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Abstract

In this thesis we mainly prove two results in an algebro-geometric way: If one has a curve
I" of (honest) quadrisecant planes to the Kummer variety of an indecomposable principally
abelian variety (X, ®) then the curve I is twice the minimal class, under certain technical
geometric conditions. By previous analytic results (see [201), this will imply that X is a Prym
variety. As a generalization of this results, adding one geometric condition we get that having
a curve of (m +2)-secants (for a minimal 7) implies that the abelian variety has a curve that
is m-times the minimal cohomological class.

The second result of this thesis is a an answer to a natural generalization of a question
Welters asked about trisecants (see [35]) and is as follows: Under certain geometric conditions,
does the existence of m different (m - 2)-secant m-planes imply that one has a curve of honest
(m2)-secant (m-)planes? We show that under certain conditions, this question has a positive

answer (see Theorem 4.4.4).
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Layout of the thesis

We first introduce the basic notion of Abelian varieties in the first chapter, trying to be as
complete as possible. We justify why we can just work with complex tori with a certain
hermitian form. This was done with two ideas in mind: To start studying Abelian Varieties in
a way such that there is no need to start navigating with different books simultaneously and to
fully cover the contents required to understand this work.

In Chapter 2 we cover the fundamentals of Jacobian varieties aiming at Fay’s trisecant
formula, as a motivation for this work.

In Chapter 3 one can find the latest research in the area surrounding the main problem of
this thesis.

In Chapter 4, there is the main content which contains the main results of this thesis on
the topic of the m-secant property for the Kummer variety.

Lastly, in Chapter 5 there are some words of future work and open problems.
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CHAPTER

Abelian varieties

First we will define Abelian Varieties in a completely algebraic way, and justify by GAGA

that we can work analytically if needed when working over a field of characteristic 0.

1.1 Algebraic Introduction

We will asumme most of the schematic material to be known. The main reference that we use
for this chapter is [24]. We will follow mainly [32] for the algebraic theory and [8] for the
complex theory.

We will assume that k is an algebraically closed field.

Definition 1.1.1. An abelian variety X is a complete algebraic variety over a field £ with a

group law m : X x X — X such that m and the inverse map are both morphisms of varieties.

We will denote by m(x,y) = x+y and the inverse of an element y € X by —y, a priori
without assuming that the group operation is commutative. Also, denote by #, : X — X the

translation x — x +a.

Lemma 1.1.2 (Rigidity lemma). Let X be a complete variety, Y and Z any varieties, and

[ : X XY — Z a morphism such that for some yo €Y, f (X x {y,}) is a single point zo of Z.




Then, there is a morphism g : Y — Z such that if p : X XY — Y is the projection, f = go ps.

Proof. [32, p. 40] Choose any point xp € X, and define g : Y — Z by g(y) = f(x0,y). Since
X x 7Y is a (irreducible) variety, to show that f = go p,, it is enough to show that these
morphisms coincide on some non-empty open subset of X x Y. Let U be an affine open
neighbourhood of zg in Z, F = Z\U, and G = p; (f~!(F)); then G is closed in ¥ since X is
complete and hence p is a closed map. Further yo & G since f (X x {yo})'= {z0}. Therefore
Y\ G =V is a non-empty open subset of Y. Fxor each y €, the complete variety X x {y} gets
mapped by f into the affine variety U, and hence to a single point of U. But this means that

foranyx € X,y eV, f(x,y) = f(x0,y) = go p2(x,y), and this proves the assertion. O

Corollary 1.1.3. If X and Y are abelian varieties and f : X — Y is any morphism, there exists

a(n algebraic) group homomorphism h: X — Y such that f(x) = tpg)h(x).

Proof. [32, p. 41] We have that & = 1_y(q)f vanishes at 0.
Consider the morphism X x X %, X defined by ¢(x,y) = h(x+y) — h(y) — h(x). Then ¢ (X X
{0}) = ¢({0} x X) =0, so that it follows by the above lemma that ¢ = 0 on X x X, or

equivalently, / is a homomorphism. O

Note that we have not used that X is commutative in the previous proof, but in fact we

have:
Corollary 1.1.4. An abelian variety X is a commutative group.

Proof. [32, p. 41] By the previous corollary, the inverse map of X that maps x — —x is
a homomorphism. Hence, for x,y € X, —(x+y) = (—x)+ (—y) = (—y) + (—x), and X is

commutative. [l

An interesting result is the following.

Theorem 1.1.5. Let X be a complete variety, e € X a point, and
m:XxX—+X

a morphism such that m(x,e) = m(e,x) = x for all x € X. Then X is an abelian variety with

group law m and identity e.



Proof. [32, p. 42] O

Now, if we want to say anything more explicit or do any computations in a general setting
it can become quite hard to work, if not imposible due to the complications that usually appear
when working with positive characteristic. First, due to the Lefschetz principle if we work
over a field of characteristic 0, we can simply work over the complex numbers. One can find
a short proof and statement in [14] and a generalization in [16]. On the other hand we have
another algebraic geometry miracle. There is an equivalence when working over the complex
numbers: Analytic Geometry and Algebraic Geometry. This is a collection of several results
related to topology, morphisms and cohomology as one can review in [18, Exposé XII], better
known as GAGA from the French Géométrie Algébrique et Géométrie Analytique. 1t is usual
to reference it as the following theorem, but note that the whole chapter where Grothedieck

explains GAGA is not exactly summarized here:

Theorem 1.1.6. Let X be a proper C-scheme. The functor that associates a Ox-module F to

its inverse image F¥" on X% is an equivalence of categories.

1.2 Complex Tori

When the ground field! & has characteristic 0, by the Lefschetz principle we can reduce it
to the case k = C. We can be much more specific and explicit when working with abelian

varieties. In this case an abelian variety will be a complex torus which is projective.

1.2.1 Preliminaries

Lemma 1.2.1. Any connected compact complex Lie group X of dimension g is a complex

torus.
Proof. See [8, p. 8]. U

Corollary 1.2.2. A complex abelian variety X of dimension g is a complex torus.

Recall that we are assuming that k is algebraically closed

3




Let X =V /A be a complex torus, where V is a g-dimensional C-vector space. We have
that
m(X)=H (X,Z)=A.

Also, as X is locally isomorphic to V, this implies that V may be considered as the tangent
space TpX of X at 0. From the Lie theoretic point of view, the universal covering map is just
the exponential map.

In order to describe a complex torus X = V /A, choose a basis ey, ... ,eg of V and a basis
A1,..., Agg of the lattice A. Write A; in terms of the basis ey, ..., e,, that is: A; =Y5 | A;je;.
The matrix
Ao Az
= : - .

lg’l .es lg,Zg
is called a period matrix for X. The period matrix IT determines the complex torus X
completely, although it depends on the choice of the bases for V and A. Conversely, given
a matrix IT € M (g x 2g,C), one may ask if IT is the period matrix for some complex torus.

The following result gives us an answer.

Proposition 1.2.3. IT € M (g x 2¢,C) is the period matrix of a complex torus if and only if
the matrix P = (%) € M (2g x 2g,C) is nonsingular.

Proposition 1.2.4. See [8, p. 9].

i.2.2 Homomorphisms

For what follows in this subsection, let X =V /A and X’ = V' /A’ be two complex tori of

dimensions g and g’ respectively.

Definition 1.2.5. A homomorphism of X to X’ is a holomorphic map f : X — X/, that is also

a homomorphism of groups.

Remark 1.2.6. Recall that the translation , : X — X, x + x+ a is a holomorphic map, but

not a homomorphism except when a = 0.

77N
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Proposition 1.2.7. Let f : X — X’ be a holomorphic map.
a) There is a unique homomorphism g : X — X' such that f = t£(0)&-

b) There is a unique C-linear map G : V — V' with G(A) C A’ inducing the homomorphism

8-

Proof. Define g =1_g () f. We can lift the composed map

to a holomorphic map G from V to the universal covering V'’ of X:

\% G > V/
XI

in such a way that G(0) = 0. The commutative diagram implies that forall A € A and v € V

we have G(v+ 1) —G(v) € A'. So, the continuous map v+ G(v+ A) — G(v) is constant and
we get G(v+A4) =F(v)+G(A) forall A € A and v € V. Hence, the partial derivatives of G
are 2g-fold periodic and thus constant by Liouville’s theorem. It follows that G is C-linear

and g is a homomorphism. The uniqueness is clear. ]

Under the addition operation, the set of homomorphism from X to X’ defines an abelian

group denoted by Hom (X,X’). Proposition 1.2.7 gives us:

Definition 1.2.8. The map

Pa : Hom (X,X") — Homg (V,V')

g—G

is an injective homomorphism of abelian groups which is called the analytic representation

of Hom (X,X").




The restriction G of G to the lattice A is Z-linear. Note that G determines G and g

completely.

Definition 1.2.9. The injective homomorphism

pr: Hom (X,X’) — Homg, (A, A')

gHGA:

is called the rational representation of Hom (X,X’).

We denote the extensions of p, and p, to Homg (X,X’) := Hom (X,X’) ®z Q by the same

letters. These will also be refered to as the analytic and rational representations.
Proposition 1.2.10. Hom (X,X") ~ Z™ for some m < 4gg’.

Proof. Any subgroup of Homg, (A, A’) ~ 748 is isomorphic to Z™ for some m. The injectivity

of p, finishes the proof. O

Remark 1.2.11. Let X" = V" /A" be a third complex torus. For f € Hom(X,X’) and
f' € Hom (X', X") we have p,(fg) = pa(f)pa(g). In particular, if X = X', p, and p, are
representations of the ring End(X) respectively Endg(X) := End(X) @z Q.

The following proposition shows how the analytic and the rational representations are

related:

Proposition 1.2.12. The extended rational representation
pr®1: Endg(X)®C — Endc (AQC) ~ Endc (V x V)

is equivalent to the direct sum of the analytic representation and its complex conjugate:

pr®1 = p,@Pa.
Proof. See 8, p. 111. O

Now we study the image imf and the kernel ker f of a homomorphism between complex

tori.

¢ i~



Proposition 1.2.13. Let f : X — Y be a homomorphism between complex tori. Then
a) imf is a subtorus of X'.

b) ker f is a closed subgroup of X. The connected component (ker ), of ker f containing

0 is a subtorus of X of finite index in ker f.
Proof. This is a direct consequence of Lemma 1.2.1. (]
Next we define isogenies which play an important role in the sequel.

Definition 1.2.14. An isogeny of a complex torus X to a a complex torus X’ is a surjective

homomorphism X — X’ with finite kernel.

Remark 1.2.15. Note that a homomorphism X — X’ is an isogeny if and only if it is surjective

and dimX = dimX’.

Remark 1.2.16. If T is a finite subgroup of X, the quotient X /T is a complex torus and the
natural projection X — X/I" is an isogeny. To see this: note that 77 (I") C V is a lattice
containing A and X /T'=V /z~}(T).

Suppose that f : X — X’ is a surjective homomorphism of complex tori, by Proposition
1.2.13 it factors canonically into a surjective homomorphism g with a complex torus as kernel

and an isogeny A. This is the Stein factorization of the homomorphism f:

X/ (ker f)g

X s X/

Definition 1.2.17. The degree deg f of a homomorphism f : X — X’ is defined to be the order

of the group ker f if it is finite and O otherwise.

Remark 1.2.18. Therefore, for an isogeny we have

degf = [A': p(£)(A)].

7




If moreover f is an endomorphism of X,

deg f = detp,(f).

Remark 1.2.19. Note that if f and g are isogenies so is their composition fg. This is because

deg(fg) = deg f -degg.

For any integer n we define the homomorphism ny : X — X given by x — nx. If n # 0 its

kernel X [n] is called the group of r-division points of X (or n-torsion points).
Proposition 1.2.20. X[n] ~ (Z/nZ).
Proof. kerny = 1A/A ~ A/nA ~ (Z/nZ)*®. O

In particular, any complex torus is a divisible group. Another consequence is that
Hom (X,X’) is torsion free as an abelian group. Hence, Hom (X,X’) can be considered
as a subgroup of Homg (X,X’). Moreover, the definition of the degree of a homomorphism

extends to Homg (X,X’) by
deg (rf) =r*8deg f

for any r € Q and f € Hom (X,X").
Definition 1.2.21. The exponent e = e(f) of an isogeny f is defined to be the exponent of the

finite group ker f. In other words, e(f) is the smallest positive integer n such that nx = 0 for

all x € ker f.

Proposition 1.2.22. For any isogeny f : X — X' of exponent e there exists an isogeny

g: X' — X, unique up to isomorphisms, such that gf = ey and fg = ex:.

Proof. Asker f is contained in kerey = X|[e], there is a unique map g : X’ — X such that gf =

ex. Since ey and f are isogenies, so is g. The kernel of g is contained in the kernel X'[ex/] of

exr, since for every x' € kerg there is an x € kere, with f(x) =x’ and ex’ = ef(x) = f(ex) = 0.

Thus, ey = fg for some isogeny f/: X — X’ and we get f'ex = f'gf = ex'f = fe,. This

implies that f = f' since ey is surjective. O

(RN



Corollary 1.2.23. i) Isogenies define an equivalence relation on the set of complex tori.
ii) An element in End(X) is an isogeny if and only if it is invertible in Endg(X).
Now the following definition makes sense:

Definition 1.2.24. We will say that two complex torus are isogenous, if there is an isogeny

between them.

1.3 Complex Abelian Varieties

Now we will define an abelian variety over the complex numbers. This will help us be more
explicit and will bring some tools that are simply not available when char(k) # 0. Recall the

GAGA Theorem[18, Exposé X11]; this will be equivalent to working in the algebraic category.

Definition 1.3.1. An Abelian variety is a complex torus admitting an ample line bundle?.

We should clarify this definition and the relation between the line bundle with a certain
hermitian form.

We want to define the first Chern class, but first we need some cohomological results.

Lemma 1.3.2. The canonical map N"H'(X,Z) — H"(X,Z) induced by the cup product is

an isomorphism for every n > 1.

Proof. See [8], Lemma 1.3.1. O
The following corollary will be useful in a few pages.

Corollary 1.3.3. There is a canonical isomorphism H"(X,Z) ~ Alf* (A, Z) for every n > 1.

Theorem 1.3.4 (The Hodge decomposition). a) For every n > 0 the de Rham and the

Dolbeault isomorphisms induce an isomorphism

H"(X,C) ~ @ H1(QF)
pg=n

2This is equivalent to X admiting a positive definite line bundle.

9




with Q§ the sheaf of holomorphic p-forms on X.

b) For every pair (p,q) there is a natural isomorphism
p q
HI(Qf) ~ AQa\Q
with Q := Homg(V,C) and Q := Homg(V,C), the group of C-antilinear forms on C.

Proof. See [17, pp. 116-117] for a compact Kihler manifold X, and for a simplier proof for
complex tori see [8, p. 16]. O

Observe that we get that H7 (QF ) o2 HP(X).
Lemma 1.3.5. Every holomorphic line bundle on a complex vector space is trivial.

Proof. From the exponential exact sequence
0—=7Z— Oy eXp(3ri) o5 —~1
we obtain the exact sequence
H(V,6y) = H' (V,05) — H*(V, 6y).

But H! (V, 6y) = 0 by the d-Poincaré Lemma (see [17, p. 46]), whereas one knows from
Algebraic Topology that H? (V,Z) = 0. This implies the assertion. (|

Proposition 1.3.6. Let w: V — X be the universal covering. There is a canonical isomorphism
o1 - H' (m,(X),H® (V, 53)) — ker (Hl x,0%) S H (v, ﬁ;)) .

Proof. See Proposition B.1 in [8]. O

Now we have an isomorphism Pic(X) = H! (X, 0%) ~ H! (A,H®(V, 6})). That is, any

holomorphic line bundle on X can be described by a factor of automorphy. Consider now the

10
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short exact sequence of sheaves
0-Z—0x— 0% —1

and its long exact sequence in cohomology

- HY(X,Z) - H'(X,6x) = H'(X,6%) 5 H*(X,Z) — ---
Definition 1.3.7. Let L € Pic(X) be a line bundle on X. The first Chern class of L is the
image ¢ (L) of Lin H*(X, 7).

Since H2(X,Z) is canonically isomorphic to Alt*(A,Z) by 1.3.3, we may consider c; (L)
as an alternating Z-valued form on the lattice A.

The following theorem shows how to compute the first Chern class in terms of a factor
of automorphy f of L. Note that any such f can be written in the form f = 2™ with a map

g : A xV — C which is holomorphic in the second variable.

Theorem 1.3.8. There is a canonical isomorphism H*(X,Z) — Al? (A, Z), which maps ¢, (L)

of a line bundle L on X with factor of automorphy f = e*™2 to the alternating form

EL(AMU) =g(.u>v+;l') +g(/l’v) —g(k,v—l—u) —g([l,V)

forallA,peAandveV.
Proof. See [8, pp. 24-28]. ]
Now, we characterize alternating forms which come from line bundles via c;.

Proposition 1.3.9. For an alternating form E : V XV — R the following conditions are

equivalent:

(i) There is a holomorphic line bundle L on X such that E represents the first Chern class
c1(L).

(ii) E(A,A) C Z and E(iv,iw) = E(v,w) forall v,w € V.

11



Proof. Consider the following diagram

H\(X,0%) ——— H*(X,Z) ——— H*(X,0%)

| |

H*(X,C) —2— HO?(X)

e e

Noo (Qed)o N8 —F— A20

where the upper line is part of the long exact cohomology sequence of 0 — Z — &% — O, the
map 1 is the natural embedding, p denotes the projection map, and 3, 7> are the isomorphisms

of the following diagram

AI*(A,C) == Al(V,C) —=— A0 (QR0)d A\’ Q
| |
H*(X,C) —— Hp(X) == H>'(X)oH"!(X) @ H**(X)

which is commutative (this is due to the proof of 1.3.8). We claim that the diagram commutes.

To see this, it suffices to show that the homomorphism H2(X,Z) — H?(X, Ox) factors via

the natural projection map
H*(X,C) =H*(X) o H''(X)  H**(X) — H**(X)

But this is an immediate consequence of the fact that this projection is induced by the natural
projection map from the de Rham complex to the Dolbeault complex.

Now suppose that L € Pic(X) = H (X, 0%), and By 'c1(L) = E = Ey + E2 + E3 with E €
/\2 Q, E; € Q®Q and E; € AQ. But E; = E; since E has values in R, whereas according
to the first diagram E3 = 0. Therefore, E = E; since E satisfies the second condition. The

converse is analogous. O

Lemma 1.3.10. There is a 1-1-correspondence between the set of hermitian forms H on V

and the set of real values alternating forms E on'V satisfying E(iv,iw) = E(v,w), given by

E(v,w)=SH(v,w) and H(v,w)=E(iv,w)+iE(v,w)

12
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forallvyweV.

Proof. [8, p. 29] Given E, the form H is hermitian, since

H(v,w) = E(iv,w) +iE(v,w)
= —E(iw,—v) —iE(w,v)

= H(w,v).

Conversely, given H, the form E = SH is alternating and E (iv, iw) = SH(iv,iw) = SH(v,w) =
E(v,w).
O

Now we can consider the first Chen class of L € Pic(X) as an alternating from or as a

hermitian formon V.

Definition 1.3.11. The Néron-Severi group of X is defined as

NS(X) =im (c1 : H'(X, 6}) — H*(X,Z)) .

1.4 Appel-Humbert Theorem

We have seen that any holomorphic line bundle on X can be given by a factor of automorphy
since we have the isomorphism Pic(X) ~ H' (A,H° (V, 6})). Now we will show that there
is a canonical way to distinguish a factor in every class of H' (A,H 0 (ﬁ{'}))

A semicharacter for a hermitian form H is a map ¥ : A — S! such that

X(A+p)=x(A)x(1)exp(miSH(A, 1))

for all A, it € A. By definition the characters on A with values in S! are exactly the semichar-
acters for 0 € NS(X). We will denote by &?(A) the set of pairs (H, ) where H € NS(X) and

% is a semicharacter for H. Note that Z?(A) is a group with respect to the composition

(H1,x1) 0 (Ha, X2) = (H1 + Ha, X122)
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and we get the following exact sequence:
1 - Hom (A,8) = 2(A) & NS(X).

Here 1(x) = (0,%) and p(H, ) = H. We will show that p is surjective but we need to define
the map #(A) — Pic(X): For (H,x) € Z(A) define a= a5y : AxXV — C* by

a(h,v) = x(2)exp (TH(,2) + gH(A,A)) .

Using [8, p. 30] and [8, Proposition B.1], we get that the cocycle a determines a line bundle

on X, which we define by L(H, x). By construction
L(H,x)~VxC/A

where A acts on V x Cby A o (v,1) = (v+ A, a0 4)(A,v)t).
The aim is to show that for every line bundle L on X there is a unique pair (H,x) € Z(A)
such that L ~ L(H, x).

Lemma 1.4.1. The map Z(A) — Pic(X), (H,x) — L(H,x) is a homomorphism of groups

and the following diagram commutes:

P(A)

Proof. See [8, pp. 30-31]. |

The lemma implies in particular that p is surjective. In order to show that 2(A) — Pic(X)
is an isomorphism, consider its restrition to Hom (A, S 1). Define Pic?(X) as the kernel of

¢1 : Pic(X) — NS(X).
Proposition 1.4.2. The map & (A) — Pic(X) induces an isomorphism

14




o d

Hom (A,S') —— Pic®(X)
Proof. See [8, pp. 31-32]. d

Summing up we get the Appell-Humbert Theorem, which tells us that there is a canonical

way to associate a factor of automorphy to any line bundle on X.

Theorem 1.4.3 (Appell-Humbert). Let X =V /A be a complex torus. There is a canonical

isomorphism of exact sequences

1 —— Hom(A,S8!) —— P(A) —— NS(X) — 0

L 4

1 —— Pic®(X) —— Pic(X) — NS(X) —— 0.

In particular, if L € Pic(X) with hermitian form ¢; (L) = H, we can distinguish a semichar-

acter y for H such that L ~ L(H, x).

1.5 Canonical factors

Let X = V/A be a complex torus. Let L € Pic(X) be a line bundle with hermitian form H.
Thanks to the Appell-Humbert Theorem one can distinguish a semicharacter ) for H such

that L ~ L(H,X).

Definition 1.5.1. The cocycle ar, = ay(y,4) € Z! (AH O(v, ﬁ{})) defined by
/2
ar(A,v) = x(A)exp (nH(v,}L)+-2—H(/'L,/1)) (1.1)

for all (A,v) € A XV is called the canonical factor (of automorphy) for L.
The following results follow easily from the definitions:

Lemma 1.5.2. Let ay, be the canonical factor of L=L(H, ) € Pic(X). Forall A € A, vyw €V

and n € Z we have

a) x(nd)=x(4)"
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b) ar(A,v+w) =ar(A,v)exp(TH(w,A1)).
c) ar(A,v)! =ar(—A,v)exp (—xH(w,1)).

Using characteristics we get, in particular, the theorem of the square which give us a
relation for line bundles under pullbacks by holomorphic maps of complex tori. This result

will be useful when one uses the short exact sequence given by the Koszul complex.

Lemma 1.5.3. For any L= L(HY) € Pic(X) and v € X with representative v € V
I;L(H:X) = L(H,ZCXP (ZﬂiSH(,V, ))) .

Proof. The translation #, on V induces the translation #; on X. Moreover the induced map
t on m(X) = A is the identity. So, if a, denotes the canonical factor of L, (id x #,)* ar, is a

factor for £}, but not yet the canonical one. For g(w) = exp (—7(w,v)) the factor

(id % 1,)* ar(h, w)g(w+ A)g(w) ™! = 1 (L) exp (ﬂH(w+v,2,) + gH(A,l))
-exp(—mwH(w+A,v)+xH(w,v))
— y () exp (2miSH(v, 1)) exp (nH(w,?L) + gH(A, )L))

is equivalent to (ida X #,,)* az. Moreover, it is the canonical factor for £5L, since ¥ (-)exp (2wiSH (v, -))
is a semicharacter for H. O

This leads immediately to

Theorem 1.5.4 (Theorem of the Square). For all v,w € X and L € Pic(X) we have that
L LREELRL™.

Now we end this section with some nice consequences.

We denote L := L®", Recall the homomorphism ny : X — X.

Proposition 1.5.5. For every L € Pic(X) and n € Z we have that

n2 +n

nz—n
ngl~L"7 @(-1%L = .
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Proof. Recall the analytic representation ny : V — V,v = nv of ny. For L = L(H, ) we have

that:

nz n 712'"71 2 2_ 112 n "2""1
L (05T —1 (T i ()

:L(nzH,x(n-))
= L(nyH,njx)

=nyL(H,%).

Definition 1.5.6. A line bundle L is called symmetric if (—1)%L ~ L.

Corollary 1.5.7. For every symmetric line bundle L € Pic(X) and n € Z we have

2
ny ~L".

Corollary 1.5.8. The line bundle L = L(H, x) is symmetric if and only if x(A) C {£1}.

1.6 Dual complex torus

Now we present the dual complex torus X of a complex torus X, and in particular define the
map ¢y, and the groups K(L) and A(L) that will be technical tools used later.

Consider the C-vector space Q = Homg(V,C) of C-antilinear forms [ : V — C. The
underlying vector space of Q is canonically isomorphic to Homg (V,R), in fact, the isomor-
phism is given by [ — 3/ with inverse map j — I(v) = —j(iv) +ij(v). Hence, the canonical
R-bilinear form

() : QxV = R:{l,v) =3I(v)

is nondegenerate. As a consequence

A={1eQ | (,A) CZ}
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is a lattice in Q, which is called the dual lattice of A.

Definition 1.6.1. The complex torus of dimension g
2 =0/A
is the dual complex torus of X.

Remark 1.6.2. Identifying V with the space of C-antilinear forms Q — C by double antidu-
ality, the nondegeneracy of (-,-) implies that A is just the lattice in V dual to A. From this, it
follows that

=X

Proposition 1.6.3. The canonical homomorphism Q — Hom(A,S), I s exp (27i (I,-)) in-

duces an isomorphism X — Pic®(X).

This shows that Pic’(X) has, a natural structure of a complex torus. It is customary to

identify Pic’(X) and X.

Proof. The nondegeneracy of the form (-,-) implies that the map Q — Hom(A, S') is surjec-

tive. By definition 2 is precisely the kernel of this homomorphism. (]

Remark 1.6.4. Let X; = V;/A; be two complex tori, with j=1,2, and f: X; — X; a
homomorphism with analytic representation F : Vi — V5. The (anti-)dual map F* : Q; — Q
which associates to an antilinear form I, € Q; the antilinear form L, o F € Q; induces a
homomorphism f : X, — X, since F*Ay C A;. Furthermore, by Proposition 1.6.3, the

following diagram commutes:

Xz —~ 3 Pic® (X7)

bl

Xl — PiCO(XI).
If g : X, — X; is another homomorphism of complex tori, then
gf =f2.

18




\

Moreover idx = idg and f = f. Hence, * is a functor from the category of complex tori to

itself. In fact, it is an exact functor.

Proposition 1.6.5. If 0 — X; — X, — X3 — 0 is an exact sequence of complex tori, the dual

sequence 0 — Xs — X — X1 — 0is also exact.
Proof. See [8, p. 35]. O

Proposition 1.6.6. If f : X, — X, is an isogeny of complex tori, the dual map f: Xy — X is

also an isogeny and its kernel is isomorphic to Hom (ker f,S'). In particular, deg f = deg 1.
Proof. See [8, p. 351. 0

Corollary 1.6.7. Let f : X1 — X, be an isogeny of complex tori X; =V [ A with analytic
representation F. For a line bundle L = L(H,¥) € Pic(X}) the following statements are

equivalent:
i) L= f*M for some line bundle M € Pic(X,).
ii) SH (F~'A2,F71A;) C Z
Proof. See [8, p. 36]. il

Let L € Pic(X) be a line bundle. For any point x € X, the line bundle ;L ® L~! has first

Chern class zero. So, identifying X = Pic®(X) we get a map

(bLZX—)X

x> i LQLL

According to the Theorem of the Square 1.5.4, ¢, is an homomorphism. Let’s compute its

analytic representation.

Lemma 1.6.8. Let L = L(H,x) be a line bundle on X =V /A. The map ¢y : V — Q,

¢r(v) = H(v,-) is the analytic representation of @r.
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Proof. Using Lemma 1.5.3 we get
#LQL™! = L(0,exp 2wiSH(-,-))) = L(0,exp (27i (¢ (v),-))).

Now consider the isomorphism X =5 Pic%(X ) = Hom(A, S1); by comparing we can finish the

proof. g
Corollary 1.6.9.  a) ¢p depends only on the first Chen class H of L.

b) Orem = O+ @p for all LM € Pic(X).

¢) ¢ = ¢, under the natural identification 2=x

d) For any homomorphism f : Y — X of complex tori, the following diagram commutes

x 2, %
|1 b

y 2ty

Proof. a), b) and d) follow immediately. For c): recall that ¢; is the analytic representation
of q’)Z So the assertion follows from the fact that ¢;; = ¢ under the natural identification

Homg (9,C) =V. O

Definition 1.6.10. Denote by K(L) the kernel of ¢;,. Also define
AL)={veV | SBH(v,A) CZ}.
Since A(L) = ¢;' (A), we have that
K(L) = A(L)/A. (1.2)

Note that K(L) and A(L) depend only on the hermitian form H, and so we can write K(H)

and A(H) respectively for these groups. Let’s see some elementary properties:

Lemma 1.6.11. For any line bundle L € Pic(X),
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a) K(L®P) = K(L) for any P € Pic®(X).
b) K(L) =X if and only if L € Pic®(X).
c) K(L") = ng'K(L) for any n € Z.

d) K(L) = nxK(L") foranyn € Z, n 0.

Proof. [8, p. 37]. a) and b) are immediate from the definition and the Appell-Humbert
Theorem 1.4.3. Suppose L = L(H, %), then L" = L(nH, x") and thus

ALY ={veV | SH(mA) CZ} = {%vEV | vEA(L)}.

This implies c) and d). ]

Now, the homomorphism ¢, associated to the line bundle L is an isogeny of complex
tori if and only if the hermitian form c; (L) is nondegenerate. This motivates the following

definition:

Definition 1.6.12. A line bundle L on X is called a nondegenerate line bundle if the associated
hermitian form H = c;(L) is nondegenerate; equivalently, if the alternating form SH is

nondegenerate.
Proposition 1.6.13. A line bundle L on X is nondegenerate if and only if K(L) is finite.

Recall from Lemma 1.3.10 that we will see E = SH real valued. In other words, SH is

written in a real basis.
Proposition 1.6.14. deg ¢; = detSH.

Proof. We may assume that H is nondegenerate, otherwise deg ¢y, = det3H = 0. Then,

deg ¢y = (¢§1 (7\) :A) = (A(L) : A) = detSH.




1.7 Characteristics

Let X =V /A be a complex torus of dimension g and L € Pic(X) with first Chern class H.
Recall that E = 3 H is integer-valued on the lattice A. According to the Elementary Divisor
Theorem [29, Th. 7.8], there is a basis A1,...,Ag, U1, ..., g of A, with respect to which E is

given by the matrix
0 D

-D 0

where D = diag(dy, . .. ,dg) with non-negative integers dy satisfying dy|dy,1 forv=1,...g—
1.

Definition 1.7.1. The elementary divisors d, ... ,dg are uniquely determined by E and A and
thus by L. The vector (d; ...,d,) as well as the matrix D are called the fype of the line bundle
L. The basis A1,...,Ag, 1, .., U is called a symplectic (or canonical) basis of A for L (or H

or E respectively).
Recall that the line bundle L is nondegenerate if the form H, and thus F, is nondegenerate.

Remark 1.7.2. Let L be a line bundle on X. L being a nondegenerate line bundle on X is

equivalenttody >0forv=1,...,g.

Definition 1.7.3. A direct sum decomposition
A=A1DPA;

is called a decomposition for L (or H or E respectively) if Aj and A; are isotropic with respect

to the alternating form E.

Remark 1.7.4. Such a decomposition always exists since if A1,...,Ag, U1, ..., g is a sym-

plectic basis of A for L, then

A=(ll,...,lg>@<u1,...,ug>
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is a decomposition for L. Conversely, it follows immediately from the proof of the elementary
divisor theorem that for every decomposition A = A; @ Ay (with Aj and A; isotropic with

respect to E) for L there exists a symplectic basis Ai,...,4,, l1,..., He of A for L with
A= <).1,...,Ag> and Ay = (ﬂ],...,[lg>

Definition 1.7.5. A decomposition
V=vieW,

with real subvector spaces V; and V4, is called a decomposition for L (or H or E respectively)

if (ViNA)® (V2N A) is a decomposition of A for L.

According to the above definitions the decompositions of A for L are in 1-1-correspondence
with the decompositions of V for L.

Let H € NS(X) be nondegenerate. A decomposition V = V; &V, for H leads to an explicit
description of all line bundles L € Pic” (X) := ¢! (H). For this we define a map

XQ:V—>SI

v exp (iTE(v1,v2))

where v = v) +v3 with v; € V;. Since V; and V, are isotropic with respect to E we get the

following result:

Lemma 1.7.6. For every v=v|+vy,w=w; +w, € V; &V, we have that
Xo(v+w) = xo(v) Xo(w) exp (inE (v,w)) exp (—27iE (vo, w1)) .

Thus, ¥ is a semicharacter for H. Denote by Ly = L(H, }p) the corresponding line

bundle. The data ¥ and Ly are uniquely determined by H and the chosen decomposition.

Lemma 1.7.7. Suppose H is a nondegenerate hermitian form on V and V =V, ® Vs a

decomposition for H.




a) Lo=L(H, o) is the unique line bundle in Pict (X) whose semicharacter is trivial on
Aj=ViNAforj=1,2.

b) ForeveryL=L(H,) onX there is a point c € V, uniquely determined up to translation

by elements of A(L), such that L ~ t}Lg or equivalently, ¥ = yoexp (27iE(c,-)).
Proof. See [8, p. 47]. 0

We will call ¢ a characteristic of the line bundle L with respect to the chosen decomposition
for L. If we speak only of a characteristic ¢ of L, we mean that a decomposition for L is fixed
and that c is the characteristic of L with respect to it.

Observe that a characteristic is only defined for nondegenerate line bundles and determined

only up to translations by elements of A(L). Note that 0 is a characteristic of Ly.

1.8 Theta functions

We start by defining the Riemann theta function which is more classical and analytic, and then
we define theta functions in a modern way that is not much different. This simple strategy

will allow us to understand the language used in some older papers on this subject.
1.8.1 Riemann Theta Functions
Recall that the Siegel upper half-space of genus g is defined® by

M, ={tcM(gxgC) |t=1", 3(r) > 0}.

To each point T € J# we can associate the lattice A C C8 spanned by the columns of the
g X 2g matrix Q; = (7 1;).

We can consider the complex torus

Aq; = (Cg/Aq_'.

3When we write 3() > 0, we mean that the imaginary part of 7 is positive definite
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Later we will see that this complex torus is in fact an (principally polarized) abelian variety.
Theta functions play an important role in the study of X, but for now we will just define

Riemann theta functions by themselves.

Definition 1.8.1. Let 7 € J#; be a point. We define the Riemann theta function 6(t,-) : C8 —
C by

1
0(t,z) = Z exp <§nT’L'n+nTz> ,

nezs8
This series converges absolutely and uniformly on compact sets in C8.
Let’s fix 7; the theta function transforms as follows with respect to the lattice A;: for m,n €78

we have

1
0(t,z+n+tm) =exp (—Em'L'Tm — mTz) 0(7,2)-

Moreover, the theta function is even in z;
0(t,—z) = 0(7,2). (1.3)

Remark 1.8.2. Later on, working over characteristic 0, one may ask for a universal polariza-
tion divisor when working with the moduli stack of principally polarized abelian varieties
up to biholomorphisms preserving the polarization . Some technical difficulties make it

necessary to define generalized theta functions. For each &, 8 € R? we define the function

£ 1
INICEEEE (5<n+e>fr<n+s)+<n+s>f(z+ 6)).

Note that for € = 6 = 0 this is just 8(t,z) as before.

1.8.2 Theta fanctions for a factor of automorphy

Let X =V /A be a complex torus. Denote by 7 : V — X the canonical projection map. We
have that the lattice A acts naturally on 7*L, but according to Lemma 1.3.5 the pullback m*L
of a line bundle L on X is trivial. Thus, H*(X,L) ~ HO(V, Oy)?, the subspace of holomorphic

functions on V invariant under the action of A. This isomorphism depends on the choice of
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a factor of automorphy for L. To be precise, let f be a factor of automorphy for L. Then,
HO(X,L) can be identified with the set of holomorphic functions

0:V—-C

such that

8(v+1) = F(A,)8()

forallveVand A € A.

Definition 1.8.3. We will call the functions in H%(X, L) theta functions for the factor f, where
f is a factor of automorphy for L. Correspondingly* we call the theta functions for the factor

of automorphy ay, canonical theta functions for L.

We want to determine the theta functions for L and compute 4°(L) in the case that the
hermitian form H of L is positive definite, which is the precise case of an abelian variety.

First, we will define the classical factor of automorphy.

Suppose L = L(H, x) is a nondegenerate line bundle on X, and that the first Chern class
H of L is a positive definite hermitian form. Such a line bundle is called positive definite line
bundle or just positive line bundle. Denote E = 3H and fix a decomposition V = V; @V, for
L.

Lemma 1.8.4. V; generates V as a C-vector space.

Proof. V,NiV, is a C-subvector space of V on which E vanishes. By Lemma 1.3.10 we
get that H also vanishes on V, NiV,. Since H is positive definite, V, N iV, = {0} and thus
V=V+iV,. O

The hermitian form H is symmetric on V; since E vanishes there. Denote by B the C-

bilinear extension of the symmetric form H|y,xv,. According to Lemma 1.8.4 the symmetric

4Recall g, from Section 1.5
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form B is defined on the whole of V. The following properties of H and B are frequently
applied:

if (vw) €V xV;
Lemma 1.8.5. a) (H—B)(v,w)= if (yw) €V x VW,

2IE(v,w) if (vw) EVa x V.

b) R(H — B) is positive definite on V).

Proof. a) We have that H —B =0 on V x V,, since H is C-linear on its first component.

Thus, for v € V; and w € V we have:

(H — B) (v,w) = H(w,v) — B(w,v)
= (H —B) (w,v) — 2iE(w,v)
= 2iE(v,w).

b) Since V =V, +iV,, a vector v € Vi, v # 0 can be uniquely written in the form v =

va +iug, for some vy, u; € Vo, with uy # 0. Using the previous item we have

R (H — B) (v,) = R (2E (v, v) — 2B (2,v))
= 2E (iuy, up) + 2iR(uy, u2)
= ZH(uz,Ltz).

The bilinear form B enables us to introduce the classical factor of automorphy for L in a

coordinate free way.
Definition 1.8.6. We define the classical factor (of automorphy) for L: ef : AxV — C* by

er(h,v) = 1(A)exp (m (B~ B) (5 A) +§(H—B) (1,2)).
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Equivalently,

er(L,v) = a (A, v)exp (gB(v, v)) exp (gs(v+,1,v+/1)) -

Remark 1.8.7. The theta functions for the factor ey, are called classical theta functions for
L. This terminology came from the fact that the classical Riemann theta function with (real)
characteristic [g;] coincides with the classical notation as we have seen in the previous
subsection. In fact, we have that the classical Riemann theta function with (real) characteristic

[g; ] is defined by

] [ﬁ;] (t,v) = Zdexp (wi(n+c)Tt(n+ch) +27mi(v+ ) (n+c!))

for all v € C8. In fact, we have the following relation:

Let H € NS(X) be positive definite and L = L(H, ) a line bundle on X of type> (1,...,1);
denote by c the characteristic associated to L. Denote the canonical theta function for L as

0¢ = 6;. Then we have the following:

Lemma 1.8.8.
1,2 T . !
o ¢ _ exp (~2~B(." - mTchZ) 0 [22] (7,).

Proof. See [8, pp. 222-224]. O

Now, consider L € Pic(X), and suppose that L is of type D = diag(dy, . .., dg). Recall that

E = (% ?) is the matrix of E with respect to a symplectic basis of the lattice A.

Definition 1.8.9. Let L be a line bundle of type D. We define the Pfaffian of E as Pf(E) =
detD.

Note that Pf(E) is independent of the choice of the symplectic basis. Using this notation

we get some useful results.

Lemma 1.8.10. Let L € Pic(X) be a nondegenerate line bundle. Then, h°(X,L) < PA(E).

3i.e. principally polarized
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Proof. See [8, p. 51]. ]

We will construct an explicit basis of canonical theta functions of H%(X,L).
Suppose ¢ € V is a characteristic of L with respect to the decomposition V = V| @ V,. Define

6°:V > Cby

0°(v) =exp (—~7L'H(v, c)— gH(c, )+ gB(v—i-c,v-l-c)

.Y exp (n(H—B)(v—i—c,?t)—g(H—B)(A,A)) (1.4)
A€A]

N—’

Lemma 1.8.11. 6 is a canonical theta function for L = t}Ly.

Proof. See [8, p. 52]. O

We can use 6° to construct other canonical theta functions for L as follows: for any
w € K(L), define
5 =ar(w,)716°(-+w)

where w denotes some representative® of w in A(L). It is easy to see that this definition does

not depend on the choice of a representative w of . Note that 65 = 6°.
Corollary 1.8.12. 6f is a canonical theta function for L for every w € K(L).

Proof. See [8, p. 53]. [l

Now we state the main result of this section. We want to give a basis of the vector space

HO(X,L), when L is a positive definite line bundle.Denote by K (L)1 :=K(L)NV;.

Theorem 1.8.13. Let L = L(H, x) be a positive definite line bundle on X and let ¢ be a char-
acteristic with respect to a decomposition V = Vi @V, for L. Then, the set {0 | w € K(L);}

is a basis of the vector space HY(X,L) of canonical theta functions for L.

Proof. See [8, pp. 53-54]. D

SRecall that K(L) = A(L)/A.



Remark 1.8.14. The basis {65 | w € K(L);} is uniquely determined by the choice of a
decomposition for L and the characteristic c. Moreover, using that #K(L); = detD = Pf(E),

so we get the following result:

Corollary 1.8.15. i%(X,L) = PA(E) for any positive definite L = L(H, %).

1.8.3 Riemann’s Addition Formula

In this short subsection we show a useful relation for theta functions that is heavily used later.
For a reference see [8, Ch. 7].

Theorem 1.8.13 gives bases of canonical theta functions

{6F : xe 2K} for HO(L),
{6F : xe2k } for O (L),
{GxL‘X’L/ :xEZKl} for H® (L®L'), an

(

{e,f@(*”*‘" : xEZKl} for H (L® (—1)}L')

Using this notation, we get the following:

Theorem 1.8.16 (Riemann’s Addition Formula). Let L and L' be algebraically equivalent
ample line bundles on the abelian variety X =V /A and o : X x X — X x X, given by

a(x1,x) = (x1 +x2,x1 —x2). Then,

! ! —1 * 7!
0L (i +va)0F (—v)= Y 6L (v)oB I (yy) (1.5)
(z1,22)€K) XK}
a(z1,22)=(x1,%2)

forallvy,vy €V and x1,x; € 2K]. In particular, if L defines a principal polarization of X and

L =L is of characteristic zero, then

0 (v +v2) 8§ (i —v2) = ¥ 65 (v1) 6F (v2) (1.6)
€K

forallvi,vo €V.
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Proof. See [8, Ch. 7]. (]

1.2 The Riemann-Roch Theorem

For a line bundle L on the g-dimensional complex torus X = V /A, the Euler-Poincaré

characteristic of L is denoted by

2D =Y (~1)'R(X,L).

v=0

The Riemann-Roch Theorem is a formula for Y (L).

Theorem 1.9.1 (Analytic Riemann-Roch Theorem). Let L be a line bundle on X whose first

Chern class H has s negative eigenvalues. Then’

x(L) = (—~1)°PAE).

In other words, if L is of type D = diag(d\, . ..,dg) and s is the number of eigenvalues of
c1(L), then x(L) = (—1)°d - ... -dg. In particular, for a degenerate L we have that d, =0,
and so x(L) =0.

Proof. See [8, p. 64]. O
Since deg ¢, = detE = Pf(E)?, we get an immediate corollary:
Corollary 1.9.2. (L)% = deg ¢, for every L € Pic(X).

Recall the self-intersection number (L8) of a line bundle L on X

4
= [ A

In this integral the first Chern class is considered to be a 2-form on X via the de Rham

isomorphism H?(X,C) =~ H3y (X).

TRecall that we denote the alternating form SH as E.
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Theorem 1.9.3 (Geometric Riemann-Roch Theorem). For any L € Pic(X) we have that

xm=§w»

Proof. See [8, pp. 65-66]. [N

Remark 1.9.4. In the case of a positive (definite) line bundle L, we have that dim H!(X,L) = 0
Vi > 0. Therefore, dimH(X,L) = x(L) = %. For more details see [8, Section 3.5].

°

1.10 Lefschetz Theorem

We will leave all of the following results without proof. For a reference consider [8, pp.
84-88].

Let X =V /A be an abelian variety of dimension g and L € Pic(X) a polarization. The
line bundle L induces a meromorphic map ¢r, : X — PV defined as follows: if 1g,..., Ny is a

basis of H(X, L), then
¢r(x) = [Mo(x) : -+~ 1 v (x)],

whenever 17;(x) # 0 for some j. Choosing a factor of automorphy f for L we may consider
HO(X,L) as the vector space of theta functions on V with respect to f. Let 6y, ..., 6y denote

the basis of theta functions for the factor f. Then, the map ¢y, is given by

oL() = [Bo(v) : -+ : O ().

Note that ¢y, does not depend on the choice of f, although it depends on the choice of the
basis of H(X,L). We will see that one can find a useful choice of this basis in the Riemann

addition formula.

Theorem 1.10.1 (Lefschetz Theorem). If L is a positive definite line bundle on X of type
(di,...,dg) with dy >3, then @, : X — PV is an embedding.

Recall that a line bundle L is ample if L" is very ample for some n > 1.

Proposition 1.10.2. For a line bundle L on X the following statements are equivalent:
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(i) Lis ample.
(ii) L is positive definite.
(iii) HO(L) # 0 and K(L) is finite.
(iv) HO(L) # 0 and (L8) > 0.
Corollary 1.10.3. If L € Pic(X) is ample, then L" is very ample for n > 3.

Recall that the trascendence degree of the field of meromorphic functions on X is called
the algebraic dimension a(X) of X. We have that a(X) < dimX for any connected compact
complex manifold. Proposition 1.10.2 leads to the following criterion for a complex torus to

be an abelian varitety.

Theorem 1.10.4. For a complex torus X, the following conditions are equivalent:
1. X is an abelian variety.
2. X admits the structure of a projective algebraic variety.

3. a(X) = dimX.

1.11 Kummer Varieties

We want to define the Kummer variety of an Abelian variety. This will be used later on to
describe geometrically one characterization of Jacobian varieties, and furthermore we will
use it to give a similar condition to describe Prym varieties and abelian varieties that contain a
curve that is twice the minimal class which is the main topic of this thesis. The geometric

condition will be secancy conditions on the Kummer variety in projective space.

Definition 1.11.1. Let X = V/A be an abelian variety of dimension g. The Kummer variety

associated to X is defined to be the quotient

K(X)=X/(-1)x.
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We have that K(X) is an algebraic variety of dimension g over C, smooth except at 2%

singular points of multiplicity 28~ which are the images of the 2-torsion points of X under
the natural map p : X — K(X).

Let L = L(H, %) be an ample symmetric line bundle on X defining an indecomposable
principal polarization. That is, any Theta divisor defining L is irreducible. Since x(A) C {£1},
we have by Corollary 1.5.8 that the semicharacter 2 of L? is identically 1 on A. This implies
that L? is of characteristic 0 with respect to any decomposition of L. By [8, Corollary 4.6.6] all
theta functions in HO(L?2) are even. Hence, we have that there exists a map ¥ : K(X) — P?*~1

such that the following diagram commutes

¢=(PL2 N ]P)Zg_l

-

K(X)

Theorem 1.11.2. Let L € Pic(X) be a symmetric line bundle that defines an indecomposable

principal polarization on X, then y : K(X) — P*~1 is an embedding.
Proof. See [8, pp. 98-991. O

This result implies that on an indecomposable principally polarized abelian variety, we

can always consider K(X) as canonically embedded in P 1.

1.12 Endomorphisms Associated to Cycles

Let X be an abelian variety. The objective of this section is to show that to every pair of a
divisor and a curve on an abelian variety, we can associate an endomorphism.

We will consider only algebraic cycles V with coefficients in Z, i.e. finite formal sums
V= ZriVi

with integers r; and algebraic subvarieties V; of X, which we assume to be all of the same

dimension. We will say that V is an algebraic p-cicle if dimV; = p for all i.
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Let W =Y s5;W; be an algebraic g-cycle on X. The cycles V and W are said to intersect

properly it V; W is either of pure dimension p + g — g or empty, whenever r; 7# 0 # ;.

Lemma 1.12.1 (Moving Lemma). Let V be an algebraic p-cycle and W an algebraic g-cycle
on X. There is an open dense subset U in X such that V and t;W intersect properly for all

xelU.

Proof. Without loss of generality we assume that V and W are subvarieties of X. Consider
the difference map

d:VXW—oX:(ww)e=w—y.

The fibre of d over any x € X is
d7(x) = vVngw.

Since d is a closed morphism, there is® an open dense subset U of X such that d~!(x) is either

of dimension p +q — g or empty forallx € U. O
We will need a Moving Lemma with parameters.

Lemma 1.12.2. Let T be an algebraic variety and Z an algebraic cycle on T x X intersecting
{t} x X properly for anyt € T. Let Z(t) be the cycle on X defined by Z- ({t} x X). For any
algebraic cycle W on X there is an open dense subset U C T x X such that Z(t) and t;W

intersect properly for all (t,x) € U.

Proof. We may assume that Z is an algebraic variety on T x X. Consider the map
g WXZTxX:(w(t,x)— (t,w—x).

Then,
g %) = Z(t) W,

As g is a closed morphism, we finish the proof using the same steps as the Moving Lemma

1.12.1. g

8See [24, I1, ex. 3.22 ¢)]




Let V and W be two algebraic cycles on X of complementary dimension. Suppose that V
and W intersect properly, then the usual intersection product V - W is a 0-cycle on X. That
is, V-W =Y rjxj, with x; € X and integers r;. We define S(V - W) to be the sum of these
points on X, say

S(V-W)=rix;+---+rx, € X.

Note that S is symmetric and bilinear.

Let now (V, W) be an arbitrary pair of algebraic cycles of complementary dimension on

X. The pair (V, W) induces an endomorphism 8(V,W) of X in the following way:

According to the Moving Lemma 1.12.1 the cycle'V intersects #;W properly for all x of

an open dense subset of X. So we have a rational map

0:X--X
x—=>SV-W).

But, a rational map from a smooth variety into an abelian variety extends to a morphism (see

[8, p. 101]). Since a morphism between complex tori is a homomorphism plus a constant, i.e.

there is an endomorphism &(V, W) of X and a point ¢ € X, both uniquely determined by &,

such that 6 (V,W) = 6(V,W) —c. So, we have

S(V,W):X =X

x=SV-£W)—c
whenever V intersects #;W properly. The bilinearity of S implies that

§(V+V\W)=8(V,W)+6(V',W)and
S (V,\W+W')=68(V,W)+6(V,W)

for all algebraic cycles V,V’ and W, W’ of complementary dimension on X.
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Remark 1.12.3. If V intersects W properly we have that ¢ = S(V - W), that is

S(V,W)(x) =S(V - (EW —W))

whenever defined.
We may always assume that V intersects W properly thanks to the following result.

Proposition 1.12.4. 6(V,W) = & (V/,W) for any algebraically equivalent algebraic p-cycles
V and V' and any algebraic (g — p)-cycle W on X.

Proof. See [8, pp. 129-130]. (]
Lemma 1.12.5. §(V,W)+6(W,V) = —(V-W)idy.
Proof. See [8, p. 130]. d

Corollary 1.12.6. The homomorphism 6(V,W') depends only on the algebraic equivalence
classes of V and W.

In particular, to every curve and divisor on an abelian variety we can associate an endo-

morphism. This will be explored further in the upcoming chapters.
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HAPTER

O
.

Jacobian varieties

Jacobian varieties are the historic origin of the study of abelian varieties [12, chap. VII, 57].
In this chapter we present the basic material, and we end by showing that a jacobian variety
admits a 4-dimensional family of trisecants lines to its Kummer variety.

We will work over a field of characteristic 0. The basic material will be based on [8].

2.1 Jacobians

We start by defining the jacobian variety. Let C be a smooth projective curve of genus
g > 0. Recall the g-dimensional C-vector space H°(ac) of holomorphic 1-forms on C. The
homology group H;(C,Z) is a free abelian group of rank 2g. By Stokes’ theorem, any element
Y € Hi(C,Z) yields in a canonical way a linear form on the vector space H%(ax), which we

also denote by 7:
y:Hwc) = C: a)n—+/a).
14

Lemma 2.1.1. The map

e

H'(C,Z) = H®(a)* = Hom (H (), C)




is injective.
Proof. See [8, pp. 316-317]. (W]

Hence, H (C,Z) is a lattice in H%(w¢)*, and we get the complex torus of dimension g
J(C) = H%wc)*/Hy(C,Z) @2.1)

Definition 2.1.2. Let C be a smooth projective curve of genus g over C. The jacobian variety

(or jacobian) is the complex torus J(C).
Remark 2.1.3. Since J(C) =0 if g =0, we will assumme in general that g > 1.

Remark 2.1.4. Using the intersection form on H; (C,Z) we can extend it to a hermitian form

H on H (w¢)*. In fact, one has
Proposition 2.1.5. The hermitian form H defines a principal polarization on J(C).

This polarization H is called the canonical polarization of J(C). Any effective divisor
© on J(C) such that the line bundle &;¢)(®) defines the canonical polarization is called a
theta divisor of the jacobian J(C). It is usual to write (J(C), ®) for the canonically polarized

jacobian.

There is another way to define the jacobian variety of C, namely as the group Pic%(C).

Recall that Pic%(C) is the quotient
Pic’(C) = Div%(C) /PDiv(C)

of divisors of degree zero on C modulo the subgroup of principal divisors. We have a canonical
map

Div%(C) — J(C) = H(w¢)* /H,(C, Z)

defined as follows: any divisor D € Div?(C) can be written as a finite sum D = Yioi(pi—aj)

for some point pj,q; € C. The class of the linear form @ — Y7 _; /; ;jf @ in J(C) depends only
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on the divisor D, but not on its special representation as a sum of differences of points. So

n

y /q i a)) (mod H, (C, Z))

Dr | 0
=1

gives a well defined map Div®(C) — J(C), which is clearly a homomorphism of groups.

Definition 2.1.6. The map Div®(C) — J(C) previously defined is called the Abel-Jacobi map
of C.

Jacobi’s Inversion Theorem (see [1, p. 19]) states that the Abel-Jacobi map is surjective.
On the other hand, by a theorem of Abel (see [1, p. 18] or [31, ch. VIII]) its kernel is the

subgroup of principal divisors in Div®(C). Hence, we obtain the following theorem

Theorem 2.1.7 (Abel-Jacobi Theorem). The Abel-Jacobi map induces a canonical isomor-

phism Pic®(C) 5 J(C).
Proof. See [31, ch. VIII]. O

Remark 2.1.8. Via this isomorphism Pic®(C) inherits the structure of a principally polarized

abelian variety.

In what follows we will identify J(C) = Pic?(C) via the canonical isomophism. We will

use -+ for the group law and sometimes for line bundles on C we will write ®.

For any n € Z denote by Div*(C) the set of divisors of degree n on C. It is a principal
homogeneous space for the group Div®(C). We can define a more general Abel-Jacobi map

but, it will be not canonical for n # O:

Fix a divisor D,, € Div"(C) and define

DIv*(C) — J(C)
D 6c(D—D,). 2.2)

41




The most important case is D, = nc for some point ¢ € C. In this case, the previous map

can be written as

D=Y rip;s <a) =Y / " co) (mod Hi (C,Z)).

Restricting the map Div*(C) — J(C) to the symmetric product’ C™) (as we can consider

the elements of C™) as effective divisors of degree n on C), we get the following map
op, : C™ — J(C)

which is also called the Abel-Jacobi map.
Let Pic"(C) denote the set of line bundles of degree  on C. It is a principal homogeneous

space for the group Pic’(C). Given a line bundle L, of degree 7 on C. We have that the map

ar, : Pic"(C) — J(C)

L LRL;! (2.3)

is bijective. Finally, consider the canonical map p : C® — Pic”(C) sending an effective

divisor D in C™ to its class &¢(D) in Pic”(C). So we obtain the following commutative

diagram:
Pic*(C)
2
c) % (D)
op,
J(C)

For any line bundle L € Pic"(C) the fibre p~!(L) is by definition the complete linear
system |L| on C. So for any M € Pic%(C) the fibre agﬂl (M) is the complete linear system
|M ®Oc (Dn) | :

IRecall that C™) is the n-fold that is the symmetric product of C. This is, C™ is the quotient of the cartesian
product C" by the natural action of the symmetric group S,,.
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Fix a point ¢ € C. We will show that the Abel-Jacobi map ¢ = ¢ : C —J = J(C) is an
embedding. First recall that the differential do is a holomorphic map from the tangent bundle
I of C to the tangent bundle J; of J. According to Lemma 1.3.5 the tangent bundle of J is
trivial, i.e. 97 =J x C8. The projectivization of the composed map Jr — Iy ~J x C& — C8

is a priori a rational map C — P&~! called the projectivized differential of a.

Proposition 2.1.9. The projectivized differential of the Abel-Jacobi & : C —+ J is the canonical

map Qg :C — el
Proof. See [8, p. 321]. i
Corollary 2.1.10. For any g > 1 the Abel-Jacobi map & : C — J(C) is an embedding.

Proof. The map o is injective, since for every line bundle L of degree 1 on a curve of genus
g > 1 we have that k%(L) < 1. From Proposition 2.1.9 we conclude that da is injective at

every point p € C, since the canonical line bundle ¢ on C is base point free. O
We finish this section with the famous Theorem of Torelli.

Theorem 2.1.11 (Torelli’s Theorem). Suppose C and C' are compact Riemann surfaces of
genus g. If their jacobians (J(C),®) and (J(C'),®') are isomorphic as polarized abelian

varieties, then C is isomorphic to C'.

Proof. See [1, pp. 245-249]. O

2.2  The Theta Divisor

|
We will find an intrinsic way of defining a theta divisor in Picf~!(C). The study of the ‘
geometry of ® will help to understand the geometry of the curve C as well.

Recall the canonical map p : C® — Pic™(C) for n > 1. Its image W, =p (C (”)) is the
subset of Pic"(C) of line bundles with nonempty linear system. For n > g we have that
W, = Pic"(C) as consequence of the Riemann-Roch Theorem for curves. For 1 <n < g it

is well known that A (6¢(D)) = 1 for a general divisor D € C™. This means that the map
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p :C" — pic* (C) is birational onto its image W,,. Moreover, since p is a proper morphism,

W, is an irreducible closed subvariety of Pic”(C) of dimension #. In particular, W,_; is a
divisor in Pic8~!(C). We want to see the relation between We—1 and the theta divisor since
this will help in some computations later.

Recall that the fundamental class [Y] of an n-dimensional subvariety ¥ of a smooth
projective variety X of dimension g is the element it induces in H?6~2*(X,7), Poincaré dual

to the homology class {Y'} of Y in Hy,(X,Z).

Theorem 2.2.1 (Poincaré Formula). Let ¢ € C be a point. Denote by W, the image of Wy, in
J(C) under the bijection Op(,c). Then,

. 1 &
[W’l] = (g—n)! /\ [©]
forany1<n<g.
Proof. See [8, pp. 322-323]. a

Remark 2.2.2. The formula also holds for z = 0, if we define Wy to be a point. By definition
[@] = ¢1(®). Thus, A8 [O] equals the intersection number (©#) times the class of a point. So,

for n = 0, the formula is equivalent to (®8) = g! which is a consequence of Riemann-Roch.

Corollary 2.2.3. (C-©®)=g.
Proof. According to the Poincaré Formula we have:

CINCEFRSYNCAC

1 b4
=-——0/N\[O].
(g—1)! Al
So, (C-0) = (g_——ll)—! (®8) = g by Riemann-Roch and the definition of the intersection number.
O
Corollary 2.2.4. There is an 1 € Pic8™'(C) such that W,_; = o5 ®.

Proof. See [8, p 324]. O
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Recall that a theta characteristic on C is a line bundle x on C with k% = @.

Theorem 2.2.5 (Riemann’s Theorem). For any symmetric theta divisor © there is a theta

characteristic K on C such that Wy_1 = 0c©.
Proof. See [8, p 324]. O

Remark 2.2.6. This makes it natural to call W, the canonical theta divisor of C.

2.3 The Universal Property of the Jacobian

Theorem 2.3.1 (Universal Property of the Jacobian). Let X be an abelian variety and ¢ :
C --+ X a rational map. Then, there exists a unique homomorphism ¢ : J(C) — X such that
for every c € C the following diagram is commutative:

c—2 ,x

acl l‘—w(c)

JC) 2= x.

Proof. A rational map from a smooth variety into an abelian variety extends to a morphism

(see [8, p. 101]), so the map ¢ is everywhere defined.
Consider the morphism (¢_ (e @) : C&) — X defined by

(t—()9)® (p1+---+Pg) = 0(p1) +---+ 0(pg) — g9 c).

Since 0t : C(8) — J(C) is birational, there is a rational map @ : J(C) — X such that

(-0 9)® = Peotye 24

on an open dense set of C(8); again, since the map @, is a rational map into an abelian variety, it
extends to a morphism, so Equation 2.4 holds everywhere. Now, @.(0) = (f—q;(c) ) (&) (gc)=0
implies that ¢, is a homomorphism (since it’s a morphism between complex tori). Moreover,

the diagram commutes since ot.(p) = g (p+ (g —1)c) and @(p) — @(c) = (t_q,(c)(p) (8) (p+(g—1))
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for all p € C. We have that @, is unique since ¢(C) generates J(C) as a group. It remains to

show that @, = @ for any c¢,c’ € C. In fact,

(@c— @) ate(p) = Pe0:(p) — @ (02 (p) — s (c))
=1_o()P(P) —t_g(c)P(P) +1_p()9(C)
=0

for all p € C. Again, since @,(C) generates J(C), we have finished the proof. [

2.4 Matsusaka-Ran Criterion

Recall that a curve C on an abelian variety X is said to generate X, if X is the smallest abelian
subvariety containing C. More generally, an effective algebraic 1-cycle }.r;C; on X generates

X if the union of the curves C; generates X.

Theorem 2.4.1 (Matsusaka-Ran Criterion). Let (X,L) be a polarized abelian variety of
dimension g and suppose that C = Z’}=1 r;C; is an effective 1-cycle generating X with (C-L) =
g Thenry =--- =r, =1, the curves C; are smooth, and (X ,L) is isomorphic to the product

of the canonically polarized jacobians of the C;:
(X,L) ~ (J(C1),01) X -+ X (J(Cp),®p) .
In particular, if C is an irreducible curve generating X with (C- L) = g, then C is smooth
and (X, L) is the jacobian of C.

Proof. See [8, pp. 341-344]. (M

Corollary 2.4.2. a) A principally polarized abelian surface is either the jacobian of a

smooth curve of genus 2 or the canonically polarized product of two elliptic curves.

b) A principally polarized abelian threefold is either the jacobian of a smooth curve of
genus 3 or the principally polarized product of an abelian surface with an elliptic curve

or the principally polarized product of three ellipticcurves.
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Proof. See [8, p. 341]. O

2.5 Fay’s Trisecant Property

Jacobian varieties have a interesting geometric property. Namely, the Kummer variety of a
jacobian admits a 4-dimensional family of trisecant lines, thus its points are very far from

being in general position in P?*~1. The aim of this section is to show this property.

Let C be a smooth algebraic curve of genus g > 2 and (J, ®) its jacobian variety. Assume
that the line bundle £;(®) is of characteristic zero with respect to some symplectic basis of
H;(C,Z). Recall the Kummer variety K = K(X) of X = J(C) from Section 1.11, it is the
image of the map ¢g : J(C) — P?~1, First we want to show that having a(n honest) trisecant
is equivalent to a certain schematic inclusion and a certain equation in terms of theta functions.
Recall that on a principally polarized abelian variety (X, ®) of dimension g one has HO (X, 6% (0)) =
(), and by Riemann’s Addition Formula 1.8.16 there is a basis 6, . .. , 6251 of H° (X, Ox (20))
such that

28—1

;) 8;(£)8;(0) = 6(¢ +®)6(, — »)

for any {, @ € C8. For z € C8, we will denote by z € C8 its image via the universal covering
map. For the translation te on © for any { € X, we will denote tg@ =0+ f =0 g» as well as
6 (z) = 6(z— £); usually we denote @ for O;.

Theorem 2.5.1. Let (X,0) be a principally polarized abelian variety, and consider the

Kummer map K : X — P¥~1 whose image is the Kummer variety K(X), given by
K(X)=1[6p(x):---: 6e_1(x)]-
For any a,b,¢ € X pairwise distinct and nonzero, the following conditions are equivalent:

i) The points K (@), K (b), and K (€) are collinear in P*~1,
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ii) There exist &, B,y € C not all zero such that

aeae_a + ﬁebe_b + '}’9(;9__(; = O.

iii) We have the schematic inclusion ©®,-0@, C O, UO_..

Proof. First we prove the equivalence between i) and ii). Since the points K (@), K (b), and

K () are collinear, we have equivalently that the vectors

(00 (a) yeeey 623“1 (a)) 3
(90 (b)?"'aelg—l (b))7
(6o(c),---,00-1(c))

are C-linearly dependent. This is equivalent to having a, B,y € C not all zero such that
6;(a)+B6;(b) +7v6;(c) =0

for all j, 0 < j <28 —1. We multiply by 6;(z) and sum over j, getting

281

; (0;()8;(a) + BO;(b) +78;(2)8;(c)) =0.

Using Riemann’s Addition Formula, this is equivalent to the equation
a0(z—a)0(z+a)+BO(z—b)0(z+b)+v0(z—c)8(z+c) =0.

To finish the proof, we now prove the equivalence between ii) and iii). Assuming condition ii),
restricting to @, - @, we get that 6.0_. = 0, so that @, - ®, C ©.U®_.. On the other hand, if
we suppose that @, - 0, C ©,UO_,, this implies that 6,0_, = 0 on @, - ®;,. Note that since

a # b we have that ®, - @ is of pure codimesion 2 on X, in particular it is a divisor on @,.
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Consider the following exact sequence of sheaves®:

0— ﬁ@a (—@a‘) £§ ﬁ@a — ﬁ@a.gb — 0.

Applying ®C, (20), and using the Theorem® of the Square 1.5.4 we get the exact

sequence (see Section A.1):

0= Bo, (0_a) % Oo, (20) = Oo,.0, (20) = 0.

We have the long exact sequence in cohomology

0 — HY(®,, 06, (0_5)) —2 H®(®,, 0o, (20)) — H® (04, Op, 0, (20)) — ---

(6-2)

By the previous comment, we get that 6.0_. € H®(®,, O, (2@)) maps to zero, so the long
exact sequence of cohomology shows that 6, G—CIGb = &0,0_, for some & € C. To finish the
proof consider the long exact sequence in cohomology of the following exact sequence of

sheaves:
0= Ox (0_p) % 6% (20) — Bo, (20) — 0.

that is

0 —— HO(X, 0% (0_p)) —2— HO(X, 6% (20)) —— HO (X, 60, (20)) — ---

N
(6-p)

Since 6,0_. — @6,0_, € H* (X, Ox (20)) vanishes when restricted to @, we get that
0:0_. — 0.6,0_, = B6,0_p

in X for some f € C. O

2For a reference see A.1
3In particular, 20 — @, ~ @_,, where ~ refers to linear equivalence.
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Now, we go back to jacobians. We will denote as usual by p — g the image of (p,q) under

the difference map 6 : C x C — J(C). If C is hyperelliptic, we denote by 1 the hyperelliptic

involution.
Proposition 2.5.2. Let X = J(C) be the jacobian of a smooth curve of genus g > 2. Then
a) BNB,;_, CO,_,UB,_forallp#q,r,seC.

b) The intersection @ NOy_, is reducible, except if C is hyperelliptic and g = 1(p). In the

remaining case, ®NEO is irreducible.

t(p)-p

Proof.  a) According to Riemann’s Theorem 2.2.5 there is a theta characteristic k¥ €

Pict~!(C) with 0@ = W,_1. In terms of W,_; the assertion reads
We1 N (We—1+(g—P)) C (Wem1+(r—p))U (W14 (g—5)).  (2.5)

Consider the sets V; = {L € Pict"!(C) | h%(L(—q)) > 1} and V), = {L € Pict~1(C) | KO (L(p)) >2}.

It is enough to show that
Weo1N (W1 + (g —p)) C VUV,

since V, C (Wp—1+ (g —s)) for any s € C and V, C (Wg—1+(r—p)) forany r € C.
Suppose L € Pics~1(C) is contained in W,_; N (Wg—1+ (g—p)) but not in V,. This
implies that

W (L(p)) =r°(L) =K (I(p—q)) = L.

This means that p and g are base points of the linear system |L(p)|. Hence ¢ is a base

point of |Z|, that is #° (L(—q)) > 0.

b) Suppose first that C is non-hyperelliptic or that C is hyperelliptic with g # 1(p). It
suffices to show that W,—1 N (W,—1 + (g — p)) is contained neither in V, nor V. For
this we apply the geometric Riemann-Roch Theorem (see [31, p. 209]) for the canonical

map @ = Qq, : C — P&~!. Choose points pi,..., Pg—2 € C such that the g points
@(p1);---,9(Pg-2), p(p), 9(q) span PE~". Then L = Oc(p1 +-- -+ pg—2 +q) satisfies
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HO(L) =1, K% (L(p)) =2 and thus k® (L(—q)) = O and A° (L(p — q)) = 1 s0 L€ W_1 N
(We—1+(g—p)) but L& V.

Finally suppose that C is hyperelliptic and g = 1(p). It suffices to show that W1 N
(Wp—1+(g—1(q))) = V,. This implies that the intersection is irreducible, since Vg is

the image of the irreducible variety C(¢~2) under the morphism

p1+et P2 O(pr1+-+pgatq)

We only show that W,_; N (Wg_l +(g— l(p)) C V,, the converse implication be-
ing obvious. So suppose that L € Pic8™1(C) is a line bundle with KO(L) > 0 and
RO (L(1(g) —q)) > 0. We have to show that A0 (L(—q)) > 0, but this is true since
HO(L) > 2. On the other hand, 4%(L) = 1if and only if we have L= Oc(p; +-- -+ pg—1)
with uniquely determined points p; with p; # 1(p;) for i # j. The assumption of
0 (L(1(q) —q)) > O implies that p; = g for some i. This is clear if &% (L(1(q))) = 1,
but also if k% (L(1(q))) = 2. Therefore, 4 (L(—q)) > 0.

O

Corollary 2.5.3. The jacobian variety of any curve C admits a 4-dimensional family of

trisecant lines to its Kummer variety.

Proof. 1t follows from Theorem 2.5.2 that
ONB;—, CO_,UB,

for general points p,q,r,s € C, and so by Theorem 2.5.1 we are done. O
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CHAPTER Jacobian Varieties

and trisecant lines

In this chapter we show known work that motivates this thesis. One strong solution to
the Schottky problem is the characterization of Jacobian varieties with trisecant lines to its

Kummer variety.

3.1 A Curve of trisecants implies X = J(C)

We will work over an algebraically closed field k of characteristic 0. Now we will show the

basic settings for what follows.

Let (X, L) be an indecomposable principally polarized abelian variety over k, of dimension
g. Since (X, L) = 1, we can assume that © is symmetric. Note that the linear system |20)|
is independent of the choice of ®. By Riemann’s Addition Formula 1.8.16 there is a basis of

HO(X,0x(20)), namely 6y, ..., 61, such that

287
0(z+w)0(z—w) = Zb 6;(z)0;(w).
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The corresponding map into the projective space

K:X — p%¥-1

z2> [0p(2) : -+ Bre—1(2)]

is a 2-1-correspondence onto its image, which is the Kummer variety K(X) of X (see Section
2.5).
Gunning in his paper [22] has shown how to use the trisecant property to the Kummer

variety in order to characterize jacobians.

Theorem 3.1.1. Let X be an indecomposable principally polarized abelian variety over k,
and letY C X a reduced artinian ring of length 3, say |Y| = {a,b,c}. Set s=a+b+c€X.

Consider the scheme
V= Z{C | & +Y Cc K1) for some line | C Pzg_l}
Suppose that V contains some curve T and let o be the endomorphism defined® by T and ©.
Then
i) If —s+Y does not meet T, then @&y is constant.

ii) If —s+Y meets T, then —s+Y CT, and I is smooth at these points; furthermore,

(o —idx)|y is constant.

He uses the Matsusaka-Ran Criterion (recall 2.4.1) and some facts about the loci V for

jacobians ([23]). This theorem implies:

Corollary 3.1.2 (Gunning [22]). Let X be an indecomposable principally polarized abelian
variety over k, and let Y C X be a reduced artinian scheme of length 3, namely |Y| = {a,b,c}.
Suppose that no endomorphism 3 # 0 exists such that B(b—a) = B(c—a) =0. Ifdim(V) >0

at some point, then'V is a smooth irreducible curve and X is the polarized jacobian of V.

By the same criterion, Welters obtained ([37]):

ISee Section 1.12.
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Corollary 3.1.3. Let X be an indecomposable principally polarized abelian variety over k.
Assume that there exists a complete irreducible curve C in X such that, for some fixed b,c € C,

b#c acCgeneraland { € $(C—a—b—c),
K({+a),K(§ +a) and K( +a)

are collinear in P®~1. Then C is smooth and X is the polarized jacobian of C.

Welters also extended this result to the case of one dimensional degenerate trisecant
families. The main result of Welters that will be used, states that having a one dimensional

family of trisecants to the Kummer variety implies that the abelian variety is a jacobian.

Theorem 3.1.4 (Welters [35]). Let X be an indecomposable principally polarized abelian
variety over k, and let Y C X be an artinian subscheme of length 3. Assume that the subscheme
of X

V= Z{C €X | {+Y CK7Y(l) for some line I C ]P’zg"l}

has positive dimension at some point. Then 'V is a smooth irreducible curve and X is the

polarized jacobian of V.

In the proof of this theorem, there are just three cases for ¥ which have to be treated

separately, namely

3
Y~ Z Spec (k),
j=1

Y =~ Spec (k[e]/(€%)) + Spec (k)
and
Y =~ Spec (k[g]/(%)).

Welters conjectures the following in [35]: If K(X) has one trisecant, does it follow that X

is a jacobian?




Welters’ conjecture can be divided into three cases: an honest trisecant, a degenerate trisecant

(two intersection points, one of them tangent) or a flex trisecant (total degeneration, that is

one point of intersection with multiplicity 3).

3.2 The scheme X

In the study of the problem of trisecant lines, from both the algebraic and analytic approaches,
there are certain schemes which are usually called singular loci X, which are a maximal
subschemes of the Theta divisor (or a translate of the Theta divisor) invariant under certain
translations depending on the case. Krichever in [28] proved, using hard analytic machinery,
that ¥ is empty in the cases that he studies. On the other hand, in the algebro-geometric
approaches the technical complications that envolve this scheme are solved by showing that it

is reduced.

Definition 3.2.1. Let (X, ®) be a principally polarized abelian variety of dimension g and let
G be a closed algebraic subgroup of X. We define

2(X,8,6)= () O,
geG

It is the maximal G-invariant subscheme of ®.

Theorem 3.2.2 (Arbarello-Codogni-Pareschi [3]). The scheme ¥(X,0,G) is reduced for
every G.

Let’s review some interesting but not yet useful facts about X.

Proposition 3.2.3. For each integer j, with 0 < j < g —2, there exist triples (X,0,G) such
that (X,0) is an indecomposable principally polarized abelian variety, G is an abelian

subvariety of X and dimX (X,0,G) = j.
Proof. See [3]. (]

Remark 3.2.4. Note that dimX(X,0,G) < g—2 if G is not trivial. This is because, if a € G
is not the identity, then ® N ®, has dimension g — 2 since ® # @, if a # 0.
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Arbarello-Codogni-Pareschi in [3] studied some particular cases of X:

i) The first case is when G is the Zariski closure of (a). In this case, note that the ideal of

X (X,0,G) is generated by {6,, | n € Z}.

1i) The second case is when G is the abelian subvariety generated by a constant vector
field D. In this case, G is the smallest abelian subvariety Ap whose tangent space at the
origin contains D. In the analytic topology, D corresponds to a non-zero vector U in the

universal cover w : C8 — X, and Ap is the closure of the image of the line U - C in X.
For the last case, we have the following fact:

Proposition 3.2.5 (Arbarello-Codogni-Pareschi [3]). At each point of L =X (X, ©,Ap) the
ideal of ¥ is generated by the functions {D"0 | for everyn >0}

The notation X (X, ®, D) is usually used for £(X,0,Ap).

Remark 3.2.6. Kempf, in his work in [26], constructed an example of a genus 3 Jacobian
(J(C),®) whose theta divisor contains an elliptic curve E. By the work of Beauville-Debarre

[6], if D is the tangent vector to the origin of E, we have that £ (X,0,D) = E.
Using algebro-geometric methods, we are interested in the following result:

Conjecture 1. Let (X,®) be an indecomposable principally polarized abelian variety and
a,b,c € X three different points, with a, b, ¢ & X[2], and consider G= (a— b,a—c) . Suppose
that K (a),K(b),K(c) are collinear in P*~!. Then

codimxX (X,0,G) > 3.

If this is true, via algebro-geometric methods, one immediately solves the honest case of

Welters’ conjecture using the following result:

Theorem 3.2.7 (Debarre [10]). Let (X, A) be an indecomposable principally polarized abelian

variety, let @ be the symmetric representative of the polarization A. Suppose that there exist
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points a,b,c € X such that K(a),K(b),K(c) are collinear and that

codim ﬂ ®pa+qb+rc _>__ 3.

PgrEL
p+q+r=0

Then, (X,A) is isomorphic to the jacobian of a smooth algebraic curve.
We end this section, showing an example from [3].

Example 3.2.8. Let C be a smooth algebraic curve of genus g, and X = J(C) its jacobian
variety. Recall the Abel-Jacobi map u : C — X which is an immersion; set I' = u(C). Fix

D,q,1,s € C, and set:

a=u(p), =u(g),y=u(r),x=28 =u(s) —u(p) — u(g) —u(r)

meaning that { € % (T'—a—pB—7),ie { isin the preimage of I'— & — B — v under the

multiplication by 2 map. Also set
a=C{+a,b=C0+B,c={+y.

If K : X — K(X) is the Kummer morphism, then K(a),K (b),K(c) are collinear, and we have

for some not all zero constants A, B,C:
AB,0_,+B6,0_,+CO.0_,=0.

To have a corresponding notation that Krichever uses in his papers (for instance [27],

[28]), and from the publication that is the origin of this example [3], we set:
U=a—c=u(p)—u(r),V=b—c=u(q)—u(r),U—-V =a—b=u(p)—u(q),W =u(s) —u(r)

so that

1
a=%(U+W——V),b=%(V—U+W),c=§(W—U—V).
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Set
G={U-V),G=({U),G"=(V)

We show that, for an appropiate choice of C, and of the points p,g,r,s, we get:
dim%(®,G) >0, X(0,G)=%(0,G")=0 (3.1)

Note that we implicitly assumed that G is not finite.

Let C be a genus g curve that can be expressed as an n-sheeted cover of P! with at least

two points of total ramification: p and g, and assume that n < g. Hence:
n(U —V) =nlu(p) —u(q)] = 0.

By taking general points of C, we get that both U and V generate J(C). It follows that
¥(®,G') =X(0,G") = 0. On the other hand, X(®, G) is the interection of  translated of ®
so that dimX(®,G) > g—n> 0.

3.3 One trisecant implies X = J(C)

All of the three cases of secancy that must be dealt with in Welters’ conjecture have some
issue with a bad locus X. The two degenerate ones were solved in [3] by Arbarello, Codogni
and Pareschi using algebraic methods; while the honest case (this is when Y is reduced) was
solved in [28] by Krichever using complicated analytic methods. We start showing the results
that precede the results in [3], particularly the case of Y.y = {u,v}. We note that there is still

no algebro-geometric proof of Welters’ conjecture for the honest case.

s

3.3.1 An inflectionary tangent to the Kummer variety

The case of ¥ =~ Spec (k[e]/(€?)) was solved by Marini in [30] under an extra hypothesis;

loc. cit. requires that a subscheme D;® of ® does not contain set-theorical Di-invariant
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components. This is an improvement of Arbarello’s previous work [2]. Later, this extra
hypothesis was removed as we will see in this section.

Marini gives a characterization of the trisecant condition in this case, as follows:

Proposition 3.3.1 (Marini [30]). Let (X,L) be an indecomposable principally polarized

abelian variety of dimension g > 1. The following conditions are equivalent:

i) The Kummer variety K(X) has an inflectionary trisecant, i.e. there exists a smooth
point K (u) in K(X), where K : X — |2©|* is the Kummer morphism, and a line [ in the

projective space PN = 20" which meets K(X) at K(u) with at least multiplicity 3.

i) There exist invariant vector fields D1 # 0, D, € C8, a complex number c and a point

u € X such that

D?0-6,,—2D16-D163,+6-D?6y,+Dy0 -6, — 0 - D265, +¢06,, =0.  (3.2)

iii) There exists a constant vector field D1 # 0 and a point u € X such that the following
inclusion holds

ON06,y, CDOUDB,,, (3.3)

where D1 @ is the locus of zeroes of the section D16 € H° (©, Og(0)).

Recall that K(u) is a smooth point of K(X) if and only if 2« 5 0. Hence, the main result

of Marini is the following:

Theorem 3.3.2. Let X be an indecomposable principally polarized abelian variety. Assume
that the Kummer variety K(X) has an inflectionary trisecant (see the Proposition 3.3.1) and
that the scheme D10 does not contain set-theoretical Di-invariant components. Then, X is

the Jacobian of a smooth curve C.

Years later, the inflectionary tangent case was solved using analytic methods in [27] by
Krichever removing the hypothesis of (a) being irreducible for a # 0. We present his result

as follows:
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Theorem 3.3.3 (Arbarello-Krichever-Marini [4]). Let (X,®) be an indecomposable, prin-
cipally polarized abelian variety. Then X is the Jacobian of a curve of genus g if and only
if there exist vectors U # 0,V € C8 (or equivalently constant vector fields Dy # 0, Dy, on
X) and a point a € X \ {0}, with (a) irreducible, such that: There is a point b € X with
2b # a # 0 such that K(b) is a flex of the Kummer variety.

Remark 3.3.4. From [30] and [2] recall that K () being a flex of the Kummer variety is

equivalent by definition to having 2b € Vy, where
Vy = {219 €X | b+Y C K1) for some line | C 1P=2g—1}
and Y the artinian subscheme of length 3 of X associated to the second order germ:
Y:ews £2U+€%2V CX.

Now, simply removing the extra hypothesis, Krichever got:

Theorem 3.3.5 (Krichever [27]). Let (X,®) be an indecomposable, principally polarized
abelian variety. Then X is the Jacobian of a curve of genus g if and only if there exist vectors
U # 0,V € C8 (or equivalently constant vector fields D1 # 0, D,, on X) such that there is a
point b € X with 2b # 0 such that K(b) is a flex of the Kummer variety.

An algebro-geometric proof of this result is due to Arbarello, Codogni and Pareschi in [3].
They proved and used that ¥ is reduced (see Theorem 3.2.2) to remove the extra condition

that Debarre had in [9] using some ideas due to Marini (see [30]).

3.3.2 A degenerate trisecant of the Kummer Variety

Now we review the case ¥ ~ Spec (k x k[g]/(€?)). The ideas that were used to solve this
case can be generalized later in Chapter 4 (see [9]).

First let’s see the equivalence between the trisecant conditions. See [9] for more details.

Proposition 3.3.6. Let (X, L) be an indecomposable principally polarized abelian variety of
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dimension g > 1, and let © be a symmetric representative of the polarization L. The following

conditions are equivalent:

i) The Kummer variety K(X) has a degenerate trisecant, in other words: there exist
smooth points K (u) and K(v) in K(X), and a line | in the projective space P*~1 which

meets K(X) passing through K(v) and being tangent at K (u).

it) There exists an invariant vector field Dy # 0 in C8 and complex numbers 1,V and

points u,v € X such that

neue_u + (Dl e_u) M eu - (Dl eu) . e_u + Veve_v = 0-

iit) There is a constant vector field D1 # 0 in C8 and points u,v € X such that the following

inclusion holds

®u b @—u C @v U @-v.

Theorem 3.3.7 (Debarre [9]). Let X be a complex indecomposable principally polarized
abelian variety and let ® be a symmetric representative of the polarization. Then, X is a

Jjacobian if and only if there exist points u,v € X with u, —u,v, —v all distinct, such that
®u * ®—u C @v U ®—‘V

and 0, - O_, reduced.

Krichever in [27] using analytic methods and Arbarello, Codogni and Pareschi in [3] using

algebro-geomtric methods proved Theorem [9] without requiere that @, - ®_,, is reduced.

3.3.3 The Honest case

As mentioned in Section 3.2, if one can prove that ¥ = codim() p 4 -cz Opatgbtrc > 3 in the
. p+g+r=0 .
context of 3.2.7, then one has solved Welters’ conjecture for the case of honest trisecants.
Krichever has gone much further using analytic theory that has been developed in the last

20 years, including soliton equations, 7 functions, commuting difference operators, etc. He
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proved in [28] that ¥ is empty in the case of

=)0
teZ
We reformulate the theorem to be in the language of this thesis, which is of course the

algebro-geometric setting.

Theorem 3.3.8 (Krichever [28]). Let (X,®) be an indecomposable principally polarized
abelian variety, with ©® symmetric. Suppose that X has points a,b,c with 2a,2b,2c,a —b,a —
¢,b— ¢ non-zero, such that K(a),K(b),K(c) are collinear in P*~1. Then X is a jacobian

variety.
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CHAPTER (m + 2)-secant

m-planes

4.1 History and motivation

The origin of the problem of secants to the Kummer variety comes from the Schottky problem,
that is to determine which complex principally polarized abelian varieties arise as jacobian
varieties of complex curves. One known geometrical solution is presented in Chapter 3.
There are two possible paths to follow in order to generalize this work: One is to try to
characterize jacobian varieties by higher secancy conditions as in Grushevsky’s approach in
[19] or Pareschi and Popa’s in [34].

The other path is to follow Debarre’s question in [11]: He asks about the relation between

the following conditions for a p.p.a.v. (X,0):
1) The existence of a curve of m-planes (m+ 2)-secant to the Kummer variety.

2) The existence of one m-plane (m--2)-secant to the Kummer variety of X.

W

3) The existence of a curve in X that is m times the minimal class.

4) The singular locus of © is of dimension at least g —2m — 2.




5) The variety (X,0) is the Prym-Tyurin variety associated to a symmetric effective

correspondence D without fixed points that verifies (D — 1)(D+m—1) = 0.

Due to Welters in [36], Bertram in [7] and Debarre in [11], under certain geometrical

conditions one has the following relations:

1) == 2) —= 4)

l [

3) « 5)

Our motivation is to improve Debarre’s work on 1) = 3) by removing some geometric
conditions, and to give a partial answer to 2) = 1).

In this chapter we present the minimal cohomological class, in Theorem 4.3.2 we improve
Debarre’s Theorem 4.1 in [11] removing the general position condition and the hypothesis
of the ring of endomorphisms of the p.p.a.v. to be Z (that is a proof of 1) = 3)). Also, in
Theorem 4.4.4 we give a similar condition to 2) that under certain geometric conditions imply
1). Finally, we show the particular case of quadrisecant planes: in Theorem 4.5.1 we have an
improvement of Debarre’s Theorem 5.1 in [11] and in Theorem 4.5.4 we see the particular
case of two quadrisecant planes implying the existence of a curve of quadrisecant planes

under certain geometrical conditions.

4.2 The minimal cohomological class

To understand condition 3) shown in Section 4.1 we briefly present the minimal cohomological
class.

Recall from Chapter 2 that for a Jacobian J(C) one can naturally map the symmetric
product Sym?(C) to J(C) = Pict~1(C) (for 1 < d < g, where g is the genus of C) by fixing
a divisor D € Pict~1=%(C) and mapping (p1,---,pa) = D +Zfl=1 pi- The image of such a
map, denoted W¢ C J(C), is independent of D up to a translation and one can compute its

cohomology class. By the Geometrical Riemann-Roch Theorem 1.9.3 we have:

W] = .[®]g_d € H%7(j(C)), @.1)




Bl P4

where by [®] we denote the cohomology class of the polarization. One can show that this
cohomology class is indivisible in cohomology with coefficients in Z (see [1, p. 25]). Since,
in particular W' ~ C, one can ask whether the existence of a curve that is the minimal class is
a special property of Jacobians, and one has one implication by the Matsusaka-Ran Criterion
2.4.1 and another summarized in Chapter 3.

This motivates the following definition:

Definition 4.2.1. Let (X, ®) be a principally polarized abelian variety. We call

[©F !
(g—1)!

the minimal cohomology class of ® (or (X, ®)).

4.3 A curve of (m+ 2)-secant m-planes implies that X has a

curve m times the minimal class

Let (X,A) be an indecomposable principally polarized abelian variety of dimension g, let ® be
a symmetric representative of the polarization A. We can take a basis {8} of H(X, Ox(®))
and a basis {6, .., 0y} (with N = 28 — 1) of the 1-dimensional space H%(X, 6% (20)) which

satisfies the addition formula:
N
0(z-+w)B(z—w) =Y 6;(z)0;(w),
j=0

for all z,w. Now we identify K =[6p:---: 6y]. For any x € X, we write ©, for the divisor
© +x and 6, for the section 7+ 8(z—x) of H* (X, 0% (©y)).

Recall that an Artinian scheme of length 7 is the spectrum of an artinian ring of length n.

Definition 4.3.1. Let Y C X be an Artinian subscheme of length m + 2. Define the scheme:

R\ 2

Vy=2{( : IW € G(m, 28 —1) suchthat { +Y C K~} (W)} .
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We will say that X satisfies the (m - 2)-secant (m-planes) condition if there exists ¥ and

{ € Vy such that K restricted to { +Y is an embedding.

Also, we say that X has a curve of (m -+ 2)-secant (m-planes) if Vy contains a curve of points
whose satisfy the (m +2)-secant (m-planes) condition with m minimal. That is, for a point
2{ inside such curve in, X satisfies the (m+ 2)-secant condition but does not satisfy the

(n+ 2)-secant condition for n < m.
The purpose of this section is to prove the following result:

Theorem 4.3.2. Let (X,A) be an indecomposable principally polarized abelian variety of
dimension g, let © be a symmetric representative of the polarization A. LetY ={ay,...,an42}
be a reduced subscheme of points of X that do not have order 2. Suppose that X has a curve
of (m+ 2)-secant m-planes and assume that @g, N---N@,, ., is a complete intersection.
Suppose further that (a1 —a j)j are Z-linearly independent. Then, the class of T is m times

the minimal cohomology class of ®.

Proof. Since we have that the points K (§ +ay),...,K (& + any2) lie on an m-plane, we have

that there exist constants «; such that

m+2
Y %6;(§+a;)=0
i=1

Multiplying by 6;(z+ {) and taking the sum over j we get

m-2
Y. ib(z+2( +a)6(z—a).

i=1

In particular, restricting to @4, N---NO,, ,, we obtain

m-+2
o 9—2§—a1 04, + a26_2§_a2 6,, =0,
and since this is true for all { € 1T, itis true for {’ € T

OC{ 9_2€1_a1 0y + O&é@_zgz_az 64, = 0.
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Multiplying the first equation by 055_6_25/_(12 6, and the second one by 060_5¢_,,6,, and

—ay

substracting we get
(04] oo}_@_zc_al G—ZC"az Gal 6,,2 - (x{ (1) 9_24'/_01 6_2§_a2 Gal 0,12 =0.
Factorize by 6, 6,,, denote the remaining term as A. We get that

OgN--NBg,,, C{A=0}UB, UB,,.

Am+2

W C Oy N---NBOy,,,, is an irreducible component such that W is contained in either @, or
04, we will contradict that @, N---NO,, ., is a complete intersection, since codimxW = m

by the first contention, while codimyW = m-} 1 by the second one. Therefore,
Qg N---NBy,,, C {A=0},

and so,

O MN---N @am+2 N ®—2C—a2 C ®—2C“al U @_ZCI_aZ.

Equivalently, this means that the points
K(C+b1),++ ,K(E +bmi2)

lie on an m-plane, where

2b) = 2§’+2a3 +ai1+ap
bj=bi—az+aj
bpy1=ax+a3—b;

bpo=a1+a3—by
for2 < j<m.

In particular, we have a two dimensional family of secant m-planes, since now the b;
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depend on a one dimensional parameter {’.

Let a be the endomorphism associated to I" and ®. We will prove under the above
hypotheses that & = m-id, and so I is m times the minimal class. In what comes next we will
follow [11, Section 4]. First we will show that & € Z and then we compute that o = m.

Let N be the normalization of I, I ¢ 271(I') an irreducible complete curve and N its

normalization. We have the following commutative diagram

-
QA
s<

where ¥ is the homomorphism induced by 7. We observe that y is a Galois morphism with

Galois group isomorphic to those 2-torsion points of X that leave I" invariant.

By [11, Lemme 3.7] there exist sections
Aj € HO(N,#*0x (20_p, +--+20_;,,,—20_; )

such that for all j =1,...,28, Y742 Aim*t} 6; = 0 on N. Now each section J; is stable by the
Galois group of y and so div(A;) = y*E; for some divisor E; on N. Note that by the Theorem
of the Square, &r (®b,~—bj) ~ Or (E;—Ej). Hence, if & : Div(N) — X is the pushforward

by @ composed with the addition map of 0-cycles, we have that
or (bi—bj) =.¥ (Ei—Ej) .

Moreover, A; vanishes at a point { only if the points belong to a trisecant, unless they coincide,

i.e. {+bp=C{;+bgfor j & {p,q}, that is, the image in X is 2 = —b, — b,. Hence

S (Ei—Ej) = Z Spq (C’) (—bp—bg) — Z Spq (Cl) (=bp—by)
PgFi p.a#i
p<q p<q
for certain integers dp, (§) > 0. Since the points b, — b, for 1 < p < g <mand —by 41 — b2

depend on {’, we can choose {’ so that b, — by and —bp,1 — by are either not on I or are
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smooth points of I'. This way, we get that 8,, € {0,1}.
Note that —~bj, — b, is constant if p <m+ 1 and g > m+ 1. So that,

& (2¢') =2¢'M + constant

where! M = (Z, 1<p<q<m 6pq +X 1<p<g<m 6P‘I> .
p or g equals j p or g equals i
In particular, for a general z € I" we have that ¢¢(z) = Mz. Since I" generates X we get
o =M € Z, and so o is M times the identity. Now, we show that M = m using an argument
due to Debarre [11].

Denote by M the cardinality of the set:
{p#j: (—aj—ap)eT}.

Analogous to the previous computations, since K (§ +a1),...,K (& + ams2) lie on an

m-plane, we have that

a(a;i—aj) = Z (—ap—ag) — Z (—ap—ay)

P:aFi PAF]
p<q p<q
—ap—ag€l’ —ap—ay€l
=— Y (agj+ap)+ Y, (aitay).
p#isj q#i,j
—aj—ap€el’ —ai—ap€l
Since & =M € Z, then
M(ai_aj)’*‘z p#i,j ap”‘z g#i,j Qg if—a,-—ajgzl"
N(a;— aj) = —di—dp —aj—ag
(M_ 1)(ai“aj)+z p#iLj ap—z g#i,j Gq if —a;—ajc I.
—4i—ap —aj—oq

Since (a1 —a;) are Z-linearly independent, this leads to two cases:

* Let N =M and no (a; —a;) lie on I. This implies that M is null, and so is & which is

absurd.

IFor simplicity one can think of i = 1 and j = m.
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* Let N=M—1and (a; —a;) €I foralli,j. Then, M =m+1 and o =m.

Therefore, I" is m times the minimal class.

4.4 Finite (m+ 2)-secant m-planes

One may ask if the existence of a finite number of (m+ 2)-secant m-planes is enough to
have a curve of (m + 2)-secant m-planes as in the case of Jacobians for m = 1 (recall Chapter
3). The answer is positive under certain geometric conditions. In this section we show
that the existence of one degenerate (m + 2)-secant m-plane and (m — 1) honest (reduced)
(m+ 2)-secant m-planes implies the existence of a curve of (m + 2)-secant m-planes.
Before showing the main theorem of this section we will treat some preliminaries. We

base this on Debarre’s work in [9].

4.4.1 Preliminaries

Let (X, 1) be an indecomposable principally polarized abelian variety of dimension g, let ® be
a symmetric representative of the polarization 1. We can take a basis {8} of H'(X, Ox(®))
and a basis {6p,...,0y} (with N = 28 — 1) of HY(X, 0x(20)) which satisfy the addition

formula: N
6(z+w)8(z—w) =) 6(2)8;(w),
=0
for all z,w. Now we identify K = [6p : --- : Oy]. For any x € X, we write ®, for the divisor

® +x and 6, for the section z+— 8(z—x) of H® (X, Ox(@y)).
Recall from Section 4.3 the scheme Vy. In particular, if ¥ = {aj,...,an+2 } has reduced

structure we can write

W ={28 : K({+a1)A---AK(E+ami2) =0} (4.2)

Since K is an even function? we have that —a; —ay € Vy.

20ne way to see this is that K : X — P%~! can be defined as x — 0, +©_,, from X to [20[" =P¥~1.
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4.4.2 Hierarchy

Our intention is to translate the condition dim_,, 4, V¥ > 0 into an infinite set of equations.

We will look for a smooth germ with Dy # 0.

The condition dim_g4, 4, Vv > 0 equals the existence of a formal curve

2{(e) = —a1—a+C(g), withC(e) =) wWe/
jz1

contained in Vy with W) = (Wl(j ), e, Wg(j )) € C8. We define the differential operators

g N9
I ; Lodz
and set
D(g) =Y Djel.
=0
Also set,
1 i i
Ay = Y D'!-..Dk.

TN
i1 +2ipFreetsig=g 11T Ls*

Then, for a C™ function f(z) in C# one has

F(Go+C(€) = Y. A(f)le=c, €. 4.3)
s>0
So that
PO = Y A()|gagy€’. “.4)
s>0

Therefore, the existence of such a formal curve turns into the following equivalent relation:
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m+2

Z,l a;(€)K (a;+§(€)) =0. (4.5)
£

Here aj(€), 1 < j < m are relatively prime elements in C [[€]]. Set u = a; ~ 1 (a; +a;) and

bj=aj2— % (a1 +ap) for 1 < j < m. Now, equation 4.5 becomes:
1 1 L 1
a(e)K | u+ EC(S) +op(e)K | —u+ E.C(S) + 21 Qj2(e)K | bj+ —2—C(£) =0 (4.6)
j=
Taking dot product with the left side of 4.6, using the Riemann addition formula we get:

o (£)0 (z—!—u—i—%C(a')) 0 (z—u— %c@)) +a(€)0 (z—u—i—%C(S)) 0 <z+u— %C(e))

+ ) «aj2(€)0 (z+bj+%C(s)> 0 (Z_bj— %C(e)) =0 4.7

j=1
Write P(z,€) = Y0 Ps(2)€® for the left side of the equation. Note that P € H? (X, 0% (20)).
We have that

m
Py = (0(0) + (0)) 6,6_,+ Y, 04j12(0)65,6_p,-
j=1

Since there are no (n + 2)-secant n-planes, with n < m, Py vanishes if and only if & (0) +
o2(0) = 0 and ;(0) = for any 3 < j < m+2. Given that o (€),.. ., 0ty42(€) are relatively

prime, we get that ¢ (€) and a,(€) are units. We may assume:

o(e)=1+Y o€,  om(e) =1,
=1

(Xj(E) = Z (xj,ie", for j > 2.
i>1

Observe that

m
P = alvleue_u +D16_,-68,—D16,0_,+ Z oc,-+2,195j 9_[3!.
=1

where D; # 0 and 2u # 0. Recall that we are assuming that there are no (n 4 2)-secant

n-planes, with n < m, so ¢j42,1 # 0 for any 3 < j < m+-2. Allowing linear changes in the D;
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operators, we may assume that o4,42(€) = €. We state this procedure as follows:

Theorem 4.4.1. The abelian variety X satisfies dim_g,_q, Vv > 0 if and only if there exist
complex numbers o ;, with 1 < j<m+1, j#2, i > 1; and constant vector fields Dy #

0,Ds,... on X such that the sections P; vanish for all positive integers s.

Remark 4.4.2. Note that F; only depends on the corresponding @ ;, and D; with i < s. Hence,

we can write P; as:

m—1
Py = Qs+ al,seue—u +Ds6_y -6, —Ds6,-0_,+ Z aj+2,s9bj9—-bj
Jj=1

where Q; does not depend on o  nor D,. Furthermore, Qs € H 0(x,0%(20)).

Lemma 4.4.3. Suppose that ©,-©_,- Oy, ...-Op . is a complete intersection. Then, the sec-
tion Py, € HY (X, Ox (2©)) vanishes for some choice of 0j,s and Ds for j € {1,3,4,...,m+1}
if and only if the restriction of Qs to ®-©_, - Oy, ...- Oy _ does.

Note that @, - O_, - Op, ...- O, is just a translate of @, - Oy, -...- O,

A1t

Proof. Consider the ideal sheaf exact sequence

6
nm—1
0—— ﬁ@u.@~u.@bl...@bm_2 (”—@bm—l) — ﬁ@u.@_u.@bl...@bm_z — ﬁ@u.@_u.@w.@bl..@b — 0

m—1

we apply ®6’@u.@~u.@b1...@bm_2 (20), and using the Theorem of the Square 1.5.4 we get
20 ~ ®w + @‘_w, so that

O,

'm—1

0— ﬁ@“.ew.@bl...@b (®—bm—1) B ﬂ@u.@)_u.@bl..,@bm_z (2@) _— ﬁ@u.g_u.@w.@bl...gbm_l (2@) — 0

'm—2

Then, using the cohomology of this exact sequence (see Section A.1) we get that Q; vanishes

on®,-0_, 0O ---0p  if and only if there exists a complex number 0,1 s such that

OMECTINIC IR c =0.

(Qs + 1,505, ,6-p,,_,)
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We repeat the process until we get that

m—1
(Qs+ Z ®j12,56p; 9—b,-) =0.
J=1 0,0_,
Now, as before we consider the exact sequence
0,
0—— ﬁ@u (“‘®~u) ¥ ﬁ@u > ﬁ@u.@_u — 0,

we apply ® g, (20), and using the Theorem of the Square 1.5.4 we get 20 ~ @, + 0_,, so
that

0 —— Bo, (O)) —=% Go, (20) —— G0, (20) —— 0.

Take the long exact sequence in cohomology>

0 —— HO(O,,606,(0,)) —=% H®(®y, o, (20)) —— HO (@, Fo,0_, (20)) — -

(D6,)

implies that (Qs + Z'}Z[l ®j12,56p; 9_bj) vanishes on ®, - ®_, if and only if

=0.
o,

m—1
(Qs+ Z ®j12,505,0-p; —DGu-G—u>

j=1

The section

m—1
<Qs+ Y 042,565,0_p, — D6, - 0_, +DO_,- eu> e H (X, 6x (2©))
j=1

vanishes on ®, and one concludes by the following the same steps as before. We get the short

exact sequence of sheaves
0 —— Ox (@u) — Ox (2@) — ﬁ@u (2@) — 0.

and consider its exact sequence in cohomology

3Note that H°(®,, g, (©,)) is generated by D8,, where D is a constant vector field.
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0 — H'(X,0%(®,)) — HO(X,0x (20)) — HO(X, Oe,(20)) —— 0

to conclude that there exists a constant & s € C such that

m—1

Os+ al,seue—u +D;6_,- 6, ~D;6,-6_,+ Z aj+2,s9bj e—bj =0.

J=1

4.4.3 Main result

Now we show the main result. Note that having a degenerate (m + 2)-secant m-plane is

equivalent to supposing that P; = 0. Recall that the reduced scheme ¥ = {a1,...;am2}.

Theorem 4.4.4. Let (X, 1) be an indecomposable principally polarized abelian variety of
dimension g that has no (n+2)-secant n-planes for n < m, let ® be a symmetric representative
of the polarization A. Suppose that ©,-0_,-Op, ...- Op,,_, is a complete intersection and

reduced, and that one has the (m -+ 2)-secant m-planes:
®u‘®—u'®b1 ""®bm—1 C @meGu
forp e {=by,...,—by_1,—bp}. Then, dimVy > 0.

Note that this implies that from finite (m - 2)-secant m-plane one gets infinite honest

(m+2)-secant planes.

Proof. By 4.4.1 and 4.4.3 it is enough to prove that for any integer s > 2 one has that

Pp=..-=P_1=0= P (or Q,) vanishes on 0,-0_,-6...-0, ..

V3

Set

R(z,€) = Y Rs(2)e* =P <z+ 1C(e),s) :

5s>0 2
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Assume that P} = -- = P;_1 =0, then R{ = --- = R;..; = 0 and that P, = R;. Since:

R(z,€) =P (z+ 1 (e))

1
= e2 204 p(7 g)

s
= L& L AR

s>0  j=0

Hence, we will show that R; vanisheson G=0,-0_,-0@p, ... O _ .
‘We have that
Rslg = As—16_p,, - O, 4.8)

On the other hand, we set

T(z,€) =) Ti(z)e’ =P (z— %C(e),e) .

s>0

and in a similar way, under the vanishing of P, ..., P, hypothesis, we get that T; = P; = R;.

In particular,
m—1 s
T = A 100,05+ Y, Y, @4246-0, (A5 65, ) 4.9)
j=1i=1

Hence, R? = R,T; so that we compute

R2| = (A;_;65,,) - 65,,0—p, - (As—16_p,)

m—1

5
+ Gbme_bj . Z E Ojro] (A;_jebj) . (A _19_1,m)
j=1i=1

which is zero by the m — 1 different honest (m + 2)-secant m-planes and one degenerate
(m+ 2)-secant m-plane. Since the intersection is reduced, R; = 0, and we conclude the

proof. a
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4.5 Quadrisecant planes

In this section we view the particular case m = 2 in light of what has been studied in the

previous chapter.

4.5.1 A curve of quadrisecant planes
This is an improvement of Debarre’s Theorem 5.1 in [11] and a variant of Theorem 4.3.2.

Theorem 4.5.1. Let (X, 1) be an indecomposable principally polarized abelian variety of
dimension g > 4, let © be a symmetric representative of the polarization A. Suppose that X
does not possess the trisecant property, and letY = {a;,a3,a3,a4} C X be a subscheme with
reduced structure such that Vy contains an irreducible complete curve I that generates X and
Og, NO,, NO,, NOy, is a complete intersection. Then, I is twice the minimal cohomology

class of ©.

Proof. As in the proof of Theorem 4.3.2, we get that the endomorphism & = 65 + 634 where

012,04 € {0,1}. So we have three cases:

* ¢ = 0. This case is discarted immediately.

* o = 1. Then, I is the minimal class. By Matsusaka-Ran Criterion 2.4.1 this implies

that X is a Jacobian variety, which contradicts our hypothesis.

» o =2. Then, I is twice the minimal class. This proves the theorem.
O

Corollary 4.5.2. If Y = {a1,a3,a3,a4} consists of four reduced points of X, s = a1 +ap +
a3 +a4 and I” C Vy is an irreducible complete curve that generates X, then the involution

z+— —z—s on X restricts to an involution of T.

Proof. The previous proof shows that 8;5 = 1 for a generic {’ € %F. Therefore, this means

that for a generic ' € %I‘ , —b1 — by € I'. However,

—b1 —b2= —2{'—a1 —az—as—daq.
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Remark 4.5.3. We note that if we take x € %s, then the involution z > —z restricts to the

curve C :=1I"+x. Here we have that C C Vj+y, so if € C and we write g; := a; — x;, then

Iy =span{K (n+q1),K(N+q2),K(n+q3),K(n+4q4)}
II_p =span{K(n—q1),K(n—q2),K(N—q3),K(N—q4)}

are planes in P**~1. This pair, by [21] is necessary and sufficient for I to be an Abel-Prym
curve. Although, they use complicated analytic methods, there is work in progress to give a

fully algebro-geometric proof.

4.5.2 A pair of quadrisecant planes implies the existence of a curve of

quadrisecant planes

Now we view a particular case of Theorem 4.4.4. Under certain geometric conditions, having
one degenerate quadrisecant plane and one honest quadrisecant plane on the Kummer variety
implies the existence of a curve of quadrisecant planes on the Kummer variety.

Recall that the scheme Vy in this particular case equals
Vr ={20 : K({+a1) AK(E+a2) AK(E +a3) ANK ({ +as) =0}
Based on Section 4.4 we denote u = a1 + % (—a1—a), v=a3+ % (—a; —ay) and w =
as+ % (—aj —ay). Recall the reduced scheme Y = {aj,d2,a3,a4}.

Theorem 4.5.4. Let (X,A) be an indecomposable principally polarized abelian variety of
dimension g that has no trisecant lines, let ©® be a symmetric representative of the polarization
A. Suppose that ©,-©_, - O, is a reduced complete intersection and that we have the

quadrisecant conditions:
a) @u'@—u'@wC@vU@..v
b) ®u'®.—u'®w C @vU@.—w-
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Then, dimVy > 0.
Proof. This is an particular case, with m = 2 of Theorem 4.4.4 (]

This is an interesting result since by having two quadrisecant planes one obtains infinite
honest quadrisecant planes.

Note that we have a symmetry as in the case studied by Grushevsky-Krichever in [20]
with the difference that they studied a pair of honest quadrisecant planes with no further

conditions.







CHAPTER

Further work

In this chapter we show some problems to work after this thesis, and some ideas.

5.1 A curve of quadrisecant: Degenerate cases.

Since we will be dealing with artinian schemes of length 4, we need to determine exactly
which ones can appear in the context we are studying. This is given precisely by the following

lemma.

Lemma 5.1.1. IfY is an artinian subscheme of X of length 4 such that Vy contains a curve
and (X, ) does not possess the trisecant property, then Y must be isomorphic to the spectrum

of one of the following rings:
i) K iv) klel/(e)’ xk vii) ke, y)/(*,5%)
ii) kle]/(e)* x &2 v) kle]/(e)*
iii) k[el/(e)* x k[el/(e)* i) klx,y]/(F,x0,%)

Proof. Taking { € Vy general, we have that the intersection of the plane generated by

K (¢ +7Y) with K(X) is isomorphic to ¥, hence Y is an artinian subscheme of AZ of length




4. Since every artinian ring is isomorphic to a product of local artinian rings, we only need

to look at products of artinian schemes supported at 0 € A2, such that the total length is 4.
This gives us immediatetly eight different schemes. The only scheme that is missing from the

above list is the spectrum of

ke, )1/ (2, x9,5%) x k.

Its reduced scheme consists of two points and the tangent space at one of the points is 2-
dimensional. Therefore, if the intersection of a plane with K(X) containing this scheme, we
can take a line on the tangent plane that passes through the two points. This line will be
tangent to K(X) at the point of higher multiplicity and therefore (X,®) would possess the

trisecant property. O

The remaining problem is to prove in all the remaining cases iZ)-vii) that are missing in

Theorem 4.5.1. In other words, we want to prove the following result:

Conjecture 2. Let (X,4) be an indecomposable principally polarized abelian variety of
dimension g > 4, let ® be a symmetric representative of the polarization A. Suppose that X
does not possess the trisecant property, and let Y C X be an artinian subscheme of length 4
such that Vy contains an irreducible complete curve I that generates X. Then, I" is twice the

minimal cohomology class of ©.

When we work with (m + 2)-secant m-planes there is not a clear path to follow. Both
analytic and algebro-geometric aproaches requiere studying each case individually.

Other problems we would like to work on in the future are:

1. Is there an involution in the case of (m -+ 2)-secants? (see 4.5.2)

2. LetI’ C Vy be a curve, with ¥ C X an artinian subscheme of length m. Is I" m-times the

minimal class?

3. In a general setting, does the existence of finite (m + 2)-secant m-planes imply the

existence of a curve of (m -+ 2)-secant m-planes?

4. Is a Prym-Tyurin variety of exponent m characterized by being an i.p.p.a.v. containing

a curve which is m-times the minimal class under certain geometric conditions?
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. What if we require a n-dimensional surface that parametrizes (m 4 2)-secant m-planes?

Are m and n related if we look for a more general characterization of Jacobians (or

Pryms)?

. Can we degenerate (m+ 2)-secants or get the honest case from the degenerate case?

This would give an interesting solution to the honest case of trisecants when working in

a algebro-geometric setting.

. Can we use Theorem 3.2.2 in order to remove the complete intersection condition in

Theorem 4.3.2 and further the reduced condition in Theorem 4.4.47
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CHAPTER

Algebraic background

A.1 The Koszul Complex

One can find more about this topic in [13, ch. 17] and [25, p. 252].
We will develop the theory of the Koszul complex for complete intersection of theta divisors

on abelian varieties. A ring is commutative with 1 # 0.

Definition A.1.1. Let R be aring. A sequence of elements ay,...,a, € R is called a regular

sequence if
) (a1,...,an) #R.
ii) For every j the image of aj in R/(ay,...,a,) is not a zero divisor.

Remark A.1.2. Let R be a ring, ay,...,a, € R a regular sequence and R(%) be the free

R-module with basis {e;;, ., : 1 <ii < -+ <in <n}. The notation & i, Stands for

the element of R(n-1) that is obtained by removing the index i;.
The Koszul Lemma gives us a technical yet useful tool, we state it as a theorem.
Theorem A.1.3. The sequence:

n an— n 0y n
0 — R() &=ty pGI) =ty 0y R()) 2, (a1,...,an) —— 0
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is exact, where

r+1
-1
ar (eily"wer-{-l) = Zl(_l)s aisel'l,...,f:,...,ir.;_]
§=

forr > 1and &(e;) = a;.

Consider now a principally polarized abelian variety (X,®). If x € X, we write 6, to

represent the theta function — z6(z —x). Let x1,...,x, € X and consider the sheaves

= P ox (_Gxi, — "'_®xi,) _

1<ij<-<ir<n

Ifge Ox (_®xi1 ———— ®x,.r) (U) for some open subset U C X, we write ge;, ... ;. for the
element of %,(U) that has g in the (ii,...,i,)-th coordinate and zeroes in the rest. We define

the map of sheaves

o : Frp1 — Fr
where locally
r+l .
s—
8iyersirs exil ot exi,,+1 "€y T Z(_I) 8ityeesirs exil exi,+1 BTV U
s=1
forr > 1 and
ao 1 F = Ox
where locally
gitie; — gib;.

The following results is necessary for what follows.

Proposition A.1.4. Let xi,...,x, € X be points such that Oy, N---N Oy, is a complete
intersection. Then, if ¥ is the ideal sheaf that defines this complete intersection, we have that

the following exact sequence

On—1 a1 )

P
0 s P s Fp —2s L. s P s F

v
[}
o

is exact.
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Proof. We only need to show that this sequence is exact after taking the stalks at an arbitrary
point x € X. In this case, the complex tat emerges is the Koszul complex, so it is exact;
this is since the intersection is complete, the local generators of the sheaves form a regular

sequence. |

Now consider two elements y,z € X. If we tensor the previous exact sequence by the
invertible sheaf Oy (®,+ @), we obtain again an exact sequence of sheaves. The new maps
we obtain will be written d,(y,z).

Assume that dimX = g.

Lemma A.1.5. Ify-+z # x;+x;j for all i, j then for every 1 < k < g —2, we have that
H* (im 0,(3,2)) =~ H** (im 91 (5,2))

Progf. For all r we have the following exact sequence:

Now

gzr_;.l@ﬁx(@y—i—@z)ﬁ 69 Ox (®y+®z—(®xi1+"'+®ir+l)>'

1<ii<<ip15n
We can see that for r > 2, 0, + 0, — (@x,.l 4. +®xir+1) is the inverse of an ample
invertible sheaf, and by the Kodaira Vanishing Theorem, we have that its cohomology vanishes
up until the (g — 1)-th cohomology group. For r = 1, we have that @, — @, — Oy, — Oy,
is algebraically equivalent to zero but not linearly equivalent to zero. Then we get that its

cohomology vanishes. By taking the long exact sequence of cohomology from the short exact

sequence above, we conclude the proof. O

If we take the last terms of the exact sequence from the Proposition A.1.4 tensored with

Ox (©,+0;), we can take the short exact sequence:
0 —— imdi(y,2) — F100x(0,+0,) — FR0x(0,+0,) — 0.

89



By taking part of the long exact sequence of cohomology, we have that the sequence

HY(Z1®0x(0,+8;)) — H(S ® Ox(0,+0,)) —— H(im 9 (y,2))

is exact. By the previous Lemma, we have that H! (im 91 (y,z)) ~ H (im d,(y,z)) for all
r < g—2.If n < g —2, then we have that H" (im d,(y,z)) = 0, since d,(,7) is just the zero
map.

From this we can conclude that

Proposition A.1.6. Let x,...,x, € X be points such that ®, N---N Oy, is a complete

intersection, and assume that n > g — 2. Then, the map
HY(Z1® 0x (©y+0,)) — H (S ® Ox (0y+6;))
is surjective.

To finish this section and to remark its usage on the secancy conditions, suppose that
¥,z € X are points such that
@xl ﬂ"'ﬂ@xn C @yU@Z.

We see that locally 6,0, can be considered as a section of .#. By the Theorem of the Square,

we have that ®, +©, — O, ~ Oy ,_,,, and So

F18 Ox (0y+6;) @ﬁx y+z-x;)
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