V/2) is clearly unstable but lies close to the energy minimum defining
the stability region of hep. Thus the electronic-structure-based total-energy calcula-
tions for static ions document the stability of close-packed (hep and fec) structures,
in contrast to the bcc phase that is seen to be unstable under both tetragonal and

orthorhombic distortions.
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6.3.2 Molecular Dynamics Simulations

To study the effect of temperature on the structure at this pressure (300 GPa) we
performed ab initio molecular dynamics (AIMD) simulations in the 5500-7000 K
temperature range for tetragonal strains, as explored by other authors [132, 135],
and orthorhombic strains, which have not been explored before. AIMD is more time
consuming than molecular dynamics based on semi-empirical classical potentials, but
has the important advantage of making no a priori assumptions concerning the the
nature of the charge density, electronic structure or bonding.

For tetragonal distortions (128 atoms supercell, 4 x 4 x 4 bet unit cells) we chose

four ¢/a values along the Bain path, from 0.95 to 1.2, shown in table 6.3.

Point Supercell vectors Ratios
Ja 4b 4c b/a | c/a
1st (9.8993,0,0) | (0, 9.8993,0) | (0,0,9.4044) | 1.00 | 0.95
2nd (bec) | (9.7315,0,0) | (0, 9.7315,0) (0,0,9.7315) | 1.00 | 1.00
3rd (9.5745,0,0) | (0, 9.5745,0) | (0,0,10.0533) | 1.00 | 1.05
4th (9.1577,0,0) | (0, 9.1577,0) (0,0,10.9893) | 1.00 | 1.20

Table 6.3: Tetragonal distortions. Lattice vectors corresponding to dif-
ferent values of ¢/a, the second point (b/a = c¢/a = 1) corresponding to
the bee lattice. Volume per atom: 7.2 A%,

For orthorhombic distortions (180 atoms supercell, 5 x 3 x 3 orthorhombic unit
cells) we chose four points: A, B, C, and D, defined in table 6.4. Point A (b/a = 1.45,
c/a =1.42) is close to bce, while B (b/a = 1.50, c/a = 1.45) and C (b/a = 1.573,
¢/a = 1.523) are distorted towards hcp (b/a = 1.73, c/a = 1.63). Point D (b/a =
1.135, ¢/a = 1.125) corresponds to distortion towards fec. An schematic representa-

tion of these points is shown in figure 17.
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Point Supercell vectors Ratios
ba 3b 3c b/a | c/a
A [ (12.0471,0,0) | (0, 10.4810,0) (0,0,10.2641) | 1.450 | 1.420
B | (11.8290,0,0) | (0, 10.6461,0) (0,0,10.2912) | 1.500 | 1.450
C | (11.4540,0,0) | (0, 10.8102,0) | (0,0,10. 4667) | 1.573 | 1.523
D | (14.1270,0,0) | (0,9.6205,0) | (0,0, 9. 5357) | 1.135 | 1.125
fee | (15.3262,0,0) | (0,9.1957,0) | (0.0,9. 1957) 1 1
bee | (12.1644,0,0) | (0,10.3218,0) (0,0,10.3218) V2 | V2
hep | (10.8373,0,0) | (0,11.2624,0) [ (0,0,10.6183) | /3 8/3
Table 6.4: Orthorhombic distortions. Lattice vectors corresponding to

distortions A, B, C, and D, along with lattice vectors used for fee, bee
and hcp supercells Volume per atom: 7.2 .

Mean Square Displacements

Total and partial mean square displacements (MSD) along the lattice vectors a, b
and ¢ (X, Y and Z directions) were computed from the positions of atoms as a
function of time from results of molecular dynamic simulations. The the trajectory
of atoms obtained from VASP were analyzed with the LPMD software package, a
molecular dynamics code developed during the course of this thesis in collaboration
with the Group of Nanomaterials at the Universidad de Chile (see appendix C),
which was published [159] and uploaded to its own website, http://www.lpmd.cl,
as a free open-source code. For calculating the partial MSD, a slight modification
of the MSD plugin was implemented in the LPMD code: a decomposition in X, Y
and Z components which, when added together, sum the total MSD. This allows us
to determine what is the dominant direction in which the atoms are moving when a
rearrangement of atoms takes place during a simulation. MSD of atoms in tetragonal
and orthorhombic cells is presented in figure 13.

For tetragonal distortions (figure 183, left panel), MSD shows an overall motion of

atoms along ¢ (Z direction) for all points chosen along the Bain path. This motion
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Fig. 17: The figure shows the various points chosen from energy contours
in figure 16 for AIMD simulations. Points A, B and C show successive
orthorhombic distortions from bee towards hep while point D denotes
stretching towards fec.

increases with increase in ¢/a ratio. We notice that there is almost no difference
in the displacements along a and b (X and Y directions), indicating that atoms
vibrate around their initial X and Y positions, but moved to another Z position.
For orthorhombic strains (right panel), MSD in the Y direction increases considerably
for distortion point B, compared with A, and decreases for point C, which is close to
hep. For distortion towards fec (point D), the MSD in X direction is slightly larger
than in Y and Z directions. However there is no noticeable difference in the MSD
of atoms in any directions for bee. Although point A is close to bee in orthorhombic
distortions, we notice large atomic motion in Y direction as compared to the motion
in Z direction for ¢/a = 1.05 in tetragonal distortions, which is the closest point to
bee for those distortions, indicating stronger instability for orthorhombic distortions.
These displacements show strong preference for the fecc and hep phases, since for

distortions close to these structures, the MSD is isotropic, meaning that atoms remain




88

[— MsD__— MsDX__— MsDY — MsDZ|
1.0 c/a=0.95 3 0.35F b/ﬂ=1.135, c/a=1.125
g o8 1 oa2s} -
bct ‘6 0.6 W D fcc
£ o4} g 9 1
0.2 ] o.usr‘ ]
siok ' c/a'=1.00 I 0.35 I iJ/a=l1.45,.c/a=-11.42 I
g 08 1 o2s
bece S 0.6} ] A bcc
£ o4} 1 oa1s
0.2 aak
d " cfa=105 1 oast b/a=150,c/a=145
~ 0.8 ]
< [ 0.25 1 B
S 0.6
£ 04 { oas ]
02 1 oos
o3sl b/a=1573, c/a=1523 ]
025} ]
fcc C hep
L ]
o.osf‘-‘ ]

Time (ps)

Tetragonal

o

R T S WS

Time (ps)
Orthorombic

Fig. 18: Mean square displacements (MSD) of atoms along X, Y and
7 directions and the resultant MSD for tetragonal (left panel) and or-

thorhombic (right panel) distortions.

around their initial positions in these structures, while bec shows instabilities in the

atoms positions, since the atoms were displaced in a prefered direction.

Stress Stability Analysis Under Tetragonal Distortions

The components of the stress tensor (S;; with ¢,j = z,y or z) were obtained from

the ab initio molecular dynamics and are shown as a function of time in figure 19 for
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tetragonal and orthorhombic distortions (discussed in the following section). As we
can see in the left panel (tetragonal distortions), the tensor S;; becomes anisotropic
for values of ¢/a deviating on either side of ¢/a =1 (bee), that is, towards either bet
or fec.

The values of S;; were used to study the relationship between these anisotropies
and the stability of the bec phase against pure shear along the isochoric Bain path
through stability creteria, as suggested by previous studies [160-164]. In tetragonal

distortions at fixed volume and no shear (see appendix D), the strain tensor is defined

by 1
(14+6)72 -1 0 0
e= 0 (1+6)72-1 0], (6.1)
0 0 b)

Since the unstrained tetragonal cell is bec, § is related to c/a (see equation (D.9)) by
g = (1+06)F, (6.2)

which means that § = 0 (¢/a = 1) corresponds to the bec structure, while § =
Y2 — 1 = 0.26 (¢/a = +/2) defines the fec structure. The Helmholtz free energy is

related to the strain by
3
F(6,T)=F(0,T)+VSLd+ §VBS(52, (6.3)
where the longitudinal stress anisotropy
1
and the shear elastic constant (shear modulus)
1
Bs = 5(311 — Ba) (6-5)

are related by
SL{IS) = SL(O) + Bgd. (66)
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Fig. 19: Variation of various components of stress tensor with time for
tetragonal (left panels) and orthorhombic (right panels) distortions.
Here, the shear modulus is written in terms of the Bj; coefficients, which are the
elastic stiffness constants defined in Wallace’s work [165], rather than in terms of the

usual Cj; stiffness constants, known as moduli of elasticity. The coefficients B;; are
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related to the Cj; through relations that include the pressure applied to the system
(B;j = Cy; if all S;; = 0, that is, zero pressure), and they are the appropriate elastic
constants to analyze stability under pressure since, under external loading, the elastic
constants Cj; are dependent on the applied stress (160,163, 164].

Three generally accepted elastic stability criteria for a cubic crystal are

By +2Byi; > 0, (6.7)
By > 0, (6.8)
1
Bg = 5(311 — B12) > 0, (6.9)

which are connected to the bulk, shear and tetragonal shear moduli respectively
and are referred to as spinodal, shear and Born criteria, respectively [165]. We
also write these stability conditions in terms of the B;; coefficients instead of the
C;;, since the Born criterion, as well as the others, were formulated in the zero
stress state, which makes problematic to predict elastic stability of a crystal under
external loading, whereof the need for stress-dependent elastic constants arises. In
the case of tetragonal distortions, mechanical stability requires the Helmholtz free
energy in (6.3) to be at a minimum with respect to §, which yields the following two

conditions of mechanical stability:
8 =1, (6.10)
Bs >0. (6.11)

The first of these, (6.10), is satisfied if the state of stress in the bec phase is isotropic:
Si; = —Pdb;; where P is the pressure and §;; is the Kroenecker delta. The second
one, (6.11), is the same as (6.9). Thus, we will focus on these two relationships to
study stability under tetragonal distortions, since S, = 0 and Bg > 0 provide the

necessary and sufficient conditions for mechanical stability.
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Extensive convergence tests were performed to obtain 81, and the error intro-
duced by taking few k-points calculating the longitudinal stress anisotropy was cor-

rected by taking
S1.(8) = Sp(8,T) + AS(d), (6.12)

where the correction AS.(6) is given by the difference between the value of Sp(0)
in the converged (infinite k-point) limit and its value using only the I' point, that
is, AS(0) = Sp(6,ny — o0) — SL(4,T). Through a series of calculations using
the tetragonal 128-atom supercell, it was found that a 2 X 2 X 2 k-point mesh
yields fully converged values of the stress tensor. The correction varies linearly

as ASL(8) = 54(c/a — 1) GPa over the range c¢/a = 0.95-1.2.

The calculation of S and Bg by means of introducing the averages of the S;;
components over time into the equations (6.4) and (6.6), leads to the values shown
in table 6.5, resulting in longitudinal instabilities according to the stability condi-

tions (6.10) and (6.11). By analogy with S, we also compute shear-stress anisotropy
1
Sg = Sz:z - E(S.r-y A Syz}s (613)

that we believe to be responsible for the bee-hep transition away from the Bain path.
A plot of the longitudinal-stress anisotropy Sy, is shown together with the shear-stress
anisotropy Sg in figure 20.

The mentioned anisotropic behavior of S;; for values of ¢/a deviating to bet and
fee is therefore reflected on the calculated values for 51, produced by the tetragonal
distortion; and with no distortion (¢/a = 1) the stresses are isotropic, implying they
are hydrostatic in the simulation cell. Development of anisotropic stresses results in

instabilities in the longitudinal stress, Sp, which is related to shear elastic constant
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Axial Ratio (¢/a) | 6 = (c/a)*® — 1| Sy (GPa) | Sy (GPa) | Bs (GPa)
0.95 -0.0316 1.96 0.62 -62.1
1.05 0.0308 -1.64 -1.30 -53.3
1.1 0.0656 -0.98 0.97 -14.9
1.15 0.0977 -0.96 1.27 -9.8
1.2 0.1292 -0.82 1.57 -6.4

Table 6.5: Variation of Si, Ss and Bg with axial ratio ¢/a. Shear elastic
constant is seen negative confirming instability of bee iron under tetrag-
onal distortions.
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Fig. 20: Comparison of longitudinal stress anisotropy with shear stress
anisotropy as a function of ¢/a ratio. Shear stress instabilities are smaller
than longitudinal stress instabilities but mostly positive within the asso-
ciated uncertainties. The stability criteria (6.10) is violated for all values
of ¢/a.

Bg through (6.6).
In figure 21 we provide the results of total energy calculations and variation of

the longitudinal-stress anisotropy Sy, along the Bain path at 7 = 0 and T' = 5500 K.
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We point out that shear instabilities are the outcome of MD simulations which are
absent in electronic structure based total energy calculations along the Bain Path.
In strained configurations, the stress tensor is anisotropic, as demonstrated by the
values of the longitudinal stress anisotropy (figures 20 and 21), which decreases
monotonically with increasing 8. There is thus no restoring force acting against
tetragonal strain: S.. becomes more negative as the c-axis is stretched, corresponding
to a driving force acting to further stretch the c-axis. At § = 0 (c/a = 1) the
stress tensor is isotropic, in agreement with previous ab initio molecular dynamics
simulations [130,131].

Detailed analysis reveals that bce iron violates the Born stability criterion for
shear modulus (6.11), which has not always been examined in previous ab initio
molecular dynamics studies. We find that Bs = —53.3 GPa for c/a = 1.05, clearly
documenting instability. This disagrees with a previous ab initio results giving (By; —
Byz) > 0, but the calculations were for much smaller systems (54 atoms) and we infer
that they were under-converged [130].

In addition, bee iron has erroneously been claimed stable due to the calcula-
tions finding the stress tensor to be isotropic for ¢/a = 1, Sy(6 = 0) = 0: this
condition guarantees only that bec iron occupies a local extremum on the energy
surface [130,135,139]. Later work on the stability of bcc iron under tetragonal strain
found significantly different results when using a 128 atom cell and a single k-point,
including mechanical instability of bec Fe at 6000 K with 64 atom cell [132]. This
is in accord with the present, more extensive simulations, where we also find that
shear anisotropy develops upon application of tetragonal strain, a feature that is not
apparent in low-temperature calculations based on the primitive unit cell. In fig-

ure 21, the stress anisotropy obtained from electronic structure calculations (lower
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Fig. 21: (Upper)Variation of longitudinal elastic anisotropy with tetrag-
onal strain from ab initio molecular dynamics simulations (red symbols)
as compared with the result for the static lattice with 7' = 5500 K (green
line). The open diamonds represent the results of Vocadlo et al. [132]
for a 128 atom cell and a single k-point. (Lower) Computed free energy
(top, plotted relative to fec energy) and stress anisotropy S, (bottom) of
iron along the isochoric Bain path at a volume of 7.2 A3 /atom for the
static lattice, and for electrons at T = 0 (blue circles) and 7' = 5500 K
(green squares). The values of the ¢/a ratio corresponding to the bec (1.0)
and fec (v/2) structures are indicated by vertical black lines. The yellow
shading shows the range of values of the c/a ratio that violate the Born
stability criterion (6.11).

panel) can be compared with results from AIMD (upper panel). The shear-stress

anisotropy is smaller than the longitudinal anisotropy (mostly positive) for ¢/a val-
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ues up to ¢/a = 1.2 (figure 20) demonstrating a further mechanical instability of bec
iron that has not previously been recognized.

Other studies claiming mechanical stability of bcc iron are not based on ab initio
molecular dynamics, but instead on an embedded atom model (EAM) potential that
is fit to a limited number of ab initio results [130]. Results based on EAM [131]
cannot be considered reliable to study stability, among other reasons, because they
predict bee to have the lowest Gibbs free energy at the conditions considered here, in
disagreement with ab initio calculations showing that hep is in fact more stable [130].
Therefore, past studies claiming stability of bec Fe suffered from (i) misinterpretation
of the requirements for mechanical stability (stability inferred only from isotropy
of stress tensor for bee) and/or (i) the use of classical many-body potentials, the

accuracy of which are untested for documenting mechanical stability of bec iron.
Stress Stability Analysis Under Orthorhombic Distortions

The components of the stress tensor are shown as a function of time in figure 19
for the four points chosen for orthorhombic distortions (A, B, C and D, defined
in table 6.4 and shown in figure 17), along with the evolution of the stress compo-
nents in tetragonal distortions. We observe that the stress anisotropy increases for
orthorhombic distortions away from bec (b/a = c/a = V2) towards A and B. The
diagonal elements of the stress tensor show greater spread in values near bee (point
A and especially point B) than for closed-packed structures points (C and D, corre-
sponding nearly to hep and fee). The upper panels in figure 19 show the off-diagonal
clements. We also notice that the difference in off-diagonal elements of the stress
tensor under tetragonal distortion show larger anisotropy (almost by a factor of 10)

as compared with the values for orthorhombic distortion. To analyze the mechanical
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stability in orthorhombic distortions, we compute the quantities

Sc = S“z_Sm.r (614)

Sy = Suy—Se (6.15)

from the diagonal elements of stress tensor, as suggested in previous works [160-163],

and the difference between relative strains

g = Ee¢—Ea (6.16)

eb = Eb - Ea, (6‘17)

that result from stretching bec towards hep or fec (¢, being the change in the lattice
parameter relative to starting bec lattice along a = X,Y or Z). We determine the
stability by the sign of the stress-strain products S. - e., Sy ey, with positive values
indicating stability and the stresses tend to restore the structure; if the products are
negative, then the applied strain is further enhanced and the structure is unstable,

that is,

Sce. >0, (6.18)

Spey > 0. (6.19)

For distortions of bec towards hep, A (b/a = 145, ¢/a = 1.42), B (b/a = 1.5,
c/a = 1.45), we find positive values for both e, and e, and negative values for
both S, and S, (see tables 6.6 and 6.7); the structures are therefore mechanically
unstable. For points C (close to hep) and D (close to fee) find that Sce. > 0;
Spes > 0, indicating that these structures are stable. We found that sampling the
Brillouin zone on at least a 2 X 2 x 2 k-point mesh was essential in arriving at these

conclusions.
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Point A B C D

S.. (GPa) | 277.726 | -283.095 | -287.888 | -288.492
S,, (GPa) | -282.017 | -284.193 | -278.958 | -278.156

S.. (GPa) | -295.473 | -293.402 | -282.686 | -281.714
S., (GPa) | 0.0761 | 0238 | -0.128 | 0.3l
3,. (GPa) 0325 | 0.0574 | 0.131 | 0.146
S.. (GPa) 0139 | -0.171 | -0.164 | -0.003

Table 6.6: Average stress tensor for points A, B, C and D with 2 x2 x 2
k-points mesh.

Point Ea £h £ €c ey 8 Sy S. X € | SpXep
20.0276 | 0.0314 | -0.003 | 0.0246 | 0.0590 | -17.747 | -4.291 -0.437 | -0.253
20.0097 | 0.0154 | -0.0056 | 0.0041 | 0.0251 | -10.307 | -1.038 -0.0421 | -0.0261
C0.0588 | 0.0473 | 0.0134 | 0.0721 | 0.1061 | 5.202 8.930 | 0.3753 | 0.9471
0.1613 | -0.0680 | -0.0762 | 0.2374 | 0.2293 | 6.778 | 10.336 1.6093 | 2.3699

Ol Q) by| =

Table 6.7: Strains along cell vectors a, b, and ¢ (£a,b, and z,., respec-
tively), stress difference S, = S.. — Siz and S, = S, — Sz, strain differ-
ence e, = €.— £, and e, = €, — &,, together with stability conditions (6.18)
and (6.19).

6.3.3 Structure analysis for tetragonal and orthorhombic dis-
tortions

In order to determine the structure resulting from these instabilities, we used the
Common Neighbor Analysis (CNA) technique [166], which is based on nearest neigh-
bor atoms coordination to distinguish among different structures produced in the
molecular dynamics. The CNA method comes implemented in the LPMD code [159],
which was also used to calculate the MSD in the previous section. A detailed expla-
nation of the method can be found in the appendix C.

To analyze the coordination of atoms through CNA, we chose the structure
present at the final step of the MD simulations, which represents a thermodynami-

cally equilibrated structure. In figure 22 we show the raw atomic pattern from final
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MD step for tetragonal distortion c/a = 0.95 and for orthorhombic distortion point
A, together with the pair (radial) distribution function (RDF), which we use to fix
the cutoff radius . for CNA (r < r. will mean two atoms are bonded), and coordi-

nation number as a function of the distance. However, the analysis performed over

4.0 ; v ; 70 ; ' .
gl — Tetragonal || — Tetragonal
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Fig. 22: (a) and (b) show the time-averaged radial distribution function
g(r) and coordination number CN for tetragonal (¢/a = 0.95) and or-
thorhombic distortions (point A, b/a = 1.45, ¢/a = 1.42). (c) and (d)
display atoms in the XY plane of the simulation cells in the final step of
MD simulation for tetragonal and orthorhombic distortions, respectively.
Common neighbor analysis (CNA) carried out for (c) and (d) and also all
other simulations for last snapshot of the simulation failed to reveal any
crystalline structure.
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the final time step MD simulations failed to provide any structure, so we generated
time-averaged structures for each case from the average positions of individual atoms
over the entire MD simulation. We display such average structures for ¢/a = 0.95
and ¢/a = 1.05 in figure 23, and for orthorhombic distortion points A and B in

figure 24. In both cases, we compare the radial distribution function and coor-

6 T T T T T T T T 7 I I T 1
| —  ¢/a=0.95 1 | — ¢/a=0.95
5H — c/a=1.05 4 80 — c/a=1.05
-| — ¢/a=0.95 Av. i 250— —  ¢/a=0.95 Av.
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Fig. 23: Comparison between average structures generated for tetragonal
distortions ¢/a = 0.95 and ¢/a = 1.05. (a) and (b) compare the radial dis-
tribution function (RDF) and coordination number (CN) of both samples
with the instantaneous RDF and CN of their average structures, shown
from the XY plane in (c) and (d), respectively. CNA showed them to be
mostly bee and hep (see Table 6.8).
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Fig. 24: Comparison between average structures generated for orthorhom-
bic distortions A (b/a = 1.45,¢c/a = 1.42) and B (b/a = 1.50, c/a = 1.45).
(a) and (b) compare the radial distribution function (RDF) and coordi-
nation number (CN) of both samples with the instantaneous RDF and
CN of their average structures, shown from the XY plane in (c) and (d),
respectively. CNA show them to be mostly bee (see table 6.8).

dination number for these structures. We noticed that for tetragonal distortions
of ¢/a = 0.95 and 1.05 (figure 23) the time-averaged structures have a majority of
neighboring pairs consistent with bcc and hep structures respectively (see table 6.%).
Orthorhombic distortions (figure 24) yield time-averaged structures corresponding

to bee for point A and an unknown structure for point B. For distortions C' and D
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the time-averaged structures were hep and fec respectively, consistent with the fact

that those are precisely their colsest structures.

Distortion Types Structure | Ideal types
of pairs of pairs
Tetragonal: 444 (30.36%) 444 (42.9%)
¢/a = 0.95 555 (25%) bec-like | 666 (57.1%)
’ 666 (44.64%)
300 (3.125%) 421 (50%)
Tetragonal: | 421 (53.125%) . 422 (50%)
cla=105 |422 %40.625%) hep-like
544 (3.125%)
421 (0.80%) 444 (42.9%)
433 (2.88%) 666 (57.1%)
Orthorhombic:| 444 (39.36%) | beclike

A 544 (5.12%)
666 (51.84%)
421 (37.40%)
422 (18.04%)
.| 433 (8.66%)
Orthogmmbm. 244 (9.20%) Unknown
544 (17.33%)
666 (9.37%)

Table 6.8: Resulting structures from positions averaged over entire MD
gimulation time. Performing quenched molecular dynamics over these
structures, led to quenched average structures whose CNA showed 421
and 422 types of pairs only, except for the case of ¢fa = 1.05 where
10.5% of pairs were not 421 nor 422. This shows that all structures are
hep.

However, these results were still not satisfactory, since the atoms in average
structures had large forces on them. Therefore, we allowed them to relax using a
quenched molecular dynamics (QMD) algorithm, which takes the atoms from the
final time-step of our AIMD simulation fo their closest equilibrium positions. The
quenched structures reveal displacements in mean-atomic positions away from bec

sites, which is shown for one tefragonal case and one orthorhombic case in figure 25.
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Fig. 25: Representation of the structure of Fe in the Y Z plane resulting
from quenching the final time step of the MD run for tetragonal distortion
(a) ¢/a = 1.05 and (b) for orthorhombic distorted point A. Arrows show
the pattern of atomic motions from ideal bce sites (transparent dots for
tetragonal distortion for ¢/a = 1.05 and black dots for orthorhombic
distortion point B to relaxed atomic positions (yellow)).

We show in figures 26 and 27 a comparisson between the radial distribution
function and coordination number of the samples, and in figure 28, just for clearer
comparisson, is a diagram of the same structures put together in their way to their
quenched structures. It can be noted in these figures that the smeared pattern of
the radial distribution function of the average structures is replaced by clear peaks
in the quenched structure, pointing toward well defined structures. Quenching at
¢/a = 0.95 and 1.05 for tetragonal distortion and for orthorhombic distortions A and

B led to the final hep structure:

e For ¢/a = 0.95, 75% of the pairs were 421 and 25% were 422 which, in fact,
differs from perfect hep only in percentage types (see table C.1), but keeps the

same atomic neighbors coordination.

e For ¢/a = 1.05, CNA showed 421 and 422 types of 50% each of neighboring
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pairs, consistent with hcp structure.

e For tetragonal distortions up to c/a = 1.2, all the time-averaged structures
were bee (except ¢/a = 1.05 which was hep), and the analysis of quenched

atoms from the final MD step yielded the hep structure (table 6.8).

e CNA revealed that the quenched average structure of A and B having only 421

and 422 types of pairs of equal amount, as in the case with hep structure.

e Quenching the average structures for orthorhombic points C' and D did not

change their structures, and they remained in hep and fee respectively.

e We also carried out relaxation of internal degrees of freedom on atoms from
final MD step using conjugate gradient method, which lead to a structure that
showed same types of neighboring pairs as we obtained from quenching for

orthorhombic distortions.

Our results indicate that the existence of shear stress instabilities (see equation 6.1 3)
to be the cause for hep being more stable, which in fact is away from bce-fee transition

path of orthorhombic distortions.

6.3.4 Possibility of bcc phase at high temperatures and den-
sities

We investigated stability of bee iron at temperatures higher than 5500 K and inner-

core densities. We carried out molecular dynamic simulations at I'-point along with

2 x 2 x 2 k-point mesh for tetragonal (c/a = 1.05) and orthorhombic (point A) at

7000 K. The stress variation for these as a function of time is shown in figure 29.

Variation of diagonal and off-diagonal stresses is seen to be anisotropic and very

much similar to their behavior at 5500 K, shown in the previous section.
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Fig. 26: Comparison between average structures generated for tetragonal
distortions ¢/a = 0.95 and ¢/a = 1.05 after the quenching process (QMD)
performed over the structures shown in figure 23. (a) and (b) compare
the RDF and CN of both samples with the instantaneous RDF and CN
of their quenched average structures, shown from the XY plane in (c)
and (d). The observed peaks and steps respectively in RDF and CN are
consistent with hcp arrangement, according to CNA.

We provide the average stress tensors in table 6.9 for ¢/a = 1.05 and point A at
the highest temperature analyzed, 7000 K. Stress stability analysis (section 6.3.2)
carried out for this tetragonal distortion at this higher new temperature reveals a
negative shear modulus value (—82 GPa). Applying the stress stability analysis for

orthorhombic distortion to the point A (equations (6.18) and (6.19)) we find both
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Fig. 27: Comparison between average structures generated for orthorhom-
bic distortions A (b/a = 1.45, ¢/a = 1.42) and B (b/a = 1.50, c/a = 1.45)
after the quenching process (QMD) performed over the structures shown
in figure 24. (a) and (b) compare the RDF and CN of both samples
with the instantaneous RDF and CN of their quenched average struc-
tures, shown from the XY plane in (c) and (d). The observed peaks
and steps respectively in RDF and CN indicate ordered structures. CNA
showed (see table 6.8) that (c) was hep and (d) hep-like (presence of small
amounts of other pairs).

products S, - e, and Sp - €5 to be negative. Thus bee phase of Fe is unstable both
under tetragonal and orthorhombic distortions at the temperature of 7000 K. The

time-averaged structures for both ¢/a = 1.05 and for point A were found to be in

hep with atoms having large forces. Quenching the atoms and treating them with
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Fig. 28: Path to equilibrium positions, from last step of the MD (left) to
the average structure (middle) to the quenched average structure. The
first two rows corespond to the tetragonal points ¢/a = 0.95 and c¢/a =
1.05, while the third column is the orthorhombic point A.

CNA showed 421 (50%), 422 (50%) types of pairs. The structure thus is hep, hence
our studies do not support that anharmonic or entropy stabilization of bce phase in
iron has occurred at 360 GPa pressure even at temperature of 7000 K.

We also carried out AIMD simulations for tetragonal distortions along the iso-

choric Bain paths for the density and temperature conditions reported in the paper
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Fig. 29: Variation of various components of stress tensor with time for
tetragonal distortion ¢/a = 1.05 (top) and orthorhombic distortion point
A (bottom) at temperature of 7000 K.

by Bouchet et al. [139], comparing results for a 2 x2x2 k-point mesh with those for
only the P-point. Our PAW potentials include 3s, 3p, 3d and 4s states as valence
electrons with cutoff radii and cutoff energies the same as the values used in Bouchet
study. We find the stresses becoming anisotropic for tetragonal distortions on either
side of ¢/a = 1 for densities of 16, 18 and 20 g/cm® at temperatures above those

Bouchet et al. inferred the bee to be stable (see figure 30 for the evolution of stresses




g.. FOKN: c/a=1.05 A
S.z (GPa) -208.012 | -288.4922
S,, (GPa) | -295.402 | -278.156
S.: (GPa) -312.222 | -281.7144
S., (GPa) 3.756 0.1311
S,. (GPa) 1448 0.146
S.: (GPa) 0.070 -0.003
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Table 6.9: Average stress tensor for points A and ¢/a = 1.05 (I' point
with (2 X 2 x 2) k-points mesh.

p (g/ecm®), T (K) [ ¢/a | S:. (GPa) S,y (GPa) S.. (GPa) Sp, (GPa)
18, 6000 0.95 | 052.0(X2.5) | 957.0(X1.0) | 915.0(x4.1) | 40.0(F43)
1.0 | 939.0(£3.0) | 944.0(X4.0) | 938.0(£3.0)
T.05 | 931.0(£1.2) | 930.0(X15) | 957.0(XL8) | -26.0(£2)
20, 7000 0.5 | 1358.0(£3.2) | 1358.0(13.4) | 1313.0(x2.9) | 45.0(+3.7)
1.0 | 1345.0(£0.2) | 1343.0£(1.6) | 1346.0(0.9)
1,03 [ 1330.0(£2.8) | 1320.0(23) | 1365.0(£3.0) | -35.0(%3.6)

Table 6.10: Diagonal elements of Stress tensor averaged over the simula-
tion period and longitudinal stress instability calculated in present studies
for density temperature values corresponding to Reference [139].

as a function of tetragonal distortion at densities of 18 g/cm® and 20 g/cm? at tem-
peratures of 6000 K and 7000 K, respectively). The stresses were averaged over the
simulation time, the time-averaged diagonal components of stress being provided in
table 6.10.

The longitudinal stress anisotropy Sp is close to zero, within the uncertainties
in stress (table 6.10). However S > 0 for ¢/a < 1, and S, < 0 for ¢/a > 1,
which is exactly opposite to the requirement for stability. The shear modulus is
therefore negative, violating the second stability condition Therefore, our results do
not support Bouchet et al’s conclusion that the bec phase is stable, as the Born

stability criterion is robustly violated for pressures up to 1.5 TPa at 7000 K.
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Fig. 30: Variation of stress tensor components with time for tetragonal
distortions for density-temperature conditions corresponding to mechan-
ical stability of bee iron in reference [139]. The variation shows that the
stresses converge to a mean value that differs from initial values do to
changes in the structure during the simulation, which redistribute the
stresses and produces the anisotropies. This also highlights the impor-
tance of long simulation times to get converged results.
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6.4 Conclusions

We find that the mechanical instability of bcc iron originates in the static lattice
contribution to the Helmholtz free energy (figure 21). For example, a series of static
calculations on the Bain path combined with our AIMD results allow us to determine
separately the three contributions to the Helmholtz free energy [118],
F(V,8,T,Ty) = Fu(V,8,T =T = 0)

+ AFy(V,6,T =0,Ty) (6.20)

+ AFu(V,6,T, Ta),
from the static lattice and T,; = 0, from thermal excitation of electronic states
AF,; at finite T,;; and from fully anharmonic lattice vibrations AFp,. The variation
of longitudinal stress S;, with free energy F for the static lattice shows the same
mechanical instability seen in the AIMD calculations. At T' =0, S, decreases with
increasing 8, which requires Bg < 0, and also accounts for the local maximum in the
total energy for bee (0 = 0) via

2
%;-; =3V Bg <0. (6.21)

The contributions of AF,; and AFy, are to reduce but not to eliminate the mechanical
instability.

The anisotropic structure of Earth’s inner core revealed by seismological obser-
vations could be explained by the preferred orientation of the hexagonal closepacked
(hep) phase of iron [119], being the sound velocity along the caxis faster than that
of aaxis one of the evidences, which is confirmed by the inelastic Xray scattering
experiment at high pressure and ambient temperature [167,168]. An alignment of
the hep—Fe-Ni-Si alloy with the caxis parallel to the Earth’s rotation axis could

account for the observation of the seismic wave anisotropy of the inner core [119].
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Models of Earth'’s interior that use information from seismic waves, and couple it
with models for the inner core that consider the crystal structures of iron in it, have
already been purposed [169] and are very useful for understanding the relationship
between the seismic scenario and mineral physics. These models are based on the
knowledge about the stability of the phases of iron, and thereof the importance of
the study presented in this thesis.

The status of experimental and theoretical studies in Fe and its alloys at higher
pressures and temperatures of relevance to Earth core conditions is reviewed in detail
by Hirose and co-workers [121] for iron and its alloys. Consistent with them, our
results point toward a close-packed crystalline structure for Earth’s inner core (hcp
and/or fec), rather than bee. Small amounts of lighter alloying elements such as C,
0, Si and S are also expected in Earth’s inner core although the exact composition
of Barth’s inner core is still not known. Theoretical investigations to date find that
addition of these elements reduces the hep-bee Gibbs free energy difference, although
it does not stabilize the bee structure [170, 171]. Experiments also find that the hcp
phase is stable in pure Fe and Fe-Si system at the highest pressures and temperatures
that have been explored [140,172]. On cosmochemical grounds, Ni is expected to
be the most abundant alloying element. Because Ni tends to stabilize fec, both fcc
and hcp phases may coexist in the inner core, providing a possible explanation for
the variation of anisotropy both laterally and with depth [173]. Very recent results
indicating that hep iron may be elastically isotropic at core conditions [174] provide
further support for the possibility of a multi-phase inner core.

The experimental support for bec phase came from Dubrovinsky et al. work in
Fe-10wt%Ni above 225 GPa and 3400 K [128] but their results are not supported

by later experiments [120, 124]. In shock studies the iron shock Hugoniot shows
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anomalies that were originally interpreted as hep-bee phase transformation, but new
experiments show these anomalies are more likely due to an extended melting inter-
val [175].

It has been proposed that the bcc phase may reappear just below melting tem-
perature of iron at high pressure [128,129, 131], perhaps stabilized by anharmonic
offects as is the case for bec phases of Ti, Zr, Hf [176]. Melting is well deter-
mined on the Hugoniot of iron [126, 175, and recent X-ray diffraction under ramp-
compression shows that iron remains in a close-packed structure under dynamic load-
ing to 560 GPa [123]. Also, laser-heated diamond-cell experiments with online X-ray
diffraction suggest that iron remains in Acp structure above 4500 K at 200 GPa [122].
Some experimental support for a bec phase came from work on Fe-10wt%Ni above
225 GPa and 3400 K [128], but these results are not supported by later experi-
ments [120,121]. Also, studies of Sakai et al. [1 19] for Fe (273 GPa, 4490K), and
for Fe-Ni (250 GPa, 2730K) and Fe-Ni-Si (304 GPa, 2780 K) alloys reveal the hep
structure. Recent theoretical work (I point only) shows that the presence of up to
6.25 atomic percent Si or S increases the stability of bee Fe at temperatures up to
7000 K, but not enough to actually stabilize this structure [147].

In summary, both theory and experiment now document the stability of close-
packed (hep) iron at pressures of 0.3-1.5 TPa and temperatures near the melting
point. The inference is that the elastic constants of hep Fe, combined with plausible
deformation mechanisms for producing lattice preferred orientation in polycrystals,

can explain the observed seismic structure of Earth’s inner core (116,144,177, 178].




Chapter 7

Conclusions

7.1 Summary

Quantum mechanics provides an exact description of matter at the atomic level, but
solving the exact Schrédinger for many electrons and ions is still an elusive problem,
with only approximated solutions. The Density Functional Theory (Chemistry Nobel
Prize 1998) provides an accurate description of reality by mapping the many-body
problem onto an independent electron problem with an effective one-electron poten-
tial depending only on the electron density. However, in practice, the functional
for exchange-correlation must be approximated for real materials, and approximated
functionals sometimes lead to unreliable results. Such problems drive development
of non-mean-field based approaches in search of even better accuracy and reliabil-
ity. Nevertheless, DFT remains as a phenomenally successful approach to finding
solutions to the Schrédinger equation, and its predictions have shown to be in very
good agreement with the experiments repeatedly [24, 113, 179-181] and, due to that,
has become a tool that is used regularly by large numbers of researchers in chem-
istry, physics, materials science, chemical engineering, geology, and other disciplines.

This provides the base to trust DFT for predicting properties of matter not previ-
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ously studied experimentally, or to generate information that would be essentially
impossible to determine through experiments.

As we push the limits of pressure an temperature further, we obtain information
about the behavior of materials at extreme conditions, which are needed for a better
understanding of the Earth’s lower mantle, as well as the internal structure and
dynamics of exoplanets. The discoveries of new exoplanets continue apace and reveal
an extraordinary diversity of planetary systems and exoplanet physical properties,
raising new questions in the fields of planetary and material science. The accuracy
of interior models of these planets has been hampered by a lack of experimental or
theoretical data on the behavior of materials at high pressures. The best available
equations of state (EOSs) for high-pressure materials are based on the extrapolation
of experimental data [182]. Therefore, to pursue the physical properties of materials
under extreme conditions and its applications to the study of the interior of solar
and extrasolar planets, it is fundamental if we want to understand how planets are
formed and evolve.

This thesis presents three applications of density functional theory to the study
of the interior of planets, which are used to show the importance of theoretical
caleulations at the atomic level to understand different aspects of planetary science.

The first project (Chapter 4) provides first-principles-based results for solvation
energies of silica into metallic hydrogen, to study whether the cores of giant planets
can dissolve or not. Prior to this thesis, the possibility of dissolving the rocky cores
of gas giants into metallic hydrogen had been studied only using magnesinm oxide
(MgO) and water ice (Hz0). This thesis presents a study performed on silica (Si02),
another important candidate for rocky cores composition, showing that this material

also dissolves on metallic hydrogen at megabar pressures for temperatures above
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5000 K, conditions present in the core-mantle boundary of giant planets, allowing
us to conclude that the rocky cores of gas giants may be dissolving. This conclusion
is also supported by subsequent results that show that iron is also dissolved by
metallic hydrogen, and suggest that other insulating materials may dissolve as well.
Partial solvation of the core is predicted for Saturn, since its core-mantle boundary
conditions lay in a range of pressures and temperatures where the solubility of SiOs is
energetically favored, but the solubility of MgO is not. Hot Jupiters, in contrast, are
expected to favor much more solubility than the giant planets of our solar system.
The study presented here provides indirect evidence of the enrichment in heavy
elements in giant planet atmospheres.

The second project (Chapter 5), deals with the melting of silica. Using the Z
method, we have determined the melting temperature of silica at pressures not pre-
viously reported (>1000 GPa), covering the range relevant to the interior of massive
rocky planets and the core-mantle boundary of gas giants. Any subsequent studies of
silica at high pressures will be benefited from our results, since it places limits to the
temperatures at which this material remains solid, without which overheated struc-
tures may be misinterpreted as stable solid structures in a region of temperatures that
would correspond to a liquid. The phase transition of the pyrite-type to cotunnite-
type SiO, is also questioned in view of the results of this thesis, since a stable phase of
a material should correspond to the one with highest melting point [104], compared
to the other structures of the same material. Our findings are not in agreement with
the phase diagram presented by other authors [46, 183], since the phase boundaries
they report indicate that the pyrite-cotunnite-liquid triple point takes place around
600 GPa and 9000 K, while the highest-melting-point criteria in our study indicates

that the transition takes place at 480 GPa, while the cotunnite-FeyP-liquid triple
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point, according to our melting criteria, should be located around 900 GPa and
11000 K. These kinds of transitions change our understanding of how planet-forming
silicates, such as perovskites, dissociate into elementary oxides at thermodynamic
conditions expected in the interior of solar giants and exoplanets, and is important
to study these materials in more detail in order to do more accurate predictions
about the effects that these phase transitions can have in planetary science.

The third project, presented in Chapter 6, reveals that the body centered cubic
structure (bee) of iron should not been regarded as stable at the center of Earth. A
static lattice contribution to the Helmholtz free energy is, we believe, the origin of
the mechanical instability. Through the analysis of stress anisotropies, coupled with
the evaluation of the Born criteria and directional mean squared displacements in
both tetragonal and orthorombic strains, this study concludes that bee is unstable
at temperatures and pressures relevant to the Earth core. Although previous works
have obtained opposite results, concluding that bec iron could become more stable
at Earth’s core pressures [130], the work done in this thesis shows that the difference
in the predictions is due to small-size efects and short simulation times, and that
bigger supercells (as the 128- and 180-atoms cell we have used) and a better Brilloin
zone sampling lead to more accurate results. Our findings are consistent with recent
studies [121] and supported by experiments [110, 172, which support the idea that
iron and its alloys should have a close-packed crystalline structure (hep or fec), rather
than bee. Although the addition of some lighter alloying elements reduces the hep-bee
Gibbs free energy difference [170, 171], it is not enough to stabilize the bec structure.
The controversy of the stable phase or phases of iron at Earth’s core has not yet
been settled, but the more evidence we have in the same direction, the more we will

know about the center of our planet and the relationship between its structure and
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selsmic waves.

7.2 Future Research

The increasing number of exoplanets discovered has motivated further research in
high pressure physics, an area that has been poorly explored for most of the materials.
The more we know about materials at high pressures and temperatures, the better we
understand what happens inside of planets, and in turn, the better we understand
how planets are formed and evolve. Experiments performed with diamond anvil
cells (DAC) have reached pressures around 300 GPa and temperatures up to 1000 K,
while dynamic compression is able to reach up to 1000 GPa [84,184, 185] by sending a
laser-induced shock wave through a sample that is precompressed inside a diamond-
anvil cell. These experiments provides information about what is happening inside
planets, and confirm theoretical results comming from DFT.

Countless DFT-based studies have studied properties of materials at extreme
conditions, predicting properties that have allowed to understand different phenom-
ena inside massive rocky planets and gas giants [8, 19-23,46,47,49-51,64, 108, 110,
139, 180, 182, 186]. The studies usually deal with simple crystals, like SiO, MgO,
Fe, C, perovskites, or hydrogen/helium mixtures. In future projects, it is important
to continuing expanding the scope DFT to even more complex materials in order to
explore a wider range of planetary compositions.

In this thesis, other stoichiometries of SiO; have not been considered for studing
its solvation into metallic hydrogen, and it has also been assumed that Si and O
dissolve in a one-to-two ratio according to the charge balance. Removing these
asumptions may lead to different results, and it would be interesting to consider

them in future studies. Another assumption made in this thesis is that the GGA
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functional of Perdew, Burke and Ernzerhof properly describes the behavior of this
materials at these pressures. Although previous studies show that GGA give rise
to the same results as LDA for silica at these pressures [46, 183], further studies
need to confirm if this holds for other properties, especially regarding to electronic
properties, since it is known that DFT fails in predicting the correct structure at
ambient conditions and /or accurate elastic stiffness [187]. The process of dissolution
is also an interesting phenomenon that has not been analyzed either, since the rate
at which these materials dissolve is not known and it is important for determining
the history of gaseous planets.

Studies of melting at high pressures are still scarce, and the pressure and tem-
perature conditions at the interior of planets are nowadays out of the realm of the
experiments. Until we obtain conclusive experimental evidence in this regard, the-
oretical predictions are the only possible approach to study materials melting, and
different techniques, such as the Z method, two phases method, and thermodynamic
integration, should be compared among each other to give consistency to the pre-
dictions. The Z method still lacks of a demonstration based on thermodynamics
or statistical mechanics, but has proven to be a very good approach to determine
melting temperatures, specially at high pressures, since its predictions are in good
agreement with the results comming from other techniques, as we have shown for
silica in this thesis. The method requires an unknown waiting time for the mate-
rial to melt during the simulation, and alternative methods should be developed in
order to cope with it. Calculating melting curves completes the phase diagram of
materials, and thus provides a degree of knowledge that is a starting point to study
other properties, or phenomena directly related to melting at the interior of solar

and extrasolar planets.
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Lastly, a possible, important, and interesting new project could be the design of
classical potentials for materials at high pressures. Quantum-mechanics-based meth-
ods, such as DFT, are limited to small system sizes compared to classical systems,
due to the tremendous efforts that solving the Schrodinger equation requires. Using
DFT simulations to fit an appropiate classical potential that describes a material
at high pressures correctly, would allow to study other type of phenomena, such as
the effect of impurities, vancancies, stacking faults, dislocations, nucleation, propa-
gation of shockwaves, polycrystals, and other phenomena that can be studied only
when a large number of atoms is considered. One approach to build such potentials
is the force matching methodology proposed by Izvekov, Parrinelo, Burnham and
Voth [52], which we used to calculate the classical potentials in the thermodynamic
integration in chapter 4, but new techniques are appearing that seem to be simpler
and promising [188]. Such a project would be important for advancing the field of

computational material science.
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Appendix A

Astrophysical models

A.1 Gravitational moments

The gravitational moments Jo,, of a planet are defined by

Jon = —ﬁ J[[ o0 Puntcostya (A1)

where p(r, 8) is the planet density at a distance r from its center and colatitude 8, M
the mass of the planet, R, the equatorial radius, and Py, are Legendre polynomials
of order 2n. They are related to the external gravitational potential V of the planet

by

T n=1

Virg) = -Z4 [1 - f: (%) JanPan(c08 9)] . (A2)

The gravitational moments J,, can be measured by a spacecraft coming close to the

planet, preferably on a polar orbit. Together with the mass,

M= f [ / o, 6) dV, (A.3)

provide a constraint on the interior density profile and the possible layering within

these planets. [4, 189].
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A.2 Interior structure models for solid exoplanets

The most common models for rocky planets consider a spherically symmetric and
fully differentiated planet in thermal steady state and perfect mechanical equilibrium.
Under these assumptions, its depth-dependent interior structure is described by the
following set of coupled differential equations for mass m(r), acceleration of gravity

g{r), and pressure P(r):

%7:_1 = darlp(r), (A.4)
% = 41er(r)—2g—g_Q, (A5)
Z—I: = —p(r)g. (A.6)

where 7 is the radial distance from the center of the planet, G is the gravitational
constant, and p is the local density. Within the core, an adiabatic temperature
distribution can be assumed, given by dT/dr = —(ygT)/®, where 7 is the thermo-
dynamic Griineisen parameter and ® = Kg/p the seismic parameter. The equation
Ks/Kr = 1+ vaT relates the adiabatic bulk modulus Kg to the isothermal bulk
modulus Kp, where « is the thermal expansivity of a given material. All these
equations are solved using the central boundary conditions of m(0) = 0, g(0) =0,
P(0) = P., and T{(0) = T where P. and T, are initial guesses for the central pressure
and temperature, respectively. Integration then proceeds outward through each shell
until the total mass M, of the planet of radius R, is achieved. If necessary, this pro-
cess will start over with iteratively adjusted central pressure P, and temperature Te.
The algorithm stops integrating if the surface boundary conditions of m(R,) = M,,
P(R,) = P,, and T(R,) = T, are met at 7 = Rj.

Tn these models, the local density is calculated by means of equations of state
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(EOS) fitted to experimental or simulation data. For example, the third-order Birch-

Murnaghan EOS,

P =3rated - o) |14 303 - 0t - ). (A7)
based on the expansion of Eulerian finite strain and widely used in mineralogical
and geophysical applications, is used to calculate how the density of a given mate-
rial behaves with increasing pressure at a constant reference temperature. In this
equation = = p/py is the compression ratio to the ambient density po; Ko and K de-
note the isothermal bulk modulus and its pressure derivation at ambient conditions,

respectively. Other models make use of the well known Vinet EOS,

1

P =3Koz3(1 - 27 3) exp [g (Ky—1) (1 — T'i)] . (A.8)

or some modifications like the generalized Rydberg EOS [190] or the reciprocal K’
relation [191], derived from seismic data.

All these equations depend on material properties at high pressures, like po, Ky
and K}, which can be obtained from ab initio calculations or experiments. Some ap-
plications of these models to rocky planets and how to infer the internal composition

can be found in the works of Valencia [10,11] and Wagner [12, 13].




Appendix B

Solubility

B.1 Solubility at different concentrations

When the solubility problem is addressed, a concentration must be chosen in or-
der to calculate the Gibbs free energy of solvation, AGs,. Once this energy has
been calculated, it can be used to determine the free energy of solvation at an-
other concentration. For the case of silica dissolved into metallic hydrogen, we have
AGg(SiO; : H,,), which corresponds to the free energy of solvation at a concentra-
tion of one SiO, formula unit per n hydrogen atoms. For lower concentrations, say
one Si0, formula unit per m > n atoms of hydrogen, the free energy of solvation
will be AGeu(SiO; : Hyy). Using equation (3.1), the energy difference between these

two solvation energies will be
AG(n,m) = AG(SiOz: Hp) — AG(S8i0; : Hy)
= G(I,,5i0;) — G(8i02) — G(Hm)
—G(HnSiC)z) + G(SiOz) -+ G(Hn)

= G(HnSiOz) — G(Ha8i02) — G(Hm-s), (B.1)
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since G(Hy) — G(H,) = G(Hm-r). Now, since dG = —SdT + V dP, for constant T
we have

G(H,Si02) = Fo(HnSi03) + PV(IL,Si05) + f Vdp, (B.2)

Therefore, equation (B.1) can be expressed as

— Fy(H,8i0,) — PV{(HSi0z) — f V(H,.SiOz) dP

— Fy(ls) = PV (Hien) — / V(H_n) dP. (B.3)
Since n < m, we can make the separation V (H,,8i02) = V{H,Si02) +V (Hyn-n), and
write

AG(n,m) = Fy(H,SiO2) + PV (H,S8i02) + PV (Hrn-n)

+ f V(H,S8i05) dP + f V (Hp_n) AP

—Fy(H,8i02) -~ PV (H,SiOz) — f V(H,Si0,) dP

—FO(Hm—n) - PV(Hm—n) - fV(Hm—n) apP (B4)

= Fy(HmSi0z) — Fy(H,Si02) — Fo(Humon)- (B.5)

This means that AG(n, m) can be calculated only knowing the Helmholtz free ener-
gies of these 3 systems: SiO, dissolved into mn hydrogen atoms, SiO; dissolved into

n hydrogen atoms, and a system with (. — n) hydrogen atoms.

In the ideal gas approximation, a system with N atoms of mass m, has a iree

energy . - :
F=—NksTh [e_ (m B ) 1 , (B.6)

N \ 27h?

therefore, for a system with Ny atoms of H, Ng atoms of Si and No atoms of O,
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has a free energy

] Zgﬁ Zé\iTSi Zgo
FO(HNHSINmONo) = —kTIn (-JV_—HIT\T—STN—OI-

Zgﬂ é\iTSi Zgo
= —kTln N —kTn m — kT In Nol
% (mHkBT)%

Ny \ 2wh?

r 3
eV m35kBT 2
NgikT'In NSi( ot ) ]

~ 3
eV (mokgT \?
NokT'In No( 22 ) 1 (B.7)

= —NykTI

where mg, mg; and mo are the atomic masses of hydrogen, silicon and oxigen at a vol-

3 2 3
ume V, and e = exp(l). Defining A=¢ (%)2, B = (ﬂgg,%i)z, C = (%ﬁ;)g
and using the corresponding values of Ny, Ngi, No in each term of equation (B.5),

we can approximate these free energies by

Fo(HnSi02) = (—kT) :m In (%;”—1) +1ln (%/1-) +2In (%)] . (BS)
Fy(H,8i0;) = (—kT) :nln (é?) +1iln (?) +2In (%)] (B9
Fo(Hmon) = (—kT) :(m —n)ln ( ?f_‘i%n)] . (B.10)

Using these expressions, equation (B.5) reads

AG(n,m) = Fo(HnSi0z) — Fo(HASi02) — Fo(Hm—n)

(=kT) [m n (%? (W;%n)) +nin ((nf - n) Ain)

BW cv; 2
+1n (5172) +2In (—z-c,—vz)] : (B.11)
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Expressing the volumes in terms of effective volumes, we have

1

V2

VE; = (m—n)VH,

and then,

mVa + Vs + 2Vo,

nVa + Ve + 2Vo,

(m—n)mVa+ Ve +2V0

(B.12)

(B.13)

AG(n, m) (—kT)

m
(m ~

o

(m - n) VH

+n1n( n

(m - n) nVg + Vg 4+ 2Vo
mVy + Vg + 2V

(=kT) |mn (

(’J’LVH -+ VSi + 2Vo
—nln

mVH

)

nVh
1
+3ln (nVH Ve 4 2Vo

Then

)|

|
om(@)] o

)

(B.15)

AG = (—kT) [mln (1 + 4 ;2"”2

)—nln(l-l-

1+ 2re
n

m+'r1—|—21‘2
n+r;+2rp

ol

where 1y = ‘{;:'Il, T = gﬂ

(B.16)




Appendix C
Analysis with LPMD

Las Palmeras Molecular Dynamics (LPMD) software package, is a molecular dy-
namics code developed during the course of this thesis, in collaboration with the
Group of Nanomaterials at the Universidad de Chile, which was published [159] and
uploaded to its own website, http://www.lpmd.cl, as a free open-source code. Al-
though it was initially designed to perform classical molecular dynamics, its tools
have proven to be very useful for handling, analyzing, creating and modifying atomic
configurations of other programs. In particular, a plugin for VASP is included in the
code, which allows to create crystals in the VASP cell input format (POSCAR) and
analyze the corresponding output, obtaining properties such as the pair distribution
function, mean squared displacement, velocity autocorrelation function, and many
others in a very straightforward way.

In order to determine the structure resulting from molecular dynamic simula-
tions, we used the Common Neighbor Analysis (CNA) technique, as proposed by
Honeycutt and Andersen [166], based on nearest neighbour atoms. With this tech-
nique they could describe the structural transition in small clusters with increasing
size from icosahedral structure, to polyicosahedral to face-centered cubic. Faken and

Jénsson [192], used a slightly different version of CNA in combination with 3D com-
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puter graphics to study the crystal nucleation in a molten copper slab. In the original
CNA method [166] proposed by Honeycutt and Andersen a structure is represented
by diagrams. Starting with a pair of atoms, a and j, the diagram is classified by a
set of four indices: i, 7, k, and I. The first index i, with values 1 or 2, indicates if
« and 3 are nearest-neighbours (i = 1) or not (i = 2). The index j is the number
of neighbours shared by common neighbours o and 3. The third index, k, is the
number of bonds that can be formed between these j common neighbours and the
fourth index, [, denotes the number of bonds in the longest continuous chain formed
by the k bonds. Two atoms are nearest neighbours if the distance between them is
less or equal to a cutoff distance, which is defined as the first minimum in the pair
distribution function.

In Figs. 31(a)—(d) we illustrate the four indices used in CNA classification with
diagrams of few selected structures. Fig. 31(a) shows the 1421 diagram, present in
the fee structure, formed by a pair of nearest neighbour atoms, sharing 4 common
neighbours having two bonds. Fig. 31(b) represents the 1422 diagram present in hcp
structure with same amount as in 1421 diagram. Fig. 31(c) and (d) show the 1444
and 1666 diagrams which are found in the bee structure.

For a given perfect crystal structure, the presence of CNA diagrams is well de-
termined as observed in Table C.1 and can be used to distinguish them. All pairs of
nearest neighbour atoms in the fee structure form diagrams of the type 1421. In the
hep structure half the pairs of nearest neighbour atoms form 1421 while the other
half form 1422 diagrams. The bce structure has an unbalanced distribution of dia-
grams with 3/7 of the nearest neighbour atoms pairs forming 1444 diagrams while
the rest 4/7 forming 1666 diagrams. As we refer only to bonded atoms with first

neighbours coordination, 7 = 1 is ommited and we use only jkl indices to identify




Fig. 31: Illustrations of diagrams constructed from the classification of
local structures defined in the CNA method. Brown (i) and yellow (j)
atoms indicate one pair of nearest neighbour atoms, light-blue (k) atoms
are common neighbours of the brown-yellow pair. (a) shows a 1421 dia-
gram, indicating that brown (i) and yellow (j) atoms are nearest neigh-
bours with 4 common neighbours (k) having two bonds. 1421 is the only
diagram present in fec structure. (b)—(d) showing 1422, 1444, and 1666
diagrams are found in the hep and bee structures (figure provided by

Tsuzuki et al. [193]).

the structure.

CNA diagram | fec | bec | hep
1421 11005
1422 0] 0 |05
1444 0 [3/7] 0
1666 0 |4/7] O

Table C.1: Relative presence of different CNA diagrams in the fee, bec,

and hep crystal structures
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Appendix D

Tetragonal Strain

In elastic strain theory [194], when a strain is performed over a solid with orthonormal
vectors X, ¥, 2 embedded in it, the new axes are written in terms of the old axes:
X' == (14 €)X+ €y ¥ + €a2s
V = €aX 4 (1 + € )F + €22; (D.1)
2 = €. %+ e, ¥ + (1 +€,.)2.
These coefficients form the strain tensor, given by

€ze €ay Cxz
= | €y Eyy €yz |- (D.2)
€z €y €zz

Under tetragonal distortions performed over a crystal with Bravais lattice vectors

a = ax, b = by, ¢ = c2, the strain tensor becomes

z 0 0
e=10 =z 0], (D.3)
0 0 9
and the new lattice vectors,
a' = (1 + z)aX,
b’ = (1 + z)by, (D.4)

¢’ = (1 8)cz.
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For presserving the volume in the deformation, we require that V = abe equals

V' =a'b'd = (1 + x)*(1 + §)abe, which leads to
z={(1+68)% -1, (D.5)

and we, therefore, obtain a strain tensor given in terms of a single parameter, é:

(1462 -1 0 0
£ = 0 (1+6)7%-1 0]. (D.6)
0 0 §

The size of the new lattice vectors in {D.4) can also be written in terms of &:

o =(1+6)"%a
b = (1+6)"2b, (D.7)
d =(1+6)c,

from where we get the relationship
¢ 3€

For the special case in which the initial cell is cubic, like bee, ¢ = a, therefore,

C,

==+ 8)%. (D.9)
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