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Abstract

In this thesis we mainly prove two results in an algebro-geometric way: If one has a curve

I of (honest) quadrisecant planes to the Kummer variety of an indecomposable principally

abelian variety (X, ®) then the curve I is twice the minimal class, under certain technical

geometric conditions. By previous analytic results (see [20]), this will imply that X is a Prym

variety. As a generalization of this results, adding one geometric condition we get that having

a curve of (" + 2)-secants (for a minimal in) implies that the abelian variety has a curve that

is rm-times the minimal cohomological class.

The second 'result of this thesis is a an answer to a natural generalization of a question

Welters asked about trisecants (see [35]) and is as follows: Under certain geometric conditions,

dc)es the existence of rm different (ffl + 2)-secant "-planes imply that one has a curve of honest

(" + 2)-secant (in-)planes? We show that under certain conditions, this question has a positive

answer (see Theorem 4.4.4).





Layout of the thesis

We first introduce the basic notion of Abelian varieties in the first chapter, trying to be as

complete as Possible.  We justify why we can just work with complex tori with a certain

hermitian form. This was done with two ideas in mind: To start studying Abelian Vat:ieties in

a way such that there is no need to start navigating with different books simultaneously and to

fully cover the contents required to understand this work.

In Chapter 2 we cover the fundamentals of Jacobian varieties aiming at Fay's trisecant

formula, as a motivation for this work.

In Chapter 3 one can find the latest research in the area surrounding the main problem of

this thesis.

In Chapter 4, there is the main content which contains the main results of this thesis on

the topic of the in-secant property for the Kummer variety.

Lastly, in Chapter 5 there are some words of future work and open problems.



# RE A pe T E g¥

Abelian varieties

First we will define Abc/I.cz;3 Vczrz.cf!.cs in a completely algebraic way, and justify by GAGA

that we can work analytically if needed when working over a field of characteristic 0.

fl®fl    Algebraic Introduction

We will asumme most of the schematic material to be known. The main reference that we use

for this chapter is [24]. We will follow mainly [32] for the algebraic theory and [8] for the

complex theory.

We will assume that k is an algebraically closed field.

Definition 1.1.1.  An czbe/z.cz# vczr!.edy X is a complete algebraic variety over a field k with a

group law 7% : X x X + X such that in and the inverse map are both morphisms of varieties.

We will denote by 77i(I,y) = I +y and the inverse of an element y € X by -y, cz prz.orz.

without assuming that the group operation is commutative. Also, denote by fa : X + X the

translation x ri x + cz.

Lemma 1.1.2 (Rigidity lemma).  I,cf X bc cz co77cpJcfe vczrz.cty,  y cz#d Z czny iJ¢rz.cfz.cs,  cz7cd

f .. X x Y + Z a morphism such that for some yo € Y , f (X x +yo+) is a single point z;o Of Z.



Then, there is a morphism g .. Y + Z such that if p2 .. X x Y + Y is the projection, f -- g o p2,.

Proo/:  [32, p. 40] Choose any point jro € X, and define g : y + Z by g(y) = /(jro,y). Since

X x y is a (irreducible) variety,  to show that / = g o p2, it is enough to show that these

moaphisms coincide on some non-empty open subset of X x y.  Let U be an affine open

neighbourhood of zo in z, F = Z \ U, and G = p2 (/-I (F)) ; then G is closed in y since x is

complete and hence p2 is a closed map. Further yo ¢ G since / (X x {yo}) .= {zo}. Therefore

y\G=Visanon-emptyopensubsetofy.F;reachy€,thecompletevarietyxx{y}gets

mapped by / into the affine variety U, and hence to a single point of U. But this means that

for anyjr € X, y € V, /(;¥,y) = /(xo,y) =,gop2(x,y), and this proves the 'assertion.             I

CoroNhe[ry 11.3. If x cnd,Y are abelian varieties and f .. X + Y is any morphism, there exists

a(n algebraic) group homomorphism h .. X + Y such that f (x) = tf (o)h(X).

Prooj:   [32, p. 41] We have that fe = L/(o)/ vanishes at 0.

Considerthemoxphismxxx4Xdefinedby¢(x,y)=fe(x+y)-fe(y)-fe(x).Then¢(Xx

{0}) = ¢({0} x X) = 0,  so that it follows by the above lemma that ¢ = 0 on X x X, or

equivalently, fe is a homomoxphism.                                                                                                    I

Note that we have not used that X is commutative in the previous proof, but in fact we

have:

Cordrlz\ry 1.1A. An abelian variety X is a commutative group.

Proof:  [32, p.  41] By the previous corollary; the inverse map of X that maps x r+ -x is

a homomoxphism.  Hence, for :x,y e X,  -(x+y) = (-x) + (-y) = (-y) + (-x), and X is

c ommutative.                                                                                                                                   I

An interesting result is the following.

Theorem 1.1.5. Let X be a complete variety, e € X a point, and

in .. X x X + X

a morphism such that in(x,e) = in(e,x) = x fior all x € X . Then X is an abelian variety with

group low in and ideritity e.
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Prooj:   [32, p. 42] I
Now, if we want to say anything more explicit or do any computations in a general setting

it can become quite hard to work, if not imposible due to the complications that usually appear

when working with positive characteristic. First, due to the Lefschetz principle if we work

over a field of characteristic 0, we can simply work over the complex numbers. One can find

a short proof and statement in [14] and a generalization in [16]. On the other hand we have

another algebraic geometry miracle. There is an equivalence when working over the co-mplex

numbers: Analytic Geometry and Algebraic Geometry. This is a collection of several results

related to topology, moaphisms and cohomology as one can review in [18, Expose XII], better

known as GAGA from the French Gc'oJ7!c'frj.e AJge'brz.g#e cf Ge'o"e'frJ.c A#czJyfi.gwc. It is usual

to reference it as the following theorem, but note that the whole chapter where Grothedieck

explains GAGA is not exactly summarized here:

Theoremll.6. Let X be a proper a-scheme. The functor that associates a ©x-module F to

its iioverse image Fan on Xan is an equivalence Of categories.

ffio2     Complex Tori

When the ground field] k has characteristic 0, by the Lefschetz principle we can reduce it

to the case k = a. We can be much more specific and explicit when working with abelian

varieties. In this case an abelian variety will be a complex tons which is projective.

n82..:fi    Preliminaries

Le:in:in:a 1.2,i. Any cormected compact complex Li,e group X Of dimension g is a complex

torus.

PHoo/:   See [8, p.  8].

CorthzITy 1.2h2,. A complex abelian variety X Of dimension g is a complex torus.

tRecall that we are assuming that k is algebraically closed

3



Let X = V/A be a complex torus, where V is a g-dimensional a-vector space. We have

that

"L(X)--HL(X,Z)--A.

Also, as X is locally isomorphic to V, this implies that V may be considered as the tangent

space Fox of X at 0. From the Lie theoretic point of view, the universal covering map is just

the exponential map.

In order to describe a complex torus X = V/A, choose a basis ei .,..., cg of V and a basis

A,1 ,..., A2g of the lattice A. Write Aj in terms of the basis ci ,..., eg, that is:  A,. = Zf=[ A/jc/.

The matrix

H-(;;:
I..      A1,2g

•..      Ag'2g

is  called  a pe7.I.OCZ 773czf7.j.x for X.   The period matrix  H  determines  the  complex  torus X

completely; although it depends on the choice of the bases for V and A. Conversely, given

a matrix H € M (g x 2g, a), one may ask if 11 is the period matrix for some complex torus.

The following result gives us an answer.

Prapostmrom 1.2.3. T1 € M(g x 2g,a) is the period matrix Of a complex torus if and only if

ffec 7#¢frz.I P =  (E)  c M (2g x 2g, a) z.s #o#sz.ngz4J¢#

Proposition 1.2.4.  See /8, p. 9J.

fi.®2a£    Homomorphisms

For what follows in this subsection, let X = V/A and X' = V'/A' be two complex tori of

dimensions g and g' respectively.

Definition 1.2.5.  A homomorphism of x to X' is a holomoxphic map / : X i X', that is also

a homomoaphism of groups.

Remark 1.2.6.  Recall that the translation fa : X + X, x I+ I + ¢ is a holomorphic map, but

not a homomoaphism except when a = 0.
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Prapostrfuonl.2] . Let f .. X + X' be a holomorphic map.

a) There is a unique homomorphism g .. X + X'  such that f = tf(o)g.

b) There is a unique a-linear map G ..V +V' with G(^) C N' inducing the homomorphism

9.

PHoo/:  Define g = f_/(o)/. We can lift the composed map

v i; x f x'

to a holomoxphic map G from V to the universal covering V' of x':\/
X/

in such a way that G(0) = 0. The commutative diagram implies that for all A € A and v € V

we have G(v + A) -G(v) €i A'. So, the continuous map v ri G(v + A) -G(v) is constant and

we get G(v + A) = F(v) + G(A) for all A € A and v € V. Hence, the partial derivatives of G

are 2g-fold periodic and thus constant by Liouville's theorem. It follows that G is a-linear

and g is a homomoxphism. The uniqueness is clear.

Under the addition operation, the set of homomoaphism from X to X' defines an abelian

group denoted by Horn (X,X'). Proposition 1.2.7 gives us:

Definition 1.2.8.  The map

Pa : Horn (X,X') i Home (V, V')

gt+G

is an injective homomoxphism of abelian groups which is called the cz#cz/yfz.c rcpresc#fczfz.o#

ofHom(X,X').
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The restriction GA of G to the lattice A is Z-linear.  Note that GA determines G and g

completely.

Definition I.2.9.  The injective homomorphism

Pr : Horn (X,X') i Homz (A, A')

g L+ G^,

is called the rczfz.o#cz/ represe#fczfz.o7z of Horn (X,X').

We denote the extensions of Po and pr to HomQ (X, X') := Horn (X,X') ®z Q by the same

letters. These will also be refered to as the analytic and rational representations.

Proposition 1.2.10.  Ham (X,X') = Z"/or so773c J7c < 4gg'.

ProoJAnysubgroupofHomz(A,A')c=Z488'isisomorphictoZmforsome".Theinjectivity

of pr finishes the proof.                                                                                                                   I

Remark 1.2.11.  Let X" = V"/A" be a third complex torus.   For / e Horn(X,X')  and

/' € Horn(X',X") we have Pa (/g) = Pa(/)Pfl(g).  In Particular, if X = X', P4 and Pr are

representations of the ring End(X) respectively EndQ (X) := End(X) ®z Q.

The following proposition shows how the analytic and the rational representations are

related:

Praposthirom 1.2.1:2. The extended rational representation

Pr ® 1 .. EndQ(X) ® a + Enda (A ® a) ~_ Endo (V x V)

is equivalent to the direct sum Of the analytic representation and its complex conjugate:

pr®1r--pa®wi.

P#oo/:   See [8, p.11]. I
Now we study the image im/ and the kemel ker/ of a homomoxphism between complex

tori.

6



Praposttiron 1.213. Let f .. X + Y be a homomorphism between complex tort. Then

a)  inf is a subtorus Of x' .

b)  fuel f is a closed subgroup Of x. The cormected componehi (kJer f)o Of ke;I f cohiaining

0 is a subtorus Of X Of finite index inkJer f .

Proo/  This is a direct consequence of Lemma 1.2.1.

Next we define isogenies which play an important role in the sequel.

Definition 1.2.14.  An I.sogcny of a complex torus X to a a complex torus X' is a surjective

homomorphism X + X' with finite kernel.

Remark 1.2.15. Note that a homomorphism X i X' is an isogeny if and only if it is surjective

and dimx = dimx'.

Remark 1.2.16.  If I is a finite subgroup of x, the quotient X/I is a complex torus and the

natural projection X i X/r is an isogeny.  To see this:  note that 7r[(r) c V is a lattice

containingAandx/r=V/7rl(r).

Suppose that / : X + X' is a suljective homomorphism of complex tori, by Proposition

1.2.13 it factors canonically into a surjective homomoxphism g with a complex torus as kemel

and an isogeny fo. This is the Sfcz.#/czcfoJ.i.zczfz.o% of the homomoxphism /:

/`krer'\
Definition 1.2.17. The degree deg/ of a homomoaphism / : X i X' is defined to be the order

of the group ker/ if it is finite and 0 otherwise.

Remark 1.2.18.  Therefore, for an isogeny we have

deg/ -[A, : pr(/,(A,] .

7



If moreover / is an endomoxphism of X,

degf=detpr(f).

Remark 1.2.19.  Note that if / and g are isogenies so is their composition /g. This is because

deg(/g) = deg/ . degg.

For any integer 73 we define the homomoxphism #x : X i X given by I r+ J'2);. If 73 ± 0 its

kemel X [#] is called the group of #-division points of X (or #-torsion points).

Proposition 1.2.20. X[#] I (Z/#Z)28.

Proof.kJernx--1-n^/^~_A/n^~_(Ej/nH)2g.

In particular,  any  complex  tons  is  a divisible  group.   Another consequence is that

Horn(X,X')  is torsion free as  an abelian group.   Hence,  Horn(X,X')  can be considered

as a subgroup of Home (X,X') . Moreover, the definition of the degree of a homomorphism

extends to HomQ (X,X') by

keg(rf) = fg degf

for any r € Q and / € Horn (X,X').

Definition 1.2.21.  The cxpo#c#f e = c(/) of an isogeny / is defined to be the exponent of the

finite group ker/. In other words, e(/) is the smallest positive integer # such that 7'z]; = 0 for

all jr € ker/.

PraposthiLon 1.2,.2;2h  For any  isQgeny  f .. X + X'  Of exponent  e  there  exists  an isogeny

g .. X' + X, unique up to isomorphisms, such that gf = ex and f g = exl.

Proof:  As ker/ is contained in kercx = X[c] , there is a unique map g : X' + X such that g/ =

cx. Since ex and / are isogenies, so is g. The kernel of g is contained in the kernel X'[ex;] of

cx;, since for every * e kerg there is an x € kercx with /(I) = J and eJ = e/(x) = /(cjr) = 0.

":us, exi = f I g for some isoge;ny f I .. X + X' irnd we ge;t f I ex -- f I gf = exl f = f ex. ":is

implies that / = /' since cx is surjective.                                                                                  I

8



CoroNha¥ 1.2.2;3.       i)  Isogenies clef roe an equivalence relation on the set of complex tori.

ii)  An element in End(X) is an isogeny if and only if it is irrvertible in EndQ(X).

Now the following definition makes sense:

Definition 1.2.24.  We will say that two complex torus are I.s'ogc#ows, if there is an isogeny

between them.

fa®:ffi     Complex Abelian varieties

Now we will define an abelian variety over the complex numbers. This will help us be more

explicit and will bring some tools that are simply not available when char(k) ± 0. Recall the

GAGA rfecore77£[18, Expose XII]; this will be equivalent to working in the algebraic category.

Definition 1.3.1.  An Abczz.¢J3 1;cz7.I.edy is a complex tonis admitting an ample line bundle2.

We should clarify this definition and the relation between the line bundle with a certain

hermitian form.

We want to define thefirsf Cfeem cJczss', but first we need some cohomological results.

Le:in:rna 1.3.2. The canonical map N' HL (X ,E.) + Hn (X ,Z,) induced by the cup product is

anisomorphismforeveryn>_1.

P7iooJ   See [8], Lemma 1.3.1.

The following corollary will be useful in a few pages.

CoroNHzlry 1.3.3. There is a canonical isomorphism Hn (X ,7Zi) ~_ AIT (A,7H) f or every n >_ 1.

Theorem 1.3.4 (The Hodge decomposition).       CZJ  For cvcry  # i 0  jfee  de  Rfeczm  cz#cz ffec

Dolbeaul,t isomorphisms induce an isomorphism

H"(X,a)±   ®  H9(QZ)
p+q-n

2This is equivalent to X admiting a positive definite line bundle.

9



with Cypx the sheaf Of holomolphic p-f arms on X .

b)  For every pair (p,q) there is a natural isomorphism

Pq

Hq (rTPx) r- NCL® NC2

with CL ..= Homa(V ,a) and fL ..= Home(V ,a), the group Of a-anttlinear f arms on C.

Proo/:  See [17, pp.  116-117] for a compact Kanler manifold X, and for a simplier proof for

complex tori see [8, p.  16].

Observe that we get that Hq (QZ) c= HP'q(X).

Le:in:rna 1.3.5. Every holomorphic line bundle on a coinplex vector space is trivial.

Proo/  From the exponential exact sequence

o + z + ¢v exngar`..) G7; + 1

we obtain the exact sequence

H[ (V, Gv) i H] (V, G;) i H2 (V, Gv) .

I

But H] (V, Gv) = 0 by the 5-Poincar6 Lemma (see [17, p.  46]), whereas one knows from

Algebraic Topology that H2 (V, Z) = 0. This implies the assertion.                                           I

Proposiithoml.3.6. Let fi ..V + X be the universal covering. There is a canonical isomorphism

¢i:Zr[(%[(X),H°(V,G;))iker(H](X,G£)3H](V,G;)).

P#ooJ:   See Proposition 8.1 in [8].

Now we have an isomoxphism Pie(X) = H] (X, GP£) I H] (A,H° (V, GP;)) . That is, any

holomorphic line bundle on X can be described by a factor of automorphy. Consider now the

10



short exact sequence of sheaves

0 i Z i Gx i Gf i 1

and its long exact sequence in cohomology

• . . + H' (X ,Z.) + HL (X , ©x) + H' (X , ©*x) a H2 (X ,Z;) + . . .

Definition 1.3.7.  Let I € P!.c(X) be a line bundle on X.  Thefirsf C7zcm c/czss of I is the

image ci (I) of I in H2(X, Z).

Since H2(X, Z) is canonically isomorphic to Alt2(A, Z) by 1.3.3, we may consider ci (I)

as an alternating Z-valued form on the lattice A.

The following theorem shows how to compute the first Chem class in terms of a factor

of automoxphy / of I. Note that any such / can be written in the form / = c27".8 with a map

g : A x V i a which is, holomoxphic in the second variable.

Thaore:m1.3.S.ThereisacanohicalisomorphismH2(X,E,)+AIP(A,E.),whichmapsc\(I,)

of a line bundle L on X with factor Of automorpky f = e2fl:tg to the alternating form

EL(A, #) = g(p, v + A) + g(A, v) -g(A, v + p) -g(pr, v)

for all A , u € A and v € V .

P7ioo/:   See [8, pp.  24-28].

Now, we characterize altemating forms which come from line bundles via ci .

Prapostrfuon 1.3.9.  For an alternating form E .. V x V + FTR the fiollowing conditions are

equivalent:

(i) There is a holomorphic line bundle L on X such that E represertts the fast Chern class

cl(Z`).

(ii)  E (A, A) C Z and E (iv,iw) = E (v,w) fior all v,w a V .

11



Proof  Consider the following diagram

H1(X,©*x)             C\          `,  H2(X,Z.)                          `,  H2(X,©x)

N2CL®(C2®E[)®N2E21-N2EL

where the upper line is part of the long exact cohomology sequence of 0 i Z i Gx i ¢£, the

map 1 is the natural embedding, p denotes the projection map, and &, 72 are the isomorphisms

of the following diagram

Ait2tA,cj ± Aitatv,cj ±+ ^2Q® (Q®z5) ®^2z3
&J                                                                               teL

H2(X,a)±HbR(X)-_H2.0(X)®H\.`(X)®H°i2(X)

which is commutative (this is due to the proof of 1.3.8). We claim that the diagram commutes.

To see this, it suffices to show that the homomoxphism H2(X, Z) i H2(X, Gx) factors via

the natural projection map

H2(X,a)=H2.0(X)®H\`\(X)®H°i2(X)+H°.2(X)

But this is an immediate consequence of the fact that this projection is induced by the natural

projection map from the de Rham complex to the Dolbeault complex.

Now suppose that I € Pic(X) = H] (X, G£), and P2-`ci (I) = E = Ei + E2 + E3 With Ei €

^2 a, E2 € a ® 35 and E3 € ^ZI. But Ei = E since E has values in R, whereas according

to the first diagram E3 = 0. Therefore, E = E2 since E satisfies the second condition. The

converse is analogous.                                                                                                                          I

Tjem:"a 1.3.HfJ. There i,s a 1-1-correspondence between the set Of hermi,tian forms H on V

and the set Of real val,ues alternating forms E on V satisf ying E(iv,iw) --E(v,w), given by

E(v,w) =SH(v,w)    and    H(v,w) =E(iv,w)+iE(v,w)

12



fior all v,w € V .

PHooJ:   [8, p. 29] Given E, the form H is hermitian, since

H(v,w)=E(I.v,w)+z.E(v,w)

= -I(I.w, -v) -I.E(w, v)

- giv.

Conversely, given H, the form E = SH is altemating and E (I.v, I.M;) = SH(I.1;, I.w) = SH(v, w) =

E(v,w).

I
Now we can consider the first Chen class of I € Pie(X) as an altemating from or as a

hermitian form on V.

Definition 1.3.11.  The Ive'ro7z-Scvcrz. group of x is defined as

NS(X) = im (ci : H] (X, Gx*) i H2(X, Z)) .

fi©#    Appel-Humbert Theorem

We have seen that any holomoxphic line bundle on X can be given by a factor of automolphy

since we have the isomoxphism Pie(X) c± H] (A,H° (V, GW . Now we will show that there

is a canonical way to distinguish a factor in every class of H] (A, H° ( 47;)) .

A sc#".c/tczrtzcfer for a hermitian form A is a map % : A i S] such that

%(A + pr) = %(A)%(p) exp (7J!.SH(A , ft) )

for all A , pr € A. By definition the characters on A with values in S[ are exactly the semichar-

acters for 0 € NS(X). We will denote by J3P(A) the set of pairs (H, %) where H € NS(X) and

% is a semicharacter for ff. Note that £(A) is a group with respect to the composition

(H|,X|)O(H2,X2)=(H1+H2,XIX2)

13



and we get the following exact sequence:

1 i Horn (A,S[) + j3Z(A) ± NS(X).

Here I (%) '= (0, %) and p(A, %) = H. We will show that p is suljective but we need to define

the map gr(A) i Pic(X): For (A, %) € gr(A) define a = cz(j7,%) : A x V i C* by

a(A,v)=%(A)exp(%H(v,A)+gH(A,A)).

Using [8, p. 30] and [8, Proposition 8.1], we get that the cocycle cz determines a line bundle

on X, which we define by I,(H, %). By construction

LUH,x)~_vxa/A

whereAactsonvxcbyAo(v,f)=(v+A,a(A,%)(A,v)J).

The aim is to show that for every line bundle I on X there is a unique pair (H, %) € J3P (A)

such that I ± I,(H, %) .,

Le:in:rna 1.41. The map @ (A) + Pic(X), (H ,X) r+ L(H , X) is a homomorphism Of groups

and the following diagram corn;mutes :

Proof:   See [8, pp.  30-31].

The lemma implies in particular that p is surjective. In order to show that j3Z (A) i Pic(X)

is an isomorphism, consider its restrition to Horn (A,S]) .  Define Pic°(X)  as the kernel of

ci : Pic(X) i NS(X).

Prolposthiion lA.2. The map gb (A) + Pic(X) induces an isomorphism

14



Horn(A,S+) + Pic°(X)

Proo/  See [8, pp.  31-32].

Summing up we get the AppcZJ-Hz!"bcrf 7lfecorcj73, which tells us that there is a canonical

way to associate a factor of automoxphy to any line bundle on X.

Theorem 1.4.3 (Appell-Humbert).  £ef X = V/A be cz co7"p/cx for#s.  Z7zere I.a cz ca#o#z.cczJ

isomorphism Of exact sequences

1 -Horn(A,SL) - gd(A:) -NS(X) -0
EEL                                            =EN

1 -Pic°(X) -Plc(X) -NS(X) -0.
In particular, if I € Pic(X) with hermitian form ci (I,) = H, we can distinguish a semichar-

acter % for H such that I c= I(H, %) .

.E.ag     Canonical factors

Let X = V/A be a complex torus. Let I € Pie(X) be a line ,bundle with hermitian form H.

Thanks to the Appell-Humbert Theorem one can distinguish a semicharacter % for H such

thatL~_L(H,x).

Definition 1.5.1.  The cocycle cz£ = ¢L(H,%)  € Z[ (A,H° (V, 47;))  defined by

o£(A,v)=%(A)exp("Zr(v,A)+ZH(^t^))

for all (A , iJ) € A x V is called the ca#o#z.cczJ/czcfor /a/czz/foJ73orpky//or I.

The following results follow easily from the definitions:

(1.1)

Lem"a 1.5.2. Let aL be the canonical factor Of L = L(H , x) € Pic(X). For all A € A, v,w €V

and n € Z we have

cz/   %(72fr)  = %(A)#.
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Z7)  cz£(ft , v + w) = ci£(ft , v) exp (7[H(w, A)).

c)  CIL(A , v)-1  = CZL(-ft, v) exp (-7rH(w, A)).

Using ch_aracteristics we get, in particular, the theorem of the square which give us a

relation for line bundles under pullbacks by holomoxphic maps of complex tori. This result

will be useful when one uses the short exact sequence given by the Koszul complex.

Lemma 1.5.3. For any L -- L(H %) € Pic(X) and S € X with representative v € V

t*SL(H,X)~_L(H,Xe;xp(2,1t{SH(,v,.))).

P7ioof  The translation fv on V induces the translation J9 on X.  Moreover the induced map

f; on 7F(X) = A is the identity.  So, if czz, denotes the canonical factor of I,  (id x Zv)* czf is a

factor for f5, but not yet the canonical one. For g(w) = exp (-7[(w, v)) the factor

(idxfv)*¢£(A,w)g(w+A)g(w)-[=%(ft)exp(%H(w+v,A)+ZZZ(A,A))

•exp(-7[H(w+A,v)+7[H(w,v))

=%(A)exp(2%!.SH(v,A))exp(7ur(w,A)+ZH(^i^))

is equivalent to (idA x fv) * aL. Moreover, it is the canonical factor for f;I, since % (.) exp (27Jz.SH(v, .) )

is a semicharacter for H.

This leads immediately to

Theorem 1.5.4 (Theorem of the Square).  For CZZZ ty,vi7 e X cz7!d I, € Pz.c(X) wc fe¢ve ffe¢£

t*S+vi}L~-t*SL®t*viL®L-1.

Now we end this section with some nice consequences.

We denote I" := L®". Recall the homomorphism #x : X + X.

Proposition 1.5.5.  For every I € Pz.c(X) czjcd jc € Z we feczvc ffeczf

n*xL~_I:fty®(_1)*xl:rfe.
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Proo/:  Recall the analytic representation "v : V + V, v I+ #v of #x. For I = I(H, %) we have

that:

L±®(-1)£Lfty=L(::=ZH+¥(-1)fyH,%±.(-1)fy%fty)

=L{n2H,X(n.))

--L(n*vH,n*^X)

-n*xL(H,x).

Definition 1.5.6.  A line bundle I is called symmefrJ.c if (-1 )iL c= I.

CoroNrd:ri/ 1.5] . For every symmetric line bundle L € Pic(X) and n € Z we have

n*x--IJ"2.
(

CoroNhe[:ry 1.5.8. The line bundle L '~~ L(H , %) is symmetric if and only if x(^) C {±1}.

fl©6    Dual complex torus

Now we present the dual complex torus * of a complex torus X, and in particular define the

map ¢L and the groups K(I) and A(I) that will be technical tools used later.

Consider the a-vector space fi = Home(V,a) of a-antilinear forms J : V i a.  The

underlying vector space of fi is canonically isomoaphic to HomR (V, R) , in fact, the isomor-

phism is given by / I+ 3Z with inverse map j I+ J(v) = -/.(I.v) + I.j(v). Hence, the canonical

R-bilinear fqrm

(., .) : f2 x V i R : (J,v) = SJ(v)

is nondegenerate. As a consequence

A -(' € fi  I  (',A) c Z)
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is a lattice in fi, which is called the cZz4czJ /czffz.cc a/A.

Definition 1.6.1.  The complex torus of dimension g

A--E2/`^

isth:edualconaplextorusOfX.

Remark 1.6.2.  Identifying V with the space of a-antilinear forlns fi + a by double antidu-

ality, the nondegeneracy of (., .) implies that A is just the lattice in V dual to A. From this, it

follows that

k-x.

Propostition 1.6.3. The canoni,cal homomorphism EL + Horn(A, S\), 1 i+ e;xp (2,7[i (1, .)) in-

duces an isomorphism R + Pic° (X).

This shows that Pic°(X) has. a natural structure of a complex torus.  It is customary to

identify Pic° (X) and A.

Proof  The nondegeneracy of the form (., .) implies that the map fi + Horn(A, SL) is surjec-

tive. By definition A is precisely the kemel of this homomorphism.                                          I

Remark 1.6.4.  Let Xj = V,./Aj be two complex tori,  with j = 1,2,  and / : Xi  + X2 a

homomoxphism with analytic representation F : Vi i V2. The (anti-)dual map F* : fi2 i fit

which associates to an antilinear form Z2 € fi2 the antilinear fom J2 o F € fir  induces a

homomorphism j : £2 i Xi,  since F*A2 C Ai.   Furthemore,  by Proposition  1.6.3,  the

following diagram commutes :

Z2 -Pico(x2)

Jj               i/*
Zl -pico(xl).

If g : X2 i Xi is another homomorphism of complex tori, then

af-f§.
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I

Moreover id^x = id* and /a = /. Hence, f is a functor from the category of complex tori to

itself. In fact, it is an exact functor.

Prapostrfuon 1.6.5. If 0 + Xi + X2 + X3 + 0 is an exact sequence Of complex tort, the dual

sequence 0 + ,k3 + ft2 + RL + 0 is also exact.

Proo/.  See [8, p. 35].

PrapostHrfuon 1.6.6. If f .. Xi + X2 is an isogeny Of corxplex tort, the dual map i .. &2 + Xi is

also an isogeny and its kernel is isomorphic to Horn (klel f ,SL) . In particular, beg i = degf .

Proof:  See [8, p. 35].                                                                                                                            I

CoiroHirzl:ry 1.6] .  Let f .. Xi + X2 be an isogeny Of complex tori Xj = V / ^j with analytic

representation F.   For a line bundle L = L(H,%) € Pic(XL) the following statements are

equivalent:

i)  L = f*M for some line bundle M € Pic(X2).

ii)  SH (F-1 ^2,F-L ^2) C Z.

P7ioo/   See [8, p.  36].

Let I € Pie(X) be a line bundle. For any point x € X, the line bundle f# ® I-1 has first

Chern class Zero. So, identifying rf = Pic°(X) we get a map

¢L .. X + k

xr+t*xL®I=1.

According to the Theorem of the Square 1.5.4, ¢L is an homomoxphism. Let's compute its

analytic representation.

Le:in:"a 1.6.S.  Let  L = L(H,X)  be  a line bundle  on X = V /A.   The map  ¢H .. V  + E2,

¢H (v) '= H (v, .) is the analytic representation Of ¢L.

19



Proof:  Using Lemma 1.5.3 we get

t%L®L-1-_L(O,ap(2itisH(.,.)))--L(0,exp(2fii(¢H(v),))).

Nowconsidertheisomoaphism£3Pic°(X)=Hom(A,S]);bycomparingwecanfinishthe

proof.

CoroHhary 1.6.9.       a)  ¢L depends only on thef irst chen class H of L.

b)  ¢L®M = ¢L+ ¢M for all L,M € Pic(X).

c)  ¢L = ¢L under the natural identification fr = X.

d)  For arty homomorphism f .. Y + X Of complex tort, the following diagram conunittes

xik
/1qif

P7ioo/  cz/, A/ and dJ follow immediately. For c/: recall that ¢fr is the analytic representation

of ¢^L.  So the assertion follows from the fact that ¢E = ¢H under the natural identification

Hom® (ZI,a) -v.                                                                                                              I

Definition 1.6.10.  Denote by K(i) the kemel of ¢L. Also define

A(I) = {v € V  I  SH(v,A) c Z} .

Since A(I,) = ¢fr[ (A) , we have that

KUI) - NJ!I) / A. (1.2)

Note that K(I) and A(I) depend only on the hermitian form H, and so we can write K(H)

and A(H) respectively for these groups. Let's see some elementary properties:

Tjem"a 1.6.L1. For any line bundle L € Plc(X),
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a)  K(L® P) = K(L) for any P € Pic° (X).

b)  K(I.) = X if and only if L € Pic° (X).

c)  K(IJn) = n=xL K(I.) for any n € E:.

d)  K(I.) = nxK(H) for any n € Z, n i 0.

P„oo/:   [8, p.   37].   a) and b) are immediate from the definition and the Appell-Humbert

Theorem 1.4.3. Suppose I, = I,(H, %), then I," = I(#ZJ, %") and thus

A(I,") = {v € V  I  SH(#v,A) C Z} =

This implies c) and d).

(:v€v,v€A,I,).

Now, the homomorphism ¢L associated to the line bundle I is an isogeny of complex

tori if and only if the hermitian form ci (I) is nondegenerate. This motivates the following

definition:

Definition 1.6.12.  A line bundle I on X is called a 7€o7tdege#erczfc /!.7gc bzi73d/e if the associated

hermitian form ff = ci (I)  is nondegenerate;  equivalently, if the altemating form SH is

nondegenerate.

Praposthirom 1.6.13. A line bundle L on X is nondegenerate if and only if K(Ij) is finite.

Recall from Lemma 1.3.10 that we will see E = Szr real valued. In other words, SH is

written in a real basis.

Proposition 1.6.14.  deg ¢L = det3H.

Proof:  We may assume that ZJ is nondegenerate, otherwise deg ¢z, = detszr = 0. Then,

deg¢£=(¢fi](fi):A)=(A(I):A)=detsH.
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'fa.©¥     Characteristics

Let X = V/A be a complex torus of dimension g and I € Pic(X) with first Chem class H.

Recall that E = SH is integer-valued on the lattice A. According to the Elementary Divisor

Theorem [29, Th. 7.8], there is a. basis Ai ,..., Ag, pi ,..., ng of A, with respect to which E is

given by the matrix

(-OD:),
where D = diag(di ,..., dg) with non-negative integers dv satisfying dv |dv+1 for V = 1 ,... g -

1.

Definition 1.7.1.  The e/eme#fczry dz.1;isorf di ,..., dg are uniquely detemined by E and A and

thus by i. The vector (di ..., czg) as well as the matrix D are called the type of the line bundle

L. The basis ^i ,..., ^g, pri ,..., ug ±s called a. symplectic (or canonical) basis of A for L (or H

or E respectively).

Recall that the line bundle I, is #o#dege7cerflfe if the fom H, and thus E, is nondegenerate.

Remark 1.7.2.  Let I be a line bundle on X.  I being a nondegenerate line bundle on X is

equivalent to cZv > 0 for v = 1 ,..., g.

Definition 1.7.3.  A direct sum decomposition

A - A1 ® A2

is called a czecormpos!.fz.o# for L (or H or E respectively) if Ai and A2 are isotropic with respect

to the altemating form E.

Remark 1.7.4.  Such a decomposition always exists since if Ai ,..., Ag, 4ti ,..., #g is a sym-

plectic basis of A for I, then

A -(^l ,..., ^g) ® (#1 ,..., pug)
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is a decomposition for I. Conversely, it follows immediately from the proof of the elementary

divisor theorem that for every decomposition A = Ai © A2 (with Ai and A2 isotropic with

respect to E)  for I, there exists  a symplectic basis  11 ,..., Ag,Pi ,..., 4tg  of A for I with

Ai  = (Ai ,..., Ag) and A2 = (pri ,..., prg)

Definition 1.7.5.  A decomposition

V - V1 ® V2

with real subvector spaces Vi and V2, is called a deco"porz.fz.o# for I (or ZJ or E respectively)

if (Vi rl A) © (V2 rl A) is a decomposition of A for I.

Accordingto.theabovedefinitionsthedecompositionsofAforLarein1-1-correspondence

with the decompositions of V for I,.

Let H € NS (X) be nondegenerate. A decomposition V = Vi © V2 for jJ leads to an explicit

description of all line bundles I € PicH(X) := cr] (H). For this we define a map

%o : v i sl

vhexp(I.7[E(vi,v2)),

where v = vi + v2 with vj € Vj.  Since Vi  and V2 are isotropic with respect to E we get the

following result:

Lemma 1.7.6.  For every v = 1/I + v2, w = wi + w2 e Vi ® V2 wc feczve ffeczf

%o(v+w)=%o(v)%o(w)exp(!.7[E(v,w))exp(-27rz.E(v2,wi)).

Thus,  %^ is a semicharacter for ZZ.   Denote by Lo = I(ZJ,%o)  the corresponding line

bundle. The data %o and Lo are uniquely determined by Zr and the chosen decomposition.

Len.::rrl:a 1]J.  Suppose H  is  a nondegenerate hermitian fiorm on V  and V  = Vi ®V2 a

decormpositionforH.
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a)  Lo = L(H ,%o) is the unique I,ine bundle in Pill (X) whose semicharacter is trivial on

^j =V'jn^for j = 1,2..

b)  For every L --L(H , %) on X there is a point c €V , uniquely determined up to translation

by el,ements Of A(I,) , such that L ~_ t*5Ijo or equlvaleutly, X = Hoe;xp (2m:iE (c , )).

Proo/  See [8, p. 47].

We will ca.Il c aL characteristic of the line bundle Lwith respect to the chosen deconaposition

/o7- I. If we speak only of a characteristic c of I,, we in.ean that a decomposition for I is fixed

and that c is the characteristic of I with respect to it.

Observe that a characteristic is only defined for nondegenerate line bundles and determined

only up to translations by elements of A(I). Note that 0 is a characteristic of Lo.

fl.©8     Theta functions

We start by defining the Rz.c77tcz"7? Jfeefcz/w77cJz.o7e which is more classical and analytic, and then

we define theta functions in a modem way that is not much different. This simple strategy

will allow us to understand the language used in some older papers on this subject.

A¢Safl    Riemann Theta Functions

Recall that the Sz.cgez zfppcr feczJ/-.spczce of genus g is defined3 by

c#g = {7 € M(g x g,a)  I 7 = 7r, S(a) > 0} .

To each point 7 e c% we can associate the lattice A7 C C8 spanned by the columns of the

g x 2g matrix Qt = ( 71g ).

We can consider the complex torus

A¢ -ce / ^¢.

3When we write a (7) > 0, we mean that the imaginary part of 7 is positive definite
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Later we will see that this complex torus is in fact an (principally polarized) abelian variety.

Theta functions play an important role in the study of X, but for now we will just define

Riemann theta functions by themselves.

Definition 1.8.1.  Let 7 € c% be a point. We define the Rz.e"¢## ffecJarfu#cfz.o# G(7, .) : C8 i

Cby

ot7if,=„Fgrexpt±#rtre+rarzj,

This series converges absolutely and uniformly on compact sets in C8.

Let's fix 7; the theta function transforms as follows with respect to the lattice A7: for 7%, # € Zg

we have

a(7,z+#+7ne)=exp(-±"trm-mrz)O(7,z).

Moreover, the theta function is even in z;

O(t, -z) -O(7,z). (1.3)

Remark 1.8.2.  Later on, working over characteristic 0, one may ask for a universal polariza-

tion divisor when working with the moduli stack of principally polarized abelian varieties

up to biholomoaphisms preserving the polarization jorg. Some technical difficulties make it

necessary to define generalized theta functions. For each €, 6 € R28 we define the function

o[:](7,z,-„Fgrexp(:(„+€,rt("+€,+(#+€,I(z+6,)

Note that for € = 6 = 0 this is just 0 (7, z) as before.

fi®&ng®2    Theta functions for a factor of automorphy

Let X = V/A be a complex torus. Denote by 7[ : V i X the canonical projection map. We

have that the lattice A acts naturally on 7J*L, but according to Lemma 1.3.5 the pullback 7[*Z,

ofalinebundleZ,onXistrivial.Thus,H°(X,I,)c=H°(V,Gv)A,thesubspaceofholomorphic

functions on V invariant under the action of.A. This isomorphism depends on the choice of

25



a factor of automoxphy for I,.  To be precise, let / be a factor of automorphy for I,.  Then,

H° (X, I) can be identified with the set of holomorphic functions

a:V+a

9(v+A)=/(A,v)6(v)

such that

for all v € V and A € A.

Definition 1.8.3.  We will call the functions in H° (X, I) ffeefczrty%czz.o#s'/or zfec/czcfor /, where

/ is a factor of automorphy for I. Correspondingly4 we call the theta functions for the factor

of a:utomorpky aL canonical thetafunctions for L.

We want to determine the theta functions for I, and compute fro(I) in the case that the

hermitian fomi ff of I is positive definite, which is the precise case of an abelian variety.

First, we will define the cJczssz.ccz/ factor of automoxphy.

Suppose I = I(H, %) is a nondegenerate line bundle on X, and that the first Chem class

H of I is a positive definite hermitian fom. Such a line bundle is called posz.fz.ve defi#z.fe /z.#c

Z7%7?cZJc or just posz.fz.ve /I.#e Z7w77dJc.  Denote E = Sff and fix a decomposition V = Vi © V2 for

I.

Lemma 1.8.4.  V2 gc7!erczfes V fls cz a-vccfor spczcc.

Proo/:  V2 rl I.V2 is a a-subvector space of V on which E vanishes.  By Lemma 1.3.10 we

get that H also vanishes on V2 rl I.V2.  Since H is positive definite, V2 rl I.V2 = {0} and thus

V = V2+I.V2.                                                                                                                                           I

The hermitian form H is symmetric on V2 since E vanishes there.  Denote by 8 the C-

bilinear extension of the symmetric form H|v2xv2 . According to Lemma 1.8.4 the symmetric

4Recall CZL from Section  1.5
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form 8 is defined on the whole of V.  The following properties of H and 8 are frequently

applied:

(,2,

Lemmal.8.5.      cz/  (H-B)(v,w)=
zr (v, w) € v x v2

i2z.E(v,w)     ,r(v,w) € v2 xv.

b)  9`(H -8) is positive definite on V\.

Proo/       a)  We have thatH-B = 0 on v x v2, sinceffis a-linear onits firstcomponent.

Thus, for 1/ € V2 and 14; € V we have:

(H -B) (1;, w) = H(w, v) -B(w, v)

=(H~B)(w,v)-2iE(w,v)

-2z.E(v,w).

b)  Since V = V2 + I.V2, a vector v € Vi, 1; ± 0 can be uniquely written in the form v =

V2 + I.zJ2, for Some v2, I/2 € V2, With %2 i 0. Using the previous item we have

9t (H -B) (v, v) = 9t (2!.E(v2, v) -2E(%2, v))

=2,E(iu2,u2)+2iR(u2,u2)

=2H(u2,u2.).

The bilinear form A enables us to introduce the classical factor of automorphy for i in a

coordinate free way.

Definition 1.8.6.  We define the cJczs's!.cczJ/czcfor /a/cz#fo#zorpky/ for I,: c£ : A x V i C* by

c£(A,v)=%(A)exp(H(H-B)(V,A)+Z(H-B)(M)).
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Equivalently,

e£(0=oL(Oexp(ZB(V,V))exp(ZB(V+A,V+0)-1.

Remark 1.8.7.  The theta functions for the factor cL are called cJczsrsz.cczJ ffeefcz/it#cfz.o#s/or

I. This terminology came from the fact that the classical Riemann theta function with (real)

characteristic E coincides with the classical notation as we have seen in the previous

subsection. In fact, we have that the classical Riemann theta function with (real) characteristic

is defined by

0 [:!] (7,v) =  I  exp ("I.(#+c])rt(#+cl) +2",.(v+c2)(#+cl))
rl:€It

for all v e Cg. In fact, we have the following relation:

Let H e NS (X) be positive definite and I = I(H, %) a line bundle on X of types ( 1 ,..., 1) ;

denote by c the characteristic associated to I. Denote the canonical theta function for I as

OC = Of . Then we have the following:

Lemma 1.8.8.

077c[+c2=exp(zB(.,,.)-„z.rctc2)o[z](7,.).

Proof:   See [8, pp. 222-224].

Now, consider I € Pie(X), and suppose that I is of type D = diag(di ,..., dg). Recall that

E = ( _°D 8 ) is the matrix of E with respect to a symplectic basis of the lattice A.

Definition 1.8.9.  Let I be a line bundle of type D. We define the P/cz#cz# a/E as Pf(E) =

detD.

Note that Pf(E) is independent of the choice of the symplectic basis. Using this notation

we get some useful results.

Len" 1.8." Let L € Pic(X) be a nondegenerate line bundle. Then, H° (X ,Ij) <_ Pf (E).
5i.e. principally polarized
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Proo/  See [8, p. 51]. I
We will construct an explicit basis of canonical theta functions of H°(X, I,) .

Suppose c € V is a characteristic of I, with respect to the decomposition V = Vi ® V2. Define

OC : V i C by

6C(v)=exp(~%H(v,c)-Zzz(c,c)+ZB(v+c,v+c))

•  I  exp(„(ZJ-B)(v+c,A)-Z(A-B)(A,A))
A,€^l

Lemma 1.8.L1.  OC is a canonical theta f unction f tor L = t*5Lo.

P7ioo/   See [8, p. 52].

(1.4)

We can use  OC to construct other canonical theta functions for I as follows:  for any

ii7 € K(I), define

O; = ¢L(w, .)-1 OC(. + w)

where w denotes some representative6 of vi} in A(I,). It is easy to see that this definition does

not depend on the choice of a representative w of t7. Note that 66 '= OC.

CoroNhay 1.812,.  0£ is a canonical theta f unction f or Lf tor every vi € K(Ij).

Proof:   See [8, p. 53].

Now we state the main result of this section. We want to give a basis of the vector space

H°(X,I),whenZ,isapositivedefinitelinebundle.DenotebyK(I)1:=K(I,)rlVi.

Theorem 1.813. Let L = L(H , x) be a positive definite line bundle on X and let c be a char-

acteri,stic with respect to a decomposition V --Vi ®V2for L. Then, the set {03 | vi € K(I,)L}

is a basis Of the vector space H° (X ,Ij) Of canonical theta functions for L.

Proo/  See [8, pp. 53-54].

6Recall that K(I,) = A(I)/A.
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Remark  1.8.14.  The basis  {6; I 17 € K(I)i} is uniquely determined by the choice of a

decomposition for I and the characteristic c. Moreover, using that #K(I) 1 = detD = Pf(E),

so we get the following result:

CoroNhay 1.8.1S. "° (X , Ij) = Pf(E) for arty posirfue definite L = L(H , %).

fi.e$63    Riemann's Addition Formula

In this short subsection we show a useful relation for theta functions that is heavily used later.

For a reference see [8, Ch. 7].

Theorem 1.8.13 gives bases of canonical theta functions

{ 9xL  :  I € 2Ki }  for H° (I) ,

{GXL'  :  x € 2Ki }  for H° (L') ,

{Ox£®£'  :  x € 2Ki}  forH° (L®£') ,  and

{Gx£®(-1)*L'  :  x € 2Ki}  forH° (L® (-1)£L')

Using this notation, we get the following:

Theorem 1.8.16 (Riemann's Addition Formula).  I,ef I cz"cZ L' Z7c czJgebrczz.ccz//y eg%z.vczJc#f

anaple line bundles on the abel,ion variety X --V / A and a .. X x X + X x X,  given by

C¥(X1,j¥2)  =  (a;1  +J¥2,j¥i  -JX2).   717}eJC,

6xi (Vi+V2)OxL2'(Vi-V2)=            I           Gzi®L'(vi)Oz:®(-1)££'(v2)                 (1.5)
(zi,z2)eKixKi

C¥(Z|,Z2)=(I:I,X2)

for all v i ,v2 € V and xi ,x2 € 2K\. In particular, if L defroes a principal polariz;ation Of X and

L = IJ is Of characteristic I;ero, then

Sol (vi + 1/2) OoL (vi -1/2) =   I  ©zL2 (vi ) OzL2 (v2)
z€Kl
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P7ioo/:   See [8, Ch. 7].

EL®9    The Riemann-Roch Theorem

I

For a line bundle I on the g-dimensional  complex torus X = V/A,  the EWJer-Poz.73cczrc'

cfeczrczcfe7'j.ffz.c of I is denoted by

X(L)=£(-1)Vhv(x,L).
v-0

"e Riemann-Roch Theorem ±s zL formula for X (L) .

Theorem 1.9.1 (Analytic Riemann-Roch Theorem).  £cf I, bc cz Jz.%e bw7zd/e o# X wfeos'cflrs'f

Chern cl,ass H has s negative eigemalues. Then]

x(L)--(-+)Spy(E).

In other words, if I is of type D = diag(di ,..., dg) and S is the number of eigenvalues of

ci(I), then %(I) = (-1)Sczi ..... czg.  In particular, for a degenerate I we have that czg = 0,

and so %(I) -0.

Proof  See [8, p. 64].

Since deg ¢L = detE = Pf(E)2, we get an immediate corollary:

Cordrlz\ry 1.9.2.  x(L)2 = deg¢Lfior every L € Pic(X).

Recall the fcJ/-z.#fcrsccfz.o# #wfflbcr (L8) of a line bundle I on X

(Eg,--lxg^cl(L,.

In this integral the first Chem class is considered to be a 2-form on X via the de Rham

isomorphismH2(X,a)c±H3R(X).

7Recall that we denote the alternating form SH as E.
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Theorem 1.9.3 (Geometric Riemann-Roch Theorem).  For czny I € Pz.c(X) we feczve ffeczf

%(I,-i(Lg,.

Proo/  See [8, pp. 65-66].

Remark 1.9.4. In the case of a positive (definite) line bundle I, we have that dimHZ.(X, I) = 0,

Vz.>0.Therefore,dimzz°(X,I)=%(I)=±g±.Formoredetailssee[8,Section3.5].

fle'A®    Lefschetz Theorem

We will leave all of the following results without proof.  For a reference consider [8, pp.

84-88].

Let X = V/A be an abelian variety of dimension g and I € Pic(X) a polarization.  The

line bundle I induces a meromoxphic map q}L : X i IPIV defined as follows: if 7]o ,..., 77IV is a

basisofJ7°(X,I),then

all(x)  =  [no(x)  :  . . .  :  nIV(jr)I ,

whenever 7]j (x) ± 0 for some /.. Choosing a factor of automoaphy / for I, we may consider

H° (X, I,) as the vector space of theta functions on V with respect to /. Let Oo ,..., 6IV denote

the basis of theta functions for the factor /. Then, the map apL is given by

q,z`(¢)  -loo(v)  :  .,..  :  6IV(V)] .

Note that apL does not depend on the choice of /, although it depends on the choice of the

basis of H° (X, I) . We will see that one can find a useful choice of this basis in the Rz.ei7ccz77#

addition formula.

Theorem 1.10.1 (Lefschetz Theorem).  If L is a positive definite line bundle on X Of type

(d\ ,..., dg) with d+ >_ 3, then apL .. X + TPN  is an embedding.

Recall that a line bundle i is czropJc if I" is very ample for some 7z 2 1.

Prapostrmon 1.10.2.  For a line bundle L on X the following statements are equivalent..
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(i)  L is anaple.

(ii)  L is positive definite.

(iii)  H° (I,) i 0 and K(L) is froite.

(iv)  H° (L) i 0 and (Eg) > 0.

CoroHhay 110.3. of L € Pic(X) is ample, then IJL is very ample f or n >_ 3.

Recall that the trascendence degree of the field of meromorphic functions on X is called

the cz/gcz7rtzz.c dz.mc#sz.o73 a(X) of x. We have that cz(i) < dimx for any connected compact

complex manifold. Proposition 1.10.2 leads to the following criterion for a complex torus to

be an abelian varitety.

Theore;in 1.10.4. For a complex torus X, the fiollowing conditions are equivalent..

1 .  X is an abel,ion variety.

2.  X admits the structure Of a projective algebraic variety.

3.  cz(X) = dimx.

•&o'flfi     Kummer varieties

We want to define the Kummer variety of an Abelian variety. This will be used later on to

describe geometrically one characterization of Jacobian varieties, and furthemore we will

use it to give a similar condition to describe Prym varieties and abelian varieties that contain a

curve that is twice the minimal class which is the main topic of this thesis. The geometric

condition will be secancy conditions on the Kummer variety in projective space.

Definition 1.11.1.  Let X = V/A be an abelian variety of dimension g. The Kz!m"cr vczrz.cty

associated to X is defined to be the quotient

K(X)-X/,-I)x.
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We have that K(X) is an algebraic variety of dimension g over a, smooth except at 228

singular points of multiplicity 28-I which are the images of the 2-torsion points of X under

the natural map p : X i K(X) .

Let I = I(H, %) be an ample symmetric line bundle on X defining an indecomposable

principal polarization. That is, any Theta divisor defining I is irreducible. Since %(A) C= {± 1 },

we have by Corollary 1.5.8 that the semicharacter %2 of L2 is identically 1 on A. This implies

that L2 is of characteristic 0 with respect to any decomposition of I. By [8, Corollary 4.6.6] all

theta functions in H°(L2) are even. Hence, we have that there exists a map v : K(X) + IP28-t

such that the following diagram commutes

ap-apt.2

-:              -                      -:`            `

K(X)

Theore;in 111.2.  Let L € Plc(X) be a syrrmetric line bundle that defroes an indeconaposable

principal polarization on X, then V .. K(X) + HMg -1 is an embedding.

Proof   See [8, pp. 98-99]. I
This result implies that on an indecomposable principally polarized abelian variety, we

can always consider K(X) as canonically embedded in P28-1.

ffl®.fi2    Hndomorphisms Associated to cycles

Let X be an abelian variety. The objective of this section is to show that to every pair of a

divisor and a curve on an abelian variety, we can associate an endomoxphism.

We will consider only czJgcbrtzz.c eycJcs V with coefficients in Z, j..c.  finite formal sums

v-£r,v,.

with integers r,. and algebraic subvarieties V,. of X, which we assume to be all of the same

dimension. We will say that V is an czJgcbrczz.c p-cz.c/e if dimv,. = p for all I..
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Let W = ££,.W{. be an algebraic a-cycle on X. The cycles V and W are said to I./efcrsecf

proper/y if Vz. rl W,. is either of pure dimension p + g -g or empty, whenever rz. 5£ 0 i sj.

Lemma 1.12.1 (Moving Lemma).  Lef V be cz„ czJgcbrtz}.c p-eycJe cz7!d W cz# czjgcbrtzz.c g-cycJe

on X. There is an open dense subset U in X such that V and t*xW intersect properly for all

JX €  U.

P7ioo/  Without loss of generality we assume that V and W are subvarieties of x. Consider

the difference map

d : V x W i X : (v, w) I+ w - v.

The fibre of d over any x e X is

d-I(x)=Vnf**W.

Since cZ is a closed molphism, there is8 an open dense subset U of x such that d-1 (x) is either

of dimension p+a-g or empty for all :r € U.                                                                          I

We will need a Moving Lemma with parameters.

Le!:in:rna 1.12..2.. Let T be an algebraic variety and Z an algebraic cycle on T x X intersecting

{t} x X properly for any i € T . Let Z(t) be the cycle on X defined by Z . ({t} x X). For any

algebraic cycle W  on X there is an open dense subset U C T x X such that Z(i) and t*xW

intersect properly for all (t ,x) € U .

Pjioo/:  We may assume that Z is an algebraic variety on I x X. Consider the map

g : W x Z i I x X : (w, (f,jr)) I+ (f, w -:x).

Then'

8-1 (f ,:x) c= z(f) in.*w.

As g is a closed moxphism, we finish the proof using the same steps as the Moving Lemma

1.12.1.                                                                                                                                                                                          I

8See [24,11, ex.  3.22 c)]
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Let V and W be two algebraic cycles on X of complementary dimension. Suppose that V

and W intersect properly, then the usual intersection product V . W is a 0-cycle on X. That

is, V . W = I;=[ rjj¥/., with :x,. € X and integers rj. We define S(V . W) to be the sum of these

points on X, say

S(V . W) = riJxi + . . . + r„Jr„ € X.

Note that S is symmetric and bilinear.

Let now (V, W) be an arbitrary pair of algebraic cycles of complementary dimension on

X. The pair (V, W) induces an endomoxphism 6(V, W) of x in the following way:

According to the Moving Lemma 1.12.1 the cyclev intersects fx*W properly for all x of

an open dense subset of x. So we have a rational map

6 .. x --+ x

jr Li s (v . zx*w) .

But, a rational map from a smooth variety into an abelian variety extends to a moxphism (see

[8, p.  101]). Since a morphism between complex tori is a homomoxphism plus a constant, i.e.

there is an endomoaphism 6(V, W) of X and a point c € X, both uniquely determined by 6,

such that 6(V, W) = 6(V,W) -c. So, we have

6(V, W) : X i X

X H S (V . f;W) -C

whenever V intersects f¥W properly. The bilinearity of S implies that

6 (V + V', W) = 6 (V, W) + 6 (V', W) and

6 (V, W + W') = 6 (V, W) + 6 (V, W')

for all algebraic cycles V, V' and W, W' of complementary dimension on X.
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Remark 1.12.3.  If V intersects W properly we have that c = S (V . W), that is

6(V, W) (x) = S (V . (f;W -W) )

whenever defined.

We may always assume that V intersects W properly thanks to the following result.

Propostti\on 1.12A.  6 (V,W) = 6 (V' ,W) f or any algebraically equivalent algebraic p-cycles

V andv' and any algebraic (g -p)-cycle W on X.

Pjioo/   See [8, pp.  129-130].

Lemma 1.12.5.  6(V, W) + 6(W, V) = -(V . W) I.dx.

P7ioo/   See [8, p.  130].

Corohirly 1+2.6. The homomorphism 6 (V,W) depends only on the algebraic equivalence

classes Of v andw .

In particular, to every curve and divisor on an abelian variety we can associate an endo-

morphism. This will be explored further in the upcoming chapters.
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Jacobian varieties

Jacobian varieties are the historic origin of the study of abelian varieties [12, chap. VII, 57].

In this chapter we present the basic material, and we end by showing that a jacobian variety

admits a 4-dimensional family of trisecants lines to its Kummer variety.

We will work over a field of characteristic 0. The basic material will be based on [8].

8o-fl     Jacobians

We start by defining the jacobian variety.   Let C be a smooth projective curve of genus

g > 0. Recall the g-dimensional a-vector space H°(ate) of holomoxphic 1-forms on C. The

homology group Hi (C, Z) is a free abelian group of rank 2g. By Stokes' theorem, any element

y € ffi (C, Z) yields in a canonical way a linear form on the vector space H°(ak7), which we

also denote by y:

y..Ho(ac)+a..co+|yco.

Lemma 2.1.1.  7lfec "c!p

H1(c,z,)+H°(ak:)*=Hom(H°(coc),a)



is dyective.

Pjiooj:   See [8, pp.  316-317].

Hence, Zri (C, Z) is a lattice in H° (ate)*, and we get the complex torus of dimension g

J (C)..= H° (cocy / Hiuc ,FT)                                              (2,.+)

Definition 2.1.2.  Let C be a smooth projective curve of genus g over a. The/.czcobz.cz# vczrI.cty

(orjczcobz.cz73) is the complex torus J(C).

Remark 2.1.3.  Since J(C) = 0 if g = 0, we will assumme in general that g 2 1.

Remark 2.1.4.  Using the intersection form on Hi (C, Z) we can extend it to a hermitian form

ff on H° (coo)*. In fact, one has

Praposttiion 21.5. The hermitian f arm H clef roes a principal polariz;ation on J (C) .

This polarization H is called the cczjco#z.cczJ po/czrz.zczfz.o# a/J(C).  Any effective divisor

0 on J(C) such that the line bundle G/(c) (®) defines the canonical polarization is called a

zfeeJcz dz.w.for of the jacobian J(C) . It is usual to write (J.(C) , ®) for the canonically polarized

jacobian.

There is another way to define the jacobian variety of C, namely as the group Pic°(C).

Recall that Pic° (C) is the quotient

Pic°(C) = Div° (C)/PDiv(C)

of divisors of degree zero on C modulo the subgroup of principal divisors. We have a canonical

map

TyIV°(C)+I(C)=H°(cocy/HL(C,Z:)

definedasfollows:anydivisorD€Div°(C)canbewrittenasafinitesumD=£7=i(P,.-qj)

for some point pj, gj € C. The class of the linear form a) ri Z7=i /opjj co in J(C) depends only
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on the divisor D, but not on its special representation as a sum of differences of points. So

D.t.Efqp]]co]tmodHLtc,Z,,

gives a well defined map DI.v°(C) + J(C), which is clearly a homomorphism of groups.

Definition 2.1.6.  The map Dz.v° (C) + J(C) previously defined is called the AZ7cJ-Jczcobz. map

ofc.

Jacobi's Inversion Theorem (see [1, p.  19]) states that the Abel-Jacobi map is surjective.

On the other hand, by a theorem of Abel (see [1, p.  18] or [31, ch.  VHI]) its kernel is the

s.ubgroup of principal divisors in Div° (C). Hence, we obtain the following theorem

Theore:in 2.1] (A;beLlacobl Theorem). The Abel-Jacobi map induces a canonical isomor-

phism Pic° (C) i J (C).

Proof:   See [31, ch. VIII].

Remark 2.1.8.  Via this isomorphism Pic°(C) inherits the structure of a principally polarized

abelian variety.

In what follows we will identify J(C) = Pic°(C) via the canonical isomophism. We will

use + for the group law and sometimes for line bundles on C we will write ®.

For any # € Z denote by Div"(C) the set of divisors of degree # on C.  It is a principal

homogeneous space for the group Div° (C). We can define a more general Abel-Jacobi map

but, it will be not canonical for 7? i 0:

Fix a divisor D„ € Div"(C) and define

Div"(C) i J(C)

D i+ ©c(D -Dn) .
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The most important case is D„ = 7" for some point c € C. In this case, the previous map

can be written as

D=Erjpj+ (+Er] |cPJ co)    ("odHi(C,Zi)).

Restricting the map Div"(C) + J(C) to the symmetric productt C(") (as we can consider

the elements.of C(") as effective divisors of degree ro on C), we get the following map

aDn .. C(n) + I(C)

which j.s also called the AbcJ-JczcoZ7z. mczp.

Let Pic" (C) denote the set of line bundles of degree I? on C. It is a principal homogeneous

space for the group Pic° (C) . Given a line bundle I,„ of degree # on C. We have that the map

0'£,, : Picn(C) i J(C)

L+L®I=nl (2.3)

is bijective.  Finally, consider the canonical map P : C(") i Pie"(C)  sending an effective

divisor D in C(")  to its class  Gc(D) in Pic"(C).  So we obtain the following commutative

diagram:

Pie"(C)

c(„)
Ezi
prrarty i

ao(Dn)

J(C)

For any line bundle I € Pie"(C) the fibre p-1 (I) is by definition the complete linear

system lil  on C.  So for any A4 € Pic°(C) the fibre cxj„] (M) is the complete linear system

l„®Gc(D")I.

{Recall that C(") is the 73-fold that is the symmetric product of C. This is, C(") is the quotient of the cartesian

product C" by the natural action of the symmetric group S„.
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Fix a point c € C. We will show that the Abel-Jacobi map c¥ = c¥c : C i J = J(C) is an

embedding. First recall that the differential cZc¥ is a holomoxphic map from the tangent bundle

j7c of C to the tangent bundle j7/ of J. According toi Lemma 1.3.5 the tangent bundle of J is

trivial, i.e. j7/ = J x Cg. The projectivization of the composed map j7c i j7/ I J x Cg + C8

is a priori a ,rational map C i P8-1 called the projectivized differential of c¥.

Prqu)osthiron2|.9. The projectivized dif ferential Of the Abel-Jacobi a .. C + I is the canonical

map pcDc .. c + H>g-1.

Proof  See [8, p. 321].

CoroNlary 2.1.10.  For any g >_ 1 the Abel-Jacobi map cx .. C + I (C) is an embedding.

Proof:  The map cx is injective, since for every line bundle I of degree 1 on a curve of genus

9 21 we have that fro(I) S 1.  From Proposition 2.1.9 we conclude that dcx is injective at

every point p € C, since the canonical line bundle ate on c is base point free.                       I

We finish this section with the famous Theorem of Torelli.

Theorem 2.1.11 (Torelli's Theorem).  S%ppose C cz#d C' czlfe co7#pczcf Rz.cmcz73% s%rfczces o/

genus g.  If their jacobians (J(C),®) and (I(C'),®') are isomorphic as polarized abel,ion

varieties, then C is isomorphic to C' .

Proof  See [1, pp. 245-249].

2®2    The Theta Divisor

We will find an intrinsic way of defining a theta divisor in Pic8-1(C).   The study of the

geometry of ® will help to understand the geometry of the curve C as well.

Recallthecanonicalmapp:C(")+Pie"(C)for#21.Itsimagew„=p(C("))isthe

subset of Pic"(C)  of line bundles with nonempty linear system.  For # 2 g we have that

W„ = Pie"(C) as consequence of the RIemann-Roch Theorem for curves.  For 1 S # < g it

is well known that fro (Gc(D)) = 1 for a general divisor D € C("). This means that the map
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p : C(") i Pic"(C) is birational onto its image W„ Moreover, since p is a proper moxphism,

W„ is an irreducible closed subvariety of Pie"(C)  of dimension #.  In particular, Wg_I  is a

divisor in Pic8-I (C). We want to see the relation between Wg_1 and the theta divisor since

this will help in some computations later.

Recall that the /%#dczmc#fczJ c/¢5's  [y]  of an #-dimensional subvariety y  of a smooth

projective variety X of dimension g is the element it induces in jI28-2"(X, Z) , Poincarfe dual

to the homology class {y} of y in H2„(X, Z).

Theorem 2.2.1 (Poincar6 Formula).  £cf c € C Z7e cz poz.#f. De#ofe by W„ Zfac I."czge o/W„ I.7t

I(C) under the bijection a6(nc). Then,

[,fy"]  -
1

(...,---„)i

8-n

^[®]

foranyl<_n<_g.

Proof:   See [8, pp. 322-323].

Remark 2.2.2.  The fomula also holds for # = 0, if we define Wo to be a point. By definition

[®] = ci (®). Thus, ^8 [®] equals the intersection number (®8) times the class of a point. So,

for # = 0, the formula is equivalent to (®8) = g! which is a consequence of RIemann-Roch.

Corollary 2.2.3.  (C . ®) = g.

Proof:  According to the Poincar6 Formula we have:

g-1

[c]^[®]-dr^[®]^[®]

ri;,®].
So,(C.®)=dr(®8)=gbyRiemann-Rochandthedefinitionoftheintersectionnumber.

I
Coronary 2.2A. There is an n € Picg-1 (C) such that Wg_1 = a*n®.

P7iooJ   See [8, p 324].
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Recall that a ffeefcz cfeczjiczcfcrisfz.c on C is a line bundle K on C with K2 = a)c..

Theorem 2.2.5 (Rie"rLn's Theorem).  For any symmetric theta divisor ® there is a theta

characteristicKonCsuchthatWg_1--a*K®.

Proof:  See [8, p 324].

Remark 2.2.6.  This makes it natural to call Wg_ I the ca#o#z.cczZ ffeefcz dz.visor of C.

£®3    The universal property of the Jacobian

Theorem 2.3.1 (Universal Property of the Jacobian).  I,e£ X bc cz7t czbcJz.cz# vczr!.edy cz"d q} :

C ~-+ X a rational map. Then, there exi,sts a unique homomorphism a .. J(C) + X such that

for every c € C the fiollowing diagram is comanutative:clx
(c)+!'-p(c,

t.,.   i.

Proof:  A rational map from a smooth variety into an abelian variety extends to a molphism

(see [8, p.  101]), so the map p is everywhere defined.

Considerthemolphism(Lp(c)P)(8):C(8)iXdefinedby

(,-p(c)p,`8),pl+...+Pg,-P,P1,+...+P(Pg,-gp,C,.

Since C¥gc : C(8) + J(C) is birational, there is a rational map ¢c : J(C) i X such that

(t-p(c)p)`8) -¢ccagc (2.4)

onanopendensesetofc(8);again,sincethemap¢cisarationalmapintoanabelianvariety,it

extendstoamorphism,soEquation2.4holdseverywhere.Now,¢c(0)=(Lp(c)P)(8)(gc)=O

implies that ¢c is a homomorphism (since it's a morphism between complex tori). Moreover,

thediagramcommutessinceorc(p)=orgc(p+(g-1)c)andap(p)-ap(c)=(Lp(c)P)(8)(p+(g-1)c)
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for all p € C. We have that ¢c is unique since c¥c(C) generates J(C) as a group. It.remains to

show that ¢c = ¢c; for any c, c' € C. In fact,

(¢c ~ ¢cl) ac(P) = ¢colc(p) -ipcl (acl (p) -acl (c))

--i-ap(c)ap(p)-t-p(d)p(p)+i_p(d)ap(c)

=0

for all p € C. Again, since arc(C) generates J(C), we have finished the proof.

2e4    Matsusaka-Ran criterion

Recall that a curve C on an abelian variety X is said to generate X, if X is the smallest abelian

subvariety containing C. More generally, an effective algebraic 1-cycle I r,.Cj on X generates

X if the union of the curves C,. generates X.

Theorem 2.4.1  (Matsusaka-Ran Criterion).  Lcf  (X, I)  be cz poJczj'z.zed czZ7cJz.¢# vczrz.edy a/

dimensiongandsupposethatc--I:}__irjcjisaneffectivel-cyclegeneratingxwith(C.Ij)--

9. Then rL = . . . = rn = 1, the curves Cj are smooth, and (X ,I,) is isomoxphic to the product

Of the canonically polarized jacobians Of the Cj..

(X3L)~-(I(C|),®|)X...X(I(Cn))®n).

In particular, if C is an irreducible curve generating X with (C . I) = g, then C is smooth

and (X,I) is the jacobian ofJC.

PHooJ:   See [8, pp.  341-344].

CoroNhz[:ry 2.4.2.      a)  A principally polariz;ed abetian surface is either the jacobian of a

smooth curve Of genus 2. or the canonically polarized product Of two elliptic curves.

b)  A principally polariz;ed abelian tlureefold is either the jacobian Of a smooth curve Of

geious 3 or the principally polarized product Of an abelian surface with an elliptic cb[rve

or the principally polarized product Of three elliptic.curves.
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PnooJ:   See [8, p.  341].

2®§    Fay's Trisecant property

I

Jacobian varieties have a interesting geometric property. Namely, the Kummer variety of a

jacobian admits a 4-dimensional family of trisecant lines, thus its points are very far from

being in general position in P2g-1. The aim of this section is to show this property.

Let C be a smooth algebraic curve of genus g 2 2 and (J, ®) its jacobian variety. Assume

that the line bundle G/(®) is of characteristic zero with respect to some symplectic basis of

Hi (C, Z).  Recall the Kummer variety K = K(X) of X = J(C) from Section 1.11, it is the

image of the map feo : J(C) + P28-I . First we want to show that having a(n honest) trisecant

is equivalent to a certain schematic inclusion and a certain equation in terms of theta functions.

Recallthatonaprincipallypolarizedabelianvariety(X,®)ofdimensiongonehasH°(X,Gx(O))=

(O),andbyRiemann'sAdditionFormulal.8.16thereisabasisoo,...,02g_iofH°(X,Gx(2®))

such that
28-1

I  O,.(g)O,.(co) = O(g + co)G(g -a))
j-0

for any €, co € C8. For z € C8., we will denote by Z € C8 its image via the universal covering

map.Forthetranslationfgon®foranyg€X,wewilldenotefE®=®+€=®E,aswellas

Og (z) = 0 (z -g); usually we denote ®g for ®€.

Theorem 2.5.1.  Let (X,®) be a principally polarized abelian variety, and consider the

Kunaner map K .. X + Hms -1 whose image is the Kununer variety K(X), given by

K (ji)  =  [Oo(jr)  :  . . .  :  02g_I (X)] .

For any a,-b ,5 € X pcirwise distinct and nonz;era, the f allowing conditions are eqiitvaleut:

i)  The points K (a), K ¢b) , and K ¢) are couinear 'inHJ2Jg ~1
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ii) There exist a, a ,y € a not all zero such that

aoao-a+P0bo-b+Y0cO-c--0.

iii)  W;e have the schematic inclusion ®a . ®b C ®cu ®-c.

Proo/:  First we prove the equivalence between zJ and I.I./. Since the points K (a), K (G) , and

K (5) are collinear, we have equivalently that the vectors

(Go (cl)  ,..., 02g_1  (CZ))  ,

(Oo (b) ,..., 02g+ (b)) ,

(Oo (c) ,..., Q2g-I  (C))

are a-1inearly dependent. This is equivalent to having a, P , y € a not all zero such that

aoj(a) + P 0j(b) + yoj(c) = O

for all j, 0 S j < 28 -1. We multiply by O,.(z) and sum over j, getting

28-1

I   (OCO,.(z) 6,.(a) + P O,.(G) + yo,.(z) O,.(c))  = 0.
J'-0

Using Riemann's Addition Formula, this is equivalent to the equation

Cio(z-cz)0(z+cz)+f}9(z-G)O(z+Z7)+yo(z-c)0(z+c)=0.

To finish the proof, we now prove the equivalence between I.I./ and I.I.I./. Assuming condition I.I./,

restricting to ®cz . ®b we get that OcO_c = 0, so that ®c, . ®b C ®c U ®_c.  On the other hand, if

We Suppose that ®a . ®b C Oc U ®_c, this implies that 6c6_c = 0 on ®a . ®b. Note that since

cz i Z7 we have that ®a . ®b is of pure codimesion 2 on X, in particular it is a divisor on ®a.
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Consider the following exact sequence of sheaves2:

o i Goo (-®a, 4 G®a + G®a.®b i o.

Applying  ®G®a (2®),  and using the Theorem3  of the Square  1.5.4 we get the exact

sequence (see Section A.1):

o i Goo (®-a, 4 Goo (2®, i Goo.®b (2®, i o.

We have the long exact sequence in cohomology

o - Ho (®", Goo (®-a,, LI Ho (®a, G®a (2®,, - Ho (®a, G®a.®b (2®,)  -...

(O-a)

By the previous comment, we get that OcO_c € ZZ° (®a, G®a (2®)) maps to zero, so the long

exact sequence of cohomology shows that  Gce_c|®b = ct9a6_a for some Ct € a. To finish the

proof consider the long exact sequence in cohomology of the following exact sequence of

sheaves:

0 i Gx (®_a) £ Gx (2®) i G®b (2®) + 0.

that is

0 - H° (X , ©x (®_b)) :±+ H° (X , ©x (2®)) - H° (X , ©®b (2®)) -...

(G_b)

Since OcO_c -Ckoao_a e ZZ° (X, Gx (2®)) vanishes when restricted to Ob, we get that

OcO-c-iioao-a--~G0bo-b

in X for some ¢ € a.

2For a reference see A.1
3In particular, 20 -®a ~ O_a, where ~ refers to linear equivalence.
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Now, we go back to jacobians. We will denote as usual by p -a the image of (p, g) under

the difference map 6 : C x C i J(C). If C is hyperelliptic, we denote by 1 the hyperelliptic

involution.

PrapostHfjron 2„5.2. Let X = I(C) be the jacobian Of a smooth curve Of genus g >_ 2.. Then

a)  ®n®q_p C ®r_pU®q_sfor all p i q, r,s € C.

b)  The intersection ® r\®q_p is reducible, except if C is Jeyperelliptic and q --I(p). In the

remaining case, ® n®L(p)_p is irreducible.

Proo/:        a)  According to Riemann's Theorem 2.2.5  there is  a theta characteristic  K €

Pic8-I (C) with cx£® = Wg_1 . In terms of Wg_1  the assertion reads

Wg_irl(Wg_1+(g-p))  C  (Wg_1+(r-p))U(Wg_1+(a-f)).          (2.5)

Consider the sets Vg = {L € Picg-I (C)   I  fro (I,(-g)) 21 } and V; = {Z, € Pic8-1 (C)   I  fro (I,(p)) 2 2}.

It is enough to show that

wg_in(wg_I+(g-p))cvguv;,

since Vg C  (Wg_I + (g -I))  for any I € C and V; C  (Wg_1 + (r -p))  for any r € C.

Suppose I € Pic8-1 (C) is contained in Wg_1 rl (Wg_1 + (a -p))  but not in V;.  This

implies that

HO (L(p» = H° (I;) = lib (|(p - q» = 1.

This means that p and a are base points of the linear system |£(p) I. Hence a is a base

point of Ill, that is fro (I(-g)) > 0.

b)  Suppose first that C is non-hyperelliptic or that C is hyperelliptic with g ± I(p).  It

suffices to show that Wg_1 rl (Wg_1 + (g -p))  is contained neither in Vq nor V;.  For

this we apply the geometric Riemann-Roch Theorem (see [31, p. 209]) for the canonical

map  q) = Pajc  : C + Ips-I.   Choose points pi ,..., pg_2  € C such that the g points

ap(Pi),...,q)(Pg_2),P(p),P(g)spanH'8-I.ThenL=Gc.(pi+...+pg_2+g)satisfies
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fro(I,) = 1, fro (I,(p)) = 2 and thus fro (I,(-g)) = 0 and fro (I(p -g)) = 1 so I, € Wg_1 n

(Wg_1 + (a -p)) but I, ¢ Vq.
Finally suppose that C is hyperelliptic and g = 1(p).  It suffices to show that Wg_I rl

(Wg_I + (a -1 (g))) = Vg. This implies that the intersection is irreducible, since Vg is

the image of the irreducible variety C(8-2) under the morphism

c(g-2) i wg-1

pl + . . . +Pg-2 I+ GP(pl + . . . +pg-2 + g, .

We  only  show  that  Wg_1 n (Wg_1 + (g-I(p))  C Vg,  the  converse  implication  be-

ing  obvious.   So  suppose that I, € Pic8-I(C)  is  a line bundle with flo(I)  > 0  and

fro (I,('i(g) -a)) > 0.   We have to  show that fe° (I(-g))  > 0,  but this is true since

fro(I)22.Ontheotherhand,fro(I,)=1ifandonlyifwehave£=Gc(pi+...+pg_1)

with uniquely determined points p[. with p,. ± 1(p,.)  for I. ± j.   The assumption of

/c° (I(l(g) -a)) > 0 implies that p,. = g for some I..  This is clear if fro (I(1 (g))) = 1,

but also if fro (I,(1 (g))) = 2. Therefore, fro (I(-g)) > 0.

I
CoroHrd:ry 2h5.3. The jacobian variety Of arty curve C admits a 4-dimensional fiamily Of

trisecant lines to its Kununer variety.

PJ-oo/  It follows from Theorem 2.5.2 that

0 rl ®g_p C ®r-p U ®q-s

for general points p, g, r, s € C, and so by Theorem 2.5.1 we are done.
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# us #th§ grB T E ffi Jacobian varieties

and trisecant lines

In this chapter we show known work that motivates this thesis.   One strong solution to

the Schottky problem is the characterization of Jacobian varieties with trisecant lines to its

Kummer variety.

trS¢ffi     A Curve oftrisecants implies x = /(C)

We will work over an algebraically closed field k of characteristic 0. Now we will show the

basic settings for what follows.

Let (X, I,) be an indecomposable principally polarized abelian variety over k, of dimension

9. Since fro(X,I) = 1, we can assume that ® is symmetric. Note that the linear system |2®|

is independent of the choice of ®. By Riemann's Addition Formula 1.8.16 there is a basis of

H° (X, Gx(2®)), namely Oo ,..., 02g_1 , such that

28-2
G(z+w)O(z-w) =  I  O,.(z)G,.(w).
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The corresponding map into the projective space

K : X + P2g-1

z H  [Oo(Z)  :  . . .  :  G2g-1 (Z)]

is a 2-1-correspondence onto its image, which is the Kummer variety K(X) of x (see Section

2.5).

Gunning in his paper [22] has shown how to use the trisecant property to the Kummer

variety in order to characterize jacobians.

Theore:in 311. Let X be an indecomposable principally polarized abelian variety over k,

andletYCXareducedartinianringOflength3,sayry|--{a,b,c}.Sets--a+b+c€X.

Consider the sclreme

V=2{€|€+ycK-1(J)/orsomeJ!.reeJcP2g-1}

Suppose that V contains ,some curve I and let a be the endomorphism defroedL by I and ®.

Then

i)  If -s +Y does not meetT, then a|y is constant.

ii)  If ~s +Y  meets I, then -s +Y CT, andT is smooth at these points; furthermore,

(a -idx)|y is constant.

He uses the Matsusaka-Ran Criterion (recall 2.4.1) and some facts about the loci V for

jacobians ([23]). This theorem implies:

CoroHke[ry 31.2 (Gunrilng I:Z2]). Let X be an indecomposable principally polarized abelian

variety over k, and let Y C X be a reduced artinian scheme Of length 3, namely |Y| --{a,b , c+.

Suppose that no endomorphism P i 0 exists such that P (b -a) = P (c -a) = 0. If dim(V) > 0

at some poin, then V is a smooth irreducible curve and X is the polarized jacobian Of v .

By the same criterion, Welters obtained ([37]):

]See Section  1.12.
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CoroNhalry 31.3. Let X be an indecomposable principally 'polariz;ed abelian variety over k.

Assume that there exists a com|)lete irreducible curve C in X such that, for some fixed b,c € C,

b ± c, a € C general and € € 1-2 (C -a -b -c),

K(€ + c}) , K(€ + cz) czrad K(€ + c!)

are collinear inTH2;g -1 . Then C is smooth and X is the polarized jacobian Of C.

Welters also extended this result to the case of one dimensional degenerate trisecant

families. The main result of Welters that will be used, states that having a one dimensional

family of trisecants to the Kummer variety implies that the abelian variety is a jacobian.

Theorem 31.4 Cwct:tels T:35+). Let X be an indecorxposable principally polarized abelian

variety over k, and letY CX be an artirhan subscheme Of length3. Assume that the subscheme

o/X
V=2{g€X|€+ycK-1(J)/orsoffleJ}.#c/cP2g-1}

has positive dimension at some point.  Then V is a smooth irreducible curve and X is the

polarized jacobian Of v .

In the proof of this theorem, there are just three cases for y which have to be treated

separately, namely

3

y I I spec (k,,
/I-1

y ± Spec  (k[€]/(€2)) +Spec (k)

and

y I spec  (k[g],(€3,) .

Welters conjectures the following in [35]: If K(X) has one trisecant, does it follow that X

is a jacobian?
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Welters' conjecture can be divided into three cases: an honest trisecant, a degenerate trisecant

(two intersection points, one of them tangent) or a flex trisecant (total degeneration, that is

one point of intersection with multiplicity 3).

S¢2    The schemez:

In the study of the problem of trisecant lines, from both the algebraic and analytic approaches,

there are certain schemes which are usually called s'z.7€g#Jczr Jocz. I:, which are a maximal

subschemes of the Theta divisor (or a translate of the Theta divisor) invariant under certain

translations depending on the case. Krichever in [28] proved, using hard analytic machinery,

that I is empty in the cases that he studies.  On the other hand, in the algebro-geometric

approaches the technical complications that envolve this scheme are solved by showing that it

is reduced.

Definition 3.2.1.  Let (X, ®) be a principally polarized abelian variety of dimension g and let

G be a closed algebraic subgroup of x. We define

I:(x,®,G, -n ®g.
geG

It is the maximal G-invariant subscheme of ®.

Theorem 3.2.2 (Arbarello-Codogni-Pareschi [3]).  7lfae scheme I: (X, ®, G)  I.s red#ccd/or

every G.

Let's review some interesting but not yet useful facts about Z}.

Praposthirom 3.2..3.  For each integer j, with 0 <_ j <_ g -2., there exist triples (X ,®,G) such

that (X,®)  is an indecomposable principally polarized abelian variety,  G is an abelian

subvariety Of X and climE (X ,® , G) = j .

P7ioo/:   See [3].

Remark 3.2.4.  Note that dimz: (X, ®, G) S g -2 if G is not trivial. This is because, if cz € G

is not the identity, then ® n ®a has dimension g - 2 since ® i ®a if cz i 0.
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Arbarello-Codogni-Pareschi in [3] studied some particular cases of I::

i)  The first case is when G is the Zariski closure of (cz). In this case, note that the ideal of

I: (X, ®, G) is generated by {O„a  I  # € Z}.

ii)  The second case is when G is the abelian subvariety generated by a constant vector

field D. In this case, G is the smallest abelian subvariety AD whose tangent space at the

origin contains D. In the analytic topology, D corresponds to a non-zero vector U in the

universal cover 7r : C8 i X, and AD is the closure of the image of the line U . a in X.

For the last case, we have the following fact:

Proposition 3.2.5 (Arbarello-Codogni-Pareschi [3]). Af eczch poz.7" a/I: = I: (X, ®,AD) ffee     '

ideal Of I is generated by the f unctions {Dn 0  I for every n >_ 0+

Thenotationz:(X,®,D)isusuallyusedforz:(X,®,AD).

Remark 3.2.6.  Kempf, in his work in [26], constructed an example of a genus 3 Jacobian

(J(C) , ®) whose theta divisor contains an elliptic curve E. By the work of Beauville-Debane

[6], if D is the tangent vector to the origin of E, we have that I (X, ®, D) = E.

Using algebro-geometric methods, we are interested in the following result:

Conjecture 1.  Let (X, ®) be an indecomposable principally polarized abelian variety and

cz,b,cex.threedifferentpoints,withcz,A,c¢X[2],andconsiderG=(cz-b,cz-c)-.Suppose

that K(cz) , K(G) , K(c) are collinear in P28'-1 . Then

codimxz: (X, ®, G) 2 3.

If this is true, via algebro-geometric methods, one immediately solves the honest case of

Welters' conjecture using the following result:

Theore;in 3.2] (Debarle.r.1Or). Let (X , h) be an indecomposable principally polarized abelian

variety, let ® be the syianetric represehiative Of the polarization ^. Suppose that there exist
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points a,b,c € X such that K(a) , K(b) ,K(c) are col,I,inear and that

cOcz!.j7£      n      ®pa+9G+rc23.

I,'q,r€Z
p+a+r-0

Then, (X , A) is isomorphic to the jacobian Of a smooth algebraic curve.

We end this section, showing an example from [3].

Example 3.2.8.  Let C be a smooth algebraic curve of genus g, and X = J(C) its jacobian

variety.  Recall the Abel-Jacobi map % : C i X which is an immersion; set r = z{(C).  Fix

p, a, r, s € C, and set:

ar = u(p) , G = u(a) , y = u(r) ,x = 2€ = u(s) -u(p) -u(q) -u(r)

meaning that g € i (I -c¥ -P -y), I..e.  g is in the preimage of r -a -P -y under the

multiplication by 2 map. Also set

cz - g + c¥, z, - f + P , c - f + y.

If K : X i K(X) is the Kummer morphism, then K(cz) , K(ZJ) , K(c) are collinear, and we have

for some not all zero constants A, 8, C:

A0ao-a + Bobo-b + COcO-c = 0.

To have a corresponding notation that Krichever uses in his papers (for instance [27],

[28]), and from the publication that is the origin of this example [3], we set:

U=a-c--u(p)-u(r),V=b-c--u(q)~u(r),U-V--a~b--u(p)-u(q),W--u(s)-u(r)

so that

a=±(I/+W-V),G=±(V-I/+W),c=±(W-I/-V).
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Set

G=(u-V),G'--(U),G''--(V)

We show that, for an appropiate choice of C, and of the points p, a, r, s, we get:

dim£(®,G) >0,     I:(®,G') =Z}(®,G") =0

Note that we implicitly assumed that G is not finite.

(3.1)

Let C be a genus g curve that can be expressed as an 7!-sheeted cover of P[ with at least

two points of total ramification: p and g, and assume that # < g. Hence:

7?(U -V) -" [z,(p) -"(a)I -0.

By taking general points of C, we get that both U and V generate J(C).   It follows that

I:(®, G') = I:(®, G'') = 0. On the other hand, I:(®, G) is the interection of # translated of ®

so that dimz:(®, G) 2 g -# > 0.

S®3    One trisecant implies x = J(C)

All of the three cases of secancy that must be dealt with in Welters' conjecture have some

issue with a bad locus I:. The two degenerate ones were solved in [3] by Arbarello, Codogni

and Pareschi using algebraic methods; while the honest case (this is when y is reduced) was

solved in [28] by Krichever using complicated analytic methods. We star showing the results

that precede the results in [3], particularly the case of yred = {%, v}. We note that there is still

no algebro-geometric proof of Welters' conjecture for the honest case.

3o38fl    An inflectionary tangent to the Kummer variety

The case of y I Spec  (k[g]/(g3)) was solved by Marini in [30] under an extra hypothesis;

/oc.   cz.f.  requires that a subscheme Di® of ® does not contain set-theorical Di-invariant
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components.  This is an improvement of Arbarello's previous work [2].  Later, this extra

hypothesis was removed as we will see in this section.

Marini gives a characterization of the trisecant condition in this case, as follows:

Proposttiron 3.3.1 (Marl:hi [30[).  Let (X , L) be an indecomposable principally polarized

abelian variety Of dimension g > 1. The following conditions are equivalent:

i)  The Kurmmer variety K(X) has an inflectionary trisecartt, .1.e.  there exists a smooth

point K(u) in K(X), where K .. X + |2;®|* is the Kunmer morphism, and a line 1 in the

projective space PN  = |2;®r* which meets K(X) at K(u) with at least nultiplicity 3.

ii) There exist invcinaut vector fields DL ± 0, D2 € 08 , a complex number c and a point

u € X such that

Dio.02„-2Dio.Di62„+O.D?92„+D20.Q2„-O.D202„+C002„ =0.       (3.2)

iii) There exists a constant vector field DL ± 0 and a point u € X such that the following

inclusion holds

® n ®2« c Di ® u Di ®2„,

where D[® is the locus Of z;eroes Of the section Dio € H° (®, ©®(®».

(3.3)

Recall that K(w) is a smooth point of A(X) if and only if 2z£ ± 0. Hence, the main result

of Marini is the following:

rINleorem 3.3.2h Let X be an indecorxposable principally polariz.ed abelian variety. Assume

that the Kummer variety K(X) has an inflectionary trisecant (see the Proposition 3.3.I) and

that the scheme DL® does not contain set-theoretical Di-invariant conaponeiits. Then, X is

the Jacobian Of a smooth curve C.

Years later, the inflectionary tangent case was solved using analytic methods in [27] by

Krichever removing the\ hypothesis of (cz) being irreducible for cz ± 0. We present his result

as follows:
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Theorem 3.3.3 (Arbarello-Krichever-Marini [4]).  Lef (X, ®) Z7c cz;7 I.7cdecoj73po5'flbJe, prz.#-

cipally polariz;ed abelian variety. Then X is the Jacobian Of a curve Of genus g if and only

if there exist vectors U i 0,V € 08 (or equivalehily constant vector fields Di i 0, D2, on

X) and a point a € X\{0+, with (a) irreducible, such that..  There is a point b € X with

2.b i a i 0 such that K(b) is a flex Of the Kunmer variety.

Remark 3.3.4.  From [30] and [2] recall that K(A) being a flex of the Kummer variety is

equivalent by definition to having 2ZJ € Vy, where

Vy={2G€X|b+ycK-i(J)forsome|ine/cP2g-1}

and y the artinian subscheme of length 3 of x associated to the second order gem:

y : € b g2U + €22V C X.

Now, simply removing the extra hypothesis, Krichever got:

Theolre:rnL 3.3.5 (Thichevor T:2]T).  Let (X ,®) be an indecomposable, principally polarized

abelian variety. Then X is the Jacobian Of a curve Of genus g if and only if there exist vectors

U i 0,V € 08 (or equivalendy constant vector fields Di i 0, D2,, on X) such that there is a

point b € X with 2,b ± 0 such that K(b) is a foex Of the Kummer variety.

An algebro-geometric proof of this result is due to Arbarello, Codogni and Pareschi in [3].

They proved and used that I; is reduced (see Theorem 3.2.2) to remove the extra condition

that Debarre had in [9] using some ideas due to Marini (see [30]).

3.3ct2   A degenerate trisecant of the Kummer variety

Now we review the case y I Spec  (k x k[€]/(€2)) .  The ideas that were used to solve this

case can be generalized later in Chapter 4 (see [9]).

First let's see the equivalence between the trisecant conditions. See [9] for more details.

PraposiMJ:Lou 3.3.6. Let (X ,Ij) be an indecomposable principally polarized abelian variety Of
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dinension g >_ I, and let ® be a symmetric representative Of the polarization L. The f iollowing

condi,tions are equivalent:

i)  The  Kummer variety K(X) has a degenerate trisecant,  in other words:  there exist

smooth poihis K(u) and K(v) in K(X), and a line I in the projective space H2;g -1 which

meets K(X) passing through K(v) and being tangent at K(u).

ii) There exists an irrvariant vector field Di ± 0 in 08  and complex rmmbers T| ,V and

points u,v € X such that

n o„o_„ + (Di o_„) . o„ -(Di o„) . o_„ + vovo_v = o.

iii) There is a constat vector field Di i 0 in 08 and points u,v € X such that the following

inclusion holds

®„ . ®-I, c: ®v U ®-v.

Theore:in 3.3]  (Dcharre r:9T).  Let X be a complex indeconaposable principally polarized

abelian variety and let ® be a symmetric representative Of the polarization.  Then, X is a

jacobian if and only if there exist poihis u,v € X with u, -u,v, -v all distinct, such that

®„ . ®-„ c ®v U ®-v

and ®u . ® _u reduced.

Krichever in [27] using analytic methods and Arbarello, Codogni and Pareschi in [3] using

algebro-geomtric methods proved Theorem [9] without requiere that ®„ . ®_„ is reduced.

qfs¢3.=3    The Honest case

As mentioned in Section 3.2, if one can prove that I: = codimr| p,g,r€z  Opa+¢+rc i 3 in the

contextof3.2.7,thenonehassolvedwelters'conjectureforth8+c9at:=o°fhonesttrisecants.

Krichever has gone much further using analytic theory that has been developed in the last

20 years, including soliton equations, 7 functions, commuting difference operators, etc. He
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proved in [28] that I: is empty in the case of

I: - rl ®'".
fez

We reformulate the theorem to be in the language of this thesis,  which is of course the

algebro-geometric setting.

Theorem 3.3.8 (Kric;hove;I r:2,gT).  Let (X ,®) be an indecomposable principally polarized

abelian variety, with ® synunetric. Suppose that X has points a,b , c with 2a,2:b ,2c, a -b , a -

c.I) -c non-z;ero, such that K(a).K(b) ,K(c) are col:linear in Hid" . Then X is a jacobian

variety.
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S ire #S P T E g?

(77c+2)-secant

77tlplanes

4SEL    History and motivation

TheoriginoftheproblemofsecantstotheKummervarietycomesfromtheSchottkyproblem,

that is to determine which complex principally polarized abelian varieties arise as jacobian

varieties of complex curves.   One known geometrical solution is presented in Chapter 3.

There are two possible paths to follow in order to generalize this work:  One is to try to

characterize jacobian varieties by higher secancy conditions as in Grushevsky's approach in

[19]' or Pareschi and Popa's in [34].

The other path is to follow Debarre's question in [11]: He asks about the relation between

the followling conditions for a p.p.a.v.  (X, ®):

1)  The existence of a curve of in-planes (in + 2)-secant to the Kummer variety.

2)  The existence of one 773-plane (in + 2)-secant to the Kummer variety of X.

3)  The existence of a curve in X that is 77c times the minimal class.

4)  The singular locus of ® is of dimension at .least g - 2rm - 2.



5)  The variety  (X, ®)  is the Prym-Tyurin variety associated to a symmetric effective

correspondence D without fixed points that verifies (D - 1) (D + j7c - 1 ) = 0.

Due  to Welters in  [36],  Bertran in  [7]  and Debarre in  [11],  under certain geometrical

conditions one has the following relations:

Our motivation is to improve Debarre's work on 1) i 3) by removing some geometric

conditions, and to give a partial answer to 2) i 1).

In this chapter we present the 773z.#z.77cczJ cofeo77goJogz.ccz/ c/czsj', in Theorem 4.3.2 we improve

Debarre's Theorem 4.1 in [11] removing the general position condition and the hypothesis

of the ring of endomoxphisms of the p.p.a.v.  to be Z (that is a proof of 1) i 3)).  Also, in

Theorem 4.4.4 we give a similar condition to 2) that under certain geometric conditions imply

1). Finally, we show the particular case of quadrisecant planes: in Theorem 4.5.1 we have an

improvement of Debarre's Theorem 5.1 in [11] and in Theorem 4.5.4 we see the particular

case of two quadrisecant planes implying the existence of a curve of quadrisecant planes

under certain geometrical conditions.

#®£    The minimal cohomological class

To understand condition 3) shown in Section 4.1 we briefly present the mz.#z.mczJ cofeo"oJogz.ccz/

class.

Recall from Chapter 2 that for a Jacobian J(C) one can naturally map the symmetric

product Symd(C) to J(C) = Picg-1 (C) (for 1 S d < g, where g is the genus of C) by fixing

a divisor D € Picg-1-a(C)  and mapping (pi ,..., pd) L+ D +I:f=[ pz..  The image of such a

map, denoted Wd c J(C), is independent of D up to a translation and one can compute its

cohomology class. By the Geometrical Riemann-Roch Theorem 1.9.3 we have:

[®]8-d

(g - d) !
€H2g-2d(I(q),
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where by [®] we denote the cohomology class of the polarization.  One can show that this

cohomology class is indivisible in cohomology with coefficients in Z (see [1, p. 25]).  Since,

in particular W[ c= C, one can ask whether the existence of a curve that is the minimal class is

a special property of Jacobians, and one has one implication by the Matsuscka-Ran Criterion

2.4.1 and another summarized in Chapter 3.

This motivates the following definition:

Definition 4.2.1.  Let (X, ®) be a principally polarized abelian variety. We call

[®]8-1

( .Ll,--.    1   )  !

the minimal cohomology class of ® (or (X ,®)).

49S    A curve of (77€ + 2)-secant 773-planes implies that x has a

curve 77c times the minimal class

Let (X, A) be an indecomposable principally polarized abelian variety of dimension g, let 0 be

a symmetric representative of the polarization A. We can take a basis {0} of H°(X, GPx (®))

and a basis { Go ,..., 6IV} (with IV = 28 -1) of the 1-dimensional space H°(X, .Gx (2®)) which

satisfies the addition formula:

IV

O(z+w)O(z-w)=£G,.(z)Oj(w),
/.-0

for all z, w.  Now we identify K = [Oo : . . . : GIV].  For any x € X, we write ®:r for the divisor

®+xand0.forthesectionzH0(z-:x)ofH°(X,Gx(®x)).

Recall that an Artinian scheme of length 73 is the spectrum of an artinian ring of length #.

Definition 4.3.1.  Let y C X be an Artinian subscheme of length in + 2. Define the scheme:

Vy = 2 { €  :  ]W € a (in,2g -1)  such that € + y C K-1 (W)} .
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We will say that X satisfies the (77! + 2)-secant (J7c-planes) condition if there exists y and

g e Vy such that K restricted to g + y is an embedding.

Also, we say that X has a curve of (" + 2)-secant ("-planes) if Vy contains a curve of points

whose satisfy the (772 + 2)-secant (ffl-planes) condition with rm minimal. That is, for a point

2g inside such curve in, X satisfies the (" + 2)-secant condition but does not satisfy the

(7® + 2)-secant condition for 73 < in.

The purpose of this section is to prove the following result:

Theorem 4.3.2,. Let (X ,hi) be an indeconaposable principally polarized abelian variety Of

dimension g, let ® be a symmetric representative Of the polarization A. LetY = {foL ,..., am+2}

be a reduced subscheme Of points Of x that do not have order 2. Suppose that X has a curve

Of (in + 2,)-secat in-planes and assume that ®a\ n . . . n®am+2 is a complete intersection.

Supposefurtherthat(pi-aj)jareiz-linearlyindependent.Then,theclassOfTismttmes

the minimal cohomology class Of ®.

ProoJ:   Since we have that the points K (g + czi ) ,..., K (g + czm+2) lie on an J73-plane, we have

that there exist constants C¥,. such that

'„+2

I c¥,.O,.(` + a,.) -0
''=1

Multiplying by Oj(z + g) and taking the sum over j we get

'„+2

£c¥,.O(z+2¢+a,.)O(z-a,.).
'.=1

In particular, restricting to ®a3 rl . . . rl ®a„t+2 We obtain

C¥| 0_2€_q Gal + OJ29-25-a2 °a2 = 0?

and since this is true for all g € ±r, it is true for g' € ±r:

C¥i O_2€/_a, Gal + G£O-25'-a2 °a2  = 0.
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Multiplying the first equation by q£O_2g;_a20a2  and the Second one by Or2G_2g_a2 0¢2  and

substracting we get

ex|qiG_2€_a,O_2€t_a20aioa2-CX{OJ20-2¢'-flio-25-a20ai°a2=°.

Factorize by Gal Ofl2, denote the remaining term as A. We get that

®a3 n . . . n ®am+2  C {A = 0} U ®ai U ®a2 .

If W C Oa3 rl . . . rl ®om+2 is an irreducible Component such that W is contained in either ®a]  or

®o2 We Will Contradict that ®a] rl . . . rl ®am+2 is a Complete intersection, Since codimxw = 773

by the first contention, while codimxw = 773 + 1 by the second one. Therefore,

®a3 n . . . n ®om+2  C {A = 0} ,

and so'

®q3 rl . . . rl oam+2 rl ®-2g-a2  C= ®-2g-q U ®-2€'-42.

Equivalently, this means that the points

K(€ + bL) ,..., K(€ + bin+2)

2bi  = 2g' + 2cz3 + czi + cz2

bj--bi-a3+aj+2

bin+1  = CZ2 + &3 -Z7|

Z7m+2 = CZ| + CZ3 -b|

lie on an "-plane, where

I o I 2 =- j =- in .

In particular, we have a two dimensional family of secant in-planes, since now the b[.
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depend on a one dimensional parameter g'.

Let  c¥ be the endomoaphism associated to IT and ®.   We will prove under the above

hypotheses that or = in . id, and so I is 77£ times the minimal class. In what comes next we will

follow [11, Section 4]. First we will show that cx € Z and then we compute that ex = in.

Let IV be  the normalization  of r,  f` C= 2-1 (I-)  an irreducible  complete  curve  and JV its

nomalization. We have the following commutative diagram

N + N - I(N)
i         „L             Jyi, i r - X

where y is the homomorphism induced by 7r. We observe that y is a Galois morphism with

Galois group isomoxphic to those 2-torsion points of X that leave f` invariant.

By [11, Lemme 3.7] there exist sections

A,.€H°(jv,ft*GX(2®-bi+...+2®-Gin+2-2®-6,.))

such that for all j = 1 ,..., 28, £E2 Az.7F*f;,.0,. = 0 on JV. Now each section A,. is stable by the

Galois group of V and so div(A,..) = y*Ez. for some divisor E,. on IV. Note that by the Theorem

of the Square, Gr (®G,._b,.) = Gr (E,. -E,.) . Hence, if cj¢ : Div(IV) i X is the pushforward

by 7[ composed with the addition map of 0-cycles, we have that

qu (bi -bj) = SP (Ei -Ej) .

Moreover, Az. vanishes at a point g only if the points belong to a trisecant, unless they coincide,

I..e.  g + bp = gg + Z7g for j ¢ {p, g}, that is, the image in X is 2g = -ZJp -I)a. Hence

cg7(Ei -Ej) =  E  6pq (€') (-bp -bq) ~  E  6pq (€') (-bp -bq)
p ,q±i                                                p ,q± j
p<q                                                  p<q

for certain integers 6pg (g') 2 0. Since the points ZJp -bg for 1 S p < g S J77 and -b,„+1 -Z7m+2

depend on €', we can choose g' so that Z7p -Z)a and -Z}m+1 -Z}m+2 are either not on r or are
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smooth points of I. This way, we get that 6pq e {0,1}.

Note that -bp -bq is constant if p < in + 1 and g 2 " + 1. So that,

c¥ (2g') = 2€'M + constant

wherel M =
(£pLo=Z:q9u<a%/6P9+ZpLo=Z€€usalmsz

In particular, for a general z € I we have that cx(z) = A4lz.  Since I generates X we get

ex = M € Z, and so or is M times the identity. Now, we show that M = in using an argument

due to Debarre [11].

Denote by M the cardinality of the set:

(p ± j  :  (-aj -czp, € I) .

Analogous to the previous computations, since K (g + czi ) ,..., K (g + cz,„+2)  lie on an

77z-plane, we have that

C¥(cz,.-a,.)=      I     (-czp-ag)-      I     (-c}p-czg)
I' ,q±i                                      P ,q±j
p<q                                        p<q-ap-aq€T                          -ap-aq€r

-      I      (czj+ap)+      I     (CZz.+fig).
p±ij                               q±i,i-aj-a,,€:I                       -ai-ape:r`

Since c¥ = A4 € Z, then

N(ai-aj)-
M(ai-aj)+E p±i,j  ap~E q±i,j  aq

-ai-ar,             -aj-aq
if - cz,. - cz,, ¢ I

(M -1) (cz,. -cry) + I p±[.,,.  czp -I  g± ,.,,.  czg    if -c!,. -czj € r.-ai-ap             -aj-aq

Since (czi -czj) are Z-linearly independent, this leads to two cases:

•  Let IV = M and no (a,. -cz/.) lie on I. This implies that M is null, and so is or which is

absurd.

[For simplicity one can think of I. = 1 and j = in.
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•  Let IV = M -1 and (cI,. -czj) € r for all I., j. Then, M = in + 1 and Ci = in.

Therefore, r is " times the minimal class.

4¢st    Finite (in + 2)-secant in-planes

One may .ask if the existence of a finite number of (77? + 2)-secant ffl-planes is enough to

have a curve of (in + 2)-secant #c-planes as in the case of Jacobians for ;7z = 1 (recall Chapter

3).   The answer is positive under certain geometric conditions.   In this  section we show

that the existence of one degenerate (J7! + 2)-secant in-plane and (J73 - I ) honest (reduced)

(rm + 2)-secant j7e-planes implies the existence of a curve of (773 + 2)-secant 7#-planes.

Before showing the main theorem of this section we will treat some prelilninaries. We

base this on Debarre's work in [9].

rfee4®:fi     Preliminaries

Let (X, A) be an indecomposable principally polarized abelian variety of dimension g,let ® be

a symmetric representative of the polarization A. We can take a basis {0} of H° (X, Gx (®))

and a basis  too ,..., OIV}  (with IV = 28 -1) of H°(X, Gx(2®))  which satisfy the addition

formula:
IV

o(z+w)G(z-w)=Eo,.(z)o,.(w),
/'-0

for all z, w. Now we identify K = [Oo : . . . : 6IV]. For any :x e X, we write ®j; for the divisor

® + x and Ox for the section z I+ 0 (z -Jx) of H° (X, Gx (®*)) .

Recall from Section 4.3 the scheme Vy. In particular, if y = {czi ,..., czm+2} has reduced

structure we can write

Vy = {2g  :  K (g + czi) ^ . . . ^ K (g + CZ,„+2) = 0} .

Since K is an even function2 we have that -czi -cz2 € Vy.

(4.2)

20ne way to see this is that K : X i P2g-I  can be defined as x I+ 0. + ®_„ from X to |20|* = P2g-I .
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4.4®£    Hierarchy

Our intention is to translate the condition dim_a] _cz2 Vy > 0 into an infinite set of equations.

We will look for a smooth gem with Di ± 0.

The condition dim_a, _cz2 Vy > 0 equals the existence of a formal curve

2¢(€) =-oi-o2+C(€),     withc(€) = £W('.)€j
Ei=fl

containedinvywithw(j)=(W](j),...,Wg('.))ecg.Wedefinethedifferentialoperators

D]-f`W.!j,±,
z`=1

D(e, - E Djej .
j20

AJ- IL-
'.I+2l.2+...+sl.s=s''.1!...I.S!

Dt; . . . Dlss .

and set

Also set'

Then, for a CcO function /(z) in C8 one has

/(Co+C(€))=Z:As(/)|g=co€S.
J>0

cD(€) =  I As(.) |g=co€S.
J>0

(4.3)

(4.4)

So that

Therefore, the existence of such a formal curve turns into the following equivalent relation:

73



in+2

I c¥,.(€)K (aj + g(€,) -0.'-1 (4.5)

Here ex,.(€),  1 S j < 773 are relatively prime elements in a [[€]] .  Set # = czi -i (czi + ¢2) and

b,. = a,.+2 -i (ci + cz2) for 1 < /. S in. Now, equation 4.5 becomes:

art(€)K(%+±C(€))+or2(g)K(-%+±C(€))+,E[or,+2(€)K(b,+±C(€))=0(4.6)

Taking dot product with the left side of 4.6, using the Riemann addition formula we get:

oil(€)o(z+%+±c(€))o(z-%-±c(g))+G2(€)o(z-%+±c(€))o(z+%-±c(€))

ex,.+2(€)O (z+b,.+±C(€)) O (z-bj-±C(€))  = 0                                                (4.7)

Write P(z, €) = £s2o Ps(z)€S for the left side of the equation. Note that Ps e H° (X, Gx (2®) ).

We have that

Po=(ari(o)+G2(o))O„O_„+£or,.+2(o)Objo_b,..
/'-I

Since there are no (7! + 2)-secant 72-planes, with J? < in, Po vanishes if and only if Cxi (0) +

C¥2(0) = 0 and C¥,.(0) = for any 3 < j S " + 2. Given that oci (€) ,..., Gym+2(€) are relatively

prime, we get that oci (€) and or2(£) are units. We may assume:

exi(€)=1+£Cii,I.8`-,           C¥2(€)=-1,
z'>1

oc,.(£) = I c¥,.,,. €`.,  for j 2 2.
z'>1

Observe that

Pi=auouo_u+Dio~u.Ou-Diouo_u+£aj+2,iopjo_pj
nE"

where Di  i 0 and 2z4 7± 0.   Recall that we are assuming that there are no  (;c + 2)-secant

Jc-planes, with Jc < rm, so C¥,.+2, 1 ± 0 for any 3 S j S ffl + 2. Allowing linear changes in the D,.
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operators, we may assume that ab„+2(€) = £. We state this procedure as follows:

Theorem 4.4.1. The abel,ion variety X satisfies din_a,_a2Vy > 0 if and only if there exist

coinplex numbers aj,i, with 1 <_ j' <_ in + 1,  j i 2,, i >_ 1;  and constant vector f ields Di i

0 ,D2 ,... on X such that the sections Ps vanish for all positive integers s.

Remark 4.4.2.  Note that Ps only depends on the corresponding cxj ,,., and D,. with I. < s. Hence,

we can write Ps as:

'!-i
Ps=Qs+oli,sOuO-u+DsO~u.Ou~DsOu.O-u+Eaj+2,sobjo_bj

/`-1

where gs does not depend on oJ,.,s nor Ds. Furthermore, gs € H° (X, GPx(2®)).

Le;in:in:a 4A.3.  Suppose that ®u. ®_u . ®b ,.... ®bm_\ is a conaplete intersection. Then, the sec-

tionPs€H°(X,©x(2:®))varrishesforsomechoiceOfaj,sandDsforj€{1,3,4,...,in+1}

if and only if the restriction Of Qs to ®u . ®-u . ®b ,.... ®bm_\ does.

Note that ®„ . ®_„ . ®b] .... ®bm_I  is just a translate Of ®a,  . ®a2 ..... ®a,„+I .

Proo/  Consider the ideal sheaf exact sequence

0  -G®w.®~w 04[. .®b,n_2 (-®bm~1)  L±  G®#.®-w.®bi...®bm_2  -G®k.®-« ®w®Oi...®b„,_1   -0

We  apply  ®G®„.®_„.®b[...®b„._2 (20),  and  using  the  Theorem  of the  Square  1.5.4  we  get

2® ~ Ow + ®Lw, so that

0  -G®w.®~w.Obi...Obm_2  (®-bin-1)   :±   G®w.®-w.®6i."OGm_2 (2®)   -G®w.®_w.®w.0/,,... ®bm_I  (2°)   ---..-.. +  0

Then, using the cohomology of this exact sequence (see Section A.1) we get that gf vanishes

on ®„ . ®_„ . ®b ,... ®bm_,  if and only if there exists a complex number C¥m+1,s such that

(gs+afyro+I,s°bm_|°-bin-1)l®k.O-w.Obi."®bm_2=°.
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We repeat the process until we get that

(a+"E]Lory+2,sG#-bJ)|®„o_„=°

Now, as before we consider the exact sequence

0 - Go„ (-®_„) i G®„ - Go„.o_„ - 0,
we apply ®G®„ (2®), and using the Theorem of the Square 1.5.4 we get 2® ~ ®„ + ®_z„ so

that

0 - Go„ (®„) 4 Gok (2®) - G®w.®_„ (2®) - 0.

Tal{e the long exact sequence in cohomology3

0 - H° (®„ G®„ (®„))  =±=±+ ZZ° (®„ Go„ (2®))  -H° (®„ G®„.o_„ (2®))  -...

(DO")

impliesthat(gs+£'/=[[or,.+2,sobjo_bj)vanisheson®"_„ifandonlyif

(g+"E][Ory+2,sob,O_6,-D6„6_„)|®„=o

The section

(gJ+
aj+2,sobjo_bj-DOu.O_u+DO_u. € HO (x , ©x (2®))

vanishes on ®„ and one concludes by the following the same steps as before. We get the short

exact sequence of sheaves

0 - Gx (®„) - Gx (2®) - G®# (2®) - 0.

and consider its exact sequence in cohomology

3Note that fro (®„ G?®„ (®„)) is generated by DO„ where D is a constant vector field.
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0 -H° (X, ©x (®u)) -H° (X, ©x (2®)) -H° (X, ©®u (2®)) -0

to conclude that there exists a constant oci,f € a such that

in-1
g+ cxi,$0„O_„ + Ds6_„ . 0„ -DsO„ . O_„ +  I  CX,.+2,sobj G_bj = 0.

nE"

4.4a3    Main result

Now we show the main result.  Note that having a degenerate  (ne + 2)-secant /73-plane is

equivalent to supposing that Pi = 0. Recall that the reduced scheme y = {czi ,..., a,„+2}.

Theore:in 4.4.4. Let (X , hi) be an indecomposable principally polariz.ed abelian variety Of

dimensiongthathasno(n+2,)-secatn-planesforn<m,let®beasymmetricrepresentative

Of the polarization A.  Suppose that ®u . ®_u . ®b\ .... ®bm_\ is a complete intersection and

reduced, and that one has the (in +2,)-secant in-planes..

®% . ®-k . ®G| .... ®bm_I  C  ®bm U ®#

/or # € {-bi ,...,- ZJm_ I , -b„}.  7lfee7c, dimvy > 0.

Note that this implies that from finite (" + 2)-secant "-plane one gets infinite honest

(in + 2)-secant planes.

Proo/  By 4.4.1 and 4.4.3 it is enough to prove that for any integer s i 2 one has that

P[  = . . . = Pf_1  = 0 > Ps (Or gs) Vanishes On ®w . ®-k . ®b] .... ®Gm_I .

A(z,€)=£Rs(z)€J:=P(z+±C(€),€).
s>0
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Assume that Pi = . . . = Ps_1 = 0, then Ri = . . . = Rs_1 = 0 and that PS = RS. Since:

R(z,€)-P(z+!f(€))

=e££r20Arp(z,€)

-£€J£A,.Ps-j.
J20    j-0

Hence, we will show that j3s vanishes on G = ®# . ®-w . ®bi .... ®bm_I .

We have that

Rs|G = A5-I °-bin . °bm .

On the other hand, we set

I(z,€)=£r"z)€s:=p(z-±c(€),€).
s>0

(4.8)

and in a similar way, under the vanishing of Pi ,..., Pf_1 hypothesis, we get that rs = Ps = Rs.

In particular,

rs|G=A,I_]Ob„.O_bin+m£]£ar,.+2,;O_6,.(As-_,.Obj)
/'-1 '- 1

Hence, jt? = Rsrs so that we compute

(4.9)

Ji3|-(As-_|Gbm).Ob",O-bin.(As-1G-bin)

+6bmG_b,."£[£Or,.+2,j(AS-_,.Ob,).(As-10-bin)
j-1 '-1

which is zero by the rm -1  different honest  (in + 2)-secant ffl-planes and one degenerate

(" + 2)-secant "-plane.   Since the intersection is reduced, Rs = 0, and we conclude the

pro of.                                                                                                                                      I
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4o5    Quadrisecant planes

ln this section we view the particular case 773 = 2 in light of what has been studied in the

previous chapter.

4.5®fl    A curve of quadrisecant planes

This is an improvement of Debarre's Theorem 5.1 in [11] and a variant of Theorem 4.3.2.

Theore;:in 4.51. Let (X , hi) be an indecomposable principally polarized abelian variety Of

dimension g >_ 4, let ® be a syirmetric representative Of the polarization A. Suppose that X

does not possess the trisecant property, and let Y --{ai,a2,a3,a4} C X be a subscheme with

reduced structure such that Vy contains an irreducible complete curveT that generates X and

®a\n®a2n®a3r`®a4 is a Complete irttersection. Then, I is twice the ivinimal cohomology

class Of ®.

Proo/:  As in the proof of Theorem 4.3.2, we get that the endomorphism C¥ = 612 + fe4 where

6i2, fe4 € {0,1}. So we have three cases:

•  cx = 0. This case is discarted immediately.

•  cx = 1.  Then, r is the minimal class.  By Matsusaka-Ran Criterion 2.4.1 this implies

that X is a Jacobian variety, which contradicts our hypothesis.

•  c¥ = 2. Then, I is twice the minimal class. This proves the theorem.

I
Corouz[:ry 4.5.2.  If Y = {foi,a2.,a3,a4} consists Of four reduced poirtts Of X, s Ill-a\ + a2.+

a3 + a4 and I Cvr is an irreducible conaplete curve that generates X, then the iievol.ution

z ir+ -z -s on X restricts to an inNolution Of I.

P7ioo/  The previous proof shows that 612 = 1 for a generic g' € ir. Therefore, this means

that for a generic g' € ±r, -Z7i -b2 € I. However,

-bL -b2 = -2€' -a+ a2 -a3 ~ a4.
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I
Remark 4.5.3.  We note that if we take x € ±s, then the involution z i+ -z restricts to the

curve C := I + x. Here we have that C C= Vf*y, so if n  e C and we write gz. := cz]. -:I:,., then

Hn = span {K (n + 9i ) , K (n + 92) , K (n + 93) , K (n + 94) }

TI_n = spaLn {K (n -qi) , K (n ~ q2) , K (n -q3) , K (n -q4)i

are planes in P28-I . This pair, by [21] is necessary and sufficient for I to be an Abel-Prym

curve. Although, they use complicated analytic methods, there is work in progress to give a

fully algebro-geometric proof.

4®§a2   A pair of quadrisecant planes implies the existence of a curve of

quadrisecant planes

Now we view a particular case of Theorem 4.4.4. Under certain geometric conditions, having

one degenerate quadrisecant plane and one honest quadrisecant plane on the Kummer variety

implies the existence of a curve of qua.drisecant planes on the Kummer variety.

Recall that the scheme Vy in this particular case equals

Vy = {2€  :  K(€ +czi) ^K(¢ +cz2) ^K(€ +a3) ^K(€ +cl4) = 0} .

Based on Section 4.4 we denote % = fli + i (-czi -a2)9  v = cz3 + i (-czi -cZ2)  and W =

c4+i(-¢i-cz2).Recallthereducedschemey={czi,fl2,fl3,o4}.

rThcore:in 4.5A.  Let (X , hi) be an indecomposable principally polarized abelian variety Of

dimension g that has no trisecant lines, let ® be a syiranetric represerttative Of the polarization

h.   Suppose that ®u . ®_u . ®w is a reduced conaplete imersection and that we have the

quadrisecant conditions :

CZJ   ®z, . ®_w . ®w  C ®v U ®-v

Z7/   ®„ . ®_„ . ®w  C= Ov U ®-w.
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Z7ze73, dimvy > 0.

Proo/:  This is an particular case, with in = 2 of Theorem 4.4.4

This is an interesting result since by having two quadrisecant planes one obtains infinite

honest quadrisecant planes.

Note that we have a symmetry as in the case studied by Grushevsky-Krichever in [20]

with the difference that they studied a pair of honest quadrisecant planes with no further

conditions.
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Further work

In this chapter we show some problems to work after this thesis, and some ideas.

§afl    A curve of quadrisecant: Degenerate cases.

Since we will be dealing with artinian schemes of length 4, we need to determine exactly

which ones can appear in the context we are studying. This is given precisely by the following

lemma.

Le:in:rna 511. If Y is an artinian subscheme Of x Of length 4 such that Vy contains a curve

and (X ,®) does not possess the trisecant property, thenY iri;ust be isomorphic to the spectrum

Of one Of the fouowing rings :

I./  k4                                                     I.v/  k[€]/(£)3 x k

i.I./  &[€]/(€)2 x k2                             v/  k[€]/(€)4

.,. I./  k[€]/(€)2 x k[€]/(€)2            vz.)  k[x,y]/(rf,ny,y2)

l;I.ZJ  k[x,y]/(j,2,y2)

Proo/:  Talcing  g € Vy  general,  we have that the intersection  of the plane generated by

K (g + y) with K(X) is isomoxphic to y, hence y is an artinian subscheme of A2 of length



4. Since every artinian ring is isomorphic to a product of local artinian rings, we only need

to look at products of artinian schemes supported at 0 € A2, such that the total length is 4.

This gives us immediatetly eight different schemes. The only scheme that is missing from the

above list is the spectrum of

k[x,y]/(z,ry,y2) x k.

Its reduced scheme consists of two points and the tangent space at one of the points is 2-

dimensional. Therefore, if the intersection of a plane with K(X) containing this scheme, we

can take a line on the tangent plane that passes through the two points.  This line will be

tangent to K(X) at the point of higher multiplicity and therefore (X, 0) would possess the

trisecant property.                                                                                                                             I

The remaining problem is to prove in all the remaining cases I.I./-vz.z.) that are missing in

Theorem 4.5.1. In other words, we want to prove the following result:

Conjecture 2.  Let (X, A) be an indecomposable principally polarized abelian variety of

dimension g 2 4, let ® be a symmetric representative of the polarization A . Suppose that X

does not possess the trisecant property, and let y C= X be an artinian subscheme of length 4

such that Vy contains an irreducible complete curve r that generates X. Then, I is twice the

minimal cohomology class of ®.

When we work with (" + 2)-secant 77£-planes there is not a clear path to follow.  Both

analytic and algebro-geometric aproaches requiere studying each case individually.

Other problems we would like to work on in the future are:

1.  Is there an involution in the case of (" + 2)-secants? (see 4.5.2)

2.  Let I C= Vy be a curve, with y C X an artinian subscheme of length 77i. Is r "-times the

minimal class?

3.  In a general setting, does the existence of finite (ffl + 2)-secant in-planes imply the

existence of a curve of (772 + 2)-secant in-planes?

4.  Is a Prym-Tyurin variety of exponent ffl characterized by being an i.p.p.a.v. containing

a curve which is rm-times the minimal class under certain geometric conditions?
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5.  What if we require a #-dimensional surface that parametrizes (in + 2)-secant "-planes?

Are 77c and # related if we look for a more general characterization of Jacobians (or

Pryms)?

6.  Can we degenerate (rm + 2)-secants or get the honest case from the degenerate case?

This would give an interesting solution to the honest case of trisecants when working in

a algebro-geometric setting.

7.  Can we use Theorem 3.2.2 in order to remove the complete intersection condition in

Theorem 4.3.2 and further the reduced condition in Theorem 4.4.4?
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AIgebraic background

££fa®fa     The Koszul complex

One can find more about this topic in [13, ch.  17] and [25, p. 252].

We will develop the theory of the Koszul complex for complete intersection of theta divisors

on abelian varieties. A ring is commutative with 1 i 0.

Definition A.1.1.  Let A be a ring. A sequence of elements czi ,..., cz„ € A is called a regk/czr

sequence if

i)   (Czi ,..., cz„)  ±R.

ii)  For every j the image of czj in A/(czi ,..., cz„) is not a zero divisor.

Remark A.1.2.  Let A be a ring,  czi ,..., a„ € A a regular sequence and A(#)  be the free

j3-module with basis  {e[.I ,...,,. in   :   1  S I.1  < . . .  < I.in S J£}.  The notation e,.1 ,..., £5 ,...,,.in  Stands for

the element of A(in:I) that is obtained by removing the index I.s.

The Koszul Lemma gives us a technical yet useful tool, we state it as a theorem.

Theorem A.1.3.  7lfec scqz4c7!cc..

o -A(:) 4 A(H:I) 4 ... i ji(?) i (cz[ ,..., cz„) .-.- + o
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i,s exact, where
r+I

ar (Cz.]y..,cr+1 )  =  I (-1)S-L¢;.sCz.( ,..., fr ,..., I.r+I
ItFiiin

f tor r >_ 1 and ch(ei) = ai.

Consider now a principally polarized abelian variety (X, ®).  If x € X, we write 6,; to

represent the theta function Li zO (z - J*) . Let Jri ,..., :r„ € X and consider the sheaves

cgr:=]<„<9<z.rs„Gxt_®*,,_..._®x,rj.

Ifg€Gx(-®x,.I-...-®x,.r)(U)forsomeopensubsetUCX,wewritegez.I,...,I.rforthe

element of cglr(U) that has g in the (z.1 ,..., I.r)-th coordinate and zeroes in the rest. We define

the map of sheaves

ar .. gFr+1 + g?r

where locally

r+1

&.i„,i.r+iox„...Gx,.r+1.el.1,...,l.r+iL+I(-1)S-[8[.I,...,I.r+lox,.I...Ox,.r+,.e,.,y..,£.„.„,.r+I
s=1

for r > 1 and

ao .. gF + ©x

where locally

gioiei L+ gioi.

The following results is necessary for what follows.

Propost\ti\on AL.1.4.  Let xi ,..., xn € X  be points  such that ®x± n . . . n ®xn  i's  a complete

intersection. Then, if cg is the ideal sheof that defroes this complete intersection, we have that

the following exact sequence

o -c¢„ 4 c¢„_I E ... + c9i + c¢ -0
is exact.
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P7ioo/  We only need to show that this sequence is exact after taking the stalks at an arbitrary

point x € X.  In this case, the complex tat emerges is the Koszul complex, so it is exact;

this is since the intersection is complete, the local generators of the sheaves form a regular

sequence.                                                                                                                                         I

Now consider two elements y,z € X.  If we tensor the previous exact sequence by the

invertible sheaf Gx (®y + ®z) , we obtain again an exact sequence of sheaves. The new maps

we obtain will be written ar(y, z) .

Assume that dimx = g.

Lem"a A.1.5. If y + z i xi + xj f tor all i, j then for every 1 <_ k <_ g -2,, we harve that

Hk(imar(y,z))~_Hk+1(imar+1(y,z))

P7iooj:  For all r we have the following exact sequence:

0 -im ar+I(y,z) -cgTr+1 ® Gx (®y+ ®z) -im ar(y,i) -0.

Now

#r+l®Gx(®y+®z,=|S,.,=9,.r+,snGx(®y+®z-(®x`l+...+®`r+,)).

Wecanseethatforr22,®y+®z-(®x,.,+...+®x,.r+I)istheinverseofanample

invertible sheaf, and by the Kodaira Vanishing Theorem, we have that its cohomology vanishes

up until the (g -1)-th cohomology group.  For r = 1, We have that ®y -®z -®x,.I  -®x,.2

is algebraically equivalent to zero but not linearly equivalent to zero.  Then we get that its

cohomology vanishes. By taking the long exact sequence of cohomology from the short exact

sequence above, we conclude the proof.                                                                                         I

If we take the last terms of the exact sequence from the Proposition A.1.4 tensored with

Gx (®y + ®z), we can take the short exact sequence:

0 -im ai (y,z) -c9i ® GPx (®y + ®z) - c¢ ® Gx (®y + Oz) -0.
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By taking part of the long exact sequence of cohomology, we have that the sequence

H° (c9i ® Gx (®y + ®z))  -H° (c¢ ® Gx (®y + Oz))  - H° (im ai (y, z))

is exact. By the previous Lemma, we have that jJ] (im ai (y, z)) c= Hr (im ar(y, z) ) for all

r S g -2. If 73 < g -2, then we have that H" (im a„(y, z)) = 0, since a„(y,z) is just the zero

map.

From this we can conclude that

ProposttiLon A`.1.6.  Let xL ,..., xn € X  be points  such that ®x\ n . . . n®xn  is  a  complete

intersection, and assume that n >_ ,g -2. Then, the map

H° (c9?I ® Gx (®y + ®z))  - H° (c¢ ® Gx (®y + ®z))

is surjective.

To finish this section and to remark its usage on the secancy conditions, suppose that

y, z € X are points such that

®x[ rl . . . rl Qrn  C= ®y U ®z.

We see that locally Oyez can be considered as a section of c¢. By the Theorem of the Square,

we have that ®y + ®z -®x,. ~ ®y+z_x„ and So

cg7]®Gx(®y+®z)=6Gx(®y+z-I,).
z'=l
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