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RESUMEN

Sean B; : 85 — S, j = 1,2, dos recubrimientos holomorfos no constantes dados
entre superficies de Riemann compactas. Asociado a ellos esta su producto fibrado (en
la categoria de conjuntos) el cual puede O no ser conexc y cuando es conexo puede o
no ser irreducible. Se da una descripcién Fuchsiana de las componentes irreducibles del
producto fibrado y, como consecuencia, mostramos que si uno de los recubrimientos Bj es
regular, entonces todas las componentes irreducibles son isomorfas, En el caso en que el
producto fibrado sea conexo (por ejemplo, por los resultados de Fulton-Hansen, cuando
Sp tiene género cero), proveemos condiciones suficientes para que éste sea irreducible; se
dan ejemplos para ver que estas condiciones no son necesarias en general. Definimos el
cuerpo (fuerte) de moduli del producto fibrado ¥ vemos que éste coincide con el cuerpo
més pequefio que contiene a los cuerpos de moduli de los pares iniciales (51, 81) y (Sa, 2).




ABSTRACT

Given non-constant holomorphic coverings B5 + 85 = Sp, § = 1,2, between compact
Riemann surfaces, there is associated its fiber product (in the set theoretical sense), which
may or not be connected and when it is connected it may or not be irreducible. A Fuch-
sian group description of the irreducible components of the fiber product is given and, as
& consequence, we show that if one of the coverings Bj is regular, then all irreducible com-
ponents are isomorphic. In the case that the fiber product is connected (for instance, by
results of Fulton-Hansen, if Sp has genus zero), we provide sufficient conditions for it to be
irreducible; examples are provided to see that these conditions are not necessary in general.
We define the (strong) field of moduli of the fiber product and see that it coincides with
the minimal field containing the fields of moduli of the starting pairs (51, £1) and (Sz, 8s).
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CHAPTER 1

Introduction

In the category of sets there is a construction called the fiber product which satisfies
certain universality property. Such a construction cannot be realized in every subcategory.
For example, in the category of Riemann surfaces the fiber product is not always again a
Riemann surface, But for the category of algebraic varieties (or schemes) this is known
to be possible [Ii]. Since the fiber product has been a main tool in the construction of
interesting examples and counterexamples in algebraic geometry, and compact Riemann
surfaces can be thought as complex algebraic varieties, we will work with the category of
singular Riemann surfaces (which contains the Riemann surfaces) for which this kind- of
construction is possible. This will allow us to continue with the study started in [Hid] of
the fiber product at the level of compact Riemann surfaces, which is our interest.

Let us consider three compact Riemann surfaces Sp, 51 and Sy together with two non-
constant holomorphic maps ) : 81 — Sp and 3 : S — Sy. The fiber product of the two
pairs (51, 81) and (Sa, B=) is given by

51 X gy, p) S2 = {(21, 22) € 81 X S : B1(z1) = Ba(z2)}

and for it there is a natural function § : S X(B1,82) S2 — Sp defined by B(z1,2) =
Bi(z1) = B2(z2). In general, this fiber product might not be irreducible, non-singular or
even connected and therefore it might not be a compact Riemann surface. But it is a
singular Riemann surface with a finite number of irreducible components Ry,..., R,, each
one a compact Riemann surface ! and satisfies the following universal property:

If R is a compact Riemann surfoce and pj : R = 8; for j = 1,2 are non-constant
holomorphic functions such that B opy = Baops then there exists a non-constant holomor-
phic map t : R — Ry, for some 1 < k < n such that p; = m; ot (this determines uniquely
t(r) = (pl(r), pa(r))) where 73 1 51 X(g,,8,) S2 —+ Sj is the projection wj(21,2) = zj for
i=12

Chapter 2 contains all the tools needed to follow this thesis and in Chapter 3 we work
out all the details of the above construction and discussion, We will also provide a Fuchsian
group description of the irreducible components of the fiber product and, as a consequence,
we will show that if one of the functions 5 is aregular (branched) covering, then all of them
are isomorphic Riemann surfaces (see Corollary 3.2.4). Besides, we will provide examples
of non-connected fiber products and when the contrary occurs, that is when $; X (B1,82) 52

11t is known from [Hid] that any two of the irreducible components of lowest genus of 51 X¢g, 8,) Sa
(if different from one) define isomorphic compact Riemann surfaces {when they have genus one they are
isogenous elliptic curves).
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1, INTRODUCTION 2

is connected, we establish sufficient conditions for it to be irreducible. At the end of this
third chapter we will give an explicit application to dessins d’enfants.

In Chapter 4 we define an algebraic invariant called the strong field of moduli of the
Jfiber product and we prove there that it is the smallest field containing the fields of moduli
* of the corresponding pairs (S, 1) and (Sa, B2).

Finally, in Chapter 5 we exhibit a variety of examples including all the concepts and
results of the Chapters 2, 3 and 4 with all its details.




CHAPTER 2
Preliminaries

Along this chapter we will develop basic concepts and results néeded for the rest of
this thesis. In Sections 2.1 and 2.2 we provide definitions and results related to Riemann
surfaces and holomorphic functions between them. In Section 2.3 we recall some notions
and results of a basic course in algebraic topology as are the fundamental group and
coverings. Also we establish their connections with the concepts of the preceding sections.
In section 2.4 we use the uniformization theorem to classify compact Riemann surfaces
and give other description of how to obtain (compact) Riemann surfaces by means of
actions of Fuchsian groups on the upper half plane H. In Section 2.5 we discus the concept
of monodromy because we also are interested in having a tool to decide whether two
coverings are isomorphic. Section 2.6 is dedicated to the Riemann- Roch’s theorem and
some of its consequences. Section 2.7 deals with the concepts and results of Belyi pairs and
dessins d’enfants; we exhibit the equivalence between these concepts. Finally, in Section
2.8 we present the Galois action on polynomials (and thus on algebraic curves) and rational
functions and we make a list of its properties when this action is over Belyi pairs.

2.1. Riemann surfaces.

DEFINITION 2.1.1. A Riemann surface is a connected topological Hausdorff space X
with an open cover {Us}aer of X and {p, : Uy —+ Vo C C,a € I} a collection of
compatible homeomorphisms (called charis) over open subsets Vo of C, that is, a collection
of homeomorphisms satisfying the following property:

» Whenever Uy NUp # 0, the function pg o ;! @ ¢ (Uy N UR) — wp(Ua N Up)
(called transition function)

UaﬂUﬂ
Paoipn
pa(UaNUp) - — = ===~ — — 4 4a(U, N Up)

is analytic.
A collection of charts fulfilling this property is called an (holomorphic) atlas and the inverse
functions ¢;? are called parametrizations.
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REMARK. If X is a Riemann surface then:
i) Two atlases of X are compatible if their union is again an atlas for X.

ii) By Zorn’s lemma, every atlas of X is contained in a unique maximal atlas, called
a complex structure of X.

ili) Given p € X and 2y € C, then it is always possible to add, to an existing atlas, a
chart (U, ¥) such that p = 1/~2(zp) (composing by a translation of C).

iv) As a consequence of the previous item, it is always possible to assume each chart
is centered af p (this meaning that ¢, (p) == 0).

EXAMPLE 2.1.2. Let X be the complex plane C endowed with the usual topology. Then
{(C,id)} and {(C,id),(C, z — 2 — 1)} are compatible atiases.

EXAMPLE 2.1.3. The simplest of the examples of compact Riemann surfaces is the
Riemann sphere C:=Cu {co} endowed with the topology of open sets and complements of
compact sets in C, and with complex structure induced by the atlas {{C, 1), (@ \ {0}, 2)}
where
1/z, zeC*

0

wi1(z) =2z and gag(z)z{ Gt

Defining C* := C\ {0}, in this case, ¢! 0 ¢y : C* — C* with o pa(z) = 1/z is
obviously analytic. N

Let us observe that another atlas for the sphere is given by {(C, J 0p1), (C\ {0}, Joia)},
where J(z) = Z. This atlas is clearly non-compatible with the above one,

DEeFINITION 2.1.4. The cartesian product C*, of C n-times, is the complez affine n-
space or simply affine n-space. In particular, it is called the affine line when n = 1 and
the affine plane when n = 2.

DEFINITION 2.1.5. Let us denote by C[Xy, Xa,... , X»] the ring of polynomials in n
variables over C. If f € C[X1, Xa, ..., X], a point p = (z1,%2, ..., 2,) in C is said to be
a zero of f if f(p) = 0. If f is not constant, the set of its zeros is called the hypersurface
defined by f and is denoted by Vy. In the particular case n = 2, a hypersurface is called
an affine algebraic curve. More generally, if fi, ..., f, € C[X1, Xo, voey X

Viode =P €C™: file) = . = i(p) =0} = () Vj,
=1,...,7*

is an affine algebraic set or simply an algebraic set.
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REMARK. It is obvious that Vi, = V; UV, for any polynomials f and g.

DEFINITION 2.1.6. For an algebraic set V C C™ we say that:
(1) V is reducible if it is the union of non empty algebraic sets 14 and V5 in C® such
that V; # V (i = 1,2). Otherwise V is irreducible.
(2) V = VaU...UVy, is the decomposition of V into irreducible components if V; is
irreducible for every ¢ = 1, ...,m.

DerFmviTIoN 2.1.7. Let f(X,Y)} € C[X,Y] and let C; be the affine algebraic curve
defined by f. A point p € Cf is non-singular if g)%l;ﬁé 0 or g—%[p# 0. Otherwise it is
singular. We say that Cy is non-singular or simply smooth if all its points are non-singular.

ExAMPLE 2.1.8. The algebraic set X = {(z,w) € C?: 22—w? = 0} is reducible because
it can be decomposed as the union of the non empty algebraic sets

X={(z,w) eC*: 22+ w=0}U{(z,w) €C?: 22 —w=0}.

Besides, it has only one singular point in €%, namely (0,0). Note that the above two
components are non-singular and irreducible.

ExaMPLE 2.1.9. (Affine algebraic curves). An interesting type of Riemann surface
is the one considered by a non-singular (connected by Proposition 2.1.10 below) afline
algebraic curve Cy := {(z,y) € C? : f(z,y) = 0} endowed with the topology induced by
the usual topology on C? and complex structure defined as follows:

For a point p = (yp, z9) in Cy:

o If %]p# 0, by the implicit function theorem, there is a holomorphic complex
function g(z), defined in a non empty neighbourhood V;, of zg in C such that:
~ g(za) = vo-
~ f{z,9(z)) =0 and ¢'(z) = _%[m for all z € V7,.
Therefore, there is a non empty neighbourhood V! = {(z, g(z)) : z &€ Vi, } of p
in Cy such that (Vpl, 1), where m; denotes the projection on the first coordinate,
is a chart for p.
o If %Iﬁlp # 0, arguing in the same way, there is an holomorphic complex function
A(y) defined in a non empty neighbourhood V¥, of yg in € such that:
= h(yo) = zo.
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- f(R{y),y) =0 and B'(y) = —%:%Iz for all y € V.
Therefore, there is a non empty neighbourhood T/;,z = {(h('y), y) iy € 1@0} of pin

Cf such that (T/;f,vrg), where m, denotes the projection on the second coordinate,
is a chart for p.

These charts are compatible and therefore they make Cy a Riemann surface. Actually,
if p € Cy is such that gﬁ]p;é 0 and %Lﬂé 0 then there is a non empty neighbourhood
Vo =Vt N V2 of p in Cf for which the transition functions

myomy H(z) = ma(z, g()) = g(z) and my o 13 () = m (Aly),y) = A(y)
are holomorphic.

ProrosiTiON 2.1.10. If f(X,Y) € C[X,Y] is non-singular and irreducible then the
affine curve Cy defined by f is a Riemann surface.

Proor. Irreducibility of f implies connectedness of Cs. See [SHAF, for example. 0

EXAMPLE 2.1.11. Suppose h(Y) € C[Y] and let f(X,Y) = X? — b(Y). The following
properties are satisfied: )
o If A(Y) is not a perfect square, f(X,Y) is irreducible. Indeed, if this were not
true, we could write

FEY) = (X =¥} (X —k(Y)) = X* ~ (5(Y) + k(Y)) X + b(Y)k(Y)

where b+ k =0 and ~bk = h. Thus b= —k and h = b? which is a contradiction.
e Ifall the roots of A(Y") are distinct, f(X,Y’) is non-singular. This assertion follows

by noting that gé = ~h'(Y) and 3-3% = 2X.

EXAMPLE. 2.1.12. The curve {(z,w) € C?: 22 + w = 0} is a Riemann surface because
it is non-singular and irreducible.

In order to provide more examples of Riemann surfaces, as projective plane curves and
complete intersection curves, we need to pass through additional terminology.

DEFINITION 2.1.13. An n-dimensional complez analytic manifold is a connected Haus-
doril topological space X with an open cover {Un}acr of X and {¢,: Uy = Vo, CC* a0 €
I} a collection of compatible homeomorphisms (called n-dimensional complez charts) onto
open subsets V, of C"; that is, a collection of homeomorphisms satisfying the following
property:




o=

2.1, RIEMANN SURFACES. 7

e Whenever U, NUg # 0, the function ¢g 0 ;! : wo(Usy N Ug) —+ wp(Us N Up)
(called transition function) is holomorphic; that is, it is holomorphic in each of
the n variables separately at every point.

A collection of n-dimensional complex charts fulfilling this property is called an (analytic)
n-dimensional comnplez atlas and the inverse functions wa" are called parametrizations.

REMARK. If X is an n-dimensional complex manifold then:

i) Two n-dimensional complex atlases of X are compatible if their union is again a
n-dimensional complex atlas for X.
il) By Zorn’s lemma, every n-dimensional complex atlas of X is contained in a unique
maximal n-dimensional complex atlas, called a n-dimensional complex structure
of X.
ili) Riemann surfaces are precisely the 1-dimensional complex manifolds.

DEFINITION 2.1.14. Consider the equivalence relation between two non-zero vectors in
C**! for which (zg, 21, ..., Zn) ~ (Y0, Y1, -, Yn) if and only if there is A # 0 & C such that
{(Zo, 21,0, Tn) = AM¥0,%1, .-, Yn) (in other words, the one-dimensional complex subvector
spaces they generate coincide). The set of equivalent classes of this equivalence relation is
called the n-dimensional complex projective space or simply the n-dimensional projective
space and is denoted by PE. Its elements are called homogeneous coordinates and are
denoted by [zo : 21 : ... : ma] for each (zo,Z1,...,25) € C*1\ {0}. In other words, PZ is
the space that parametrizes one-dimensional subvector spaces of C?+1,

REMARK 2.1.15. IPg endowed with the quotient topology is Hausdorff, connected, simply
connected and compact.
i) For each i=0,..n, the set Uy = {[zo : @1 : ... : 2] : 3; # 0} is an open subset of
Pg, U; is canonically isomorphic to C™ by mean of the homeomorphism

¢ U; - c»
e e e e T Ti-1 Fit] T
[0t mim1 t i g i) (;El, -y L HH ?cf“)

or equivalently
$i Uj — c»
[ro: i@ ltmipr st mn] = (o, vy Ti 1, Tife Ly weey Ty}

In particular, as Uy = C* and PR\ Up = IPE_I, it can be seen that PR =
c*u IP’E_I and, by an induction procedure, that PE =~ C*UC™1yU...UCU {oo}
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(in Ezample 2.2.8 it will be shoun that PL ~ C). Of course we also have P® —

DhU...UU,.
il) By means of the following diagram
U;n U;
2 &5
$04; "
$:(UiNUj) - - - = == ~ - + (Ui NT;)

we can see that B is an n-dimensional analytic manifold since ¢; qui_l is analytic.

DEerINITION 2.1.16. ]P’Ql: and ]P’% are called the complex projective line and the complex
projective plane, respectively,

ExXAMPLE 2.1.17. (PL is a Riemann surface). The set {(Us, %0), (TU1,1)}, where
o = ¢p and (3 = ¢; of the Remark 2.1.15, is an atlas for the complex projective line. In
fact, it is not difficult to see that for Uy N U; the transition functions are holomorphic.

DEFINITION 2.1.18. A polynomial f(X3,..., X,) of degree d in ClX, ..., Xp] is homo-
geneous if f(AXy,...,AX,,) = A f(Xq, ..., Xy,) for all A € C\ {0}.

ExaMpPLE 2.1.19. For a positive integer n the polynomial f (X, Y, Z)=X"1+Y"4+ 2"
is homogeneous of degree n.

DEFINITION 2.1.20. If f(X3,..,X,) is a homogeneous polynomial of degree d, then
for every ¢ € {1,...,n} we can obtain a new d-degree polynomial f; by taking X; = 1 in
f. This process is usnally called dehomogenizing with respect to the i-th component. Con-

versely, if (X, ..., X,,) is any polynomial of degree d then we also can obtain degree d the
homogeneous polynomial X2, g (Y}ﬂ:’ vy Yjﬁt) This process is often called homogenizing

with respect to the component n + 1.

ExaMPLE 2.1.21. Homogenizing the polynomial f(X,Y, Z) = 4XY + 7X2Y3 . Z2Yy8
with respect to the variable U provides the polynomial

F(X,Y,Z2,U) = 4XYUB + 7X2Y305 — 72y8
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and, noting that fis homogeneous, dehomogenizing _}?with respect to the variable Z we
obtain the polynomial _ )
f3 =4XYUB 4+ 7X%y3U5 — v8.

-

REMARK 2.1.22. If f(X,Y, Z) € C[X,Y, Z] is homogeneous and irreducible (or a unit)
in C[X,Y, Z] then, using the same notation as in the previous definition, it is not difficult
to see that the polynomials fi, fo and fa are irreducible or units.

DFFINITION 2.1.23. A projective algebraically variety V in PE is a set consisting of all
the common zeros of a finite collection of homogencus polynomials (not necessarily of the
same degree) fi,..,, fr in C[Xp, ..., Xpl.

1o
DEFINITION 2.1.24. A projective algebraically variety V in P is reducible if there
are non-empty different varieties V3, V5 g PZ such that V' = V4 U Va. Otherwise, V is
wrreducible.

EXAMPLE 2.1.25. The variety V = {[z : w1 ¢] € PL : 23(t3 — 23) = w®(#3 — w?)} is
reducible since

B - 28) - w3 (t® — wd) = (2% — w?)t® — (25 — w®)
= (< —wB) (B — 2 — w%)
= (z — w){z — ¥ Bw)(z — 17/ Sw)(e® — 2% — w?)
and therefore the decomposition of V into irreducible components is given by
V=VulYLulWhul,,

where Vi = {[z:w: ¢ €PE:z—w =0}, Va={jz:w:t] € P& : z — &2/3y = (),
V3:{[z:'w:t]EIP%:z--e4ﬂf/3w=0}andeg:{[z:w:t]E]P%:t3~z3—w320}.

ExAMPLE 2.1.26. (Projective plane curves). Consider an homogenous polynomial
F(X.Y, Z} in C[X,Y, Z] aud the projective algebraically variety

Xp={lz:y:2] €ePi: f(z,y,2) =0}
defined by f. We make the following intersections
XynUpg={lz:y:2] €PE:x#0, f(z,y,2) =0}
={l:y:2]ePi: f(1,y,2) = 0}.
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XpnUi={[z:1:2) €PZ: fz,1,2) =0}, Xsnlp={[z:y:1]¢€ P2 : fz,y,1) =0}
and define the sets
KXo = {(y,2) € C*: fo(y, 2) = 0}
X1:={{z,2) € C%: fy(z,2) = 0}
Xz = {(z,y) € C?: fa(w,y) = 0}
where fo(y, 2) = f(L,u,2), fi(=,2) == f(,1,2) and fafz,y) = f(z,y,1).
In this case, ¢0(Xf ﬂUg) = Xq, ¢1(XfﬂU1) =X and gﬁg(Xf NU;) = X, for ¢Q, P1, ¢
as in remark 2.1,15.
Until now we have not defined charts to make Xy a Riemann surface, but X ,X; and

Xy are affine curves. If they are non-singular and irreducible, then by Proposition 2.1.10
and the Implicit Function Theorem, we can endow X7 with a complex structure as follows:

For any point p = 1 : yo : z0] € Xy N U we have:

o X;NUp is an open subset of X Hoineomorphic to Xy by means of ¢o.

o ¢o{p) = (¥n, 2) is a point in Xj.

o If %%I,ﬁn(p) # 0 then there is a holomorphic complex function g(y) defined in a
non empty neighbourhood V,, of g in C such that g(yg) = zp and: fy (y, gy =0
for all y € Vj,. Therefore there is a non empty neighbourhood Vpl of ¢op(p) in
Xo such that T/;,l = {(y, g(y)) Yy € T/;ﬂ,}. So if 7y denotes the projection on the
first coordinate then ﬂ'lh,;)z is a homeomorphism and ¢; =7 o ¢ : f I(T/;}) —+C
would be a chart for p.

o If %’é}'hﬁu(p) # 0 then there is a holomorphic complex function h(z) defined in a non
empty neighbourhood V, of z in C such that h{zy) = yy and fj (h(z),z) =0 for
all z € V,;,. Therefore there is a non empty neighbourhood Vf of ¢o(p) in Xp such
that V2 = {(R(z),z) : z € V3 }. So if wy denotes the projection on the second
coordinate then mofy2 is a homeomorphism and w2 = mp 0 ¢ : @y 1(1/;,1) - C
would be a chart for p.

It is not difficult to see that after applying the same procedure to provide charts for
the remaining points of X #; that is, for points in X FNUh and in X; N Uy, all these charts
together with the previous ones are compatible and therefore we can consider X fasa
Riemann surface if it is connected.

DermnITION 2.1.27. A homogeneous polynomial f(X,Y, Z) € C[X, Y, Z] is non-singular
if there is no common solution of

._BF _df _of
T=3x"av =37 0

in the projective plane P&.
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ExAMPLE 2.1.28. For a positive integer n, the homogeneous polynomial
XY, Z)=X"+Y"4+ 2"

is non-singular. Actually, 0f/0X =nX"", 8f/8Y =nY™! and 8f/8Z = nZ" 1. Thus
we observe that for p= [z : y: 2] € P4, whenn =1, & = g{;]p: g%]pz 1# 0, and when

n > 1 then %[p: g}i,[pz %I;F 0 is equivalent to x =y =2z=0but [0: 0: 0] ¢ PZ.

PROPOSITION 2.1.29. With the same notations as in Example 2.1.26, a homogeneous
polynomial f(X,Y,Z) € C[X,Y, Z] is non-singular if and only if every affine plane curve
X; defined by its associated f; (i=0,1,2) is non-singular (MIR] p. 15).

REMARK 2.1.30. A non-singular homogeneous polynomial f(X,Y,Z) € C[X,Y, Z) is
irreducible (see [MIR] p. 15).

So, we have the following

REMARK 2.1.31. If f(X,Y, Z) € C|{X,Y, Z] is a non-singular homogeneous polynomial,
then its associated projective plane curve Xy == {[z : y : 2] € B2 : f(z,y,2) = 0} is a
compact Riemnenn surface. Moreover, at every point of X f one can take as a chart a ratio
of two of the homogeneous coordinates ([GG] p. 16).

EXAMPLE 2.1.32. The curve {[z1 : 22 : 23] € P% : 2} -+ 3% + 2% = 0} (for a positive
integer n) is a compact Riemann surface (it is a direct consequence of the Example 2.1.28
and the above remark), as well as is the curve {[z : y : 2] € P2 : ® — 2%z -+ 222}, To sce
it, we define the homogeneous polynomial g(X,Y, Z) = Y* — X?Z + X Z2 and verify that
it is non-singular:

89/0x € z(z - 2x), g/ L3v? and 8g/02 2 x(27 - x)

Thus, if for some p= [z : y: 2] € P4
_Bg1 _ B9 _
50 = 5% 1,= sy,
by (a) we would have two options:

o Case z = 0.
In this case, by (b) and (c) we would have y =0 and z = 0. But [0:0: 0] ¢ P4
and therefore this option is not possible.
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e Case z = 2. .
In this case, again by (b) and (¢) we would have y = 0 and z = 0. Therefore
this option is not possible either.

In conclusion, ;%%Ip;é 0 for all p= [ : y : 2] € PZ and this implies that g is non-singular,
It can be seen that g is irreducible.

DEFINITION 2.1.33. Assume Cy = {(z,y) € C?: f(z,y)} is a plane curve defined by
F(X,Y) e C[X,Y] and F(X,Y, Z) is the resulting polynomial after homogenizing f. Then
the projective curve

Xp = {[z:y:2] €PL: F(z,y,z) =0}
defined by F' is the projective closure of Cy.

Now, since P% is locally homeomorphic to an open set in C* and is an n-dimension
complex manifold, to cut down the complex dimension by one, one has to impose an
equation. Thus, in order to define a Riemann surface in this space, we will naively need to
take »—1 homogeneous polynomials in C[Xj, ..., X,,]-and analyse the set of all its common
zeros, and hence we need the analogue of the non-singularity condition on it.

DEFINITION 2.1.34. A projective algebraic curve X € PZ is called a complete inter-
section curve if there are n — 1 homogeneous polynomials fi, ..., f_1 € C{Xo, ..., Xp] such
that X is the set of all its common zeros. And it is smooth if the (n — 1) x (n 1) matrix
of partial derivatives 8f;/0X; has maximal rank n — 1 at every point of X.

Similarly, as for projective plane curve, we have the next result.

PROPOSITION 2.1.35. A smooth complete intersection curve X is a compact Riemann
surface. Moreover, at every poini of X one can take a ratio zifz; as a chart of the
homogeneous coordinates ((MIR] p. 17).

ReMARK. The condition on partial derivatives is the hypothesis of the multi-variable
Implicit Function Theorem.

EXAMPLE 2.1.36. For A € C\ {0,1} the curve, which appears in Example 3.3.1 to
exhibit the existence of a disconnected fiber product,

So={lv1:v2:ys:9a:u5] €P¢: 93 = vau, ws(ys +v2) + 95 =0, Ays + 92+ 5 =0}
is smooth and therefore compact.
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In fact, let Ql(Yla Y21 1/31 Y‘l! YS) = Y32HY'1)/21 Q2(}/1] Y21 },31 Y’la Y5) = Y;SY':.I. +K‘:Y2+n21
Q3(Y1,Y2,Y3,Y,Y5) =AY+ Yo+ Ysand p= [y : 2 : y3: ya : ys| € Sp. The matrix of
partial derivatives of )1, Q2 and Q3 evaluated at p is

—y2 -y 2ys O 0
s ¥s 0 2y i+
A 1 0 0 1

which is now equivalent to

—Y2 - 2ys 0 0
(I=Nys 0 0 2y yi+y—uys
A 1 0 0 1
If this matrix were not of maximal rank, y3 = y4 = 0. Because of this,
Qi(p) =0 y1y2 =0 (1)
Qp)=0 =9 ¥l +13)=0 (2
Qs(p) =0 Ay1+y2+ys =0 (3)
and by (1) we would have two possibilities:
o If Y1 = 0,
(1) 0=0
(2) =4 ysy2=0 - —y2=0—>ys=0
(3) Yatys =0 —ya=—ys —y2=0

which implies that [y1 : y2 : y3 : 94 :y5] =[0:0:0:0:0]. But this is not
possible so this case can not occur.

o If yo =0,
(1) 0=0
(2) =< ysy1 =0 — —Ayf=0—)y1 =)
(3) Ay +ys =0 —=ys = —Ay; =y =0

which also implies that [y1 : y2:y3:94:ys) =[0:0:0:0: 0]. But this is not
possible so this case cannot occur.

In conclusion, Sy is smooth and by the above proposition it is a compact Riemann
surface.

2.2. Holomorphic maps

DEFINITION 2.2.1. Let X and Y be two Riemann surfaces and let F : X — Y be a
continuous function.

(1) The map F is said to be holomorphic (or a holomorphic morphism) at the point
p € X if there exist charts (U, ) at p and (W,%) at F(p) such that FU cw
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and its local version, F= tho F o ™!, is holomorphic at w(p)

v—w
9{ . be
(U} - =+ (W)

(2) If F is holomorphic at every point of X, then F is said to be holomorphic on X.

(8) If I is a bijective holomorphic morphism, then we say that it is an isomorphism
and, in that case, we say that X and Y are isomorphic (X = ).

(4) An isomorphism from 2 Riemann surface X to itself is called an autornorphism
of X. The set of automorphisms of X form a group which will be denoted by
Aut(X).

REMARK 2.2.2. The composition of holomorphic maps is again a holomorphic map.

EXAMPLE 2.2.3. Pk ~ C.
In fact, for F : Pt — C defined by F([z 1 w]) = z/w, we have (see Remark 2.1.15 and
Example 2.1.17):
e F'is well defined and is bijective.
¢ For a point p = [z : w] € Uy:

Up —5 €\ {0}
svnj - l#’
C-~--3C

where @o(fz : w]) = w/z and ¥(2) = 1/z, the local form F of F is of the

-1
form w — w (because w N [1: ] =y 1/w s w ) which is analytic. In

particular, we have F({1: 0]) = co.
» For a point p = [z : w| € Uy:

U]_-LHC

‘Pll ‘[idc
c-Lsc
where 1 ([2 : w]) = z/w, the local form F of F is also analytic because it is of

—1 .
the form z — 2 ( zl—go—l}[z:l]i—F—}zii}z).
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REMARK. It is clear, by the definition, that if f is holomorphic at p then it is holo-
morphic on a neighbourhood of p.

EXAMPLE 2.2.4. Let Cf = {(z,y) € C?: f(z,y) = 0} be a smooth affine plane curve.
Then its not hard to see that:

¢ The usual projections m; and 75 on the first and second variable respectively are
holomorphic.

» g € C[X,Y] is holomorphic as a function from Ct to C.

o If g,h € C[X,Y] then g/h (viewed from Cf to @) is holomorphic at every point
P = (z,y) € Cy such that h(z,y) # 0.

REMARK 2.2.5. The groups of automorphisms of PL,C,H={zeC: Im(z) > 0}
(the upper halfplane} and D = {z € C: |¢| < 1} (the unitary disc) are as Jollows ([GG] p.
27.98):

o Aut(PE) = {z = 2;_"'_'3 : a,b,¢,d € C, ad — be # 0} = PSL(2,C), the group of
Mibius transformations.
o Aut(C)={z—az+b: a,beC,a#0}.

. Aut(ID):{Zi—)ewﬂ:aED,BER}={zH§z—"‘E:a,beC,|a]2—[b|2=1}.

1—tex bz+ta
o Aut(H) = {2 2t . o b ¢ d € R, ad — be =1} = PSL(2, R).
cztd

THEOREM 2.2.6. (Local form and multiplicity) Let F : X — Y be a non constant
holomorphic morphism between Riemann surfaces and let p € X. Then there is a unique
integer m > 1 such that for every centered chart at F(p), (W,4), there exists a centered
chart (U, ) at p, such that F is locally z v+ 2™ (ho Fop™{z) =2z™ forall z € () ).

PROOF. Fix any chart (W, ) centered at F(p) and choose any chart (U3, ¢1) centered
at p. Then g =10 Foyp;! is analytic. Since 4(0) = 0 and g is not a constant we can write
9(2) = 2™5(2) with S(z) a complex analytic function at 0 such that $(0) # 0 and some
integer m > 1. In these conditions, there is a complex analytic function R(z) such that
R™(z) = S(z) and therefore g(z) = (2R(z))™. Next, define T(z) = 2R(z) and observe
that T is analytic and invertible near 0, by the Implicit Function Theorem, since T'(0) =0
and 77(0)} = R(0) # 0. Then, there is a neighbourhood U C U; of p such that T'o o1l
is a homeomorphism. In this way, (U, ) is also a chart centered at p and the new local
version of F' is given by 1o F o @™ (2) = (o Foyp ) o T71(2) = (T (T Yz)))™ = 2m.

Now, since the number of pre-images of a point does not depend of the choice of the
chart, the uniqueness of m is established. N
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DEFINITION 2.2.7. The integer m of the previous theorem is called the multiplicity of
F at p, and it is denoted by mult,F'. The points p € X with mult,F' > 2 will be called
ramification (or critical) points. We shall say that I is a ramified morphism that ramifies
at those points. The images of the critical points will be called eritical values.

REMARK 2.2.8. If F: X — 'Y is a non-constant holomorphic Junction between Riemann
surfaces and p € X is not one of its critical values (that is, maultyF = 1), then there is an
open neighbourhood Vy, of p in X for which f lv, s a homeomorphism.

Actually, due to the above theorem, for every centered chart (W,v) at F(p) exists a
centered chart (U, ) at p for which F is locally the identity (z v z). Moreover, since @
and 9 are homeomorphisms it is easily seen that Fly is a homeomorphism and U is the
required neighbourhood.

PROPOSITION 2.2.9. Let F,G : X — Y be two holomorphic morphisms between Rie-
mann surfaces. Then the following hold.

(1} If F is non-constant, then it is an open map and the fiber FYy)ofyeY isa
discrete set in X.

(2) If F' is non-constant and X is compact, then F is surjective, Y is compact and,
for every y € Y, F~Y(y) is a non empty finite set.

(3) If F is injective, then F' is an isomorphism onto its image.

(4) If F =G in a set § C X with an accumulation point in X, then F=@G in X.

Proor. (1) Let F be non-constant. Since its local version at any point pis
f=vo0Fop!, then locally F=1¢ 1o S o and, by mean of this, it is easy to
see that F(U) is open in Y for every chart (U, ) and therefore F is open.

Now, suppose y € Y with F=1(y) # 8. If x € F~1(y), then we may choose
¢ and 1 to be centered charts (respectively at = and y) so that f(z) = 2", for a
suitable positive integer n. Then the second parts follows.

(2) Since F is open and confinuous and ¥ is Hausdorff, #(X) is an open and closed
subset of Y. Then, because of the connectedness of Y, F(X) = Y. The second
assertion is obvious.

(3) Immediate.

(4) If F = G in a set § C X with an accumulation point ¢ in X, there are centered
charts (U C X, ), (W C Y, %) for which ¢ € U and locally ypoFop™! = PoGop™1,
Thus F|yy = G|y because ¢ and 1 are homeomorphisms. Now, let

B = {z € X : 3 neighbourhood V; of z such that Fly, = Gy, }.
Then B # § since U C B and B is open by definition. Similarly, one can check

that the complement of B is open and therefore B = X by connectivity of X.
a

A &
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PROPOSITION 2.2.10. Let F: X = Y be a non-constant holomorphic function between
Riemann surfaces, p € X and (U,¢) and (W, %) any charts for p and F(p) respectively. If
h(z) is the local version of F in these charts and zg = (p), then mult,F =1+ ord, h(z)
(IMIR] p. 45).

REMARK. With the above notations, we have the following facts.

i) The set of critical points of F' is discrete.
ti} If X is compact, the set of eritical points as well as the seb of critical values is
finite.

REMARK 2.2,11. For a smooth affine plane curve Cy given by f(z,y) € Clz,y] we have
that
Ty e C_f = C ( Tyl Cf = C )
(z,9) = =z (@9} » y
ramifies at p = (zo,y0) € X if and only if 8 /8yl, = 0 (8f /], = 0).

In fact, if 8f [Oyl|p # 0, by mean of the Implicit Function Theorem, we have y = y(z)
in some neighbourhood V;, C Cy of p, and in this case we can see that my restricted to Va
is a homeomorphism. Therefore w1 does not remify at p. Inversely, if 6 f/0ylp = 0 then
Of [0z|p # 0 and again, by the Implicit Punction Theorem, = = z{y) in some neighbourhood
Vp C Ct of p and ma can be taken as a chart. In this case, the local version of my is of the
form y = 2(y) and mult,m =1+ ordy,,%(yo)- But é—d;(y{)) = “(%!p)/(%lp) = 0 which

means that ordyu%;-(yg) 2 1 and thus multym > 2 (the statement for mp can also be proved

in a similar way).

THEOREM 2.2.12. Let F : X — Y a non-constant holomorphic function between Rie-
mann surfaces. Then 3 o F1(yy) MUltpF = EPeF—l(y2) mullyF for anyy1,ys € Y (MIR)

p. 47-48).

DEFINITION 2.2.13. The degree of a non-constant holomorphic function F : X — vV
between compact Riemann surfaces is the number Zpe F1gyy Mty F for any € Y and is
denoted by deg(F).

COROLLARY. A non-constant holomorphic function between compact Riemann surfaces
F is an isomorphism if and only if deg(F) = 1.
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EXAMPLE 2.2.14. Let 8: C — C with B(z) = 2(z — 1}/(z — 2). We will see that 8 is
holomorphic, has degree 2, ramifies only at the points 2 -k /6 with mult, + V@B = 2 and its
critical values are 8(2 % v/6) = (6 & 4v/6)/3.

e For a point p € C\ {2}:

c\{2} L
idcl idg
c- - sc

— The local form E(z) = z(z — 1)/(2 — 2) is obviously analytic.

— B(z) = 22_4z+22 = (3_2'*"/,6_)(2;2-‘/6) and E" z) =0 ¢ z = 24 /6 thus
(z-2) (z—2)

maulty. g8 =2 and mult,f =1 for the rest points in C \ {2}.
= B2 +v/6) = S8 and f(2 - v/3) = =40
e For p=2:
In a neighbourhood V of 2,

v 548\ {0}
4
C- A +C

where P(z} = 1/z:
— The local form £(z) = 22121 is analytic.

— B(x) = ~5p2stp = ~ etV ong thus multyf = 1.

¢ For p = co:
In a neighbourhood of co,

€\ {0} L= &\ {0}

where ¢(z) = 9(z) = 1/2:

. o\ -2
— The local form S(z) = (—z%——) = —2:-(1_—222) is analytic.
- B(z) = ‘(1—_2272' and thus multef = 1 (since f(00) = 0o and the chart ¢ is
centered).

Moreover, since 87!(c0) = {2,00} we deduce that deg(8) = 2.

z
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DEFINITION 2.2.15. Let S be a compact real topological 2-manifold. A triangulation
of § is a decomposition of § into closed subsets, each homeomorphic to a triangle, such
that any two triangles are either disjoint, meet only at a simple vertex or meet only along
a single edge. If § can be triangulated; that is, if there is a triangulation of S and v, e
and f denotes the number of vertices, edges and faces {or triangles) respectively, then the
Euler number of S is the number v(8) =v — e+ f.

PROPOSITION 2.2.16. If § is a triangulated compact real Z-manifold then its Fuler
number do not depend of the choice of triangulation. It is g topological invariant and
therefore an intrinsic property of S.

PROOF. See [MIR] and the first chapter of [MLASS]. O

REMARK. A compact Riemann surface is an oriented compact real 2-manifold and can
be triangulated ([FK] p.179).

REMARK. It is well known from a course in elementary topology that every oriented
and compact real surface § is triangulated and is homeomorphic to a connected sum of
the sphere and exactly g torus where g > 0. (This is a part of the so called topological
classification theorem of surfaces). In addition, we have y(S) = 2 — 2¢ (see for example
[KOS] and the first chapter of [MASS]).

DEFINITION 2.2.17. The genus of an oriented and compact surface 8 is the number g
of the above remark and will be denoted by gen(S).

THEOREM 2.2.18. (Riemann-Hurwitz formula) Let X and Y be two compact Riemann
surfaces and F : X =Y be o non-constant holomorphic function. Then

gen(X) = deg(F)(gen(Y) — 1) + 1+ % Z(multh —1).
peX

ProOOF. See [MIR), pages 52-53. The proof follows by taking a triangulation of ¥
so that all critical values are vertices of such a triangulation and lifting it to obtain a
triangulation for X. Then compare both Euler numbers. O
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EXAMPLE 2.2.19. For a positive integer n the genus of the compact Riemann surface
Xy in P defined by the polynomial f(X,Y,Z) = X" + Y™ + Z" ig (n—1)(n —2)/2.

To see this, first observe that Xy = (X; N Uy) U (X; N Us) (following the notations of
the Example 2.1.26). In fact, for apoint p=[z:y:z] € X 5 when z = 0 we must have
z # 0 (otherwise we would have £ = y = z = 0 which is not possible) and

XpnUg={[1:e"@/m.0].0<k<n—1)
Secondly, consider the function
II: X f —+ ]P%:
[z:y:2] = [z:2]
and using again the notations of the remark 2.1.15 we have:
sFarp=[z:y:1] € XynUs

Ifm : Xp = {(z,9) € C?: fo(w,y) = 0} - C, where fa(z,y) = f(2,y,1), is
the projection on the first coordinate, then the following diagram is commutative

:XfﬂUzg—-—}P%:

# J on

Xz——wl—}(c

— Since ¢ and ; are homeomorphisms and 7 is holomorphic, we conclude
that II also is holomorphic. Actually, IT and 7; have the same local forms.

— Looking for critical points of IT is equivalent to looking for critical points
of m and, as we know, for that we must look for solutions of %{%| =0
(equivalently ny™ ! = 0), which are exactly the points (z,0) for which z"
equals —1. In other words m; ramifies at the points (™*+1)/2 ) with 0 <
k < n -1 and, equivalently, IT ramifies at the points [e"¥+1/% ;0 : 1] with
D0<k<n-1.

— By the above item, we conclude that, near the points (z,y) = Caar i 0)
for 0 < k < n—1, the partial derivative %%I(m,y)# 0, and thus o will work as
a centered chart at these points for 7, and ¢ o Ty ! will work as a centered
chart at the points [e™2*¥)/% : 0: 1] where 0 < k < n—1 for I By the
Implicit Function Theorem and considering the following diagram

[Aly) 9 : 1 H— [A(y) : 1]

Ies;l Ivl

(R(¥), ) ———— h(y)

N

T 1.0)
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we can find the local form ﬁ(y) = h{y) of II. Here % is an analytic func-
tion with A'(y) = _%f%l(z,y)z — ¥ (sec example 2.1.9). This implies
ordph’(y) =n — 1 and therefore mult, U=nforall 0 <k <n — 1.
eTForp=[1:y:2]€ X;NUp:
If 7o : Xo = {(y:z) e C?: fﬂ(wvy) = 0} —+ C, where fO(wiy) = f(]-:y,z): is
the projection on the second coordinate the following diagram is commutative

XfﬂUg -H—}IP%:

|k

Xo—2 ¢

— Since ¢y, g are homeomorphisms and  is holomorphic we conclude that 1
is also holomorphic. Actually, IT and 7 have the same local forms.
— Looking for critical points of II is equivalent to looking for critical points
of my and, as we know, for that we must look for solutions of %@I (=0
(ny™~! = 0) which are exactly the points (0, z) for which z® = —1. In other
words, 7y ramifies at the points (0, e7(2k+1)/ ") where 0 < k < n — 1 and,
equivalently, IT ramifies at the points [1:0: e™®F+1)/%] where 0 < k < n—1,
but these coincide with those found before,
— For 0 <k <n— 1 multy eestymg = 1 with TI([1 : ™2k+0/n 0]) = [L:0].
o deg(1I} = n since mﬂlfll:en(2k+1)/n:n} =lforal0<k<n-—1and

I H([1: 0)) = {((1: e"CR+D/n 0) :0<k<n~1}.

Finally, the Riemann-Hurwitz formula allows us to calculate the genus of X:

gen(Xg) =n{0—1)+1+ -;-n(n— 1} = -(n—ml);izl

2.3. The fundamental group and coverings.

DEFINITION 2.3.1. Let X and Y be two compact topological surfaces.

(1) A loop with base point p in X is a path (continuous function) « : [0,1] =+ X
satisfying «(0) = (1) =p

(2) Two loops e, 8 : [0,1] — X with the same base point p are homotopically equiva-
lent if there is a continuous map

v: [0,1]x[0,1] — X
ts) = s) = ()

such that:
(2) 75(0) =v5(1) = p for all s € [0,1].
(b) 10(t) = a(t) and 1 (t) = B(¢) for all ¢ € [0, 1).
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(3) If e, B:]0,1] = X are two loops with the same base point, then we can define in
the set of homotopy classes the product [o] * (8] = [wf] where
_fa@), 0<t<1/2
O‘ﬁ(t)_{ pRt-1), 1/2<¢t<1
and therefore endow it with a group structure. This group is called the funda-
mental group of X relative to the base point p, and it is denoted by m1(X, p)

REMARK. i) The identity element of m1(X,p) is the equivalence class of the
constant loop £ —+ p. And the inverse of [a], where o is a loop with base point D,
is the equivalence class of the loop ¢ = a1 —¢).

ii) a1(X,p) also can be denoted just by 7;(X) as a consequence of the arc-connected-
ness of X of the previous definition. Actually, it can be proved that for any two
points p,qg € X, m1(X, p) and m1(X, q) are isomorphic.

EXAMPLE 2.3.2. If § denotes the unit circumference in R?, its fundamental group is
isomorphic to Z (1 (8*) ~ Z) and the fundamental group of the torus S! x &% is isomorphic
to Z x Z, Both are abelian but, for example, the fundamental group of the double torus is
not as it is isomorphic to the group (o, o, f1, B2 : 1 fraq? By lagﬁgaz_ 16,1 = 1) ((IMUN]
p. 345-346,372,374,452).

DEFINITION 2.3.3. A continuous mapping f : X — ¥ between two topological surfaces
X and Y is a covering map, or simply a covering, if for every y € Y there is a neighbourhood
Vy of y such that V, is well-covered by p. In other words, p~1(Vy) is a union of pairwise
disjoint sets U; and each restriction p|y, : U; = V,, is an homeomorphism.

PROPOSITION 2.3.4. Let f : X — Y be a covering between two topological surfaces X
and Y.

(1) The fibres of f are always discrete sets and, if Y is connected, then they also have
the same cardinality, called the degree of the covering.

(2) f satisfies the path lifting property: every path -y : [0,1) = Y can be lifted to X,
in other words, for every path v : [0,1] = Y and everyp € X so that f (p) = ~(0),
there is a unique path 5 : [0,1] = X such that po¥ =y and 5(0) = p (IMUN] p.
542-348).
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ExamMpPLE 2.3.5. Let

[+ X ={(cos2nt,sin2at,t) : tc R} CR® — St
(cos 2mt, sin 22, 1) + (cos 2mt, sin 2xt).

Then f and f x f: X x X — S? x S are coverings maps of infinite degree. Moreover,
for example, the path & : [0,1] — S beginning at (1,0) given by a(s) = (cos 78, 8ins)
lifts to the path & : [0,1] — X given by &(s) = (cos s, sin s, 8/2) beginning at (1,0, 0)
and ending at (—1,0,1/2).

REMARK. Let us consider a covering map f: X — Y, where X and Y are topological
oriented surfaces. If ¥ has a complex structure (that is, if ¥ is a Riemann surface), then
X inherits a unique complex structure that makes J bolomorphic. This is possible by
mean of charts of the form (U;,%; o f), where (Vi,4;) is a chart in ¥ and Vi=f(F)isa
well-covered neighbourhooed. In fact:

i) The transition functions are then analytic (Pro flo(ie fl =10 1,bj‘1.

it} If f is also analytic with respect to another chart (U, ¢) then v;0 for™! is analyiic
but this is the same as saying that (U, () is also compatible with any of the above
charts,

PROPOSITION 2.3.6. Let f : X =+ Y be a non-constant morphism of compact Riemann
surfaces and let B the set of all critical values of f. Then the restriction

FrX\f(B)»Y\B
is o covering.

ProoF. We already know that if zj,...z; are the preimages of a non-critical value
¥ then there are neighbourhoods V,Un,...,U; of Y, Z1,...,oq respectively such that the
restrictions f|y, : U; —» V are isomorphisms, and therefore, homeomorphisms (see remark
2.2.8). Now, if we assume the assertion to be false; that is, if V can not be taken such
that f~3(V) = [ |2, U; (or equivalently F7UVY) — L, U; # 0) then we would have a

i=1
sequence of points {y,} C Y approaching y such that each fiber 7 1(yn) contains a point
Tl & ]_]f!=1 Us. Let z € X be a limit point of {z,},. By continuity of [ we would have
f(z) = y and then z = z; for some § = 1,...,d. Thus for n large enough we would have

¢}, € U; but this is a contradiction. ]
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DEFINITION 2.3.7. Two coverings fH:Xi—=Yand f: X9 5 Y of Y are isomorphic
if there is a homeomorphism % : Xy — X5 such that the following diagram commutes

X1 '*h-——}Xz

N

fXi=Xp=Xand fi=fo=f, then his an automorphism of (X, f). In this case,
the covering group or deck group of the cover map f: X = Y {or of the pair (X, f)) is the
group of all these automorphisms, and is denoted by Aut(X, f) or Deck(f: X - Y).

DEFINITION 2.3.8. Let G bea subgroup of automorphisms of a topological surface X.
We say that G acts on X ’

(1) freely if the nontrivial elements of G do not fix any point of X.

(2) properly discontinuously if for each z € X there are at most finitely many trans-
formations gy = Id, ..., g, € G fixing =, and there exists a neighbourhood U, of
such that g(U,) NU; =0 for all g € G — {g, weGr b

ExAMPLE 2.3.9. The group of automorphisms G = (z=z+n+im:nme Z) of
C acts freely and properly discontinuously on it, and C/G is homeomorphic to the torus
51 x 81,

THEOREM 2.3.10. Let X be a topological surface.

(1) There is always a covering  : X ~+ X with X connected and simply connected.

(2) X is called the universal covering space of X and is unigue up to isomorphisms
of coverings.

(3) If 7 : X = X is the universal covering of X, the group G = Aut(ﬁ , ) can be
identified with the fundamental group m (X).

(4) The action of G on X is free and properly discontinuous, preserves every fibre of
m, and is transitive in each of them. In porticular T induces a homeomorphism

X/G ~» X
[ = (&)
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(5) Bvery covering of X is isomorphic to a covering of the form X JH—> X /G~ X,
where H is a subgroup of G.

X

7

X/H .
X~X/G

(6) If X is a Riemann surface and w : X — X is the universal holomorphic covering,
then the covering group G is a group of holomorphic transformations, the map
7 : X/G ~ X is a biholomorphism, and any other holomorphic covering of X is
isomorphic to a projection of the form )?/H — }?/G ~ X,

PRrOOF. See [GG] pages 65-69. 0

REMARK 2.3.11. Due to proposition 2.8.6 the term covering is used, in the theory
of Riemann surfaces, to refers to any non constant morphism (ramified or not) between
compact Riemann Surfaces and from now we will use it here too.

PROPOSITION 2.3.12. Let G be a finite subgroup of automorphisms of a compact Rie-
mann surface X. Then the following hold.

(1) The set of points in X with nontrivial stabilizer is discrete with no accumulation
points, .

(2) If gen(X) and gen(X/G) denote the genus of X and X/G respectively, then, for
the canonical projection ©# 1 X — X/G, the Riemann-Hurwit’s formula can be
reformulated as follows

2gen(X) —2 = |G (2gen(X/G) ~24 ) (1 B II(;-)!))
i=1 ¢

where {p1, ....pr} 45 a mazimal set of representatives of critical poinis in different
orbits and I(p;) denotes the stabilizer of p; in G.

PROOF. See [MIR]. For (1) pages 76-77 and for (2) page 80. O
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PROPOSITION 2.3.13. Let Y be a compact Riemann surface, B CY be a finite subset,
and Y* =Y \ B, Assume that f* : X* = Y* is an unramified holomorphic covering of
finite degree. Then there ezists a unique compact Riemann surface X D X* such that b
extends to a unique morphism f : X — Y. Moreover, X \ X* is a finite set ((GG] p.
75-77).

PROPOSITION 2.3.14. Let X, and X5 be two compact Riemann surfaces, By C Xy and
By C Xy be finite subsets. If X7 = X1\ By and X5 = Xo\ By are isomorphic then X1 and
Xy must be isomorphic too ((GG] p. 77).

EXAMPLE 2.3.15. In this example we will show that for the curve
S={lz:y:z] ePa:a™+¢" + 2" =0}
the function
f: S — C
wiy:d] o (@)
is a degree n? holomorphic covering, then when n > 1 it ramifies only at the points

[1;3"2f,+1 : 0], [0:1:31{@] and[l:O:eEE?l]

each one with multiplicity n, and that its critical values are
HOE =5 o) =1, f([o:1: et 1) = 0o and f(1:0: eﬂg&nﬂl]) =0
(0<k<n-1).
In fact, following the notations of Remark 2.1.15 and Example 2.1.26, we see that
flsnt, = g om0 h where

Snty -i) ]P% LN @ NN @

Liy:z] = fyizl » y o —y»
and if we define Sy := {(y,2) € C*: fo(y,2) =0} and I, : § —» C by IT1 (v, 2) = y, the
next diagram is commutative

SﬂUﬂh—?']P’é; LESN

¢01 >

Sp

Moreover:

e /1 is holomorphic if and enly if II; is holomorphic, and we already know that IT,
is holomorphic.
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* Noting that w1 is an isomorphism (see Example 2.2.3), h ramifies at a point
[L:y:2] € SNV if and only if IT; ramifies at do([2:y: z]) = (y,2) € Sy,

: & : a -
and this occurs when 3%”' )= 0. Since ﬁ,fzﬂl )= nz"1, z should be equal to

zero and y should be any of the roots of y® = —1. Thus A ramifies at the points

[1:3@:0]Whereogkgn—l.
2k+1

o Ifp=[0:y:2] €S then y* = —2" or equivalently y = e = %, which means

S\Ug={[0:eﬂ2:c1+1 :1]:0< k< n—1}.

In this way we need to add exactly n points to make SN Up compact and extend
moh to S (see Propositions 2.3.13 and 2.3.14),

o The holomorphic extension m of wyoh to S will send the points [0: e"wiﬂ) : 1],
for0 <k <n—1, to oo.

® f=gom oh and therefore it is holomorphic,

———— w2k 1! w(2k4 l

e Since myoh([l:e = :0))=e = : #2for0 <k <mn-—1, 2is not a critical
value of 7, o h. Besides, it is not hard to see that ,7r1 oh (2)| = n and therefore
deg(my o h) =n.

1 m{2k-+1) ={ )
e Due to the preceding items and noting that 7 o & (e = ) [T i

=[l:e"» :0
— . . m(2k+3) .
we can conclude that 71 o b ramifies only at the points 1:e = : 0] with

mult[l w(2kt1) 01;;3 =nforall0<k<n-1.
e n :

On the other hand, analyzing separately the function g for n > 1 we know that it is a
degree n holomorphic covering which ramifies only at the points 0 and co with g(0) =0,
g{oo) = co and multyg = multeeg = n.

The assertions made at the beginning of this example for f hold putting together all
the previous observations and noting that:

{2 — 1 ki i
e g ML) = {e fz+"u:(]§k§n—1}and7rloh (e@)z{[lzeﬂ%ﬂ:m}
foreach 0 <k <mn-—1.
——— -1 2k+1)
* g 0)=0andmoh (0)={1:0:e" = }:0<k<n—1}.
——— —1 =
® g (0)=c0and m 0 h (m)z{[O:l:e%]:nggn*—l}.

=(

DEFINITION 2.3.16. A Riemann surface of finite type is a surface obtained from a
compact Riemann surface by removing a finite number of points.

DEFINITION 2.3.17. A covering f : X — Y between two compact Riemann surfaces is
regular (or normal, or Galois) if the covering group Aut(X, f) acts transitively on each
fibre.
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A regular covering f : X — Y can be seen as a covering of the form X — X/Aut(X, f).
More precisely, there is a commutative diagram

X
!
X/Aut(X, f) ==Y

where ¢ is the isomorphism defined by ¢([p] Aut(x.f)) = f(p).

REMARK 2.3.18. A covering f : X — Y between two compact Riemann surfaces is reg-
ular if and only if deg(f) = |Aut(X, f)| or, equivalently, if and only if deg(f) = |Deck(f)|
(see (GG] p.171-172).

EXAMPLE 2.3.19. Let S = {[z : y : z] € P2 : 2" + y" + 2" = 0}. Then the covering
[+ 8 — C defined by f([z:y: z]) = —(¥)" is regular.

This assertion is clear for n = 1 (see the Example 2.3.15); therefore, here we will treat
only the case when n > 1. In order to do this, let us consider the functions T, W : § — §
defined by T'([z : y : 2]) = [e2"/"z : y : z] and W(lz:y:2]) =[z:e?/my: 2]. Itis clear
that T' and W are well defined and bijective. In addition:

e T is an automorphism.
In fact, if S = {(z,y) € C* : fa(z,y) := f(z,v, 1) = 0}, following the
notations of Remark 2.2.11 and Example 2.1.26, it is possible to draw a diagram
as below

in which m(z,y) = z, ma(z,y) =y, @1 := 71 0 ¢2 and s := m 0 ¢y. In this way,
for a point p = [z : y : 1] € SN Uz we can “read”it as follow (see Examples 2.1.9
and 2.1.26):

= [f %}L? | (I’y)% 0 there is a neighbourhood V' of p for which (V, ¢1) is a chart and

- we can assume that ¢2(V) = {(z, h(z)) :z € p1(V)} for some holomorphic
function h.
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~ If g% ] (m,yﬁé 0 there is a neighbourhood V of p for which (V,2) is a chart and

we can assume that ¢a(V) = { (k(y),y) 1Y € p2(V)} for some holomorphic
function k.
Thus, we only have the next four options to describe the local form of T

p2oT opi (w) =mpo¢s0Todst ony (w)
=2 020 T o ¢y (w, h(w))
=mz0¢p0T([w: h{w) : 1])
= m 0 o ([e*™/ M : h{w) : 1})
= 1 (€2 Map, h(w))
= h(w)

20T oy (w) =w

10T o0 ] Hw) = e¥i/my

10T 0 g5t (w) = /™ (w)

All of them are holomorphic.
e W is also an automorphism (we can show it in a similar way to the above item).
o T'and W € Aut(S, f).
In fact, foT = f and f o W = f because

JoT(z:y:2]) = f([e*/mz:y: z]) = —(g)”
and
FoW(lz:y:2]) = f(lz: 2y z]) = —»(%)“

s f is regular.
Actually, (T, W) ~ Z2 since the groups (T"y and (W) are each isomorphic to
Zy, and

ToW(z:y: z]) = [e*milng . g2milny . zl=WoT.

Therefore |Aut(S, f)| = n? = deg(f), with Aut(S, f) = (I, W) and the assertion
follows from Remark 2.3.18.

2.4. Uniformization and Fuchsian groups.

THEOREM 2:4.1. Uniformizatign Theorem. Every simply connected Riemann sur-
Jace is isomorphic to either D,C or C ([GG] p. 95 or [FK] chapter 4).
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The uniformization theorem provides the three possible candidates for the universal
covering space of a Riemann surface. We may observe that the above are pairwise non-
isomorphic; one of them is compact and the other two cannot be isomorphic by Liouville’s
theorem. A Riemann surface is called hiperbolic if its universal cover is isomorphic to H.

According to this, for the compact ones, we have the next result ([GG] p. 96).

THEOREM 2.4.2. Compaci Riemann surfaces can be classified as follows (up to isomor-
phisms);

(1) C is the only compact Riemann surface of genus 0.

(2) Every compact Riemann surface of genus 1 can be described in the form C/A,
where A is a lattice of the form wnZ & weZ, for wi,wy two complezr numbers
R-linearly independent, acting on C as a group of translations.

(3) Every compact Riemann surface of genus greater than one is isomorphic to a
quotient H/K, where K C PSL(2,R) acts freely and properly discontinuously on
H.

But this is not the only way to describe a compact Riemann surface. Actually, it is
more frequent to find examples of quotients H/K where K C PSL(2,R) acts properly
discontinuously but not freely on H. If I' < PSL(2,R) acts properly discontinuously on H,
by definition, given a point z € H there is a neighbourhood U7, such that ~(U)NT, = @ for
all v € " not in the stabilizer I(z) = {71,..., 7} of z (or equivalently for all ¥ € I" such that
7(2) # z). Now, if M is an isomorphism from H to I sending z to 0 € D, then AT (z)M!
is a finite group of rotations around the origin and thus it is a cyclic group generated by
a rotation w + e2™/mw. Tt follows that I(2) is also cyclic and U, can be chosen to be
I(z)-invariant. It also follows that the set of fixed points is discrete. Otherwise, there
would be an infinite sequence of elements ¥ € I' and of points z; € H such that z; — 2
and 7;(z;) = z. But this would mean that for every € > 0 there would be infinitely many
elements v € I" such that y(U,)NU, # 0, because each 7; has at most two fixed points and
{2} is infinite.

Now, from a different point of view, PSL(2,R) is naturally endowed with the usual
topology of Myya(R) ~ R* which makes it a topological group and this allows us to talk
about Fuchsian groups, which will be defined next.

DEFINITION 2.4.3. A Fuchsian group is a discrete subgroup I' of PSL(2, R).
The remaining results of this section are proved in chapter 2 of [GG] using arguments

of hyperbolic geometry, also treated there. In this work we will need only the results, so
we will leave those arguments and details to interested readers.
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PROPOSITION 2.44, T < PSL(2,R) is a Fuchsian group if and only if it acts properiy
discontinuously on H.

EXAMPLE 2.4.5. PSL(2,7Z) is a Fuchsian group and therefore so is any subgroup.

PROPOSITION 2.4.6. IfT' is a Fuchsion group then we have:

(1) The quotient H/T" has a natural complez structure of Riemann surface, for which
the canonical projection m : H — H/T is holomorphic and multym = [I(z)| for
any p € H,

(2) T acts freely on H if and only if I is torsion free (that is; if it has no nontrivial
elements of finite order).

Prorostrion 2.4.7. Let §; = H/Ty and Sp = H/T'y be two Riemann surfaces {compact
or not) uniformized by freely acting Fuchsian groups I't and I's. Then 81 and Sy are
isomorphic if and only if there exist T € PSL(2,R) such that ToTy o T~ = .

EXAMPLE 2.4.8. The principal congruence subgroup of level 2

I(2) = (Ti() = 242, Ta(z) = S Ty(E) = %}%)

is a.subgroup-of the modular greup T'(1) = PSL(2,Z) with index 6, and 7,7y and T3 fix
only the poinis co, 0 and 1 respeciively, the relation Y7575 = Id is satisfied, and T'(2) acts
freely on H.

Due to this last property, I'(2) must be isomorphic to the fundamental group of HI/T'(2),
which is the free group of rank two as the quotient is isomorphic to the sphere with three
points deleted, namely 0,1,00 € C. Besides, 71,75 and T3 are identified, by mean of this
isomorphism, as simple loops around oo, 0 and 1 respectively.

ProposiTION 2.4.9. If H < K is an inclusion of Puchsian groups then for the corre-
sponding morphism H/H — H/K the following statements hold:
(1) Its degree is the index [K : H].
(2) It is regular if and only if H is a normal subgroup of K.
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2.5. Monodromy.

Let f: 8§ — S be a degree d ramified covering between two compact Riemann surfaces
and let {y1,...,4,} be the set of critical values of f. We already know that the restriction

f . Sl \f_l(yl, ey yn) — S\ {yh ""yﬂ}

is & topological cover. If ¥ € § is a noneritical value of fand yis aloopin S\ {y1,...., 4}
based on y, we can lift v to a path ¥ with initial point at any given point € f~1(y) and
end point at certain ' € f~1(y). Thus we can associate to f the group homomorphism

Mf: WI(S\{yl’"':yﬂ}?y) — sz(f_l(y))
0 = My(y) =03t

where o (z) =z’
Of course Bij ( f ‘l(y)) =~ ¥y (the symmetric group on d letters), and therefore we can
consider My as a group homomorphism from the fundamental group to X,.

DEFINITION 2.5.1. We will refer to the above representation of the fundamental group
(8 \ {1, :Yn}) in the syrmmetric group %, as the monodromy of f. The image of M;
in %4 will be the monodromy group of f and will be denoted by Mon(f}; that is,

Mon(f) = {apy iy E ’:Tl(S\ {yl,...,yn})}.

REMARK. The statements below hold ((GG] p. 163-164).
i) My depends on the ordering of the points in FY{y) only up to conjugation in .
ii) Different choices of the base point y € S\ {91, yn} give rise to conjugate

monodromy groups.
iif) Mon(f) is a transitive subgroup of 5 because of the connectedness of the surface.

REMARK 2.5.2. If S\{y1, ..., ¥} i5 o hyperbolic surface then we can consider the Fuch-
stan group representation of the unramified covering f : 81 \ {y1, e ¥} = S\ {y1, ey n},
provided by covering space theory, and obtain the Jollowing commutative diagram

H__
|
H/TY = — H/T

ZII ZII

SN ({000 e 10}) 2 S\ {1, v,
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where T' is o Fuchsian group isomorphic to the fundamental group 71 (S \ {1, oy Un}) and
'y is a subgroup of T isomorphic fo the fundamental group of m; (Sl \ fL ({yl, e ¥n}) ).
By mean of this representation, it is possible to guarantee that Mon(f) = T'/Ty when I';
is a normal subgroup of ' (see Section 2.7.1 of [GG]). In a more general situation, the

natural action of I' on the coset space I'/T'y is given by permutations, and this action is
given by the monodromy group.

3
THEOREM 2.5.3. If f; : S; = S (i = 1,2) are two morphisms of some degree d with the
same set of critical values {y} in S, then fi and fo have conjugate monodromies if and
only if they are isomorphic coverings ((GG] p. 167).

1

EXAMPLE 2.5.4. Let n and m be two positive integers with no common factors. As a
consequence of the theory developed in Section 3.3 we will see, in Example 5.1.10, that the
variety

C={(@yzw) eC:1+z"+uw™ =0,5" = 2™ y* = w™}
is irreducible, and, even more, that it is a Riemann surface of finite type (removing all its
3nm singular points). We will also see there that 8: ¢ — C with Blz,y, z,w) = ~z is
a degree n®m? regular covering with critical values 0, 1 and oo.

On the other hand, we have seen that S = {[z: y : z] € PL @ g™ fyom 4 gam 0} is
a smooth Riemann surface, and that the covering f : § — C defined by f ([:L' tyiz)) =
—(Z)"™ is algo regular, has degree n?m? and critical values 0, 1 and oco.

‘Iherefore, we can conclude that 8 and f are isomorphic coverings, since the mon-
odromies Mon(B) and Mon(f) are conjugate groups in Bname. Actually, both Mon(p)
and Mon(f) are isomorphic to Z2 x Z2, since 8 and f are ncrmal (see [GG] Section 2.9).

2.6. Riemann-Roch’s theorem.,

As we stated in the Preliminaries, this section is dedicated to exhibit the Riemann-Roch
theorem and some of its consequences. In order to do this, we will first pass through the
concepts of meromorphic functions, holomorphic and meromorphic 1-forms and divisors
(all of them on a Riemann surface), among others. As well, we will recall some results
related to these concepts, to finally state the Riemann-Roch’s theorem and some of its
most important consequences.

DEFINITION 2.6.1. Let X be a Riemann surface and. f: X = C be a function which
is holomorphic in a punctured neighbourhood of a point p € X. Let us consider a chart
(U, ¢) at p. We will say that:
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(1) f has a removable singularity (resp. pole) at pif fod™! has a removable singularity
(resp. pole) at ¢(p).
(2) f is meromorphic at p if it'is either holomorphic, has a removable singularity or
has a pole at p.
In this case, f o ¢! has the Laurent series expansion about ¢(p)

+o0
Fod™2) = a(z~ ¢(n))F,

k=n
where . fod 1()
o |z
Cp = %éﬁ —-——(z_¢(p))k+ldz
with

W(0)i=9(p) +76° (€ (0,20) I $(U) and o £0,
which we will call the Laurent series ezpansion of f about p with respect to ¢. The
integer 7 is called the order of f at p and is denoted by ordy(f).
(8) fis meromorphic on an open set W C X if it is meromorphic at each point of W,

(4) The field of all meromorphic functions on a Riemann surface X will be denoted
by M(X).

REMARK. With the above notations:
i} f has a removable singularity (resp. pole)} at p if and only if for every chart (U, ¢)
at p the function f o ¢! has a removable singularity (resp. pole) at ¢(p).
il) The Laurent series expansion of f about p depends on the choice of the chart.
Nevertheless, the order of f at p is independent of the choice of the chart at P
(IMIR] p. 26).

PROPOSITION 2.6.2. M(P!) = M(C) = C(z), the field of rational funetions in one
variable ((GG] p.26).

REMARK. The proof of existence of meromorphic functions on a compact Riemann
surface X of genus g > 1 and the fact that they are a lot (in this case a lof means that
they separate points in X) can be found in [GG] Section 2.2. Let us note that if X is a
compact Riemann surface, a non constant meromorphic map must have poles,

PROPOSITION 2.6.3. Let X be a Riemann surface and suppose f : X = C is a non
constant meromorphic function ot p € X. Then:
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(1) f is holomorphic at p if and only if ord,(f) > 0.

(2) f(p) =0 if and only if ordp(f) > 0.
(3) f has a pole at p if and only if ordp(f) < 0.

DEFINITION 2.6.4. Let X be a Riemann surface and suppose £ : X — € is a non
constant meromorphic function at p € X. We will say that f has a zero of order n at p if
ordp(f) =n > 1, and f has a pole of order n at p if ordp(f) = —n < 0.

PROPOSITION 2.6.5. Let X be a Riemann surface and let f,g : X — C be two non
constant meromorphic functions at p € X. Then:

(1) ordy(fg) = ordy(f) + ordy(g).
(2) ordp(1/f) = —ordy(f).
(3) ordy(f £ g) > min{ordp (F) ordp(g)}.
REMARK. Let f: X — Y be a morphism between two Riemann surfaces and p a point
in X. Then multyf =1+ ordy(¢p o f)’ for any chart 1 at f(p).

EXAMPLE 2.6.6. Let

f: € = C
Z f(z)=f+¢13.

Since (z+41)/(2*+3) = (z+1)(z+iv3) " (z—iv3) T and f(1/z) = 2(2+1)(1+4v382) "1 (1—iv32) 1,
it follows that f has two zeros of order 1, namely —1 and oo, and two poles of -order 1,
namely +iv/3/3. In fact,

1, »p=-1,00
ordp(f) = ( —1, p=i/3/3
0, in other case.

The next three results are inherited immediately from the corresponding theorems of
functions defined on open sets in the complex plane and can be found in [MIR] at page
29.

PROPOSITION 2.6.7. Let f be a meromorphic function defined on a connected open set
W of a Riemann surfoce X. If f is not identically zero then the zeros and poles of f form
a discrete subset of W.
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COROLLARY 2.6.8. The set of zeros and poles of a non-identically zero meromorphic
funetion f on a compact Riemann surface is finite.

PROPOSITION 2.6.9. Let f and g two meromorphic functions defined on a connected
open set W of a Riemann surface. If f = g on a subset S C W which has a limit point in
W then f =g on W.

PRrOPOSITION 2.6.10, If f is a non constant meromorphic function on a compact Rie-
mann surface X then
EO’" dp(f) =0

peEX
(IMIR] p.31).

DEFINITION 2.6.11. A holomorphic (resp. meromorphic) 1-form on an open set V C C
is an expression w of the form
w = f(2)dz,
where f is a holomorphic (resp. meromorphic) function on V. In this case we will say that
w is a holomorphic (resp. meromorphic) 1-form in the coordinate .

REMARK. Let us remember that we can write
z=x+iy and Z=2zx—iy
and
z=(2+%Z)/2 and y=(z-3%)/%,
and by means of the differentials
dz =dr+idy and dz=dz—idy
and
dz = (dz +dz)/2 and df=(dz—dz)/2i
we can deduce the differential operators
g 170 o0 1,8 d
8 = 5(5;—%) wd gz =55 +igy):
With this notation, the condition 8f /0Z = 0 is equivalent to the Cauchy-Riemann equa-

tions and thus a C* function f is holomorphic on an open set V' C C if and only if
8f/oZ=0onV.




2.6. RIEMANN-ROCH’S THEOREM, a7

DEFINITION 2.6.12. Let w; == f(2)dz and wy = g(w)dw be two holomorphic (resp.
meromorphic) 1-forms defined on the open sets V1 and V3 of C respectively, and let 2z =

T{w) define a holomorphic function from Vs to V1. We will say that w transforms to ws
under T if g(w) = f(T(w)) T’ (w).

REMARK. If T is invertible, then w; transforms to wy under T' if and only if wy trans-
forms to wq under 771,

DEFINITION 2.6.13. A holomorphic (resp. meromorphic) I-form on X a Riemann
surface X is a collection of holomorphic (resp. meromorphie) 1-forms {wy}, one for each
chart ¢ : U — V in the coordinate of the target V', such that if two charts $;:U; = V;
(7 = 1, 2) have overlapping domains, then the associated holomorphic (resp. meromorphic)
1-form wy, transforms to wy, under the change of coordinates T = $10¢5".

The following result states that in order to define a holomorphic (resp. meromorphic)
l-form on a Riemann surface it is sufficient to give a holomorphic (resp. meromorphic)
1-form on the charts of a given atlas instead of giving a holomorphic (resp. meromorphic)
1-form on every chart of the surface.

PROPOSITION 2.6.14. Let X be a Riemann surface and A a complez atlas on X. Sup-
pose that holomorphic (resp. meromorphic) I-forms are given for each chart of A, which
transform to each other on their common domains. Then there is q unique holomorphic
(resp. meromorphic) I-form on X extending these holomorphic (resp. meromorphic) 1-
Jorms on each of the charts of A ([MIR] p.106,107).

DEFINITION 2.6.15. The space of all holomorphic 1 -forms and the space of all meromor-
phic 1-forms on a Riemann surface X will be denoted by ¢! (X) and M(X) respectively;
they are complex vector spaces.

THEOREM 2.6.16. Let X be a compact Riemann surface of genus g. Then
dim#(X) =g
(IGRIF) p.102).
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DEFINITION 2.6.17. Let X be a Riemann surface and w be a meromorphic 1-form
defined in a punctured neighbourhood of p € X. Choosing a local coordinate, that is a
local chart, centered at p, it is possible to write w = f(z)dz where J is a meromorphic
function at 0. In this way, it is possible to define the order of w at p, denoted by ordy(w),
as the order of f at 0.

REMARK. With the notations of the above definition:

i) ordy(w) is well defined and is independent of the choice of the local chart.
i) w is holomorphic at p if and only if ordy(w) > 0.

DerINITION 2.6.18. Let X be a Riemann surface and w be a meromorphic 1-form
defined in a punctured neighbourhcod of p€ X. We will say p is a zero of w of order n if
ordp(w) =n > 0, and is a pole of w of order n if ord,(w) = —n < 0.

REMARK. The set of zeros and poles of 2 non zero meromorphic 1-form defined in a
punctured neighbourhood of a point of a Riemann surface X is discrete. In particular, if
X is compact this set is finite.

THEOREM 2.6.19. The Poincaré-Hopf index formula for meromorphic differ-
entials. If X is a compact Riemann surface of genus g and w € MYXY) then

Zordp('w) =2g9—2
peX
(IGRIF] p.23).

DEFINITION 2.6.20. Let X be a Riemann surface:

(1) A divisor on X is a function D : X — Z whose support, that is, the set of all
points p € X such that D(p) # 0, is a discrete subset of X , and we will denote it
using the summation notation by

D=>"D()-p.
peEX

The set of all divisors on X endowed with pointwise addition forms a group, which
will be denoted by Div(X).




2.6. RIEMANN-ROCH'S THEOREM. ag

In particular, if X is compact, its support is finite, so in this case this allows
to define the degree of a divisor D, dencted by deg(D), as the sum of the values

of D:
deg(D) = ZD(p)
peX
(2) The divisor of a nonzero meromorphic function f on X ; denoted by div(f), is the

divisor
div(f) = Y ordy(f) - p.
b2
Any divisor of this form is called a principal divisor on X, and the set of all
principal divisors on X will be denoted by PDiv(X).
(8) The divisor of a nonzero meromorphic 1-form w on X , denoted by div(w), is the

divisor
div(w) = Zordp(w) ‘P.
P

Any divisor of this form is called a canonical divisor on X , and the set of all
canonical divisors on X will be denoted by K Div(X).

REMARK. Let X be a Riemann surface. If f,g € M (X) are non constant and w is a
non zero meromorphic 1-form then;

i) div(fg) = div(f) + div(g).
i) div(1/f) = —div(f).
iil) div(fw) = div(f) + div(w).
If in addition X is compact then deg(div( £)) =0 (see Proposition 2.6.10).

EXAMPLE 2.6.21. Let X =C, f (z) = ¢>2;(z — A;)% be a rational function on z and
w = f(z)dz. Then the divisor of the meromorphic 1-form w is

div(w) = Zej A - (24 Zq) - 00
J 3

and has degree —2. For instance, if w = dz, then déiv(w) = —2 - co.

DEFINITION 2.6.22. Let X be a compact Riemann surface and

k
D =>"D(p;)-p; € Din(X).
=1 '
It will be said that D is an effective divisor if D(p;) = 0forall j =1,... %, and this will
be denoted by D > 0.
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DerFINITION 2.6.23. The set
Z(D):={fe M(X): div(f)+D > 0} U {0}

forms a vector space over C, called the space of meromorphic functions with poles bounded
by D; its dimension will be denoted by I{(D). The set

ZND) = {w € MYX) : div(w) > D} U {0}

also forms a vector space over C, called the space of meromorphic 1-forms with poles
bounded by D; its dimension will be denoted by (D).

'THEOREM 2.6.24. (The Riemann-Roch theorem) Let X be a compact Riemann
surface of genus g and let D € Div(X). Then

(D) = deg(D) — g+i(D)+1
(IGRIF] p.117).

COROLLARY 2.6.25. If X is a compact Riemann surface of genus 0, then it is isomor-
phic to P! ([GRIF] p.125).

COROLLARY 2.6.26. If X i3 a compact Riemann surface of genus 1, then it can be
represented by a smooth algebraic curve of degree 3 in P? (|GRIF] p.126).

DEFINITION 2.6.27. Suppose X is a compact Riemann surface of genus g > 2 and
{w1,...,wy} is a basis of #1(X). Then the function
Pr: X — Pps-!
P [wi(p) i wy(p)]
for w;(p) := fi(2(p)) (F =1,...,9), where z is a local coordinate around the point peX

and w; = f;(2)dz (j = 1,...,g), is called the canonical embedding of X. The image
®r(X) C P91 is called a canonical model curve of X.

REMARK. The above definition of &y is independent of the choice of the local coordi-
nate around p and it is easy to check that ®x is nondegenerate.
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DEFINITION 2.6.28. A compact Riemann surface X of genus g > 1 is called hyper-
elliptic if there is a degree 2 holomorphic function from X to PL; otherwise it is called
nonhyperelliptic. By the Riemann-Hurwitz formula, the number of critical values of the
above two-fold holomorphic function is equal to 2¢ + 2.

PROPOSITION 2.6.29. If X is a nonhyperelliptic compact Riemann surface, then the
canonical embedding P is injective and B (X) is smooth ((GRIF) p.135).

PROPOSITION 2.6.30. Any hyperelliptic compact Riemann surface of genus g can be
represented as the normalization of a plane algebraic curve C, that is the desingularization
and compactification of C, of degree 2g + 2 ((GRIF] p.187).

Finally, as a consequence of the above, the following result may be deduced.

COROLLARY 2.6.31. Ewvery compact Riemann surface is isomorphic to a connected
smooth projective algebraic curve,

2.7. Belyi pairs, dessins d’enfants and their equivalence.

As we stated before, in this section we will treat the concepts of Belyi pairs and dessins
d’enfants and we will give the explanation of their equivalence.

DEFINITION 2.7.1. A compact Riemann surface S is a Belyi curve if there exist a non-
constant meromorphic map 3 : § — C whose critical set (the set of all its critical values)
is contained inside {0,1,c0}. In this case, 8 is called a Belyi map and the pair (5,8) a
Belyi pair.

REMARK. As the group of Mébius transformations acts transitively on triples of distinct
points, the existence of a non-constant meromorphic map A : § — C with at most three
critical values is sufficient to guarantee that S is a Belyi curve. In other words, if the
seb of critical values of h is contained in {a,b,c}, then f = aoh : § —» @, where
alz) = (Z:g) (2:3, is a Belyi map. Actually 2 and k not only have the same number of
critical values but also the same critical points.
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DEFINITION 2.7.2. We will say that two Belyi pairs (81, 81) and (S, By) are equivalent
if there is an isomorphism % : S —3 85 such that B1 = Ba o h, or, equivalently, if the
following diagram is commutative

Sl_“L—)Sb

N
C

We already know that if S'is a compact Riemann surface, then there is some irreducible
non-singular projective algebraic curve C, defined over the field of complex numbers C,
such that- '~ C' as a compact Riemann surface (see Section 2.6).

THEOREM 2.7.3 (Belyi’s theorem [B]). A compact Riemann surface S is a Belyi curve
if and only if it can be represented by a curve C defined over the field of algebraic numbers
Q. Even more, if (S, B) is a Belyi pair, we may also assume that there is a (rational) Belyi
map o : C — C defined over Q such that (S, ) is equivalent to (C,Bc) (see also [GG]
Chapter 8).

DEFINITION 2.7.4. A dessin d’enfant, or simply a dessin, is a pair (X, D) where X is
an oriented compact topological surface, and D C X is a finite graph such that:

(1) D is connected.

(2) D is bipartite, that is, its vertices have been given either white or black colour
and vertices connected by an edge have different colours.

(3} X \ D is the union of finitely many topological discs, which we will call faces of
D.

The genus of (X, D) is simply the genus of the topological surface X.

REMARK. Observe that condition (1) in the above definition is superfluous as it is
consequence of condition (3). Also, the bipartite condition asserts that the graph D has
no loops (edges with both end vertices being the same) and every closed path on it has an
even number of edges. Each face of D must be bounded by an even number of edges if we
count twice an edge which meets the same face at both sides (internal edges).

H

ExAMPLE 2.7.5. In the nexi figure (a) is a dessin d’enfant and (b) is not a dessin
d’enfant.
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(a) (b)

DEFINITION 2.7.6. The degree of a vertez of D is the number of edges incident with
it and the degree of a face is half the number of edges bounding it considering the above
remark (that is, each internal edge is counted twice).

DEFINITION 2.7.7. Two dessins (X7,D1) and (X5, D3) are equivalent if there is an
orientation preserving homeomorphism from X7 to X5 whose restriction to D induces an
isomorphism between the bipartite graphs Dy and D, (that is, black vertices are sent to
black vertices and white vertices are sent to white vertices).

There is an amazing connection between Belyi pairs and dessins d’enfants. Actually
these sets of classes are equivalent as we anticipated. In order to see it, let us first construct
a Belyi function and therefore a Belyi pair from a dessin d’enfant and viceversa.

Given a dessin (X, D) we can associate to it a special triangle decomposition T (D) of
X which will be constructed following the next indications:

(1) For each face F we choose a point vp in its interior (center of the face) and mark
it with the symbol x.

(2) Per each face F and the above chosen center vy, we draw topological segments
from vg to each of the black and white vertices in the boundary of F, such
that they are not allowed to intersect any other edge of D or any other segment
constructed in the same way except at vp.

This triangulation consist of an even number of triangles (each one conbaining one vertex
of each type o, and x) which we can classify into two types + and —. Let j be an edge
of a triangle T' of T(D). If the circuit o — & ~ x — o follows the positive orientation on
the border of T we denote it by I;?]', otherwise we denote it by i’}”.
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REMARK. See section 4.2.1 of [GG].

i) Every edge of D belongs to exactly two triangles of different type.
ii) Two adjacent triangles are of different type (+ or —).
iii) Each face of D is decomposed as a union of an even number of triangles, half of
them of each type.

Now, if we define H' = HURU {oo} (the closure of the upper halfplane) we can
choose a triangle 7;" of type + and a homeomorphism £ i — H' such that

+
0Ty — RU{oo}

+.) © — 0
fj' . —+ 1
x —+ ©0

REMARK. The existence of such homeomorphism is due to two facts. The first one is
that every homeomorphism from an edge of a triangle T to a segment in H = R U {0}
extends to a homeomorphism from the whole 87" to 9, and the second one is that every
homeomorphism 87" — 6H extends to a homeomorphism T' - & ([GG] p. 232).

Next, take the triangle CZ}_ adjacent to I;ﬂ' along the edge label 7, and map Tj_ to the

closure of the lower halfplane H by a homeomorphism fj_ o P H~ that coincides with
f;’ in the intersection i’;ﬂ' NI} and verifies

oy — RU{oo}
Il o — 0
7Y e — 1
X 3 oo

Actually, we just glue the triangles Tj'" and T; . But we can also glue together the collection
of all homeomorphisms fji to construct a continuous function froy : X — € whose
restriction frp) : X* = X'\ f.]_-(lp) {0,1,00} — C \ {0,1,00} is a topological covering.
As a consequence of this, we can endow X* with the only Riemann surface structure that
makes fr(p) holomorphic and therefore convert X into a RieAmann surface denoted by
Sypy. Clearly, fr(p) also becomes a morphism from S7(py to C.

We have to point out that, modulo equivalence of coverings, the pair (ST('D), fr,'-(D))
depends only on the dessin but not on the particular choice of triangle decomposition,
nor on the choice of the collection of local homeomorphisms £ : ’l;-ﬂ: — | ([GG] p.

232-233). Therefore, from now on, we shall write (Sp, fp) instead of writing (S7py, frioy)
and we will referred to it as the Belyi pair associated to the dessin .
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REMARK. fp satisfies the following properties (JGG] p. 233-234):
i) fp ramifies only at the vertices of T(D), that is, at the points o, s and x.

ii) fp is 2 Belyi map. )

iii} deg(fp) agrees with the number of edges of D, or, equivalently, with the cardinality
of f5(1/2).

iv) The multiplicity of fp at a vertex v of D is half the number of triangles surrounding
v, since each pair of adjacent triangles covers a complete neighbourhood of fo(v)
and thus it agrees with the degree of the vertex.

v) The multiplicity of fp at the center x of a face of D is half the number of triangles
surrounding it and thus it is also half the number of edges of that face.

vi) By construction, f5([0,1]) = D.

Inversely, we have the following result.

PROPOSITION 2.7.8. If (8, f) is a Belyi pair and we colour white the points f~1(0) and
black the points f~1(1) and set Dy = f~1 ([0,1]) then ((GG] p. 289-240):

(1) Dy is a dessin d’enfant .

(2) Each of the sets f~1([—co,0]}, F72([0,1]) and f~1([1,00]) is a union of topolog-
ical segments. All of them tegether form the complete set of edges of a triangle
decomposition T (Dy).

(3) f = fo,-

Finally, we are ready to state the equivalence we anficipated before so many times.

THEOREM 2.7.9. The two correspondences
{Equiv. clases of dessins} — {Equiv. clases of Belyi pairs}
(X,D) 3 (Sp, Jp)
(5, Dy) - (S, 1)
which send equivalent dessins to equivalent Belifi pairs and viceversa induce well defined
mutually inverse maps (|GG p. 285,240-242).

Now, we will describe the so called regular dessins.

DEFINITION 2.7.10. A dessin d’enfant for which all faces have the same degree and the
same occurs with all white vertices as well as all biack ones is called uniform.

DeFINITION 2.7.11. If (X,D) is a dessin d’enfant, then the set of orientation pre-
serving homeomorphisms of X which preserve D as a bipartite graph will be denoted by
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Homeo™ (X, D). We can define an equivalence relation on it by saying that Hy ~ Hy if
HioHy ! preserves setwise each edge of D. The equivalence classes for this relation will be
called automorphisms of the dessin, and the set of all such automorphisms will be denoted
by Aut(X, D) or simply by Aut(D).

PROPOSITION 2.7.12. If (X,D) is a dessin d’enfant with T(D} and frpy as before,
then (IGG] p. 258-259):
(1) For any H € Homeo (X, D) there is a unique Hy € H omeo™ (X, D) such that
H ~ Hy and frpyo Ho = fr(p).
(2) The map
Aut(D) — Aut(Sp, fp)
H —r Hy

is a group isomorphism.

DEFINITION 2.7.13. A dessin (X, D) is called regular if Aut(D) acts transitively on the
edges of D.

PROPOSITION 2.7.14. Regular dessirs are uniform, but there are uniform dessins which
are non-regular (|GG] p. 261).

'THEOREM 2.7.15. A dessin is regular if dnd only if the corresponding Belyi function is
a Galois (branched/ramified) covering of the sphére.

PROOF. This is a consequence of propositicn 2.7,12. O

2.8. (Galois action.

Suppose K’ < Cis a subfield, 0 : K — C a monomorphism and o € C. Then recall we
have two options:

(1) If « is algebraic over K and f is any root of the minimal polynomial of & over K,
there is an extension & : K(a) — C characterized by sending e to B.

(2) If o is transcendental over K and # is also transcendental over K, there is also
an extension & : K{a) — C characterized by sending « to 8. In this case K (o} is
isomorphic to K ().




2.8. GALOIS ACTION. 47

The first property together with Zorn’s lemma imply that any monomorphism o : K —
C can be extended to an automorphism of the algebraic closure K of K, and then, by the
second property, it also can be extended to an automorphism of C.

In what follows, given a field extension F < E, Gal(E/F) will denote the group of
automorphisms of E whose restriction to F is the identity.

DEFINITION 2.8.1. Let 0 € Gal(Q/Q) (or o € Gal(C/Q)) and 0 € T (or a € C). We
shall write a” instead of o(a). Accordingly we shall employ the following notations:

(IUEP=% a,z-l,_,_,-nXilX;z ... X is a polynomial in Q[X1, . Xp] (or in C[X1, ... X)),
then o

P7 .= Z a;-’h.__inX;lX;” et Xf;‘.
In addition, if R(X1, ..., X,) = P(Xq,..., X,)/Q(X3, .-y Xn) is a rational function,
then
R% = P°/Q°.
In this way, o induces automorphisms of Q[X1, ey Xn] (or C[X7,..., X)) and of
the field of rational functions Q(Xa, ..., X,,) (or C(X3, ..., X»,)), respectively.

(2) If S is a Riemann surface isomorphic to a (affine or projective) curve Ch,..F, for
which the polynomials Fy, %, - -+ , Fy, are in Q[Xq, ..., X,,] (or in ClX1, ..., Xu]),
then we set 57 ~ CFf,_._F%. -

(3) f R=P/Q: Cr,,. p, — C is a rational morphism, then the morphism R ==
Pr/Qe . Crs,. Fg — C is also rational.

(4) Due to the second and third items of this definition, for a Belyi pair (S,8) (or
ramified coverings of the projective line) aquivalent to (Cr,...Fm; R) we may set
(8,8)7 = (Cry,..rg, R°), which is again a Belyi pair (see Theorem 2.8.2 below),

REMARK. See [GG] Sections 3.3 and 3.4.

1) This Galois action is well defined (see also [GG] p. 197-198).

ii) If o € Gal(C/Q) and p = (z1,...,2,) € C (resp. p = [z : ... : z,] € PR) satisfies
F(p) = 0 for a polynomial F in C[X], «Xp] (resp. in C[Xy,...Xy,]), then the point
p° = (2], ...,27)} (resp. p” = [2§, ..., 23]) satisfies F7(p”) = 0. Thus we can see
that the correspondence p —+ p° defines a bijection between the curves Cr,. . .Fn
and Cyg, . pe. Now, if o € Gal(Q/Q) we achieve the same result in case of having
a Belyi curve. For if, we can extend o to 2 7 € Gal{C/Q) ard obtain a bijection
between Cp,,  r, and Cyw, . pw,, since a Belyi curve can be defined over Q and
therefore CFFL---FFm = GFf,___F#;.
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THEOREM 2.8.2. The action of Gal(C/Q) on Belyi pairs (S, B) enjoys the following

properties ([GG] p. 210-211):

(1) deg(6°) = deg(p).

(2) (B(p))° = B°(p”) for any p € S.

(3) multye (8°) = muity(5).

(4) a € C is a critical value of B if and only if a% is a critical value of B°.

(5) If (S,B) is a Belyi pair, then (S, BY = (87°,[°) is also a Belyi pair,

(6) S and S° have the same genus.

(7) The rule

Aut(S,8) —  Aut(S°, %)
h T he

is a group isomorphism.

Due to the equivalence between Belyi pairs and dessins d’enfants, the absolute Galois
group Gal(Q/Q) also acts on dessins themselves. The transform D° of a dessin D by an
element o € Gal(Q/Q) is defined by the rule

L]

(Sp, fp) — (5%, 3)
In other words, if (Sp, fp) is the Belyi pair corresponding to D, then D? is the dessin
corresponding to the conjugate Belyi pair (S%, £5).

THEOREM 2.8.3. The following properties of a dessin D remain invariant under the

action of the absolute Galois group.

(1) The number of edges.

(2) The number of white vertices, black vertices and faces.

(8) The degree of the white vertices, black vertices and Jaces.

{(4) The genus.

(5) The automorphism group.

(6) The regularity and the uniformity.

Proor. This is a direct consequence of the Theorem 2.8.2 and the Remark 252, DO

THEOREM 2.8.4. The action of Gal(Q/Q) on dessins d ‘enfants of genus g is faithful
for every g (IGG] p. 268-273).

Actually, in a more recent work, it was proven that the absohite Galois group Gal(Q/Q)
acts faithfully on a smaller set of dessins as are the regular ones (see for example [GJ] or
[Gui)).




CHAPTER 3

Fiber Products of Riemann surfaces.

"This chapter is devoted to describing the fiber product of Riemann surfaces and investi-
gating some of its properties: In section 8.1 we will make such description passing through
the definition of a singular Riemann surface and we will expose the universal property,
already mentioned in the introduction, of the fiber product. In section 3.2 we will give a
Fuchsian group deseription of the fiber product. Section 3.3 is assigned to the properties of
the fiber product such as the connectivity and the irreducibility. As we stated before, the
fiber product is not always connected or irreducible and as testimony of this we will exhibit
examples that show it. In addition, we will also give an upper bound to the number of the
possible irreducible components and we will give sufficient conditions for a fiber product
to be irreducible in case it is connected (although these conditions are not necessary as we
will see in some examples of chapter 5). Finally, in section 3.4 we make an application to
the case of the fiber products of dessins d’enfants.

3.1. The fiber product of Riemann surfaces.

DEFINITION 3.1.1 (Singular Riemann surfaces). Let Ry,..., R, be compact Riemann
surfaces and let Cy,...,Cp, C RyU---U R, be pairwise disjoint finite sets. A singular
Riemann surface is the space obtained after identifying all points belonging to the same
set C; (§=1,...,m)in RiU---UR,. Its irreducible components are the starting Riemann
surfaces R; (¢ = 1,...,n) and its singularities are the m equivalence classes C4,...,C,,.
We will say that the singular Riemann surface is reducible if n > 2. Otherwise, it is
irreducible.

REMARK. Observe that a singular Riemann surface has 2 structure of a compact topo-
logical space (which might or might not be connected) and each connected component of
the complement of the singular points has the structure of an analytically finite Riemann
surface. Moreover, the singular points have neighbourhoods homeomorphic to a finite
union of cones with common vertex.

49
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DEFINITION 3.1.2 (Fiber product of Riemann surfaces). Let Sy, S; and S, be three
compact Riemann surfaces and let P1:51 — Spand By : S -+ S be two non-constant
holomorphic functions.

(1) We can associate to the pairs (51, 51) and (Ss, B2) the set

S X(B1,82) Sy 1= {(21,22) €51 x5 :ﬁ]_(zl) = ﬂg(Zz)} C 51 x5
called the fiber product. The fiber product inherits the induced topology from the
complex surface §7 x S5, Within this topology, the fiber product is a compact
Hausdorff space.
(2) Ifm;: Sy X(8y,82) S2 —+ S; denotes the projection mj(21,23) = zj, for j = 1,2, then
= P1om = P2 omy is a surjective function from the fber product 51 X (g, g,y 52
to S(]

(3.1) 51 X (81,82) 52

5 B Sy

So

ExampLE 3.1.3. Consider Sy = 81 = 83 = C and let 8, (2) = 2™ and Ba(z) = 2™ for
any positive integers n and m. Then, in this case, the fiber product is the set

51 % (g,,8) S2 = {(2,w) € C?: 2™ = w™} U {(00, 00)}

which, for .example, may be or not be irreducible depending on the choices of n and
m. Actually, it consist of d = med(n,m) (the maximum common divisor of n and m)
irreducible components of genus zero all them glued at the points (0,0) and (co, oc) (this
would be clear after reading this section).

We have the following remark.

REMARK 3.1.4. For the projections m, and o the following statements hold:
i) w1 and w2 are continuous and therefore  is also continuous (immediate).
it) If B denotes the collection of points in Sy which are critical values of either By or
of Ba, the projections Wl[(slx(ﬂl'ﬁz)gzj\ﬂ—l(_ﬁ) and Trgl(glx(ﬂhﬂz)gz)\ﬂ—1(3) are topo-
logical coverings of degree do = deg(Ba) and dy = deg(B1) respectively.

To see this we first have to prove that Til(s1x 1.8 S20NE-1(B) (1=1,2) is locally
injective.
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— Let z € Sp\ B. In this case, z has d; pre-images by B; in S; (j=1,2) and
didz pre-images by 8 in Sy X(1,8:) O2- Let (z1,22) be one of these pre-images
in 51 X(py,05) S2. Then 21 and zo are not ramification points of By and By
respectively and

z1 has do pre-'émages by w1 tn St x(ﬂl,ﬂz) Sg
and
z9 has di pre-images by my in Sy X (81,82) 52
So, there are open neighbourhoods Dy C 51 and Dy C 85 of z1 and 2z such
that Dy ~ B1(D;) and Dy ~ (3 (D2) are homeomorphic to D and Bi(D1) N
Ba(D2} # B. Even more, we can choose Dy and Dy such that pi(D1) =

B2(Ds) ~ D and B4 p; (7=1,2) are homeomorphisms. Therefore, we can
locally see the diagram 8.1 as

Dy X (B1,82) Ds

N

% 0
Db)ﬁ'c “0('("

B B2
D

If we suppose 1 is not locally injective around (21,29) then for every open

neighborhood V' of (21,2) in the fiber product, there would be two points
(z1,%2), (y1,%2) € V such that

(@1,32) # (y1,92)  and @1 = m1(21,29) = m (31, 2) = 1.
In other words, if we suppose m, is not locally injective around (21, 22), then
for every open neighborhood V of (z1, 22) in the fiber product, there would be
two points (1,2}, (y1,y2) € V such that m1 = y1, 25 # gy and Bals) =
Bi(z1) = B1{y1) = Balye). In particular, for every n € N the set

Va = [B7H(D(0,1/n)) x B71(D(0,1/n))] n D, X (61,82) D2,
where D(0,1/n) == {z € C: 0 < |z| < 1/n}, is an open neighborhood of
(21,22) in the fiber product and there would be two points (z7,2%), (=7, 43)
such that o3 # y3 and Pa(ch) = Pa2(y}). Therefore, for each n € N there
would be lwo points «f and ¥ in By 1(.D(O, 1/n)} C Dy such that Bo(x3) =
B2(y3). But this contradicts the fact that B2p, is a homeomorphism from
Dy onto . Therefore m is locally injective in (S; X (81,82 S2) \ B7H(B).
Analogously, it can be proved that wo is locally injective restricting its domain
to (51 %(gy,8) 52) \ B71(B).
Now, let z1 be any point in S1\ BT (B). Then it has do pre-images in Sy X (81,82)
Sa, say (zl,z%),...,(zl,zé2). Since m is locally injective we can choose open
neighborhoods Uh, ..., Uy, pairwise disjoints of (zl,z%),...,(zl,zclb) respectively

Dy Dy
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in the fiber product such that Jor every 1 < k < ds ecach Uy does not intersect
BHB) and m|y, : U = m (Ur) is an homeomorphism. Defining

d
V= w0, M)
we. obtain an open neighbourhoed of z1 i Sy for which there are pairwise disjoint
neighbourhoods Ty M (VYNTU, (1 <k < dz) of (z1,2) in 8y X (81,82) S2 such that
mnr VINU, —s my (=7HV)n )
is a homeomorphism. In other words, 71’1[(31,( (Br.n)S2\B1(B) 8 & topological couv-

ering of degree do. The other case is analogous.
iii) ﬁ](slx (51.80752)\B—2(B) 18 also a topological covering (this is an immediate conse-

quence of the above item).

Using the above remark it is possible to endow the space (51 X (g, 5,y S2)\ ~(B) with
a complex structure as follows:

Defining 87 := 81\ B7(B), S5 := S\ f7N(B) and S5 = &, \ B, since my, 7, B
and Ba restricted to (S X (81,82) S2) \ B7L(B) are locally homeomorphisms, for-a point
(21, 22) € (51 %(a,,8,) S2) \ B7(B) with z = 8 (#1,22) there are open neighbourhoods D,
D,,, D, and D2,z in 8%, 53, 8§ and ST X (81,82) 53 L respectively, each homeomorphic to
the unit disc D in C, such that the following diagram of homeomorphisms is commutative

D(Zl ,zz)
SN
D, D,,
D,

Actually, these neighbourhoods can also be chosen such that B : D,, — D, are iso-
morphic coverings. In this way, for Dy 2 in S} X(8,,8:) 95 We can define the charis
(Dizr,23), ¥} o m1) or (D(z1,20), W2 © ma) where ¥} and o2 are charts for D and D,, in
&7 and S5 respectively. These charts are compatible because

(Wkom)o (g om)™ =g o (monr)o ()
= ;o (B 0 B1)o (¢})
= (g0 By e (Broyg})?,
(W o) o (h om)™ =y o (1) and (¥ 0 m2) o (32 0 ma)~L = 2 o ()1

are all holomorphic.

18T X(pr.p2) 53 = (S X(8y.82) S2) \ B7H{B)
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REMARK 3.1.5. With the cbove complex struciure, the function wj|ssx, pranSs (1=1,2)
is holomorphic (actually, using these charts it can be seeing that the identity is their local
Jorm) and therefore B| sy x (5,.89)53 '8 holomorphic too.

On the other hand, if (2, 22} € 81 X(p;,8,) S2, remembering that the pairs (8y, £1) and
{2, B2) can be seen as pairs of algebraic curves with rational functions defined over the
complex numbers C, and considering local coordinates (centered charts) for z; and zp, the
fiber product 51 X (g, ,) S2 can be locally seen as the affine curve

U= {(z,w) €D?: 2™ = ™}
' d—l —— . ——
= {(z, w) € D?: H(zm1 — e2rik/dy iy = 01
k=0 J

where my = mult;, B1, mo = mult,, B, d = med(mi, my) is the maximum common divisor
of my and ma, m1 = dini and my = dimp. Observe that (0,0) (respectively, (21,22))
is the only point of U (respectively, near (z,23)) which can be a singular point, and
U (respectively, some neighbourhood of {z,23)) is homeomorphic to a collection of d
cones with common vertex (0,0) (vespectively, (21, 22)). In particular, this asserts that for
@ == 1 the fiber product looks locally as a topological real surface. Besides, the complex
structure defined above is the same as the usual complex siructure for curves (see Examples
2.1.9 and 2.1.26) and, as a consequence, ST X (g, g, 53 is a finite collection of connected
components, each one an analytically finite Riemann surface, say 73,75 ..., T, which after
compactifying, correspond to the irreducible components of the fiber product S X (81,82) S2-

Summarizing all of the above, we have: The fiber product Syx g, g,52 is a compact
singular Riemann surface with a finite collection-of irreducible components and
whose singularities are exactly the points (z;,%) for which both z; and 2z are
ramification points of 5; and f, respectively?.

PROPOSITION 3.1.6. (The universal property of the fiber product). With the
above notations, if X is an analyticolly finite Riemann surface and Py : X ~ 87 (i=1,2)
are coverings such that f1 0 Py = [a o Py then there is a covering T from X to some
irreducible component Ty, of Sy X(61,82) S2, such that P; = w;oT or, equivalently, such that

2Here, besides of the singularities contemplated in the definition of 2 singular Riemann surface, we
have consider as singular points those points {21, z2) € 81 X¢g,,5,) 52 such that both z1 and za are critical
points of By and B; respectively and d = 1. Around this kind of points the fiber product looks like a
single cone and we know that after the des-singularization of each of these kind of points we will obtain,
in strictly rigor, a singular Riemann surface. For this reason we do not include this kind of singularities in
the definition of a singular Riemann surface, but we do i in a context of the fiber products with aim of
study this objects as well as possible,
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the following diagram is commutative.

AN
55

PROOF. If T": X — S} x(g, 8,) O3 is defined by T(z) = (Pyi(z), Pa(z)), it is clear that
Py =m;0T on X. Now, since 71 is locally homeomorphic, for any point 7(z) there is an
open neighbourhood V' of T(z) = (Pi(z), Pa(z)) in SF (s, g,y S5 for which m1(V) is an
open neighbourhood of P;(z) in ST and m |y : V — m1(V) is biholomorphic,

On the other hand, since P is locally homeomorphic, there is an open neighbourhood
U of z in X such that P1(U}) C m(V) is an open neighbourhood of Pi(z) in S} and
Pi|ly : U — Py(U) is an isomorphism. Thus, we have the following commutative diagram

P (U)

from which, due to our previous observations, it is deducible that 7" is a local homeomor-
phism and therefore continuous. Even more, it is a topological covering which is locally
holomorphic, with T(X} connected {because of the connectedness of X). Therefore, T is
a covering from X to some irreducible component T}, of 5 X (8,,82) 52 0

Before ending this section, it is important to observe and keep in mind that the fiber
product depends not only on the starting compact Riemann surfaces but also on the
starting coverings. The next example shows this situation (all the details and calculus are
exposed in Example 5.1.1).

ExaMPLE 3.1.7. Conqider the curves 81 = {{z,y) € C*: y> = z(z — I)(z — 2)} U {oo}
and 3 = {(z,y) € C2 y? = z(z—1){z—4)}U{co}, and consider the coverings 8y : Sy — C

and B2, B2 : Sy = C defined by Bi(z,%) = =, fa(z,y) = = and fa(z,y) = 2241 Tt can be
seen that the fiber products S % (81,8,) S2 and 51 X (50,B0y 8o are connected and irreducible
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singular Riemann surfaces which, after its des-singularization and compactification, become
into compact Riemann surfaces; the first one has genus two whereas the second one has
genus five.

3.2. A Fuchsian group description of the fiber product.

Let us assume S§ is a hyperbolic surface {the case of non-hyperbolic situation can be
carry out in a similar way by replacing the hyperbolic plane} and let I'y be a Fuchsian group
acting on the hyperbolic plane H such that Sj is isomorphic to H/I'y. As a consequence of
covering theory, for j = 1,2 there is a finite index subgroup T'; of I’ for which the covering
Bj - S;-‘ — S is realized by any of the subgroups fyl‘jfy“l where v € T'y (see Sections 2.3
and 2.4}.

Let us fix the subgroups K = vy and Ky = Yal'2vy ! where 1,72 € Iy. Defining
K := K1 N K and R* := H/K, we have the covering maps @; : R* — 8: (7 =1,2)
induced by the inclusion of K inside Kj;. Clearly, in this case, 81 0 Q1 = Bz 0 Qg and, by
the universal property of the fiber product (see Proposition 3.1.6), the surface H/K is one
of the components Ty. Inversely, each T}, is obtained in the above way by suitable choices
of 1 and ~s.

Now, notice that for every 1,72 € T'p, the groups

nT1 Npelayy T and T1n (! o p)Ta(vy ! o o)~
provides isomorphic surfaces. In fact,

o € Ty Nyeleys e 9ty € Tun (v L) Doy ) 2

which means that vy In Loy, * and Ty N (v 1o Y2) 2(7; " 0 y2) ™! are conjugate in
I’y (see theorem 2.4.7). This, in particular, allow us to state the following resul.

THEOREM 3.2.1. Ewery component Ty is isomorphic to H/(T1 N yTay™1) for some
v € Ty, and every quotient of the form H/(T1 N yTay™Y), where v € Ty, is isomorphic to
some component Tk.

REMARK 3.2.2. Of course, from the above it is also deducible that:
i) U H/(yTry™ (T2) o 55 (g8, S5 = | B/(T1NATay ™).
v€ln 1ETD
ii) Every component Ty, is isomorphic to one of the quotzents H/(yTyy~1NT), where
v € To, and every quotient of the form H/(4T1y™ NTy), where v € Ty, is
isomorphic to some component T.

COROLLARY 3.2.3. If one of the subgroups Iy or Ty 4s a normal subgroup of T then all
the components Ty, are isomorphic Riemann surfaces.
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Because each irreducible component of the fiber product, after desingularization, cor-
responds to one of the analytically finite Riemann ‘surfaces 7%, the above can be stated as
follows.

COROLLARY 3.2.4. If one of the maps f; : S; — Sp (5 = 1,2) is a regular branched
covering, then all the irreducible components of the fiber product Sy X (8y,82) 2 are isomor-
phic.

Proor. Without loss of generality, let us assume that 8y : Sy — Sp is a regular
branched covering. Then f : S5 — 5% is a regular unbranched covering and thus I's is a
normal subgroup of I'y. Therefore (I'y NyTyy™!) =1 NTy for every v € I'y, and it follows
that all components T}, are isomorphic. N

3.3. On the irreducibility of the fiber product.

Until now, we have analyzed how the fiber product locally looks like, which are its
singular points and have made a Kleinian group description of it. But other questions
still need to be answered. For example, we would like to know when it is connected or
irreducible. The first big step to move along this way was given by W. Fulton and J.
Hansen in [FH]. They proved there that when Sy has genus zero the fiber product is
connected. Nevertheless, when the genus of Sp is positive, in general, this is not always
true, as we will exhibit it in the next example (all the details and calculations are presented
in Example-5.1.2).

ExampPLE 3.3.1. Examples of non-connected fiber products.

(1) An example when Sy has genus at least two:
Let § and Sp be two compact Riemann surfaces of genus at least two and let
m: 8§ — Sp be an unbranched covering of degree d > 2. Considering §; = S, = §
and ff1 = B2 = ™ we obtain a non-connected fiber product S; X (8y,82) S2-

(2) An example when Sy has genus one:
For A € C\ {0, 1} consider

S1=8y=8={lp1: 2y :za: 2] €PE: 2] + 28 + 22 =0, Ao} + 2% +22 =0},
Su={[y1:yz=y3=y4:ys]€ﬂ’?é:y§=y1-yz, ys(y1+y2)+y§=0,Ay1+y2+y5=0},
and let
Br=fa=m: S — 50
[21: 2023 2g] = [22: 22 mizg : 2amy : 2]

We claim that in this case the corresponding fiber product is the union of two
disjoint Riemann surfaces A and B, each one isomorphic to S, where
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A={([z1: 72 : 23 : T4, |1 : Ty X3 L)) € (IP%)z:
] + 23+ 25 =0, Azl + 2% + 23 = 0)

and

B={([z1:20: 23 : 24, 21 : 22 : —23 : —z4]) € (11”%)2:
x? 4+ 22 + 22 =0, Azd + 23 + 2 = 0}.

On the other hand, with respect to the irreducibility, even in the case that the fiber
product is connected, it might be reducible. The next example shows this situation. For
details and calculus see Example 5.1.3.

EXAMPLE 3.3.2. f §; = 8 = S = C and B1(z) = Pa(z) = z(z% + 22 + 1), then
51 X g, 8, S2 consists of two irreducible components which, after its des-singularization and
compactification, become into compact Riemann surfaces; one of them is the Riemann
sphere and the other is a genus one Riemann surface provided by the compactification of
the curve

1+a? +2° oy +o’y+9 + o +45 = 0.

Consider the curves Sy = {(z,y) € C* : ¢ = z(x — 1)(z ~2)}U{oc} and S5 == {{z,y) €
C?: y? = z(z—1)(z—4) }JU{co}, and consider the coverings 8 : Sy — C and Ba,B2: 82 > T
defined by Bi(z,y) = =, f2(z,y) = = and Ez(:c, y) = % It can be seen that the fiber
products 57 X (81,82) S9 and S x (B1.7m) Sy are connected and irreducible singular Riemann
surfaces which, after its des-singularization and compactification, become into compaci

Riemann surfaces; the first one has genus two whereas the second one has genus five.

Now, in order to go further, in the following theorem we provide sufficient conditions
for the fiber product, when it is connected, to be irreducible.

THEOREM 3.3.3. Let 81 : S1 — Sp and Ba : So — Sy be two non-constant holomorphic
maps between compact Riemann surfaces and suppose its fiber product Sy X(1,8,) S2 18
connected. For each 7 = 1,2 and each q € S) set

aéj) := lem(mult,B; : f;(2) = q)
where “lem” stands for “least common multiple”. If either
1. ged(deg(Br), deg(Be)) =1; or
2 gcd(agl), a,(f)) =1 for every q € 50,

where “ged” stands for “greatest common divisor”, the fiber product S, X(f1,02) S2 18 drre-
ducible and therefore a compact Riemann surface.
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PROOF. Let us suppose (1) holds and let T} be any of the irreducible components of

51 X (B1,82) Sp. If di = deg(i'rlIRk) and dg'k = deg(‘]rglgk) then dl,k deg(ﬁl) = dg,k, deg([)’z)
and the following diagram commutes

Tk
R
S S,
N,
So

In this way, deg(f2) divides dy  and deg(f:) divides dy . Now, as
ﬁ = ﬁl oM = ﬁg Oy & S]_ x(ﬁhﬁz) 82 — @
has degree deg(31)deg(Bs) the condition mcd(deg(ﬁl),deg(ﬁg)) =1 asserts that

d1,xdeg(B1) < deg(B) — di g < deg(Bz)
doideg(B2) < deg(B) — doy, < deg(B1)

and thus one has dy ;. = deg(82) and dox = deg(f1). In other words, Sy X (Br,62) S2 = Tk

‘On the other hand, let us now assume (2) holds. Under this hypothesis, each one of
the singular points of S X(8,,82) S2 has a neighborhood homeomorphic to & dise. As we
already know that S X(8;,82) S 18 connected, the result follows, [}

Trough the above theorem provides sufficient conditions for the fiber product of a two
pairs to be irreducible, these conditions are not necessary (see Example 5.1.4). Nevethe-
less, without assuming such conditions, an upper bound for the number of irreducible
components can be provided.

LeEMMA 3.3.4. The number of irreducible components of the fiber product of the two
pairs (S, f1) and (S, B2) is at most ged (deg(B1), deg(Bz)).

PROOF. Let us use the same notation as in Section 3.2 and let N; be the normalizer
of ['; in Ty ( = 1,2). By Remark 3.2.2, the number of irreducible components of the
fiber product is at most the index [N; : T} of T in Nj, which divides deg(B;) (j =
1,2). Therefore, the number of irreducible components of the fiber product is at most

gcd(deg(ﬁl), deg(ﬁg)). O

In Section 5 we provide examples where this bound is sharp and where it is not sharp
(see Examples 5.1.6 and 5.1.7).
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3.4. Fiber product of dessins d’enfants.

Let us now consider two Belyi pairs (51, 61) and (82, 82). As we know, we can assume
S; is given as an algebraic curve over @ and B; as a rational map also defined over Q
(see Section 2.6). Then its fiber product Sy X (p1,6,) S2 is a connected, possibly reducible,

algebraic curve defined over @, and the map £: .5 X (8,,82) S2 —* C defined by B(z1,22) =

Bj(2;) (7 = 1,2) is also a rational map defined over Q. Each irreducible component turns
out to be a Belyi curve and the restriction of 8 to it a Belyi map. By Theorem 3.3.3,
we have simple sufficient conditions for the fiber product to be irreducible and so for
(S1 X (B1,82) 52, B) to be a Belyi pair. In this way, due to the equivalence between Belyi
pairs and dessins d’enfants, we will be able to construct new dessins d’enfants.

Let D be a dessin d’enfant on a compact oriented surface of genus g; we assume the
vertices are colored in either black or white. Associated to D is its valence

val(D) = (a1y s B3 b1y oy Bgs 01,4 ey )
where
1€ami<ar <~ <ay
1<bh <by<---< g
1< << <ey

with ai,..., a, the degrees of the black vertices of D (D has exactly o black vertices), by,...,
bg the degrees of the white vertices of D (D has exactly 2 black vertices) and ¢,..., ¢y the
degrees of the centers of the faces of D (D has exactly -y faces). Remember that the degree
of a face is half the number of boundary edges of it. By Euler’s characteristic formula,

2—2g=a+fB+v—n
wheren:al—l—---—{—aa::bl—l—----l—bg:cl—l----—%-a,is the number of edges.of D.

As we mentioned above, due to the equivalence of the categories of Belyi pairs and
dessins d’enfants, the above allows us to talk about the fiber product of two given dessins.
But, as already noted, such a fiber product might not be a dessin d’enfant, Theorem 3.3.3
may be stated, in terms of dessins d’enfants, as follows.

THEOREM 3.4.1. Lef Dy and Dy be two dessin d’enfants with
val(D;) = (agl), ...,agl);bgl),...,bgl);cgl), ...,c.gll))
val(Da) = (agz), ...,a&zz);b?), ...,bfgi); cgz), ...,c,(i))

and for 1 =1,2 lei
Aji= lcm(ag"),...,ag;,)), Bj = lem( ?),...,bg)), C; = lcm(cgj),...,c%,))

and n; :=a£j)+---+a,g;,):b¥)+...+bg)=ng)+...+c%)_
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In this way, if either
1. ged(na,ng) =1, or
2. ged(Ar, Az) = ged(By, By) = ged(Cy, C) = 1,
then the fiber product of the two dessing Dy and Dy is again a dessin d’enfant.
PROOF. For j = 1,2 let (Sp,, fp;) be the Belyi pair associated to the desssin (X;,D;).
Therefore (see section 1.7): '
* Since the black vertices of D; are the preimages of 1 by fo;5 | fgjl(l)| = o and
the multiplicities at those points of fp; are ag ) s eens a‘(,f;.) .
e Since the white vertices of D; are the preimages of 0 by fo;, | f.I;Jfl(O)| = f3; and
the multiplicities at those points of fp; are bgj), . b,(s?-
» Since the centers of the faces of D; are the preimages of co by Io;, | fgjl {(o0)] =
and the multiplicities at those points of Jp; are c&"') s oves c%)
In this way, following the notations of the Theorem 3.3.3, we have that:
» Condition (1) of the Theorem 3.3.3 is equivalent to the condition ged(n;,ns) = 1
since 7y = ag’?) + e ag,-) = deg{fp,), for exampie.
» The condition (2) of the Theorem 3.3.3 is equivaleut to the condition
gcd{Al,Ag) = gcd(Bl,Bg) = gcd(Ol, 02) =1
since for g € ¢
A; = lcm(a,gj), ...,a&?), g=20
. v By =1em(®P, 00, g=1
o) = lem(mait o, f,() = a) = { 29 = LomUL 2
C; = lcm(cl g eeey O ), g =00

1, in other cases
and
gcd(agl), a((,z)) = ged{A;, Ag)
ged (agl) ; a,£2) } = ged(By, By)

1

gcd{a,@, a‘(f,)) = ged(Cy, Ca).

REMARK-3.4.2. Let D1 and D2 be the corresponding dessins d’enfants 4s in the chove
theorem. Then:

i) The black (respectively, white) vertices of the fiber product dessin d’enfant D are
those pairs (z,y) where x € Dy and y € Dy are black (respectively, white) vertices.
(Ffmmediate)
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ii) The centers of faces are given by the pairs (z,y) where z is a center of a face of
Dy and y is a center of a face of Ds. (Immediate)

iii) The valence of a pair (either a black vertez or a white vertex or a center of face)
is given as the product of the corresponding valences. (Immediate )

iv) An edge between a black vertex (z1,73) and o white vertes (y1,y2) in D exists if
and only if there exist an edge between z; and 11 in D1 and an edge between x5
and yo in D,

In fact:

If there is an edge between a black vertez (z1,z2) and a white vertez (y1,y2)
in D, il is because there is a lifting § of the path 6§ : I = [0,1] — C where (i) =t
such that the following diagram is commutative

SDI X(fD]_ rfpg) SD2
5o
B f - J‘f’D
-~ éd @
for fp = fp, om = fp, o m with 5(0) = (y1,32) and 5(1) = (z1, 2p).
Now, for each j =1,2, if §; :=mjc§ then
5: I =  Sp
t o m(6())
is continuous, end for ecach t € I

ij Ogj(t) = f'Dj (7Tj Og(t)) = (f'Dj Oﬂ'j) Og(t) = fp Og(t) = a(t) =1t.

In this way, 31 and 6 are liftings of 8 to Sp, and Sp, for the coverings fp, and
fo, respectively

- Sp,
v 11?9,. for j=1,2
/s
- Ve 6 -~
i—sC
such that for j =1,2
83(0) = 5 0 3(0) = my{y1, y2) = 5
85(1) = mj 0 8(1) = mj(z1, 22) = a5

that is, there are an edge between x1 and y; in Dy and an edge between zo and y
n Dz. '

Inversely, if there are an edge between =1 and ¥ in Dy and an edge between
zz and yz in Dy, it is because there are two liftings 61 and by of the path 6§ : I — C
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defined by 8(t) =t to Sp, and Sp, of the coverings fp, and fp, respectively

Sp;
5 .
’ J,f’Dj Jor j=1,2
Ve
rd Fy _~
I—C
such that 33(0) = y; and 3;(1) == (=21,2). Thus, fp, ogj(t) = §(t) =t and
therefore 8;(t) € fj;jl(t) ( =1,2). In particular,

1 = 01(0) € f51(0) zy =81(1) € f51(1)
y2 = 52(0) € f3(0) za = 8y(1) € f51(1)

Now, note that the image of the continuous map
I'= [0, 1] — §D1 X~SD2
¢ By (01(2), 62(8))

is actually in Sp, X(fpy2fmy) Sp,. Thus

§: I=[0,1] = Sby X(sp, 1,) Sp
£ = (01(8),82(2)

is also continuous. - - ~
Besides, 5(0) = (61(0),02(0)) = (v1,2), 6(1) = (6:1(1),82(1)) = (z1,32) and
forj=12

Fpod(t) = fp (81(2), () = Fp; o w; (81.(2), 52()) = fp, 0 6;(t) = 6(t) = 1.

Therefore, § is a lifting of.6 fo Sp, X (fp,20p3) &, of fp that joints the points
(y1,92) and (z1,22). In other words, there is an edge between the vertices (y1,92)
and (z1,zs).
A similar situation fer faces holds. Actually, two faces are adjacent in the fiber
product dessins d’enfants D if and only if its projections to each coordinate are
also adjacent.

In fact, in order to see it we will divide the arguments in two parts:

First, note that a black vertez (T1,Ts) (respectively, white vertes (y1,y2)) is
o vertez of the face with center (z1,20) in D if and only if x; is a black vertex
(respectively y1 is o white vertez) of the face with center z1 in Dy and T3 is
black vertex (respectively y; is a white vertez) of the face with center zo in Dsy.
This occurs because to be a black (respectively, white) verter of o face of a dessin
d’enfant it is necessary the ezistence of a lifting of the path [1,00] — C defined
byt t (respectively [0,00] — C defined by t v t) with respect to its associate
Belyi map, which joins that vertez with the center of that face. With this in ‘mind,
the statement can be proved, as we did in the previous item, replacing (y1,ys)
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(respectively (z1,22)) by (21,22) and replacing the interval [0,1] by the interval
[1,00] (respectively [0,00]) 3.

Second, two faces of D whose centers are the points (21, 22) and (w1, ws) have
in common the edge which joins the black vertex (x1,z3) and the white vertez
(v1,¥2) if and only if both

a) the faces in Dy whose centers are z; and w1 have in common the edge which
joins the black vertex z, the white vertex yy; and
b) the faces in Dy whose centers are zy and wq have in common the edge which

joins the black vertex 1 and the white vertex y

holds (this follows from the previous argument).

3.4.1. Fiber product of regular dessins d’enfants. Let (X;,D;) and (X2,D2) be
two regular dessins d’enfants and let (S1, 81) and (Sa;82) be its corresponding associated
Belyi pairs respectively. If we denote by G; = Aut(S;, ;) < Aut(S;) the deck group of f;
for j = 1,2, the direct product Gy X G2 acts naturally on the fiber product S X (8,,82) 52
by the rule

(91, 92)(z1, 22) = (g1(21), g2(=2))-
I, in addition, 5} X (8y,82) 52 is irreducible, then B = o) = Baomy : 51 X (8;,82) S2 = ®
satisfies that:
L. B(g1,92) = B for every (g1,92) € G1 x G2 and therefore Gy x Gy < Aut($ X (84,62)
S2)ﬂ)‘
In fact, 8({g1, 92) (21, 22)) = Bg1(21), 92(22)) = B (91(z1)) = B1(z1) = B(z1, 22)
for all (z1,22) € S1 X (81,82) S2-
2. It is regular if 81 and P (equivalently D; and Dy) are regular. In this case,
the corresponding deck group is the direct product of the deck groups of B; and
By Actually, B(z,w) = B(z,y) if and only if (z,w} = (g1,92)(z,y) for some
(g1,92) € G1 x Ga since

ﬁ(z1w) = ﬁ(ﬁ:, y)
& from(z,w) =From(z,y) A Paom(z,w) = Bsom(z,y)
© Bi(z) = pi(z) A Ba(w) = Baly)
< z=gi(z) forsome g1 €EG1 A w= go(y) for some g € Go
+ (z,w) = (q1(2),92(v)) = (91, 92)(z,y) for some (g1, 92) € G1 X Goa.

3Note that the liftings of the paths {1, 0] — c, [0, co] — € and [0,1] — €, all defined by { ++ £, are
the edges of the triangles of the triangle decomposition associated to a dessin.




CHAPTER 4

The strong field of moduli of the fiber product of pairs

In this chapter we will develop the concept of the strong field of moduli of the fiber
product of pairs. It is an algebraic invariant for the fiber product and it is different from
the concept of the field of moduli. We will also prove that the strong field of moduli of the
fiber product of pairs coincides with the smallest field containing the corresponding fields
of moduli of the starting pairs.

4.1. The field of moduli of pairs.

DEFINITION 4.1.1. Let us consider a pair (R,7) where R is a compact Riemann surface
(seen as an algebraic curve) and 5 : R — C is a non-constant holomorphic map (seen as a
rational map).

(1) If 0 € Gal(C/Q), we will say that (R°,7°) is isomorphic to (R,n) if there is an
isomorphism f; : R — R? such that 97 o f, = 5 or, equivalently, if the following
diagram is commutative

R—f2 . pe

RA% H
C

we will denote this by (R?,7°) = (B, n) (see sections 2.6 and 2.8).
(2) The field of moduli of the pair (R,7) is the fixed field of the group

G = {0 € Gal(C/Q) : (B,n") = (R,n)}.

It is a well known fact that this field is contained in any field of definition of (R, 7) but
it might not be itself a field of definition of (R,7) (see, for instance, [E], [Hid1], [Hid2],
[H], [K] and [Shi]). As a consequence of Weil’s descent theorem, the field of moduli is a
field of definition if R has no non-trivial automorphisms (see [Weil]). Another result, due
to Wolfart [W1f], asserts that if R is quasiplatonic (that is if R/Aut(R) has genus zero and
exactly three cone points) then the field of moduli is also a field of definition.

64
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4.2. The strong field of moduli of the fiber product of pairs.

DEeFINITION 4.2.1. Let us consider two palrs (S1,581) and (S2, 32), where S7 and S5 are
compact Riemann surfaces and 5, : 7 — C and B2 : 89— C are non-constant holomorphic

maps, and its corresponding fiber product (S X (81,82) S2,8) where 8 = 1 0om = B0m,
(m; is the corresponding projection on the j factor). If ¢ € Gal(C/Q), we have then the
pairs (ST, 87), (85, 7) and their corresponding fiber product (S X (87.83) S5,87) ! (see
Sections 2.6 and 2.8).

(1) We will say that (S x (g, g,) S2, 3) is strongly isomorphic to (ST x(gs 57y S5, 57),
denoting this by (51 x(g,,4,) S2,8) =° (57 x (87.,65) 53, 87), if there are isomor-
phisms

7 Sl X(Bl,ﬁz) 52 — Sla X{ﬁfﬁg) Sg, Fl : Sl — S‘{, and Fy: 5 — Sg
such that
B7oF =p
and
mjoF =Fjom; for j=1,2 (abusing of language);

or, equivalently, such that the following "green, blue and magenta diagrams” (all
in one) are commutative

S1 X (g ,py) S2——— ==~ == == 587 x(g7,89) 5%
™ T2 T T2
Fy / \
$577 a8 Sp T *S¢ - . _ 353
RA/ i 4 B3
C = C

2) The strong field of moduli of the fiber product (S; x S, ) is defined as the
(81,82)
fixed field of the group

G= {a € Gal(C/Q) : (51 X(g,,8,) S2,8) =° (87 % e A7) Sg:ﬁa)} -

LEMMA 4.2.2. Ifo € Gal(C/Q) is such that (81 x g, B2) S2,8) and (S X (87.85) 53, 87)
are strongly isomorphic then (S1,51) = (S7,87) and (S2, 52) = (59, 53).

(81 x(a,,2) 52.8) = (87 xpr 83y 5%, 8%)
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PROOF. If 2; € 5, then there is at least one point z, € Sy such that B; (21) = Pa(z2).
Thus the pair (21, z2) is in S X (81,8,) S2 and
Bi o Fi(z1) = (87 o F1) o mi(21, 22) = fi7 o (Fy o my)(21, 22)
= By o (m o F){(z1,22) = (B] o m1) o F(z1, 22)
= B% 0 Fz1, ) = B(21, 22) = fu(z1).
In other words, f1 = 8¢ o Fy. The other case can be proved analogously. 1

REMARK 4.2.3. If in our previous definition we exclude the existence of the isomor-
phisms Fy and Fy, then we obtain the field of moduli of the fiber product. So, we see that
the field of moduli of the fiber product is a subfield of its strong field of moduli. Neverthe-
less, the sirong field of moduli contains of all the information in the construction of the
fiber product.

The following result states the relation between the strong field of moduli of the fiber
product and the fields of moduli of the two starting pairs.

THEOREM 4.2.4. The strong field of moduli of (S X (81,82) 52: B) 18 equal to the smallest
field contoining the fields of moduli of the two starting pairs.

PROOF. For j = 1,2 let us consider the subgroup
G; = {0’ € Gal(C/Q) : (87,85) = (Sj,ﬂj)}
with its fixed field
K; =F iﬂ:(Gj)
(the field of moduli of the pair (S}, 7)) and let K be the smallest field containing K; and
Ka. We claim first that the strong field of moduli K, of the fiber product S X(81,82) 52
is contained in K. To see it, if we take o € (1 N Gy then for each j = 1,2 there is an
isomorphism
fi 1 85 — 87 such that 7o f;=pg;
and thus the following diagrams

are commutative.
Now, considering the isomorphism
f: 5 X (B1,82) Sz —+ 57 X (82,8%) 55
(21, 22) = (fi(z1), falz2))
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we have thai:

o f is well defined.
in fact, for (21,Z2) = S]_ X(ﬁl,ﬁz) Sz, (fl(zl),f2(22)) € Sf x Sg and

BT o m(filz1), fa(22)) = BY o fi(z1) = B1(21) = Ba(ze) = B5 o fal(ze)
= f5 oma(fi(z1), faz2)),

which means (f1(z1), fa(z2)) € 57 X (gs pg) 595 -
¢ f is bijective.
In fact:
— f is injective since
f(z1,22) = flwr,w3) & (fi(z), fa(z2)) = (F1(01), falw2))
& filz1) = filwn}) A falz) = fa(we)
Ga=w A Zs=aws
AR (21,32) = (wlawZ)'
— [ is epijective since both f; and fs are also epijective. In other words, for
(wy,ws) in 57 X (gg pg)S5 there are z1 € Sy and 2, € S, such that f; (z1) = wn
and fa(25) = wo respectively and

Bi(z) = B7 o fi(z1) = Bf (w1) = B (w2)
= f3 o fa(z2} = Pa(z),

which means (Z]_,Zz) € 51 X (81,82) So.
s f is continuous (immediate).
e mof=fiom and my o f = fy 0wy since for (z1,23) € 5y X (B1,82) 92

mj o fla1, 22) = w (fi(=1), fal22)) = fi(zs) = fiomi(z, 22) (5 =1,2).
e f is an isomorphism.

Actually, note that if B denotes the colle¢tion of points in C which are either
critical values of 8, or critical values of 8, for every point (21, z3) € ((Sl X (8y,82)
S2)\B~(B)) we can choose open neighbourhoods I C ((S) X (81,8,) S2) \B~1(B))
and V' C ((S¢ X (gz.,65) S5)\ (B7)"1(B)) of (21, 22) and f(z1, 22) respectively such
that {(see Section 2.8):

~UC W)
— (U, B) and (V, §°) are local charts for (=1, 22) and f(z1, ) in (S X (81,82) S2) \
B~1(B) and (57 x(gr pey 55)\ (67)71(B) respectively.
= milv, mlv, Bilx @) and B[, (v) are biholomorphisms.
In this way, the local version 8% o f o 871 of f is holomorphic since for |VEry

z € B(U)
B70fofMz) = (B omp)o fo(arlo ) (z)
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=pio(mofon)o B ()
=By o fro B (2)

and 5, f1 and ,81_1 are holomorphic.

e 3=0(%0cf.
In fact, for (z1,20) € S1 % (g, g,y S2
B7 o f(z1,22) = 7 (f1(21), fa(22)) = BT o m(filer), fa(z2)) = BY (fi(z1))
= P1(z1) = By o mi (21, 22) = B(21, 22).
In this way, if
Gs = {0 € Gal(C/Q) : (ST x(g7,85) 55, 87) =° (51 X(,,8,) 52, B)}

then G1 N G2 < G and therefore Fiz(Gh N Ga) > Fiz(G,) = K;. Even more, by Galois
theory we have that Fiz(G; NGa) = (K, Ka) =

(Gh, Ga) Fz‘cc(Gl N Ga) = (K1, Ks)
2 / \ e K, / \ Ko

G]ﬂGﬁ Fzm((Gl,G‘g)) =Kan2

and so K; is contained in K = (K;,Ka} (the smallest field containing K; and Ks).

Conversely, we can see that Gs < Gy and G < G» (see Remark 4.2.2) which implies
that K, > K; and K; > K;. Therefore, K, > K. 0

We next show an example where the strong field of moduli is an extension of degree two
of the field of moduli for a fiber product (all details and calculations are made in Example
5.1.12).

EXAMPLE 4.2.5, Let (Sy, £1) be a Belyi pair whose field of definition and field of moduli
is Q(i) and suppose Gal(Q(i)/Q) = (r) where 7(i} = ~i. Let 7 be any extension to C of
7. By defining S5 = S" and By = Bl, one has that the field of moduli and the strong field
of moduli of the correspondmg fiber product are Q and Q(i) respectively.




CHAPTER 5

Examples.

In this chapter we provide a series of examples of fiber products. Example 5.1.1 shows
the dependence not only on the starting compact Riemann surfaces but also on the starting
coverings. Example 5.1.2 exhibit examples of fiber products which are non-connected
when Sg has positive genus. A fiber product which is connected but reducible and, even
more, its irreducible components are not isomorphic, is exposed in Example 5.1.3. There
the conditions of Theorem 3.3.3 are not hold. Example 5.1.4 shows that the conditions
of Theorem 3.3.3 are not necessary whereas Example 5.1.5 is an example where those
conditions are hold (this last example is also an example of a fiber product of two normal
Belyi pairs). In Example 5.1.6 the upper bound in Lemma 3.3.4 is sharp while in Example
5.1.7 this bound is not sharp. Fiber preduct of eyclic gonal curves is exhibited in Example
5.1.8 (the upper bound in Lemma 3.3.4 is attained), of Fermat curves in Example 5.1.10
and of regular Belyi pairs in Example 5.1.11. Finally, the field of moduli and the strong
field of moduli of o fiber product may differ as is exposed in Example 5.1.12.

5.1. Examples of fiber products

ExampLE 5.1.1. Consider the curves S1 = {(z,y) € C*: y? = (z — 1)(z — 2)} U {o0}
and Sy = {{z,y) € C* : y* = z(z—1)(z—4)}U{oo}, and consider the coverings pr Sy — C
and By, B2 : Sy — T defined by Pi{z,y) = =, Ba(z,y) = = and Eg(:r:, y) = %%_% It can be
seen that the fiber products Sy X (By,82) O2 and 81 x 6175 S5 are connected and irreducible

singular Riemann surfaces which, after its des-singularization and compactification, become
into compact Riemann surfaces; the first one has genus two whereas the second one has
genus five.

Actually:

¢ For a complex number A # 0,1, the curve
{(z,9) € C*: y? = z(z — 1)(z — N)}
is a Riemann surface which becomes into a compact Riemann surface adding a
single point, namely co (see [GG] pg. 15-17). Therefore, S; and S are Rie-

mann surfaces whose compactifications are Sy = $; U {oo} and §; = S, U {cc}
respectively.
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e The extension of 3; to §I is a degree two normal covering which ramifies at the
points (0,0),(1,0), (2,0) and oo with

mult(g,g)ﬁl = mult(lsn)ﬁl = mult(g,g)ﬁl = mults b1 =2

and whose critical points are ,6’1((0, 0)) =0, 5 ((1,0)) =1, 5 ((2,0)) = 2 and
B1(00) = oo (abusing of language).
e The extension of 35 to 3; is a degree two normal covering which ramifies at the
points (0,0),(1,0), (4,0) and oo with
muit(g 0)[32 mult(l 0)62 = mult(4 0) Ba = multo By = 2

and whose critical points are 55((0,0)) = 0, 2((1,0)) = 1, 52((4,0)) = 4 and
f2(o0) = oo (abusing of language).

e Noting that ;572 = T'o0 35, where T is the M&bius transformation defined by T'(z) =

gif%, it is deducible that the extension of ng to :S'z is a degree two normal covering

which ramifies at the points (0,0), (1,0), (4,0) and oo with

muit(g,n),ﬁ—i’; = mult(lvn)gg = mult(g,o)@g = multoogg =2

and whose critical points are 5;;((0,0)) = -1, Ez((l,{))) = 3/%2, @((4, 0)) =9/11
and [3;(00) =2/3.

e 51 X 61.5) S has no singular points (see Section 3.1), is irreducible (see Theorem

3.3.3) and has genus 5.

" In fact, if E = mof = mgo Eg then 3 has multiplicity equals to two at 16 points
in Sy X (61.5) S5 (corresponding to pre-images of —1,0,2/3,9/11,1,3/2,4 and oo)
and has multiplicity one at the other points. Therefore, by Riemann-Hurwitz
formula gen(S; X (81 ) S) =5

e The only singular points of S; x(g, 3,) S2 are: ((0,0),(0,0)), ((1,0), (1,0)) and

(00,00). Around each of them the fiber product looks like 2 cones glued only at
that point. In this way, in order to des-singularized and compactify S, x (81,82) 52
1t is necessary to remove all these singular points and fill the remaining punctures
by adding 6 different points, namely pi,. .., ps, where p; and p, are pre-images of
0 by 3, ps and py are pre-images of 1 by 3, ps and pg are pre-images of oo by 3.

® 51 X5, 5,) S2 is connected (see Section 3.3) and irreducible.

In fact, by Lemma 3.3.4, this fiber product could have at most two irreducible
components. Without loss of generality, if it had two irreducible components, say
Ty and T (T and T3 should be isomorphic by Corollary 3.2.4), we can assume pj,
p3 and p5 are in T, and pa, p4 and pg are in T. In addition, if ﬁ2 (2) ={q1, 92}
and §; '(4) = {r1, 72}, we can also assume that ((2,0),¢) and (r1,(4,0)) are in
Ty, and ((2,0),¢2) and (2, (4,0)) are in T5. In this way,

mult( 2,000 )ﬁlTl rmd‘t(i_l]{4,0))5‘|T1 =19
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and

T2,

mult({z,o)m) 6|T2 — mult( (4’0)) 6"1'*2 =2
Thus, by the Riemann-Hurwitz formula (2(gen(T;) — 1) = 2%2(0 — 1) + 3+ 2)

the genus of each irreducible component of S, X (8,,3,) S2 should be 3/2, which is
a contradition.
L gen(Sl X(ﬁ],ﬁg) Sg) =5
In fact, if ﬁ§1(2) = {q1,q2} and 81_1(4) = {r1, 72} this assertion follows noting
that

2, p=1((20),q1),((2.0),92), (r1,(4,0)), (r2, (4,0))
mult,3 =42, p=p1,...,ps
1, in other cases

and applying the Riemann-Hurwitz formula.

EXAMPLE 5.1.2 (Examples of non-connected fiber products).

(1) An example when S; has genus at least two.

Let us consider two compact Riemann surfaces Sy and S, both of genus at
least two, and let w: S — Sy be an unbranched (not ramified) covering of degree
d>2. Toke S = Sy =8 and 1 = B3 = . In these conditions we claim that the
fiber product X = S, X (81,82) S5 is not connected.

Suppose X is connected. Because 3 does not ramify, neither m; nor 7y ramify
and deg(m) = deg(m2) = d. In this way, by the Riemann-Hurwitz formula,

gen(X) —1 = d(gen(S) — 1).
Now, since d > 2 and gen(S) — 1 > 0, we have
gen(X) — 12> 2(gen(S) — 1) > gen(S) — 1

and thus the genus of X is strictly bigger than of S.

On the other hand, taking P; : § — S; (for j = 1,2) equal to the identity
we see that 8) o P| = 3 0 P, and, by the universal property of the fiber product,
there is a holomorphic covering T : S — X such that P; = w0 T. In addition,
since P; and P, are injective, T' is also injective. Therefore gen(X) = gen(S),
providing a contradiction.

(2) An example when S, has genus one.

For A€ C\ {0,1} consider
S1=8=8={[z1:22:73: 24| €PE : 2% + 22 + 22 =0, Az? + 22 + 22 = 0},

So={ly1:y2:us:va:ys| €PE:y3 = yrya, ys(y1 +2) +y3 =0, Ay +y2 +ys =0}
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and let

,81=ﬁ2=11’: N — Sg
[21: 22 i w3 2q] = (2222 2im0 232y : 2.

We claim that, in this case, the fiber product X is the union of two disjoint
Riemann surfaces A and B, each one isomorphic to S, where

A={{[z1:22: 33 : 3a), (w1 : 72 73 24)) € (BE)?
z? + x3 + 23 =0, /\m%-i-m%—l—m:‘i:()}
and
B={([z1:22:23: 4], [w1: T2 : —23 : —w4]} € (PE)?:
23 +z3 + 23 =0, Mf +af +22 =0}

Actually:

o It may be proved, in a similar way as we did for Sy (see Example 2.1.36),
that S is a smooth complete intersection curve and thus a compact Riemnnn
surface.

e 7 is well defined and it is a non constant holomorphic function (immediate).

e 7 :5 — S is an unbranched two-fold covering whose deck group is the cyclic
group generated by the involution T([:cl 1Ty iy mg]) = [—wy —me @y ay)
acting freely on S.

In fact:

— The map 7: § - S with 7‘([9:1 1Tg i Tyt wa]) = [y s —mp t g z4}
is an automorphism of S. It is immediate to see that it is well defined
and holomorphic. It only remains to prove that it is injective and this
occurs because

[—z1:—awp:xa i mg) =[—21: —20 1 23 ¢ 2y)

—z1 = —tz1 T =1in

—Zp = —l&y Iy = tzy
23 = t22 for some t € C\{0} ¢« s = L2 for some t € C\{0}
g = tz4 Xy = t2.’4

“lwyiwoixs iz =210 200 23 1 24).
- (T) o~ Zg.
— {7} acts freely on S.

In order to see it, let’s determine if 7 fixes points or, equivalently, let’s
determine in what cases [—21 : —22 : 23 : z4] = [z1 : 72 : 23 : 4] for
[Z1:22: 23 : 2] € 8.
* Iz £ 00r 23 #0, 21 =22 =0but [0:0: 23: 24 ¢ S
Therefore 3 = x4 = 0.
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* Since [~y 1 —22 : 23 4] = [z1 : 22 1 —wa 1 —zy], if Ty £ 0 or
w1 # 0 then 3 = 24 = 0. But [z1 : 22 : 0 : 0] ¢ S. Therefore
T =Tg = 0.
In this way, it is deducible that [~z : —z3 : ©3 1 34] = [1 : o 1 T3 : 24]
never occurs in S and thus (7} acts freely on S.
— o oT =T since

mor([z1: @y ws:zq)) = 7([~21: —mg: 7y : z4))
= [z?: a:g 1Z1Tp 23Ty :L'Z]
=7(fz1 i w2123 z4])
for all {1 : 29 : z3 : z4] in S.
— 7 is an unbranched two-fold covering.

In fact, since 7 € Aut(S, ), {7} is an order two group acting freely on &
and since any covering has a finite number of critical points and values,
it is enough to find infinite points in Sy with exactly two pre-images
by 7 to prove that 7 is an unbranched two-fold covering.

Let y2 % 0,—1,—A,4, X and let \/yz, vVA+y2 and /1 g, be fixed
square roots of y2, A + g2 and 14y respectively. It is not hard to see
that the point

P =[1:92: /52 VA+uavT+we: —(A + 1))

is in Sp. Now, if Qyo = lz1: 20 : 23 24] € S is a pre-image by 7 of py,

then
fm% =1 fﬂ?1 =1
m% =¥ r2= (i)\/y?
{ Ti1Z2 = /Y2 = {T1T2 = i
2 = ~(A+y2) 24 =i/ ATy
(2374 = VAT 12V I+ 3 2520 2 VATV T 5.

Since gy, € P&, we can assume 1 = 1 and, by () and (+#), g,, has
exactly two different possibilities:

Gy = [1: /92t /1 F i —\//\+y2i]
or

Qys = [1 VTR —\/1—i—ygz' : \/)\—l—ygz‘]
and both of them are in 5.
e X is the union of two disjoint Riemann surfaces A and B, each one isomorphic
to S, where A = {(z,z) : x € §} and B = {(z,7(z)) : = € S}.
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Actually:

X =81 x(g,,8,) 52
={([$1:$2'I3‘l‘4] [21'22‘23‘274]) ( ) .’E%-{-l‘%—l—ﬂf%io

A$1+1‘2+$4—0 Zl+22+ 3—0 /\zl+22+24—0

2

(22 : 22 : 2120 : T3T4 - xi] = [22: 22 2129 : 232 23]}

(note that by (x) 11 =0 & 21 =0)
= {([0: z2 i3 x4, [0: 20 23:24]) € (PE)? a3+ 22 =0,z +23 =0,

224+ 22 =0, z%+z§=0,[0::c§:0:x3x4:w§]=[0:z§:0223z4:22]}
U

{([1:3:2:2:3:$4],[1:22:23:24]) 6(]1’%)2:1+:r:%+:1:§=0,

/\+:c§+:c§=0,1+z§+z§=0, A+22+22=0,

[1'$§'$2'$3$4'mz]—[1'25'22'23z4:zf]}
={([0:2z2:25:24],[0: 22 : 23: z4)) € (P3)?: 22 + 22 =0, % = u2,
24+22=0, z§=z§,[0:;c§:0:a:3m4:m§]( )[0 22 :00: 2324 : 23]}
U

{([I:mgzxg::1:4],[1:z2:23:24]) E(IP"?:)2 g 1+m%+$§=0,

A+zi+z2=0, 1+z§+z§=0, )\—I—z%—i-z;'f:(),
To = 29, TaTy = 2324, T2 = zg}
(note that by (xx) z2 = 0 ¢ z2 = 0)
={([0:1:23:24],[0:1:23:24)) € @2 :1+22=0, 73 = £,
1+z§ =0, 23 = %24, T3Ty = 2324, T4 = :i:z4}

U

{([1:$2::E3:I4],[1:.’B2223:Z4]) G(IP%)2:1+$%+$%=O,

Atzi+ 22 =0, 22 = 22, x5 =22, z3my = 2324}
={([0:1:3:3:$4],[0:1:z3:24])G(P%)2:1+x§:0,1+z§=0,
T3 = T4, T4 = t24, T3 = t23, 23 = *24, T34 =z3z4}
U
{(l:zo:z3:x4),[1:290: 23 zs)) € (P&)?:1+a2 +23 =0,
A+ 25 +a3 =0, 23 = £23, 14 = £24, T304 = 2324}
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=Wl0: 1w @l [0:1:mimy]) e @) :14+35=0,14+23=0
[ ][ (IP3)2 2 2

U

{([0:1:m3::c4],[0:1:—w3:—164]) €@ 14+ai=0, 1_}-(1;?4:0}
U

{(l:zp:mg:ma), (1o 2s:m4)) € (IP%):Z:1-[—:?,‘%-{—33%:0,)\-{—93%—[—3:2:0}
U

{{(1:39: 23 s, [1:mp: —2g 0 —x4]) € (BR)?: 1-{-:3%—!—3:%:0,/\—!—:3%—}-9:3:0}

:{([O:mg:mg:m4],[0:1::c3:zv4]) e @) a2 +al=0, x5+ 3 = 0}

U

{([0::122:3:3::1:4],[0:1:—:1:3:—:c4]) € (P 2+ 22 =0, 75+ 73 = 0}
U

HUREZREI S NN RSP EN)! e(P%lt)z:1—[—3:%-]—3;3:0,)\_]_;3%_;_@%:{)}
U

f((1:imoizg:my),[l:mg: —z3: —z4]) € (PR 1142+l =0, A+ 22+ 22 = 0}
(reordering)

={([{):mz:m3:$4],[0:x2:m3:$4]) € (PL)?: 2 + 22 =0, x5 + o5 = 0}

U
{(: e ms i zal, [1:ma s 22 x4)) G(L%)z:1+m%+m§=0,)\—i—m§+w§=0}
U
{({0: o923 :24),[0: T2 —zg: —x4]) € (PE)? 1 23 + 22 =0, x%+m§=0}
U
{(iL: 22 : =3 xql [ 2y —iry : —x4)) E(1?’%)2:l—i—wg—l—mgzﬂ,)\—l—m%—l—mfi:O}
(rewriting)
={(fz1: 2223 :ma),[m1: 32 23 24]) € (PR)? 12} + 28+ 22 =0, Azt + 2% + 22 =0)

U
{([z1: 72 23 24), 21 : o 2 —24: —z4)) € (P2 : a2 4+ T3 4 22 = 0, Az? a4+ 22 = 0}
(fn our above notation)

=AUB,

EXAMPLE 5.1.3. If 8 = Sy = & = C and B1(z) = Ba(z) = z(z* + 2% + 1), then
51 X, 8, S2 consists of two irreducible components which, after its des-singularization and
compactification, become into compact Riemann surfaces; one of them is the Riemann
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sphere and the other is a genus one Riemann surface provided by the compactification of

the curve
* 1+22+a +ay+aPy+ ¥ +oy? 48 =0

Actually:
e 5 and f5 are holomorphic (immediate).
o Because the genus of S is zero, the fiber product is connected and
ST X(gupn) 55 = {(5,9) € € 2(a® + 22 + 1) =y + 4 + 1)}
~{(z,y) €C?iat —yt + 2 — Pz —y =0}
= {(z,y) €C: (g —y)(1 +2® +2° +ay + 2Py + ¥ + 13 + 1) = 0}
e {(z,y) € C?: 2z =y}
{zy) e Ci 1+ + 28 + oy + 2y +4° +ay? +3° = 0}
e C) = {(z,y) € C?: ;r:z = y} is irreducible and non-singular and therefore a

Riemann surface. . R .
e The compactification C; of C; is isomorphic to C and thus gen (C1) =

In fact, the map f : Cy — C defined by f(z,y) = = is, naturally, an 1nJect1ve
holomorphic function and, by Proposition 2.3.13, it can be extended to oA adding

only one point whose i image by f is the pomt oo in C.
o The curve Cp := {(z,y) € C®: 1 + 22 + 23 -i—a:y—l—m v+t +y8 =0} is
irreducible! and therefore its compactification 02 also is irreducible. Besides, Cp

iy non—smgula.r and thus C’g 1s a compact Riemann surface.
'In fact,

%(1+X2+X3+XY+X2Y+Y2+XY2+Y3)i=2X+3X2+Y—I—2XY+Y2

-ge

3

%(1—]—X2+X3+XY+X2Y+Y2+XY2+Y3)=X+X2+2Y+2XY+3Y2.

Thus, if (z,y) € C? is such that

2(1)

2z +3z% + y + 2zy + 3°=0 and z 4+ 22 +2y+2my+3y2(—)0

then (substracting)
1
r+228 —y -2 =04 (:n—y)(l-{-?x—i—.?y):OH:r::y % y=-z-3
and we obtain two possibilities: z =y or y = —z — 1/2.
= When z = y:
1+22 + 23 +ay+ 2%y + 2 + o + 4% = 1+ 322 + 4o°

and its zeros are —1 and iEY1isi ‘{315".
o

1We used the program [GAP] to verify it.
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Therefore the points (-1, —1), (%1_5—’, ILS@) and (I_T‘/ﬁi, 1—_-‘5{—1_55) are pos-
sibly singular points of Cs. But, in this case, none of these points satisfies
~ neither (1) nor (2) so none of them is singular.
— Whenz #yand y=—-z—1/2:
* From (1) we have that _
22+ 32° + (—z = 1/2) + 22(~z — 1/2) + (—z2 — 1/2)2 =0
o2 —1/2+ e +4z+1)/4=0
8% +4z-1=0
~1++/3
4

* From (2) we have that
z+a2?+2(—2—1/2) +22(—2—1/2) + 3(—z — 1/2)2 =0
-2 - 27 -1+ (1222 4+ 122+ 3)/4 =0
o8 +4x-1=0
-1++/3
a:=——4—‘

Then from both (1) and (2) we obtain the points (%@, iﬁ—‘@) But none
of these two point are in Cs.
Hence we conclude that C5 is non-singular.
e In order to determine the singular points of the fiber product and its shape, we
first have to analyze 3, = (2 from which we will know that 3; has degree 4,

ramifies only at the points —1, l—i-\glﬁ and oo with
mult_1 3 = mult . 5 01 = 2 and mult, 5 = 4
: 8

and its critical values are 3;(—1) = —1, 3;(o0) = o0, ,6‘1(1+‘8/Ei) = 37—;—5&/@3‘ and
1-v15iy _ 37-45\/15i
61( 8 ) - ]3 .
In fact:
— For a point p € C:
Bi(z) =423 + 322 + 1 = (2 + 1)(42 — 2 + 1) and thus

1++15¢
i) = U4z = _1,—853.
This means that mult_,/5, = mult . 5 41 = 2 and for the other points p in
]

C multypy = 1.

— For a point p = co: N
In a neighbourhood of oo the local form of 3; is bi(z) = o j: -7 and thus
mult. 3 = 4.

— Since 87" (c0) = {00} we deduce that deg(53;) = 4.
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e From the previous item we conclude that the singular points of the fiber product
are (—1,—1), (H"S/Ei, 1+‘8/E), (1“8/1._5", 1_‘8/m) and" (00, 00). Locally, around
each of the first three of them it looks like two glued cones (at that point) and
around (oo, 00) it looks like four glued cones (at that point).

. gen(é;) =1 and the fiber product looks like

Actually, if we make
B () = {s = o0}
16]__1(*1) - {PlsPZ:PS = (_11 _1)}

ﬁ_l(:;r .1:"-.\,,/1—.3,)_{] - _(1—\/@' 1—\/Ei)}
1 — a3 ] =191:92,93 = g

8 8 ' 8
1 (37 + 507150 _ (1+V15i 1+ 15
By - = T1,7T2;73 = 3 ) 8

it can be seen that
B (c0) = {(s,8)}
B7H=1) = {(px,p1) : 1 < k,1 < 3}
37 — 45\/15
B! (——\q\’—l) ={(gr.q):1<k,1< 3}
g1 (37+ 501/15i

83 ) ={(7'Ic,?"£):1Sk,l§3}.

We also know that aﬂé; = {(p3,p3). (93, g3), (r3,73), (5, s)} and its elements are
the only singular points of the fiber product since around the remaining twenty
four points of

ST X (81,62) 83 = B ({

the fiber product looks like {(z,y) € C*: 2 —y =0} or {(z,y) € C?: 2% —y = 0}
(around the point (0,0) which is smooth). Besides, six points of (ST % (81,8 S3) \

(a N 6‘;) (those of the form (p,px), (gk,qx) and (rk,Tx) where k = 1,2) are

37 — 45+/15i 37 + 50/15;
_11 83 3 83 ; 00
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exclusively in C1 and the other eighteen are exclusively in C'g The fiber product
then looks like

On the other hand, since 0 is not a critical value of £1 then it has four pre-
images by 31, namely t1,t,¢3 and t4. Thus, 0 has sixteen pre-images by 3 in
S1 X(a, B2) 52 and four of them are exclusively in CI and the other twelve are
exclusively in C’g Therefore Blg has degree 4 and 3|~ & has degree 12. With-
out loss of generality and abusmg of language after removmg the singular points
and replacing them by new ones except for the point (s s,s), in the process of
des-singularization and compactification of both singular components of the fiber
product, we can call those new ones in the same form as before in both 01 and
6’;. But, after removing the point (s, s) it is needed to add three different points
oC1, 002,003 to Cz and another one >0y to C) in order to cover the holes of the
resting cones (which were meeting at (-, s) before the des-singularization of these
singular components). .

Now, from the above discussion of this item, it is deducible that:

2! Tr = (p33p3):ﬁ’!'--’js),(7'.'3.17'3)

Ila Tr = (P]-Pl-)a (P?.:pﬁ)1 i;'/\ + 41 ) [.’1'_’- 42 ), (7"1,7'1), (7‘21 T'Q)
4, =004

multxb’[a =

(1, in other cases

(1, T = (p1,P2); (P2 1), (01, 42), (92.41), (r1,72), (r2, 71)
z = (p1,p3), (P2, p3), (p3, 1), (03, p2), (P3, 3),
(91, P3):(92:93), (43, q1), (93, 92), (43, ¢3),
(7‘1.7‘3),{7'2,7“3),(7'3,7'1),(7‘3,?‘2),(?‘3,?"3)
4, z = 001,003,003 ’

multxﬁlé; = 4

1, in other cases

and using the Riemann-Hurwitz formula we obtain, for exam;)le the genus of Cy
as follows:

2(9871(6';)—1)=2-(0—1)+5+3—!—5+9
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from where gen(@) = 1.
» The conditions of the Theorem 3.3.3 do not hold since med(deg(f;), deg(f2)) = 4
and

mem(1,1,2) =1, q= -1, 37+F:g\/ﬁz’ 37--1@/1&
LD RN b S _
a'g' - a'f)' - 4: g =00

i, in other case

(using the same notation as in the theorem).

EXAMPLE 5.1.4. An example where the conditions of Theorem 3.3.3 are not
necessary.

Let us consider Sy = Sy = C, Prlz) = 423(1 — 2%) and Bo(w) = —27wt(w? —1)/4. In
this case, botl conditions of Theorem 8.8.8 do not hold, but the fiber product

S1 X gy, pn) S2 =A{[z 1 w: 1] € PE 162°(#% — %) — 2w (w? — £2) = 0}

is an trreducible genus 7 curve which has a singular point with o neighborhood being 6 cones
glued at their centers and another singular point with a neighborhood being a disc.

OOQW

/

Actually:

. o . 27if3  pdwifs .
o 3 has degree 6, ramifies at the points 0, 11—\/5, -6—3%, e_\%{m and oo with

2, z= 1/1' 3 2, 6211’2'/3/\3/9" e47ri/3/,\3/§
mult, 1 = ¢ 3, 0
6, z=ro00

t
i

and its eritical values are

AL0) =0, B1(1/V2) = 1 {3/ /2) = Bu(e*™/3//2) = 1 and By (c0) = oo.

In fact:
— For a point p € C:

/ e2‘m‘/3 N e4m’/3
! . 2 _ _ _
R CIIC I C

Sl
(o)
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thus multgﬁl =3 and mult_ai_b’l = m’ulteszs ﬁl = muzte41ri/3 ,81 = B,
5 -

va ¥z 2
— For the point p = oc:

In a neighbourhood of oo the local form of 3, is El(z) = Z(_zgs—_n thus
muitmﬁl = 6.
— Since A '(00) = {00} it is deducible that deg(B1) = 6.
_ »81_1(0) _ {0,1,e2ﬂ/3,64ﬂ/3}, 51—1(1) — {1/\3/5, 827”:/3/\3/5, 64711'/3/,\-75} and
B (00) = {oo}.
e (3 also has degree 6, ramifies at the points 0, i\/g and oo with

multyfFs = 4, multi\/gﬁg =2 and multyfs =6

and its critical values are (32(0) = 0, 3, (:l:\/% = —1 and f2(00) = oo.
In fact:
— For a point p € C:

Bs(w) = 82—1w3 (w — % (w + \/g) thus multgfy = 4 and multi\/gﬁg =2
— For the point p = oo: _ .
In a neighbourhood of co the local form of 3, is fBa(w) = Wétﬂ_&ng thus

mult B2 = 6.
— Since §5'(oc) = {00} it is deducible that deg(f2) = 6.

= 851(0) = (0,21}, 871(-1) = {/2,%/3i} and 87" (00) = {c}.

* Since med(deg(81), deg(B2)) = 6 # 1 and med(all,a?)) = med(6,6) = 6 # 1
(using the same notations as in the theorem 3.3.3) both conditions of the theorem
3.3.3 do not hold.

o After des-singularized and compactify the fiber product 7 x B1,82) S2 We obtain
a Riemann surface (its irreducibility can be analyzed using [GAP)]) of genus 7
which is isomorphic to the des-singularization and compactification of the curve

{(z,w) eC?:162%3(1 - )+ 27wt (w? — 1) = 0}

In fact, it is necessary to note that the fiber product has only two singular
points. One of them is the point (oc,oc) (corresponding to the preimage by
f of co) with a neighborhood being 6 cones glued at this point and the other
one is the point (0,0) (one of the preimages of 0) with a neighborhood being a
single cone. As in the Example 5.1.3, this is something that we have to keep in
mind in order to calculate its genus. In other words, after removing the singular
points of the fiber product (the des-singularization of the fiber product) in order
to obtain a compact Riemann surface, it is necessary to add six points, namely
31, 009, 003, X4, 005, 00 to cover the holes of these six cones which were meeting
at (5¢,00) and to add another point which we will denote by (0,0) (abusing of
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language) to cover the hole of the resting cone. Therefore it we set

p =™, B (=1) = {p1,p2,p3,p1,p5,p6} and B3 (1) = {ql,qm,qw 94,05, 96}
we obtain: :
(12, z=(0.0)
3, z=(0,1),(0,-1)
4, z=(1,0) H' 0),(p*,0)
L z=(1,1),(1,-1),(p.1),(p. ~1),{p* 1), (p* —1)
mult, 3 J (Pk’ V3 *(Pk -7 |
2, z= (Pk: 2) (Pk‘_
('3“ q;.) (ﬁ,q;c) (-ﬁ%,q:c)
6, z = o0;,009,003, 004,005,008
1, in other cases

where 1 < k < 6 and, by the Riemann-Hurwitz formula, if g = gen(Sy x 51,82)52),
20-2=2-36(0-1)4+ 114449412+ 18+ 30
from which g = 7.

EXAMPLE 5.1.5. An example where the necessary conditions of Theorem 3.3.3
hold.
Consider the compact Riemann surfaces (see Ezample 8.1.98)

Si1={lz:y:z] €PE:y® — 2?2+ 2% = 0}
Sa ={[z1: 2 : x3) € P} : 22 4+ 22 + 22 = 0}

IS

and the functions B :8 — C and Ba: & - C defined by 61([ Sy z]) =< an

:
62([.1:1 : : $3]) = —(%Ja)z. Here we have that Sy is a genus one curve, Sy =~ @ nd

(S1,81) and (82, 82) are regular Belyi pairs provided by the groups
([m:y:z]n—}[:r::ezm/3y:z)%Z3
and :
<[371 @2 x| - [—x1 i o i @), [T T2k T3] > [T 0 —2 ng]) & 22
respectively. The fiber product
51 X(8,,85) S2
I

{(z:y:2],[z1:22:23]) € P2 xP2: 23 +22+22 =0, Y -2zt =0, 222 = —223},
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is irreducible (because the conditions of Theorem 3.8.3 hold) and it is isomorphic to the
following irreducible curve of genus 4

R={ly:v:w:t E]P%:yat—v4—v2t2=0,t2+v2+w2=0}C]P(3:
which has the following automorphisms:
T([y:v:w:t])=[e2'”i/3y:v:w:t]
Ally:v:iw:t]) =[fy: —v:w:4
B(ly:v:iw:t)) ={y:v:—w:{
such that (T, A, B) = (T} x (A, B) 2 Z3 x Z3. The map

: A: rviw:t =
F:R=C:ly:v:w:tj=z 3

provides a regular branched covering with deck group (T'). The branch values of F are given
by the points oo, 0, &4, &1. It follows that R can be also described by the cyclic 3-gonal
curve

yS = x($4 - 1):

and the group (A, B), under the map F, corresponds in this model to the group
(a(ﬂ:, y) = (1/33, —y/a:2), b(.’L‘) = (_SB: "?}))-

Actually:
» 5 and S5 are compact Riemann surfaces (see Example 2.1.32).
¢ As we did for 83 in Example 2.3.15, it can be proved that 5 is a non-constant

holomorphic covering of degree deg(1) = 3 which ramifies only at the points
0:0:1],(1:0:0] and [1:0: 1] with

multio)f1 = multjrgg by = multgy B =3

and critical values
B([0:0:1]) =0, fi(f1:0: 0]) = oo and By ([1:0: 1) =1.
From this item it is deducible that 38, is a Belyi map for ;.
» It is a direct consequence of the application of the Riemann-Hurwitz formula, that
gen(S1) =1 and gen(Sy) = 0.
» Similarly as we proved that (S, 8;) is a regular Belyi pair (see Example 2.3.19)
provided by the group (T, Th) = Z3 where Ty, % : So — S are defined by

Tl([ml 191 wg]) = [—3 ¢ xg | Tg([a:l P Zo m3]) = [m1 : —zq : 23],

it can be proved that (S, 1) is a regular Belyi pair provided by the group (T')
Zgz where T : §1 — 5 is defined by T([w T z]) = [z : 27/3 . z).

* 51 X(g,,p,) S2 is irreducible (both conditions of Theorem 3.3.3 are hold) and is
non-singular.
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* SixX@ppy e Ri={ly:v:w:t) €PL: Pt — vt — 022 = 0,2 + o2 4 2 = 0}.
In fact:
— Since the following diagram

U2r15'1={[.'ﬂ:y:1]E]P%:y3—m2+m=0}+—f—}{(m,y)EC2:y3~m2+m=O}

.Bll l
—C

@ ) idg

where
[2:y:1] Lo (2,p)

| |

E——— 1
is commutative, we can argue that f is an isomorphism and thus

(2N 51,61) = ({(z,9) €C* 1y — 2% + 2= 0}, (2,4) = 2)
— Since the following diagram

UoﬂSg:{{1:3:2::.*;3]G]P%:l—{—m%-z—a:g:()}(—ﬁ—}{(mg,ma)GC2:1+2}§+:L‘§=0}

| |

—~ idz -~
C ¢ — C

where

[1: 25 : mg] 2o (22, 23)
| I
~(2)? s (g,
is commutative, we can argue that g is an isomorphism and thus
(Uo N S’z,ﬁg) = ({(:cg,:‘cg) eC?:1+ T2+ $§ = 0}, (22, zg) r> —(:1:2)2)
= ({('v, w) € C?: 1+ % 4w =0}, (v,w) = —'uz)

~ From the above we obtain that S X (81,82) S2 minus a finite set of points is
isomorphic to

{(33,?)‘,?),?1)) EC4:y3_$2+3§=0, 1+U2—|—w2=0, m:-—-ryz}
={(——v2,y,v,'w) €C4:y3—'v4—u2:0, 1+'u2+'w2=0} <Ct

and can be seen as

{{y, v, w) ECS:yS—v4—1)2:0, 1+v2+w2=0}§C3,
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whose projective version is
{ly:v:w:t]ePd:y’t—v! — %2 =0, t2+v2+w2_=0}gﬁ"%.

® gen(S1 Xz, 4,) S2) = gen(R) = 4.
In fact, from the above items we can conclude that the following commutative
diagram

S1 X (8,,62) S2

Sy B Sy
R‘\ . B2
Cc
with
Bri(0)={[0:0:1]} Byt (0)={[1:0: %4}
BTN ={1:0: 1]} BN = {(1: =i 0]}
Bri(oc) ={[1:0: 0]} By t(oe) = {[0:1: %]}
and

muzf[n:n:uﬁl = mu“mw 1_‘)61:= mu“[l:n:o]ﬁl =3
mult 0.+ 82 = multy; .,.0)82 = mult,. . 8 = 2

is equivalent to the following commutative diagram

S
RN
S |F S
BN B

where

5= {(z,y) eC*: P -2+ 2 =0}, S5:= {(v,w) € C*: 1 +v? + w? =0},

ﬁﬂi(xa y) = T, B;(v'a w) - __v2,

S={(z,yv,w) €eC*:pP - 2? +2=0,1+v* + w? =0,z = —v?}
=~ {(y,v,w) €C®: y* —v* =02 = 0,14+ 0® + w? = 0}
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is the corresponding fiber product of (FS:, ﬁ]) and (EE, 52) and

(y,v,w)
(—v ay) B (v,w)
B B2
—?

with

B (0) = {(0,0)} 2‘1 (0) = {(0, i)}

B (1) ={(1,0)} &1 (1) = {(i,0)}

gl_l(x) = {oc} Ez_l(‘x) = {001, 02}
and

mult(0,0)61 mult 1.0 ||61 multmﬁl = 3

mult (g +) 52 = mult - ; g 62 = mult.., xzﬁg =2

Note that the points oc and o0, o0, were added to compactify 81 and Sg and
extend 61 and 62 respectively. In this way 6 , and therefore 3, has six critical points
((D 0), (0, £i)), ((1.0). (%i,0)), (00, 001) and (oo, 503), each one with multiplicity
6. By RJema.nn-HurWItz formula,

£ 29en(S) X(gy,5) S2) =2 =2-3-40 = 1) +5+5+5+5+545

from which the assertion is true.

* R has singularities only at the points [0: 1:0: £¢] and [1: 0: 0 : 0] (these are the
only points where the 2 x 4 matrix of partial derivatives does not have maximal
rank).

e R has the following automorphisms:

T(y:v:w:t) =23y :v:w:
Aly:v:iw:t])=[y: —v:w:{
B(ly:v:iw:t])=[y:v:—w:t]

such that (T, A, B) = (T) x (A, B) & Z; x 73.

In fact:
— It is immediate that T, A and B are well defined, holomorphic and non-
constant. Besides, it is not hard to prove that they are also injective.
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LT, A B e Aut(R, §):

]

¥ Remember that R={[y : v:w:t] € P : y’t—v'—0v?% = 0,2+ 02 +0? = 0}
© and note that (81 X (8,,85) S2, B) is equivalent to (R, yiviw:t]— —(%)2)
Thus, abusing of the notation, we will have

BoT(ly:v:w: ) =B([* Py :v:w: i) = (%)2 =B(y:v:w:t])
BoA(ly:v:w: t) B(ly w : t]) %)2:ﬁ([y:v:w:t])
BoB(ly:v:iw:t]) =8(y:v:—w: t])

—(’-:—) =B(ly:v:w:t)
~ with (T) = Z3, (A) = (B) ~ Z2 and

Il

AoB(ly:v:w:t])=[y:—v:-w:f)=Bo A
ToA(ly:v:w:t]) = 2Tri/ay:—v:'a.u:t]:Aofl"'
ToB(y:v:w:t]) = 27”'/33,::1):—w:t]:BofI“.

e The map
F:R5C:ly:v:iw:t]m - i
=1
provides a regular branched covering with deck group (T) and branching values
{ o0, 0, +i, 1.
In fact:

— The covering F can be seeing as the composition of the coverings F; and F,
where F1 : R — Z :={[v:w:t] e P : v +w?+t? =0} and F, : Z — C
are deﬁnedasFl([y viw:t])=[v:w:t] and Fp([v:w:t]) = pri

— Note that, in our notation, F} is our starting projection w5 which we know
is a degree three covering and, by done in the above items, it has the only
three branching values [1:0: %i], [1:+: 0 and 124 & :t{] Besides, it is

immediate that T € Aut(R, F}).
— The affine version F3 of F} is the function

Fp: {(nw) €C:?+uw?+1=0} - C\{£l}
(v, w) = w/(iv —1)

which is obviously holomorphic.
— I} is actually an isomorphism.

* Let a be any complex number different from +1. In order to find the
possible pre-images (v,w) € {(v,w) € C* : v> + w? + 1 = 0} of a by
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Fy, it is necessary to consider v # —i. This way, if Fy ((v,w)) = a then
w = a(iv — 1) and thus
V+uwl+1=060+a?(iv-1)2+1=0
< (1- az)vz — 2a%iv + (1+ az) =0

from which v = ﬂll_%’:—) is the only possible value.

* The only possible pre-image of co by F is (—1,0).
— The branching values of F are oo, 0, =1 and =+i since Fy([1:0: zj) = 00

b

Fp([1:0:=i]) =0, B([1: +i:0]) =+l and F5([0: 1: +i]) = +i.
e R can be also described by the cyclic 3-gonal curve
y? = z(zt - 1).
In fact:

— The curve E = {(z,y) € C? : 33 = z(z! - 1)} becomes into a compact
Riemann surface E adding a single point, namely (oo, 00).
Actually, E can be seen as the fiber product of the pairs (C, f1) and (C, f2)
- where fi, fa : C — C are defined by fi(y) = y* and fa(z) = z(z* = 1) for
which we know that:
* f1 is a degree 3 covering which ramifies only at the points 0 and oo
with
multofi = mult f] = 3
and whose critical values are f1(0) = 0 and f;(o0) = oo.
* f2 is a degree 5 covering which ramifies only at the points 2ﬁ%(l =i |

2—\_,%(—1 + i) and oo with

mult?%(lﬂ)fg = mult;‘%{‘lﬂ)‘fg =2, multe=>5

and whose critical values are f3(00) = oo, fo (2—‘%,(1 + 'i')) = —%(1 +1)
and fg(z—l—‘{/%(—l:ti)) = 22 (1 Fi). ‘
The conditions of Theorem 3.3.3 for the pairs ((ﬁ, f1) and (@, f2) are satisfied
and thus C X (f1,f2) C is non-singular. Besides, this fiber product around
the only singular point (o0, c0) looks like a single cone. Thus, in order to
compactify E we need to remove this singular point of C X(f1,f2) C and add

a single point which, abusing of language, we will also denote by (o0, 00).
Therefore,

E = EU{(c0,00)}

is a smooth compactification of E.
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— The projection II; : E = C defined by Ili(z,y) = = is a regular covering of
degree 3 with deck group {(z,y) = (z,e2™/3)) = Z; and whose critical values
are (, 1, &4 and co (see Remark 2.2.11).

— R is isomorphic to E since the coverings F' and II; have the same degree,
critical values, and its monodromies Mon(F) and Mon(II;) are conjugate
in 3. Actually Mon(F) & Z3 = Mon(1T;) (see the last theorem of Section
2.5).

EXAMPLE 5.1.6. An example where the upper bound in Lemma 3.3.4 is at-
tained.
Let us consider the compact Riemann surfaces

Si={fwiy:d €Pd: g~z 42z =0} =,
S2={[.'E1:$2:$3]EP%ZLD%+E§+:{;§=O}E@

and the coverings By : S5 —+ C and Ba:8—C defined by

ﬁl([m Ty z]) = -:5 and f3 ([.31 o :1:3]) = —(z—j)z (see Ezample 2.2.19).

In this ezample both conditions of Theorem 8.8.8 do not hold, (S1.51) and (82, )
are regular Belyi pairs provided by the groups ([x 1y : 2] = [z : —y : 2|) = Zy and
(lz1: 22 @ @3] > [—1 : o - xa), (21 : wo 1 xs] W [y 1 —mg m3]) > 72 respectively (see

Ezomple 2.3.19). The fiber product is given by
Sl x(ﬂlsﬂ?) 52 '
[

{ iy 2,y e oy ::1:?—!—:7;2-%-:192:0, y2—m2—!—:cz=0, mm%:-—zmg C P4 x P2
1 2 T3 2 cXle

The above fiber produci is reducible and consists of two irreducible components, re-
spectively isomorphic to the following ones (both are isomorphic under the isomorphism
L(fu:viw:t]) =[u:v: —w:):

R1={[u:'u:w:t]EIP’%:uwz—}—ut2+iwt2=0,02+w2+t2=0}2@

Ry={lu:v:w:t] € P : ww?® +wt? — iwt® = 0,22 +w? + 2 =0} =C.
Actually:
e 51 is a compact Riemann surface since the homogeneous polynomial Y2 - X2 X7
in C[X,Y, Z] is no singular. Besides, similarly as we did for the previous examples,
it can be proved that f; is a non-constant holomorphic covering of degree 2

which ramifies only at the points [0 : 0 : 1] and [1 : 0 : 1] with critical values
A1([0:0:1]) =0and B;([1:0:1]) = 1. Therefore (S, ;) is a Belyi pair.
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e 55 is a compact Riemann surface and 5 isa degree 4 Belyi covering which ramifies
only at the points [1:0: 4], [0: 1: %) and [1: =i : 0] with
maltiy) B2 = multip.a0fz2 = mull(y. 1082 = 2

and critical values B3([1:0: £4]) =0, B2{[0: 1: +i]) =coand Ao ([1: %i: 0]} =1
(see Example 2.3.15). Therefore (S, 81) is also a Belyi pair.

e It is a direct consequence of the application of the Riemann-Hurwitz formula that
gen(Sy) = 0 and therefore S ~ C.

* It is not hard to see that (S1, 81) is a regular Belyi pair provided by the group

([z:y: 2l [z:—y:2]) 22y
and (S3, f2) is a regular Belyi pair provided by the group

<[a:1 %ot T3] > [Tyt B w3), (10 T2t T3] [#1: —22 :1:3]) o Zg

*» Both conditions of Theorem 3.3.3 do not hold since (using the same notations as
in the Theorem 3.3.3)

med(deg(B1), deg(fa)) = 2 # 1 and mcd(a(()l), a(()z)) =med(2,2) =2 # 1.

ExAMPLE 5.1.7. An example where the upper bound in Lemma 3.3.4 is not
attained. N

Let us consider S$1 = S2 = C, pi(z) = 423(1 ~ 23) = Ba(2) (this covering was analyzed
in detail in Ezample 5.1.4). In this case

81X p) S2={lz:w:t]: B - %) = w3 (£ — ws)}
which consists of four irreducible components, these being:
Ri={z:w:{]ePl:z=w}~C
Ro={lz:w:t Pl 2=y} =T
R3={[z:w:t]EIP%:z=e4“i/3w}g@
Ry={[z:w
Nevertheless med(deg(By), deg(Bs)) = 6 # 4 since deg(B,) = deg(Ba) = 6.

Actually:
e 5 X(By,82) Ss = R3 U Ry U Ry U Ry since

) €PE 2 +wd =13} (& genus one curve).

A —) =P — ) 0 PP - — S LS =0
(@@ -uw)B -2 —wd) =0

o (z _ w)(z _ e2m‘/3w)(z _ e41ri/3,w)(t3 — 3 ,w3) = 0,
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e It is immediate that R;, Ry and Ry are irreducible and non-singular (and thus
compact Riemann surfaces). Ry is also irreducible and non-singular (and thus a
compact Riemann surface) because the homogeneous polynomial T3 — Z3 — /3
is non-singular.

e Only remains to check that R4 is a genus one curve.

In fact, considering that

o Ry \{[~1:1:0],[~e?3 1 0], [e*/3 1 : 0]} = {(z,w) € C?: B +u®—1=0},

by mean of the projection on the first coordinate m; we will be capable to calculate
its genus:

— m ramifies only at the points (1,0), (¢*™/3,0) and (¢*"#/3,0) (see remark
2.2.11) and its critical values are m1 ((1,0)) = 1, m; ((¢*"*/3,0)) = ¢2"/3 and
my ((e47i/3,0)) = tmif3,

— Since m does not ramify over 0 and 77'(0) has only three elements, the
degree of 7 is 3.

Thus, to compactify {(z,w) € C? : 2% + w® ~ 1 = 0} and extend m to its
compactification it is necessary to add three points to {(z,w) € €2 : 28 + w3 —
1 = 0} (which in R4 will be correspond to [-1 : 1 : 0], [—€*™/3 ; 1 ; 0] and
[e*7#/3 ;1 : 0]) whose image under ; will be co. Finally, using the Ricmann-
Hurwitz formula, it can be deducible that gen(RBy) = 1.

ExaMprLE 5.1.8. Fiber product of cyclic gonal curves.
Let n,m > 2 be integers and set

5 = {[:c:y (2] € E’% Yy =$(m_z)zn_2}
Sy ={lu:w:v) € IF% rw™ = U(u"”)”m_z}
Bullz:y:2) =z/z
Ballu s ) = /.

In this case,

51 X{(81,82) So
{

{(lz:y: 2l [u:w:)) € (PR)?: " = a(z ~ 2)2™ 2, w™ = u(u— ™2, zv = zu}.

In offine coordinates (2 = v =1), the above fiber product can be seen as follows:

X'n,,m = {($1y: m,w) eC* Yt = m(w - 1): W = yn} .
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However, if Dy, = mcd(deg(ﬁl),—deg(ﬁz)) = med(n,m), a = n/Dy, and b= m/Dpm,
we can write

Dpm-—1
Xom = {(:r, Y, T, w) € Ct iy = z(z - 1), H (wb — (pn,m)Jy“) = 0},
3=0

where p, m = e®i/Dnim | Iy follows that X, ;m (and so 5y X (8,,82) S2) contains ezactly Dy
connected components, these being given by
Xn,m,j = {(ﬂ’/‘, v, w) € (c4 : yn = .’L‘(.’B - 1): wb = (pn,m)jya}
where 0 < j < Dy ~ 1. All these irreducible components are isomorphic and
bn—1

en(Xp,m,5) = 2
gen(Xn,m,;) {9—“2“—2 in other case.

if n and m are odd

In particular, in the following table the last column provides the genus of the corresponding
irreducible components in the fiber product.;

n | m| Dym | genus
6 | 4 2 b
619 3 8
12 {18 6 17

Actually:

o In order to make the details of this example, it is enough to analyze only §7 and
f1 because the analysis for S and fB; is analogue. The affine version of S is
E = {(z,y) € C? : y" = z(z — 1)} which becomes into a compact Riemann
surface adding a single point if n is odd and two poinis if n is even.

In fact: R _

- I can be seen as the fiber product of the pairs (C, f;) and {C, f2) where
fi: f2 : C© = € are defined by fi(z) = z* — z and faly) = y" for which we ,
know that:

% f1is a degree two covering which ramifies only at the points 1/2 and
co with
multy 5 f1 = mulle fi = 2
and whose critical values are f1(1/2) = —1/4 and f;(c0) = co.
* fz i3 a degree n covering which ramifies only at the points 0 and oo
with ‘
tnulipfo = multfo =n
and whose critical values are f2(0) = 0 and fa(c0) = .

— The conditions of Theorem 3.3.3 are not satisfied for the pairs (@, f1) and
('f,, f) but it can be easily proved, in the standard way, that E is non-singular
and therefore irreducible.
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— The fiber product C X (f1.52) C has oniy one singular point (the point (oo, c0))
and:
* If n is odd, around it the fiber product looks like a single cone. Thus,
in order to compactify B we need to remove the singnlar point {00, 0o)
of C X(f1.f2) C and add a single point which we will denote by oo.
Therefore,
E=FEu{x}

is a smooth compactification of E.

* Ifn is even, around it the fiber product looks like two glued (at (00, 00))
cones. Thus, in order to compactily £ we need to remove the singular
point (0o, co) of C X (f1,52) C and add two different points which we will
denote by co; and oog. Therefore,

E=EU{001,002}

is a smooth compactification of E.
* 31 is a degree n regular Belyi covering with deck group

(w:y:2]m [z: ™y ) =7,
In the affine version, when n is odd, B has only three critical points, namely
(0,0), (1,0) and co with
mult g)f1 = maultnb = mulif =n

and three critical values £1(0,0) = 0, £1{1,0) = 1 and f;(co) = oo; conversely,
when n is even, f§; has exactly four eritical points, namely (0, 0), {1,0), ooy and
00y with

mult(g’g)ﬁl = multu‘o)ﬁl =n and multmlﬂl = multOO2ﬁ1 = n/2
and three critical values $(0,0) = 0, £1(1,0) = 1 and B1{c01) = B1(002) = 0.
In fact:

— In the afline version, $8; is not else than the projection on the first coordinate
of E. Thus, abusing of langnage, f; ramifies at the points (0,0) and (1, 0) in
E (sce Remark 2.2:11) with $1(0,0) = 0 and $;(1,0) = 1.

— deg(f1) = n (since —1 is not a critical value of ;) and

- ={(-LyeC:y" =2}
has n elements,
~ Since A71(0) = {{0,0)} and A71(2) = {(3,0)},
muzt({),o)ﬁl = mult(l’g)ﬁl =T,
— It is not hard to see that f; is a regular covering with deck group

(Bry:z) [z: Py o)) 27,
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— In order to extend holomorphically 8; to E, it is necessary, in case n is odd,
to make 1 (co) = 0o and thus multe,Bf; = n; and in case n is even, to make
Bi(oo1) = Pi(c0z) = oo and thus mult,, 8 = mtlleo, 1 = nf2.

® As a consequence of the Riemann-Hurwitz formula and the above items

- 2ol pis odd
51) = Ey=<¢ 2
gen(S1) = gen(E) {9‘5—2, n Is even,
» The components X, , j for 0 < j < Drp m — 1 are isomorphic (see Corollary 3.2.4)
and are irreducible (see Lemma 3.3.4).
o For 0 < j,k < Dy — 1 with § # &, X, 1 5 0 X my = {(0,0,0,0),(1,0,1,0)}.
In fact:

(2,9, %, W) € Xnm iNXpmp = 4> =5z - 1) Auwd = Ppn Y AW’ =ph "

" =z{z— 1) Awd =p9}‘3nlmy“/\ (pﬁfm - Dy*=0
+y=w=0A(z=0vz=1)
—+ (2,9, 7,w) = (0,0,0,0) V (z,y,z,w) = (1,0,1,0).

* The genus of the irreducible components Xn,m,j can be calculate by mean of the
equation
n—1

if n and m are odd
gen(Xn,m,j )= {bn2—2

5= in other case.

In fack:

Let II : Xpmo — E defined by I(z,y,2,w) = (z,y). It is immediate that
T is a covering of degree b and, noting that T : Xnmp —+ Xnmo defined by
T(z,y,z,w) = (z,y,z,e*/Pw) is in Aut(Xn,m,p0, IT) with (0,0,0,0) and (1,0,1, 0)
the only points with non-trivial stabilizer (in particular they are fixed points by
T, it is also regular. Next, we will use this covering and the Riemann-Hurwitz
formula to calculate the genus of Xnm,j in all cases.

— If n and m are odd, the only singular points in the affine version . n,m Of
the fiber product S X (g, g,) S2 are (0,0,0,0), (1,0,1,0) and (oo, 0o} (or
equivalently ((0,0),(0,0)), ((1,0),(1,0)) and (co,00)). Around each of them
the fiber product looks like Dy, , cones glued only at that point. In this way,
in order to des-singularized and compactify Xpn,m it is necessary to remove
all these singular points and fill the remaining punctures by adding 3Dy, .,
points. In particular, since all the irreducible components are isomorphic and
for 0 < j, k < Dn,m — 1 with j # k, Xﬂ,m,j an,m,k = {(0, 0,0,0), (1: 0,1, 0)}3
it is follows that to des-singularized and compactify Xm0 we only need
to add three points, namely (0,0,0,0), (1,0,1,0) and &3, (again abusing of
language). In other words,

Xn,m,O = Xn,m.O U {0'5_1}
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is a non-singular compactification of Xnmo. Now, to extend II to Jm one

has to make I1(557} = oo (remember that E = B U {oo} when n is odd) and
therefore (0,0,0,0), (1,0,1,0) and 63 are the only critical points of IT with

muzt(otg’g,g)n = mult(l'o,l,g)l'l = multgg;ﬂ =b

and the result follows, as stated before, applying the Riemann-Hurwitz for-
mula.

If n is odd and m is even, the only singular points in the affine version Xnm
of the fiber product 81 x(g, g,y S2 are (0,0,0,0), (1,0,1,0), (oo, co1) and
(00, 002). Around (0,0,0,0) or (1,0,1,0) the fiber produect looks like Dy
cones ghied only at that point; and around (co,001) or (co,0c0p) the fiber
product looks like med(n, m/2) = D, , cones glued only at that point, In
this way, in order to des-singularized and compactify Xpnm it is necessary to
remove all these singular points and fill the remaining punctures by adding
4Dy, 1y points. In particular, as before, to des-singularized and compactify
Xn,m,0 we only need to add four points, namely (0,0, 0,0), (1,0, 1, 0}, &1 and
oz (again abusing of language). In other words,

Xn,m,O = Xn,m,[] u {Ofgls &3‘2}

is a non-singular compactification of Xn,m,o- Now, to extend II to m one
has to make II(561) = I(653) = oo (remember that E = £ U {co} when n
is odd) and therefore (0,0,0,0), (1,0,1,0), &5; and &3 are the only critical
points of IT with

mﬂlt(g,0,0,Ql\H = m’lf;lt(l,(}’llg)n =b and multgg;l'l = multﬁﬂ = b/2

and the result follows applying the Riemann-Hurwitz formula.

If n is even and m is odd, the only singular points in the affine version Xom
of the fiber product S1 x(g, g,y S2 are (0,0,0,0), (1,0,1,0), (001,00) and
(o, 00). Around (0,0,0,0) or (1,0,1,0) the fiber product looks like Dy o
cones glued only at that poini; and around (o1, 00) or (cog,c0) the fiber
product looks like med(n/2,m) = Dy, cones glued only at that point. In
this way, in order to des-singularized and compactify Xon,m it is necessary to
remove all these singular points and fill the remaining punctures by adding
4Dy, m points. In particalar, as before, to des-singularized and compactify
Xn,m,0 we only need to add four points, namely (0,0,0,0), (1,0,1, 0), 601 and
ooz (again abusing of language). In other words,

Xn,m,U = Xn,m,ﬂ u {OBE: &33}

is a non-singular compactification of X, 1, o. Now, to extend II to m one
has to make II(¢01) = o0 and I(603) = cop (F = EU {oo1,003} because n
is even) and therefore (0,0,0,0), (1,0,1,0), &, and 605 are the only critical
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points of 1T with
mult(g,g,g’o)ﬂ = mult(l,ﬂ,l,U)H = mult;;o-l-l'[ = multgo-éﬂ =b

and again the result follows applying the Riemann-Hurwitz formula.

— If n and 'm are even, the only singular points in the affine version Xn,m of the
fiber product Sl x(ﬂl,ﬁz) Sz are (0,0,0,0), (1,0, 1,0), (001,001), (001,002),
(002, 001) and (cog,002). Around (0,0,0,0) or (1,0,1,0) the fiber product
looks like Dy, -, cones glued only at that point; and around each of the points
(001,001), {001,00z), (co2,001) and (cog,00z) the fiber product looks like
med(n/2,m/2) = Dypm/2 cones glued only at that point, In this way, in
order to des-singularized and compactify Xonm it is necessary to remove all
these singular points and fill the remaining punctures by adding 4D, p, points.
In particular, as before, to des-singularized and compactify X, ., p we only
need to add four points, namely (0,0,0,0), (1,0,1,0), &5; and &5 (again
abusing of language). In other words,

Xnm,o = Xnmo U {601,602}

is a non-singular compactification of Xn,m,0. Now, to extend II to m one
has to make I{(631) = ooy and II(&3s) = ooy (E = EU {co1, 02} because n
is even) and therefore (0,0,0,0), (1,0,1,0), &1 and &3y are the only critical
points of II with

mult(o,glolo)ﬂ = m‘ljlt(l’{),l,g){[ = multgagl'[ = multaggl'[ =b

and again the result follows applying the Riemann-Hurwitz formula.

EXAMPLE 5.1.8. Fiber product of gonal curves.
Let m,m > 2 be integers, a,b € {1,..,n}, ¢,d € {1,..,m — 1}, polynomials- P(y) of
degree at most n — 1, Q(w) of degree at most m — 1, and set

- ety ert o Pt st
%2 = {[” tw:v) € P w™ 4 Qw) = u(u— 'u)dvm_c"d}

Bi(lz:y:2]) =x/=
Ballu: w:v]) = ufv

This kind of examples can be worked out similarly as for the previous example. For
instance, forn =6, m=4,a=1,b=4,c=d=1, P(y) =0 and Q{w) = 0, we get that
the fiber product is irreducible of genus 9.
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EXAMPLE 5.1.10. Fiber product of Fermat curves.
In this ezample we consider the Fermat curves

Sl={[$12502:5123]6]}"{2:;;3?.*_233_]_:33:0}

Sa={ly1:y2: ys] €PE: y* + 45 + oy = 0}

and the coverings

Iy

Bi(lzy 2 33]) = _(_)n

1

Balyr i yo : ys]) = —(z—i)m.

The pairs (81,51) and (Sa, B2) are regular Belyi pairs whose deck groups are the Abelian
groups Z2 and 72, respectively (see Ezamples 2.1.32 and 2.8.15). The fiber product is given

by

51 X (gy,2) 52

I

{(lor 2 2t gl 1 1 y2 2 90]) € (PR)? 2 2l a2l = O, Y +4 40 = 0, 2yl = 21y}
and has 3nm singular points.

I.

. IL

When med(n,m) = 1, we know that S X(gy,8,) 2 is irreducible (by Theorem
8.8.8). Therefore, the surface Sy X (61,32) O Tepresents the Belyi curve of genus
(2 +n?m? — 3nm)/2 given by the Fermat curve

{lz1: 20 : 23] € P : 27™ & 2™ 4 2™ = 0}

and the Belyi map ( is represented, in this case, by the covering

fllzr 200 23]) = - (Eg)nm.

2
When med(n,m) = d > 1 one has that one of the irreducible components of
51 X (1,82) S2 is given by the Fermal curve
{[wr : wo : wy) € BZ w’lzm/d + wgm/d + wgm/d =0}.

All other irreducible components are isomorphic to the previous one by Corollary
3.2.4. For instance, if we setn =4 and m = 2 then the fiber product provides 4
(isomorphic) irreducible components, each one a curve of genus 3 (see Ezample
2.2.19), these being

R1={[m:y:w:u:v]E]P’fé:mzﬁ-yw:(}, u® + vw = 0, y2+112+w2=0}
R2={[:L‘2y w:u:v]eﬁ’?c:wz—l—yw-:{), u2~vw=0, y2+'v2+w2=0}
Ry={lz:y:w:u:v]ePh:2® —yw=0, w? +vw = 0, y2—|—v2—|—w2::0}
R4={[m:'y w:u:v]eﬂ”é:mQ—ywzo, uz—vw:O, y2+v2+w2=0}.
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An isomorphism between Ry and Ry is given by taking w to iu, an isomorphism
between Ry and R3 is given by taking = to ix and an isomorphism between R, and
Ry is given by taking u to su and z to ix. Moreover, Ry is isomorphic to

{[z:u:w]: 2zt +ut +w? =0}

by seeing that
z? P u?
y = _';U- an v = '—E'
Actually:

» Let us remember that (see Example 2.3.15):

— B is a degree n? regular covering with deck group (T, W,,) where the auto-
morphisms 7,,, W, : §1 — 51 are defined by

To(lz1: 2o : z3)) = [ezﬂ/ "z1: 2g T3
Wn([a:l o mg]) =[xy : ez"i/”:cg : z3).
When 7 > 1, its critical points are
[1:0: e™@FFN/M (1 e @D/ 0] and [0:1: ™ @D/ (0 < k< g — 1)
each one with multiplicity » and its critical values are
B ([1 20 ear(%-i-l)/n]) =0
Ba([1: emCRiD)/n 0) =1
B(0: 1 : em @+ ™) = oo,

— B2 is a degree m? regular covering with deck group (Tp,, W,,) where the
automorphisms T, Wr, : 51 = &y are defined by

Ty y2 2 w3]) = [ ™y g : y3]

W ([y1: 92 2 yal) = [yn 1 ¥y 2 yg).
When m > 1, its critical points are

(1:0:em@H0/m) 11 . om@i+1)/m . 0] and [0:1: ™@HN/M) (0 < 5 < gp 1)
each one with multiplicity m and its critical values are
Ba([1:0: emEHD/m)) — g
[32([1 s (27 +1)/m :0]) =1
Ba(0:1: e"'(zj"'l)/m]) = oo.
In this way, the fiber product $; X(81,62) S2 has the following 3nm singular points:
(1:0: e”(2k+1)/n], [1:0: e“(2j+1)/m])
([1:emCRD/2 0] 1 : gm(2i+1)/m 0])
([0 :1: e”(2k+1)/"], 0:1: e“(2j+1)/m]),
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whose images are
ﬁ(([l :0: e’r(zkﬂ)/”], [1:0: e"(2j""1)/m])) =0
ﬁ(([l : g (2R 0], [1 : (2 1)/m : 0])) =1
ﬁ(([O :1: e’r(%ﬂ)/n], 0:1: e“(2j+1)/m])) = 0o
(0<k<n-land0<j<m~1)and
B7L0) = {([1:0: 2R +/n) [1:0: e“(zj"'l)/m]) 0<k<n—-10<j<m-1}
B = {([1: N/ g, 12 F Dm0 0<k<n—1,0< < m— 1}
B7Hoo) = {([0:1: "IV [0 1 TV 0 <k <m—1,0<f <m—1)
Thus, the multiplicity of 8 in each one of those points is nm and around each one
of them the fiber product looks like d glued cones (only at that point). Therefore,
in order to des-singularized and compactify Sy X(f1,82) S2 it is necessary to remove
all these singular poinis and fill the remaining punctures by adding 3nmd points
from which dnm of them have image 0, others dnm have image 1 and the rest
dnm points have image co.
o Whend = mcd(deg(ﬁl), deg(B2)) =1, $1 X (p,,82) O2 s irreducible and § is normal
(see Section 3.4.1),
o An affine version of S X (61,82) S2 18
{(3:2333:9'2:9'3) € {C4 0 1 -!-:Bg' +m§. = 0: 1+y£ﬂ -l-y;T =0, 333 = yﬁ"}
which is equivalent to
{(m21m31y2:y3) EC4 : 1+y£n+y§n :0: ‘7"3 = ?Jan, :Ug' :y'gz},
and in this last version 3 is defined by

ﬁ(£2: &3, Y2, 113) = '—.’,Bg
or, equivalently, by
ﬁ(m% 3, Y2, y3) = _y!2'n
e When d =1, § and f are isomorphic coverings (see Example 2.5.4) and thus the
genus of §) X(g, g,) S2 is (2 +n*m?® — 3nm)/2 (see Example 2.2.19).
e When d > 1, the affine version of the fiber preduct Sy X(g,,8,) S2 allows us to
decompose it into the union of d2 irreducible components Xn,m,rs, namely

Xn,m,r,s
I
{(z2 23,92, 93) € C*: 1+ 9 + 9 = 0, 27" — Py =0, 2! — py™ = 0}
where n = dny, m = dmy, p=e?/? and 0 < r,s < d — 1. In this case, it is not
diffieult to verify that for 0 < r,s,t,u < d -1 with r # t and s # u the pairwise
intersection X, 1. M Xn,m,ut is always contained in the set of singular points of
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the fiber product. Besides, since all irreducible components of the fiber product
are isomorphic by Corollary 3.2.4, we deduce that S| Xomrs 0S8 <d—1)is
a degree d®n?m? covering.

On the other hand, the group (T, W}, where T,W: Xnmpo = Xnmpo are
defined by

2rifn wi/m

T(w2, T3, Y2, ¥3) = (€5 xq, w3, 2™/ ™y 413)

W (2, 23,32, 43) = (T2, 2™/ " 3, yo, 275/ Myye),
is isomorphic to Zpem(nm) X Lomeminm) = Zdnymy X Zanym, and is the deck group
of Bl Xm0 Therefore, by the last theorem of section 2.5 and Example 2.5.4,
one has that the irreducible components of Sy X (81,82) 92 are given by the Fermat

curve
{['wl twp twy) EPE w?m/d+w;’m/d+w;m/d = 0}

(Mon(mxn.m,u,u) = (Zdnlml)z)' .
Finally, in the particular case whenn =4 and m =2, d = med(n,m) = 2 and by
the above items the affine version of S X (By,82) S2 18

X4,2,00U X201 UXg010U Xa211
= {(ﬂ?z,iﬂa,ymys) ec*:1 —I—y% -l-yg =0, $§ — Yo = 0, ;r:% — Yz = O}

U

{(z2, 23,42, y3) eC*: 1+y§+y§=0, m%—yz = 0, m§+y3=0}
U

{(@2,23,52,98) € C* 1 1+ 93 + 45 = 0, af +15 =0, 2% — g3 — 0}
U

{(m2, 23,92, 93) €EC* i 1+ +43 = 0,28 412 = 0, 22 + 55 =0}
(replac:’ngmg by x, z3 by u, y2 by y and w3 by 'u)
= {(a:,u-,y,'u) ect: 1—I~y2—[—1)2 =0, 332—y= 0, w?— v = 0}

U
{(m,u,y,v)eCa:l—i—yz—l—ﬁ:-O, z? -y =0, u? +v =0}
U
{(z,v,,0) eC: 142 4+ 0% =0, 24y =0, u2—'u=0}
U

{{z,u,y,vye C*: 1+4%+2% =0, z? -y = 0, u? -+ v = 0}

EXAMPLE 5.1.11. In this example we consider

Si1={lr:y:2 €Pg:y" =z 2z - 2)?}
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Sy = {[utw:v] € PR : w® = un(u — )}

x
,Bl([mzy:z]) ==
‘ U
Bo([u:w:v]) = ™
The pair (S1,51) (respeciively, (So,B2)) s a regqular Belyi pair whose deck group is the
Abelian group Zr (respectively, Zs ). The fiber product in this case has exactly 3 singular
points; one over oo, other over 0 and the other over 1, and it is irreducible of genus 10.
Therefore, this provides a regular Belyi pair with deck group Zp (see Section 8.4.1). An
affine model of this fiber product is given by

{("B) Y, w) : yT = :’IJ(&L' - 1)21 w’ = :L‘(.'L‘ - 1)}
and a projective model is given by
{leiy:w:t] ePEy’ — 2% 20245 — 245 = 0, w3 — 2% + 22 = 0}.
in which the singular poinis are [0:0:0:1), [1:0:0:1] and [1:0:0:0).
Actually:
© The affine version of § is By == {(z,y) € C* : y7 = x(z — 1)?} which becomes
into a compact Riemann surface after removing the only singular point (1,0) and
adding two points, namely (1,0) (abusing of language) and oo.
In fact:

— Similarly as we did in ExampleAS.l.S, By can be seen as the fiber product
of the Belyi pairs (C, f1) and (C, f2) where f1, f : C — T are defined by
fi(z) = 2(z — 1)% and fo{y) =47 for which we know that:

* f1 is a degree three covering which ramifies only at the points 1, 1/3
and co with

mult; f1 = multy /3J1 =2 and multf1 = 3

and whose critical values are
£1(1) =0, £1{1/3) = 4/27 and f1(c0) = oo,
* fo is a degree seven covering which ramifies only at the points 0 and
oo with
multpfo = multofo=17
and critical values are f2(0) =0 and fa(co) = oo.
* The first condition of Theorem 3.3.3 is satisfied and thus E is jrre-
! ducible, - .

* The fiber product € x4, £y € has only two singular points {(1,0) and
(00, 00)) and around each of them the fiber product looks like & single
cone. Thus, in order to des-singularized and compactify E; we need
to remove these singular points and add another two which, abusing of
language, we will denote by (1,0) and co. Therefore,

E-l-r-E]_U{OO}
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is a smooth compactification of F.

e Similarly, as in Example 5.1.8, it can be proved that f1 is a degree 7 regular Belyi
covering with deck group ([.’L‘ cy 2] e [z ey 2]} 2 Zy, has exactly three
critical points, namely (0,0), (1,0) and co (in the affine version), with

mﬂlf(g,g)ﬁl = mult(y 0B = multefr =7

and three critical values 8,(0,0) =0, £;(1,0) =1 and = Bi{oc) = co.
The affine version of Sy is By = {(z,y) € C?: w® = u(u—1)} which is non-singular
and
Ey=F, U{OO}
is a smooth compactification of Ey (this was done in Example 5.1.8).
B2 is a degree 3 regular Belyi covering with deck group

([w:w:v] e [u: @3y vy ¢ Zy

(it was done in Example 5.1.8), has exactly three critical points, namely (0, 0),
(1,0) and oo (in the affine version), with

mult (o0 e = mault(yp)Ba = multofa = 3

and three critical values £2(0,0) =0, $2(1,0) = 1 and fz(c0) = 0.
* 51X (81,82) 52 1 irreducible since any of the conditions of Theorem 3.3.3 is satisfied.
o An affine model of the fiber product S, X (gy,82) S2 is given by

{(3;1 b, w) € Cs : y7 = 3,‘(.;"!,' - 1)2,'11}3 = m(m - 1)}

since the curve {(z,y,v,w) € C* : y7 = z(z — 1)%, 08 = (e~ 1),z = u} is
isomorphic to the curve {(z,y,w) € C3: 3" = 2(z — 1)?,0® = 2(z — 1)}.

As a consequence of the above items, S; X{(y,8,) O2 has exactly three singular
points, namely (0,0,0,0), (1,0,1,0) and {co,c0) (in the affine version), Around
each of them the fiber product looks like a single cone (med(7,3) = 1). Thus,
$1 X(f1,5.) 92 becomes info a compact Riemann surface after removing ifs three
singular points and replace them by three new ones which, abusing of language,
we will denote by (0,0,0,0), (1,0,1,0) and (co,c0). In this way, B is a regular
Belyi covering with deck group isomorphic to Zg; & Z7 x Z3 (see Section 3.4.1)
which has only three critical points, namely (0,0, 0, 0); (1,0,1,0) and (co, o),
with

mult(olg,g’g)ﬁ = mult(llg,l,g)ﬁ = mult(m,m)ﬁ =21

and three critical values 8((0,0,0,0)) =0, 8((2,0,1, 0)) = 1 and B{(c0, 0)) = co.
gen(81 X(ﬁ1ﬁ2) Sg) = 10. ’
In fact, by Riemann -Hurwitz formula,

2gen(Sy X(81,82) Sp)—2=2. 21(0 -1)+3-20

from which the assertion follows.
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» A projective model of §; x Sy is given by
(B1,82)
{Eryiw: ] ePE gy — 2% + 2225 — 265 = 0, w® — 2% + 212 =0}
and in this model the three singular points are given by [0:0:0: 1,1:0:0:1]
and [1:0:0:0].
In fact,

Y =a@—-12 oy -+ 22—z =0
w=z@z-1)euvt-224+z=0

from which the statement follows.

EXAMPLE 5.1.12. An example where the field of moduli differs from the strong
field of moduli of a fiber product. Let (51, 1) be a Belyi pair whose field of definition
and field of moduli is Q(i) and suppose Gal(Q(3)/Q) = () where T(8) = —i. If 7 is any
eztension to C of 7 defining Sy = Si’: and 8o = ﬁf one has that the field of moduli (if it
is irreducible) and the strong field of moduli of the corresponding fiber product are Q and
Q(2) respectively.

Actually:

» Note first that if Ky and Ky denotes the fields of moduli of (51, 51) and (Sa, B2)
respectively then K; = Ky = Q(3).
* TE€G = {oe€Gal(C/Q): (57 X(pg.85) 52, B7) = (51 X(5,,8,) S2, B)}.
In fact, the map
Foo81%pup) Sz = ST X (g7 5585 = 52 X(g,,8,) 51
(z1,22) = =, 22) = (22, 21).

is an isomorphism (it can be easily checked) which satisfies that 87 o f = B since

B0 f(z1,22) = B (22, 21) = B] (22) = Ba(z2) = P o ma(21, 22) = 21, 20)
for all (Z1,22) € 57 x(ﬁl,ﬂz) Sy,

* Since there is no possible isomorphism between $; and SIF , We may see that 7
is not in G, := {o € Gal(C/Q) : (57 X(pg.89) 55, 87) =° (81 X(g,,8,) 52, 8)}
and thus G5 S G. In other words, if X and Ks denotes the field of moduli and
the strong field of moduli of the fiber product 5 X (@1,82) S5, since we know that
K = Fiz(G) and K, = Fiz(G,), Ks 2 K or, equivalently, the field of moduli of
the fiber product S X (8,,62) V2 is a proper subfield of its strong field of moduli.

* K, = Q(4) since K; = Ky = Q(i} (see Theorem 3.4.1). Therefore, by the above
item, K = (3.
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