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Abstract

This paper presents a new approach to the ecological inference problem, particularly to
estimating voter transition matrices between two elections. Our estimators choose the points
that most closely conform to constraints derived from several first moment conditions arising
from mild and natural assumptions. We show that under these assumptions our estimators
are consistent, that our estimation procedure has properties that simplify their computation
significantly, and derive estimators for the standard deviations of the true voter transitions.
We also show that our estimators perform well in small samples through a simulation study
and illustrate our approach with three applications. The first application is the well-known
problem in the ecological inference literature of estimating the fraction of voter registrations
among different demographic groups in the US. The second application uses data on the 2013
Chilean presidential election to analyze voter turnout between the first round and the runoff.
We use this application to show that, unlike more computationally intensive approaches,
our model can use large datasets without issue. We also show that our approach may be
extended in a straightforward manner to the case of multiple clusters in the true values
for the voter transitions across units. Both of the previous applications have known true
voter transition matrices, and we find that our model performs similarly to more established
approaches and provides superior estimates in some circumstances. Our final application
estimates voter transitions between the 2021 Chilean presidential election runoff and the 2022
Constitutional Plebiscite, where voters decided whether to approve or reject the proposed
draft for a new constitution. Our results for this application suggest that the compulsory
voting policy put in place for the 2022 plebiscite significantly impacted its outcome. We find
that close to 90% of voters who did not vote in the 2021 runoff but did vote in the 2022
plebiscite voted to reject the constitutional draft. Under the assumption that the bulk of
these voters would not have voted had there not been a compulsory voting policy in place,
in its absence the result would likely have been the approval of the draft rather than its
rejection. Overall, our approach is a viable alternative to other ecological inference methods.
It has good theoretical properties and a good performance in small samples, and it is simpler
and less computationally intensive than prevailing simulation-based strategies.

∗Thesis: M.A. in Economics at Universidad de Chile. I thank Miguel Jorquera for providing the data
for one of the applications and Eduardo Engel and Juan Díaz for their guidance in this research project.
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1. Introduction

Ecological inference is the process of conducting inference at the individual level from
aggregate data. The fundamental challenge in doing so is that many different individual
behaviors can produce the same observation at the aggregate level. To capture the previous
idea, the seminal work of Robinson (1950) first formalized the concept of the ecological
fallacy, i.e., the wrongful assumption that aggregate-level correlations are a good substitute
for individual-level relations. This resulted in a vast literature, first in sociology and
then statistics and political science, that has attempted to find improved methodological
strategies for the ecological inference problem.

An important application of ecological inference is the estimation of voter transition
matrices, which give us information on how groups of voters move between different
candidates or competing options across elections. As an example, consider two consecutive
elections where, in each, we group voters by their candidate of choice. A voter transition
matrix between both elections would then contain the fraction of voters for each candidate
in the first election that votes for each candidate in the second election1. An ecological
inference problem arises in this context since elections usually yield data aggregated at
the level of some unit, such as ballot boxes, rather than data for each voter. Therefore, in
most applications, voter transition matrices must be estimated using only aggregate data.

Voter transition matrices are relevant both for the analysis of elections and for the
study of voter behavior, and their estimation has a long history in political science and
statistics (see, for example, McCarthy and Ryan 1977; Upton 1978; Brown and Payne
1986; Füle 1994; King et al. 2008). They also have applications in economics2. For example,
voter transition matrices and ecological inference tools have been employed in political
science to study expressive and strategic voting (see Núñez 2016), an essential subject
within political economy3.

This paper presents a novel approach to ecological inference, contributing to the broad
methodological literature that studies this problem in the social sciences. We focus on the
problem of ecological inference applied to estimating voter transition matrices, thereby

1Voter transition matrices may also be applied in other ways. For example, consider grouping voters in
an election into different demographic groups, such as men and women or white and colored voters. A
voter transition matrix for this election would give us the fraction of voters from each demographic that
votes for each available candidate or option.

2For an example of the use of ecological inference in the economics literature outside of political
economy, see Manski (2018), who analyzes patient care in an ecological inference framework.

3Several approaches other than ecological inference have been taken to study the importance of strategic
voting in elections in the economics literature, such as regression discontinuity designs (Pons and Tricaud,
2018) and structural approaches (Kawai and Watanabe, 2013).
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contributing to the literature on this issue as well. Our approach is simple and has a
direct interpretation. Its estimates of the main values of interest, the values composing
the voter transition matrices, consist of the points in the unit square that minimize the
squared Euclidean distance to several constraints derived from data-imposed first moment
conditions. These first moment conditions, on the other hand, arise from mild and natural
assumptions. We do not make strong assumptions about the distributions of the parameters
in our model, meaning our method may also be described as non-parametric.

Our approach has several properties that make it appealing. Under our base assumptions,
our estimators are consistent. Furthermore, they are computed by solving a convex
optimization problem with a strictly convex and quadratic objective function, simplifying
estimation by eliminating the concern of local optima and reducing its computational
intensity compared to simulation-based ecological inference approaches. This makes our
method particularly attractive for problems where we are interested in voter transition
matrices with many groups of voters in each election and when we have data for a large
number of units. Moreover, it provides estimates for the unit-level voter transitions and
for the variances of these voter transitions, and it can be extended in a simple way to
deal with the presence of multiple clusters in the true unit-level voter transitions, which is
something that may arise in certain applications. Finally, it performs well in small samples,
which we show through a simulation study.

We illustrate our approach with three applications. In two of these applications, besides
the aggregate data, we have data on the true values for the voter transition matrices,
which allows us to directly assess the performance of our model and compare it to select
alternative approaches.

In our first application, we estimate the fraction of the white and colored voting-age
population who register to vote in four states in the US using a classic dataset in the
ecological inference literature (see King 1997; King, Rosen, and Tanner 1999; King, Tanner,
and Rosen 2004). We find that our model performs similarly to more standard approaches
in estimating the true voter transition matrix.

Our second application uses data on voter turnout during the first round and runoff of
the 2013 Chilean presidential election. We group the voting-age population into voters
and non-voters in each election and estimate the fraction of first-round voters and non-
voters that vote in the runoff. In this case, our model outperforms other approaches.
This application also shows that our approach can be used to conduct inference with
large datasets where more computationally intensive methods become unviable and that a
simple, direct extension of our base estimation strategy may be employed to take advantage
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of the presence of multiple clusters to improve its efficiency.
Our third and final application uses our model to estimate the voter transition matrix

between the 2021 Chilean presidential election runoff and the 2022 Chilean Constitutional
Plebiscite, where voters decided whether to approve or reject the proposed draft for a new
constitution. Despite not having data on the true voter transition matrix, this application
is interesting due to the social and political relevance of both elections. We arrive at several
notable results. In particular, we find that the compulsory voting policy put in place for
the 2022 plebiscite likely had a significant impact on its outcome. Voters who had not
voted in the presidential election runoff but did vote in the 2022 plebiscite overwhelmingly
favored the option to Reject. Concretely, 88% of these voters opted to reject the draft.
Under the assumption that most of these voters would have chosen not to vote in the 2022
plebiscite under a voluntary voting policy, our results suggest that the compulsory voting
policy put in place for this vote effectively flipped the result from a likely approval of the
draft to its resounding rejection.

Overall, our approach is viable as an alternative and a complement to other ecological
inference approaches. It has good theoretical properties and a good performance in small
samples, and it is simpler and less computationally intensive than prevailing simulation-
based strategies.

The rest of the paper is organized as follows. Section 2 describes in detail the ecological
inference problem in the context of estimating voter transition matrices. Section 3 briefly
reviews some of the most relevant literature on ecological inference, particularly the
literature on ecological inference in the social sciences and statistics. Section 4 presents our
model and proposed estimators for all parameters, proving their consistency and several
other properties under mild assumptions. Section 5 presents a simulation study where we
analyze the performance of our estimators in small samples under controlled conditions.
Section 6 illustrates our estimation strategy using two ecological inference problems with
known true voter transition matrices. The first is the estimation of voter registration
rates for white and colored voters in the US, while our second application analyzes voter
turnout in both rounds of the 2013 Chilean presidential elections. Section 7 presents the
application to the 2021 Chilean presidential election runoff and the 2022 Constitutional
Plebiscite. Section 8 concludes.

3



2. The Ecological Inference Problem

We take the estimation of voter transition matrices between two elections as a running
example. The simplest case of ecological inference is known as the 2x2 case, in which we
divide the voting-age population (in what follows, voters) into two groups in each election.
The objective is then to learn about the voter transitions across both elections for the two
groups of voters in the first election. As was previously mentioned, what makes this an
ecological inference problem is that we only observe the total number of votes for each
group in each election aggregated at the level of some unit.

As a concrete example of a 2x2 ecological inference problem, consider an application
to voter turnout where we divide voters in each election into voters and non-voters. In
this case, we are interested in the fraction of first-election voters and non-voters that vote
in the second election. These two fractions describe the voter transition matrix between
these elections for our defined groups of voters.

To formalize the previous example, assume that the available data is aggregated at
the level of some unit (e.g., ballot boxes) that we index by i, where i = 1, 2, ..., N . For
each unit, we have data on ni, the number of votes in the first election, mi, the number of
non-voters in the first election (so that ni +mi is the total number of voters in unit i) and
vi, the number of votes in the second election. We assume that the total number of voters
does not change between elections. Let pi and qi be the fraction of first-election voters
and non-voters that vote in the second election. These values compose the unit-level voter
transition matrix for unit i. Since only aggregate data is available, both are unknown.
However, we can identify some relations between these unknown values and our available
data. Table 1 illustrates these relations for each unit.

Table 1: Ecological Inference - 2x2 Case

Second Election
First Election Voters Non-Voters
Voters nipi ni(1− pi) ni

Non-Voters miqi mi(1− qi) mi

vi (ni +mi)− vi

Notes: This table illustrates the ecological inference problem in the simplest possible scenario. The available
data consists of ni,mi, and vi, which in this example are the total number of voters in the first election,
the total number of non-voters in the first election, and the total number of voters in the second election,
respectively. The unknown variables are pi and qi, the fraction of first-election voters and non-voters who
vote in the second election in unit i. Each entry at the center of the table in row r and column c indicates
the number of voters from the group in row r that also belong to the group in column c.
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Each entry at the center of the table in row r and column c indicates the number of
voters from the group in row r that belong to the group in column c. For example, the
value at the second row and first column, miqi, corresponds to the number of voters that
did not vote in the first election but did vote in the second. Each unit has a table such as
this, where the values at the center are unknown and the only observable values are the
aggregate quantities at the margins of the table.

In a typical ecological inference application, we are particularly interested in the
aggregate (across all units) fraction of first-election voters and non-voters that vote in the
second election, which we denote by µp and µq, respectively. These values compose the
aggregate voter transition matrix between the two elections. Since these values depend
on each pi and qi, they are also unknown. Ecological inference techniques aim to use the
information in tables such as the above to learn about pi, qi, µp, and µq.

The main challenge in an ecological inference problem such as this is that multiple
combinations of pi and qi are compatible with the data at the margins of Table 1. In
particular, every pair pi, qi for which both values lie between 0 and 1 and such that the
condition

nipi +miqi = vi (1)

holds is compatible with our available information. Equations such as (1) are known as
tomography lines in the ecological inference literature. The fact that infinite values of pi
and qi are compatible with Table 1 means that we can only obtain limited insights on the
unit-level fractions from individual tables such as the above. The main idea behind most
ecological inference methods, therefore, is to combine the information of multiple tables
with assumptions about the distribution of pi and qi across units to conduct inference on
the unknown fractions.

The representation of the problem in Table 1 lends itself to a direct extension to the
more general case, known as the RxC case. In this case, we divide voters in the first
election into R groups and voters in the second election into C groups by their candidates
of choice in each. We are interested in the fraction of voters for each candidate in the first
election that votes for each candidate in the second. As before, these fractions compose
the voter transition matrix between these elections, and we may be particularly interested
in unit-level fractions or aggregate fractions across all units depending on the application.
As in the 2x2 case, only the total number of votes for each group in each election are
available for each unit i, so all previous values are unknown. Table 2 illustrates this in an
analogous manner to Table 1, where nri is the number of votes for option r = 1, ..., R in
unit i in the first election, vci is the number of votes for option c = 1, ..., C in unit i in the
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second election, and prci is the fraction of voters for option r in the first election who vote
for c in the second election in unit i.

Table 2: Ecological Inference - RxC Case

Second Election
First Election Voters for option 1 Voters for option 2 . . . Voters for option C
Voters for option 1 n1ip11i n1ip12i . . . n1ip1Ci n1i

Voters for option 2 n2ip21i n2ip22i . . . n2ip2Ci n2i

...
...

... . . . ...
...

Voters for option R nRipR1i nRipR2i . . . nRipRCi nRi

v1i v2i . . . vCi

Notes: This table illustrates the ecological inference problem in the general scenario with R groups in the
first election and C groups in the second election. The observed data consists of nri, the number of voters
in group r = 1, 2, ..., R in unit i in the first election, and vci, the number of voters in group c = 1, ..., C
in unit i in the second election. The unknown variables are prci for each r, c, and i, which indicates the
fraction of people that vote for option r who also vote for option c in unit i. Each entry at the center of
the table in row r and column c indicates the number of voters from the group in row r that belong to
the group in column c.

Similarly to Table 1, the information that we may gather from Table 2 is that prci ∈ [0, 1]

for all r, c, and i, that
∑C

c=1 prci = 1 for each r and for each unit i, since each voter votes
for one and only one candidate in the second election, and that the following relations
hold in each unit:

R∑
r=1

nripr1i = v1i

R∑
r=1

nripr2i = v2i

...
R∑

r=1

nriprCi = vCi,

Infinite values for the fractions prci are compatible with the previous conditions. Therefore,
as was the case for 2x2 ecological inference, we have very limited information about these
fractions from one unit alone.

Having described the problem in sufficient detail, we now review the most relevant
literature on the subject.
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3. Literature Review

The seminal paper on ecological inference is Robinson (1950), which shows that ecological
correlation, or correlation using aggregate quantities, is not always a good substitute for
correlation at the individual level. Following Robinson’s findings, Duncan and Davis (1953)
and Goodman (1953, 1959) proposed alternatives to ecological correlation for the 2x2 case.
Respectively, they proposed the deterministic method of bounds, which involves using the
data of multiple tables such as Table 1 and Table 2 to infer lower and upper bounds on the
quantities of interest, and ecological regressions, which are simply regressions involving the
aggregate quantities across units. Due to this contribution, regressions involving aggregate
quantities have come to be known as Goodman regressions in the literature.

Both of these approaches had several issues, however. The former is limited in its ability
to provide insight into the values we are interested in, given that, in general, the bounds
determined by each table are not narrow enough to provide valuable information. On
the other hand, Goodman regressions will only work correctly under strong assumptions,
such as the assumption of homogenous voter transitions across all units. Despite their
drawbacks, most of the literature following these papers focused on expanding upon these
approaches or on using them in different applications.

The next major contribution to the literature was King (1997), which presents a model
combining insights from both previous approaches into a simulation-based approach with
a better performance than either4. Building on the insight of King (1997), King, Rosen,
and Tanner (1999) then developed a Bayesian hierarchical model using a Binomial-Beta
conjugate in the first two levels and an exponential hyperprior for the parameters of the
Beta distributions. Some contributions to the literature on Bayesian approaches to 2x2
ecological inference since then include Wakefield (2004) and Imai, Lu, and Strauss (2008).

Despite the significant contribution of the King, Rosen, and Tanner (1999) model to
the ecological inference literature, among which is the fact that it is easily extensible to the
RxC case, it also has several drawbacks. Since Bayesian methods result in distributions for
the quantities of interest rather than point estimates, estimation is carried out by sampling
from the posterior distribution of the model using Markov-Chain Monte Carlo (MCMC)
methods. When coupled with their complex nature, this makes hierarchical models have
a high computational cost. Hierarchical models also have some other issues, such as
being somewhat of a “black box” and being sensible to the choice of initial parameter
values. Another challenge with this approach, which stems from the simulation of unknown

4For a critical view of King (1997), see Freedman et al. (1998),King (1999), and Freedman et al. (1999).
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distributions via MCMC, is that it is difficult to know when the chain has converged. This
is especially problematic given that these models lose their value unless we draw samples
from the correct posterior distribution.

Following King, Rosen, and Tanner (1999), Rosen et al. (2001) formalized an RxC
Bayesian hierarchical model with a Dirichlet-Multinomial conjugate in its first two levels
based directly on the 2x2 model. Like the King, Rosen, and Tanner (1999) model, inference
is carried out via MCMC sampling. As in the 2x2 case, the need to draw from a posterior
distribution makes this model quite computationally intensive. It also shares the issues with
hierarchical models that were outlined above. Among recent methodological contributions
in this line of research, Greiner and Quinn (2009) provides an alternative hierarchical
model using different distributions, while Klima et al. (2019) expands the Rosen et al.
(2001) model to supplement it with survey data. Alternative approaches include Andreadis
and Chadjipadelis (2009), which presents an alternative model approaching the RxC case
by splitting it into multiple, sequential 2x2 problems, and Pavía and Romero (2022), which
views the ecological inference problem from a linear programming perspective rather than as
a statistical inference problem and presents an algorithm for estimating transition matrices.
Importantly, in independent evaluations of different ecological inference models Klima
et al. (2016) and Plescia and De Sio (2018) both find that a particular implementation of
the Bayesian hierarchical model in Rosen et al. (2001) through the eiPack library in R5

(Lau, Moore, and Kellermann, 2007) is generally superior to the alternatives they consider.
Of the work that is not directly a part of the ecological inference literature, this paper

is also related to Zubizarreta (2015) and Chattopadhyay and Zubizarreta (2022), which
propose and analyze the properties of estimators that are related to our approach but are
applied to the issue of causal inference with non-experimental data.

4. A Minimum Distance to First Moment Constraints Approach

We present our model for the 2x2 case and briefly state the extension to the RxC case at
the end of this section. Going back to the example of two consecutive elections and voter
turnout in Section 2, we now define pi as the probability that first-election voters vote
again in the second election and qi as the probability that first-election non-voters vote in
the second election. We assume that these probabilities across units are realizations of
independent and identically distributed (i.i.d.) random variables with means µp and µq

5This is important given that eiPack implements the Rosen et al. (2001) model using a gamma
distribution for the hyperprior rather than an exponential distribution, which is the originally proposed
distribution for the hyperprior.
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and variances σ2
p and σ2

q , respectively, but do not specify their distribution. As in Section
2, for each unit i, let ni be the number of votes in the first election and mi the number
of non-voters in the first election, and assume that the total voting age population (in
what follows, voters) does not change between elections. Finally, assume that voters vote
independently from each other. This implies that the number of votes in the second round
in each unit, vi, is the sum of two independent Binomial random variables, one with ni

trials and probability pi, corresponding to the number of votes from first-round voters,
and the other with mi trials and probability qi, corresponding to the number of votes from
first-round non-voters. We summarize all the previous assumptions in Assumption 1 for
future reference.

Assumption 1. The distribution of the unit-level parameters and the number of votes in
each unit i satisfies the following:

pi ∼ (µp, σ
2
p)

qi ∼ (µq, σ
2
q )

vi = Bin(ni, pi)⊕ Bin(mi, qi)

where ⊕ denotes the sum of independent random variables. Furthermore, pi and qi are
i.i.d. random variables across units, and pi is independent of qi within units.

Note that at no point in Assumption 1 do we make strong distributional assumptions,
since vi being the sum of two independent Binomial random variables is a consequence
of assuming that voters vote independently. This implies that our approach may also be
described as non-parametric, although we do not emphasize this view in this paper.

Assumption 1 implies that if we plot the realized parameters (pi, qi) in the Cartesian
plane with each pi in the x-axis and each qi in the y-axis, we will (in the general case) see a
single cluster of points6. This is similar to other common assumptions in the literature on
2x2 ecological inference (King, 1997; King, Rosen, and Tanner, 1999; Wakefield, 2004). For
instance, the King, Rosen, and Tanner (1999) model assumes that the prior distributions of
the unit-level fractions (which are analogous to our probabilities pi and qi) are independent
Beta distributions. Note, however, that we do not make the assumption of a single cluster
in the voter probabilities.

6There may be two clusters in the case of a bimodal distribution. We consider this case in one of the
applications in Section 4.
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It also follows from Assumption 1 that

E(vi|pi, qi) = nipi +miqi, (2)

which is analogous to (1), the condition for the unit-level fractions to be consistent with
the data discussed in Section 2. However, note that (2) is a statement on a conditional
expectation involving unknown parameters pi and qi. In contrast, (1) involves the realized
fractions of voters and non-voters in the first election that vote in the second election.

Our main goal is to estimate µp and µq. We begin by noting that if the unit-level
parameters pi and qi have a common mean, we can attempt to estimate µp and µq by
choosing the point (p̂, q̂) in the unit square that is closest to the cluster (or clusters)
of points pi and qi. Since pi and qi are unobservable, and in the absence of voter-level
data, one way to measure the position of the unit-level parameters is to use data-imposed
restrictions on the values of pi and qi. In particular, and in the spirit of the method of
moments, we can use the first moment condition (2) to arrive at a constraint involving pi,
qi, and observable quantities by replacing E(vi|pi, qi) with its sample mean. Since we only
have one observation for each unit, this sample mean is vi. This leads to the following first
moment constraint on the values of pi and qi for each unit:

vi = nipi +miqi. (3)

With (3), each unit defines a line in the Cartesian plane with pi on the x-axis and qi on
the y-axis on which we are restricting our estimates of pi and qi to lie. Note, however, that
the actual unit-level parameters do not have to lie in (3) to be consistent with the values
of vi, ni, and mi in each unit. The parameters pi and qi determine the realized fraction of
voters from each group in the first election (voters and non-voters) that vote in the second
election. As discussed in Section 2, it is these fractions that have to be consistent with
the data in the manner of (1) and (3). The main point is that, given the available data,
deriving constraint (3) from condition (2) provides us with the best available measure of
where the pair (pi, qi) has to lie in the unit square for each unit.

Having a way to locate the unit-level parameters, we can estimate µp and µq by choosing
the point in the unit square that minimizes the sum of the squared distances to each
of these lines. We can then obtain estimates for the unit-level parameters by choosing
the points in the unit square on each line as defined in (3) closest to (p̂, q̂). Due to this
intuition for our model, we refer to it as the “Minimum Distance” model in what follows.
Figure 1 shows how our estimator works in a simple scenario with six units, where the red
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Figure 1: Estimation - Simple Example

Notes: This figure presents a simple example of our estimation procedure. Each line corresponds to a first
moment condition defined by one unit. We use these to impose constraints on the values of pi and qi. The
red dot corresponds to the pair (p̂, q̂), our estimators for (µp, µq). This is the point that minimizes the
sum of the distances to each of the lines in the unit square. The blue dots correspond to the pairs (p̂i, q̂i),
which are the closest points on each line to (p̂, q̂) in the unit square.

dot corresponds to the (p̂, q̂) pair and the blue dots to each (p̂i, q̂i) pair.
Each line corresponds to the line defined by (3) for each unit. Our estimates for µp and

µq, p̂ and q̂, minimize the sum of the squared distances between this pair of points and
each line in the unit square, and our estimates for pi and qi for each unit are the closest
points in each line to the (p̂, q̂) pair. Formally, this problem may be stated as a bi-level
optimization problem:

min
{p̂,q̂}∈[0,1]2

N∑
i=1

[
(p̂i(p̂, q̂)− p̂)2 + (q̂i(p̂, q̂)− q̂)2

]
s.t. (p̂i(p̂, q̂), q̂i(p̂, q̂)) ∈ argmin

p̂i,q̂i∈[0,1]
[(p̂i − p̂)2 + (q̂i − q̂)2], i = 1, ..., N

s.t. vi = nip̂i +miq̂i

(4)

In terms of Figure 1, the inner level of the problem, which is the restriction to the
outer level, finds the values for p̂i, q̂i in the unit square in each line closest to a given p̂ and
q̂. The outer level of the problem then chooses the values for p̂ and q̂ in the unit square for
which the sum of the squared distances between (p̂, q̂) and each of the previously defined

11



points is minimized.
If we ignore the bound constraints or assume that the optimal p̂ and q̂ fall between 0

and 1 and that, at these points, all (p̂i(p̂, q̂), q̂i(p̂, q̂)) likewise belong to the unit square,
we can obtain a system of equations for p̂ and q̂ by solving a series of unconstrained
optimization problems. First, we solve for the individual level fractions for given p̂ and q̂
at the inner level in (4) to arrive at the following solution for each p̂i and q̂i for each unit:

p̂i(p̂, q̂) =
ni

n2
i +m2

i

vi +
m2

i

n2
i +m2

i

p̂− nimi

n2
i +m2

i

q̂

q̂i(p̂, q̂) =
mi

n2
i +m2

i

vi +
n2
i

n2
i +m2

i

q̂ − nimi

n2
i +m2

i

p̂

(5)

We then substitute these expressions back into the outer level of (4) and solve the
minimization problem to arrive at the following system of equations:

[
p̂

q̂

]
= N

[ ∑N
i=1 n

2
iwi

∑N
i=1 nimiwi∑N

i=1 nimiwi

∑N
i=1m

2
iwi

]−1

1

N

[∑N
i=1 niwivi∑N
i=1miwivi

]
, (6)

where wi = (n2
i +m2

i )
−1. These expressions will be useful below. We can also obtain

closed-form expressions for the pair (p̂, q̂) as well as the unit-level estimates (p̂i, q̂i) by
solving (6) and then plugging these solutions into (5), but we gain nothing by doing so
here. They are shown in Appendix C.

We now prove several properties of our estimators. First, note that p̂ and q̂ equal
the average of the unit level estimates p̂i and q̂i, respectively. We can see this by taking
the average across units of both equations in (5), setting p̂ = 1

N

∑N
i=1 p̂i(p̂, q̂) and q̂ =

1
N

∑N
i=1 q̂i(p̂, q̂), letting wi = (n2

i +m2
i )

−1, and then solving the resulting system of two
equations for p̂ and q̂ to arrive at (6). We can use this in (4) to get a standard (rather
than a bi-level) optimization problem that characterizes our estimators. Proposition 1
formalizes this result.

Proposition 1. The optimization problem in (4) is equivalent to the following problem:

min
{p̂i,q̂i}i=1,...,N

∑N
i=1

[
(p̂i − 1

N

∑N
i=1 p̂i)

2 + (q̂i − 1
N

∑N
i=1 q̂i)

2
]

s.t. nip̂i +miq̂i = vi, i = 1, ..., N

p̂i, q̂i ∈ [0, 1], i = 1, ..., N

(7)

12



Proof. See Appendix A

We can also show that the previous problem has several properties that simplify our
estimation procedure. Proposition 2 presents this result.

Proposition 2. The problem presented in (7) is a convex optimization problem. Further-
more, the objective function is strictly convex and quadratic.

Proof. See Appendix B

This significantly simplifies estimation in two ways. First, since the problem has a
unique optimum, local optima are not a concern. Second, we can consider specialized
algorithms to speed up estimation.

We now show in the following proposition that the estimators for µp and µq in (6)
are consistent and asymptotically normal. Note that, in doing this, we are only showing
that the estimators without imposing bound constraints have these properties, since (6)
was derived under this assumption. Therefore, the consistency and asymptotic normality
properties do not necessarily hold for the estimators derived from (4) and (7), since these
problems can have active bound constraints. However, doing this is useful in two ways.
First, the consistency result allows us to show that the estimators with bound constraints
are also consistent. Second, the asymptotic normality result will enable us to arrive at
estimators for σ2

p and σ2
q . Proposition 3 formalizes the consistency and asymptotic normality

properties of the estimators without bound constraints, while the other two results are
derived in two corollaries.

Proposition 3. Under Assumption 1 and without imposing bound constraints, p̂ and q̂
as determined by (6) are mean square consistent estimators of µp and µq. They are also
asymptotically normal with a standard deviation that depends on σ2

p, µp, σ2
q , and µq. In

particular, the following holds: [
p̂

q̂

]
p−→

[
µp

µq

]

√
N

([
p̂

q̂

]
−

[
µp

µq

])
d−→ N

(
0, plim( 1

N
X ′WX)−1plim

(
1
N
X ′WΩWX

)
plim( 1

N
X ′WX)−1

)

13



where plim indicates the limit in probability, and

X =

[
n1 n2 . . . nN

m1 m2 . . .mN

]′

W =


w1 0 . . . 0

0 w2 . . . 0
...

... . . . ...

0 0 . . . wN



Ω =


Var(ε1) 0 . . . 0

0 Var(ε2) . . . 0
...

... . . . ...

0 0 . . . Var(εN)


with εi = vi − E(vi) and wi = [(n2

i +m2
i )]

−1.

Proof. See Appendix C

As was previously mentioned, Proposition 1 implies that the estimators that result
from (4) and (7), where we impose bound constraints on the values of our estimates, are
consistent as well. Corollary 1 presents this result.

Corollary 1. Under Assumption 1, the mean-squared error (MSE) of the estimators that
result from (4) and (7) is lower or equal to the MSE of the estimators in (6). This implies
that the former are consistent estimators of µp and µq.

Proof. See Appendix D

Given that Corollary 1 shows that the constrained estimators are not only consistent
but also superior to the unconstrained estimators, we always compute p̂ and q̂ imposing
bound constraints. An important point we emphasize here is that the asymptotic normality
result of Proposition 3 does not hold when using our estimators with bound constraints.
Therefore, we use bootstrap standard errors to obtain their standard deviations when
necessary. Furthermore, note that we have only proved the consistency of p̂ and q̂. This
is because although we can obtain estimates for the unit-level parameters, having only
one observation for each unit means we cannot say that our estimators p̂i and q̂i will be
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consistent. This is a limitation on all ecological inference models that estimate these or
similar unit-level parameters.

We now use the asymptotic normality result of Proposition 3 to derive estimators for
σ2
p and σ2

q . Corollary 2 presents this result.

Corollary 2. Let σ̂2
p and σ̂2

q be defined as follows:

[
σ̂2
p

σ̂2
q

]
= N

[ ∑
n3
i (ni − 1)w2

i

∑
n2
imi(mi − 1)w2

i∑
m2

ini(ni − 1)w2
i

∑
m3

i (mi − 1)w2
i

]−1

1
N

{[∑
(p̂i − p̂)2∑
(q̂i − q̂)2

]
−

[ ∑
n3
iw

2
i

∑
n2
imiw

2
i∑

nim
2
iw

2
i

∑
m3

iw
2
i

][
p̂(1− p̂)

q̂(1− q̂)

]}

Under Assumption 1 and if we estimate p̂, q̂ and p̂i and q̂i without bound constraints, σ̂2
p

and σ̂2
q are consistent estimators for σ2

p and σ2
q .

Proof. See Appendix E

Note that since we rely on the asymptotic normality result of Proposition 3, the
estimators in this result are the unconstrained estimators in (5) and (6). Therefore, we
estimate σ2

p and σ2
q by estimating our model without bound constraints on the value of

our estimates and then computing σ̂2
p and σ̂2

q in the way described in Corollary 2.
As an alternative, we may also estimate the variance of the unit-level parameters using

the sample variance (SV) of our unit-level estimates:[
σ̂2
p,SV

σ̂2
q,SV

]
=

1

N

[∑N
i=1(p̂i − p̂)2∑N
i=1(q̂i − q̂)2

]
.

The rationale behind this is that if the individual estimates and our estimates for µp

and µq are close to their true values, the sample variances will be close to the variance of
the actual parameters across units. Since our estimates for pi and qi depend on vi, however,
this is not the case, since the variance of vi depends on the underlying variance of pi and
qi across units and the variance of the Binomial random variables. The variance of p̂i and
q̂i across units will be a combination of these two factors. Nevertheless, this is a viable
approach if we want an alternative measure of the dispersion of pi and qi.

So far, we have assumed that all units are equally important, since all of the terms
in the objective function in (4) and (7) have the same weight. We now consider the case
where we are interested in the total population transition probabilities rather than the
expected value of the unit-level parameters. Since different units have different numbers
of voters, by the total probability theorem we have that

∑N
i=1 ψipi and

∑N
i=1 ψiqi, where
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ψi =
ni+mi∑N

i=1(ni+mi)
, are the aggregate population transition probabilities across all units,

since ni +mi is the total number of voters in each unit in both elections. For p̂ and q̂

to be estimates of these probabilities, we need to weigh units differently in the objective
functions of (4) and (7). The following proposition presents this extension and extends
the other results in this section to the case with different weights in each unit.

Proposition 4. Let ψi > 0, i = 1, ..., N , with
∑N

i=1 ψi = 1. Consider the following
generalization of (4):

min
{p̂,q̂}

∑N
i=1 ψi [(p̂i(p̂, q̂)− p̂)2 + (q̂i(p̂, q̂)− q̂)2]

s.t. (p̂i(p̂, q̂), q̂i(p̂, q̂)) ∈ argmin
p̂i,q̂i∈[0,1]

[(p̂i − p̂)2 + (q̂i − q̂)2], i = 1, ..., N

s.t. vi = nip̂i +miq̂i

If we set p̂ =
∑N

i=1 ψip̂i and q̂ =
∑N

i ψiq̂i, the previous problem can be rewritten as follows:

min
{p̂i,q̂i}i=1,...,N

∑N
i=1 ψi

[
(p̂i −

∑N
i=1 ψip̂i)

2 + (q̂i −
∑N

i=1 ψiq̂i)
2
]

s.t. nip̂i +miq̂i = vi, i = 1, ..., N

p̂i, q̂i ∈ [0, 1], i = 1, ..., N

Ignoring bound constraints or assuming that they are not active, this results in the following
consistent estimators for µp and µq:[

p̂

q̂

]
=

[ ∑N
i=1 ψin

2
iwi

∑N
i=1 ψinimiwi∑N

i=1 ψinimiwi

∑N
i=1 ψim

2
iwi

]−1 [∑N
i=1 ψiniwivi∑N
i=1 ψimiwivi

]

while the expressions for the unit-level estimators p̂i and q̂i are unchanged. The results of
Proposition 2 continue to apply to the second formulation of the problem. Furthermore,
under Assumption 1, the consistency and asymptotic normality of the estimators without
bound constraints, the consistency of the estimators with active bound constraints, and the
results regarding the estimation of σ2

p and σ2
q hold.

Proof. See Appendix F

Note that, like the unweighted estimators, the weighted estimators are consistent
estimators of µp and µq. This means that although the unweighted and weighted estimators
differ in finite samples, they are asymptotically equivalent. We use the weighted version of
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our model in applications since, as was previously argued, it offers a better measure of the
actual aggregate voter transition probabilities.

An important point related to this discussion is that, in most applications, we are
interested in estimating realized fractions, as in Section 2, rather than the parameters we
have considered in this section thus far. However, by comparing (1) and (3), wherein the
first equation pi and qi represent fractions and in the second the unit level parameters, we
can see that imposing the first moment condition (3) implies that we can treat p̂i and q̂i
as estimates of the unit level fractions and p̂ and q̂ as estimates of the aggregate fractions
across all units, which in Section 2 we also labeled µp and µq. This is another reason
why the weighted versions of our estimators are preferable, since by weighting each unit
appropriately, we can estimate the fractions in the aggregate voter transition matrix.

We now briefly show that our approach can also be extended to the RxC case, where,
as discussed in Section 2, we divide voters in the first election into R groups and voters in
the second election into C groups. In this case, we are interested in the fraction from each
of these R groups that also belong to each of the C groups in the second election. If we
define each group in each election by different candidates or competing options, this is
equivalent to asking what fraction from each of the R groups in the first election vote for
each of the C candidates or competing options in the second election. We can rewrite (4)
for the RxC case in the following manner:

min
{p̂11,...,p̂RC}∈[0,1]RC

N∑
i=1

[
R∑

r=1

C∑
c=1

(p̂rci − p̂rc)
2

]

s.t. {p̂11i, ..., p̂RCi} ∈ argmin
{p̂11i,...,q̂RCi}∈[0,1]RC

[
R∑

r=1

C∑
c=1

(p̂rci − p̂rc)
2], i = 1, ..., N

s.t.
R∑

r=1

nrip̂rci = vci, c = 1, ..., C

C∑
c=1

p̂rci = 1, r = 1, ..., R

(8)

where nri is the number of votes for option r = 1, ..., R in the first election in unit i, vci
is the number of votes for option c = 1, ..., C in the second election in unit i, and p̂rc is
our estimator for µrc, the expected value of the probability that voters in group r in the
first election vote for c in the second election across units. In this case, these probabilities
satisfy

∑C
c=1 µrc = 1, since each voter in each group r votes for one and only one option c

in the second election. Using the same arguments as those in the proof of Proposition 1 in

17



Appendix A, we can turn (8) into a standard optimization problem in the following way:

min
{p̂11i,...,p̂RCi}i=1,...,N

∑N
i=1

[∑R
r=1

∑C
c=1(p̂rci −

1
N

∑N
i=1 p̂rci)

2
]

∑C
c=1 p̂rci = 1, i = 1, ..., N, r = 1, ..., R

s.t.
∑R

r=1 nrip̂rci = vci, i = 1, ..., N, c = 1, ..., C

p̂rci ∈ [0, 1], i = 1, ..., N, r = 1, ..., R, c = 1, ..., C

(9)

By comparing (8) to (4) and (9) to (7), we can see that the RxC case is a straightforward
extension of the 2x2 case. Further extending (8) and (9) to the case with weights is carried
out in a manner analogous to Proposition 4, and we use the formulation of (9) with weights
in one of the applications below.

We leave the extensions of all other properties listed in this section to the RxC case
for future research, but we conjecture that, given the parallels between both problems, the
estimators for the more general RxC case satisfy all of the properties that were listed here
for the 2x2 case with proofs that follow along the same lines.

5. Simulation Study

This section presents simulations to evaluate the small sample behavior of our approach
and compare it with that of the Bayesian hierarchical model in King, Rosen, and Tanner
(1999). We present six simulations. In each case we consider N = 100 units, and simulate
data for each unit i independently as follows:

pi ∼ Beta(αp, βp), i = 1, ..., N.

qi ∼ Beta(αq, βq), i = 1, ..., N.

ni +mi ∼ Bin(1000, 0.5), i = 1, ..., 100.

ni/(ni +mi) ∼ TN(0.5, 0.12, 0.2, 0.8), i = 1, ..., N.

mi/(ni +mi) = 1− ni/(ni +mi), i = 1, ..., 100.

vi ∼ Bin(ni, pi) + Bin(mi, qi), i = 1, ..., N.

where TN(µ, σ,LB,UB) denotes a truncated normal distribution with mean µ, standard
deviation σ, lower bound LB, and upper bound UB. We vary αp and βp through the six
cases and run 100 simulations for each parameter configuration. For each estimation, we
use the weighted version of our model, with ψi =

ni+mi∑N
i=1 ni+mi

. Estimation for our model
was carried out using the NLOPTR non-linear optimization library in R, while estimation
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for the Bayesian hierarchical model in King, Rosen, and Tanner (1999) was carried out in
Python using the PyEI library7 (Knudson, Schoenbach, and Becker, 2021) setting the mean
of the exponential hyperpriors to be 0.018. We assessed convergence for the latter model
with the R̂ and effective sample size (ESS) diagnostics, which are typical convergence
diagnostics for MCMC sampling.

We present results for the average estimates for µp and µq, the root mean squared error
(RMSE) for these estimates, the average root weighted mean squared error (RWMSE) for
the unit-level estimates of pi and qi, and the average fraction of unit-level estimates p̂i
and q̂i with active bound constraints. We compute the RWMSE rather than the RMSE
for the unit-level estimates to account for the fact that some units have larger values of
ni+mi. We also compute an unconstrained (UC) version of our model, in which we do not
impose bound constraints, to provide some evidence related to Corollary 1 and the result
regarding both models’ MSEs. Finally, we estimate σ2

p and σ2
q both with the estimators in

Corollary 2 and with the sample variance of our unit level estimates. Table 3 compares
our estimates of µp and µq and the unit-level parameters for each parameter configuration
(simulation, for simplicity) to the unconstrained version of our model and the Bayesian
hierarchical model. Table 4 presents our mean estimates for σp and σq for each parameter
configuration.

Both our model and the Bayesian hierarchical model successfully estimate µp and µq.
Differences in the RMSE for these estimates between both models are generally minimal.
We find that our model provides superior estimates for µp and µq when both true values
are close to 0 and 1 (see, for example, Simulation 3, Simulation 4, and Simulation 6 in
Table 3). In contrast, the Bayesian hierarchical model has an equivalent or slightly superior
performance when the true values are further from 0 and 1. For example, in Simulation
1, Simulation 2, and Simulation 5 in Table 3 our model’s estimates are better for one
parameter but worse for the other. In line with Corollary 1, our model always performs
better than its unconstrained version in this measure when there are some estimates with
active bound constraints. In other cases, they are equivalent.

Our model tends to better estimate the unit-level values pi and qi. Its RWMSE is
lower than the one resulting from the Bayesian hierarchical model in all but one of the
simulations. In some simulations, the differences in this measure between both models can
be substantial. For example, in Simulation 6, the RWMSE for our model’s estimates for pi
across units is approximately 45% lower than the corresponding RWMSE for the Bayesian

7Results were similar when we estimated the model in other ways.
8We found that this choice allowed the model to have a better performance than the value of 0.5

advocated for in King, Rosen, and Tanner (1999).
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Table 3: Simulation Study - Comparison

Minimum Distance Minimum Distance: UC Hierarchical Model
p q p q p q

Simulation 1
True Values: µ 0.70000 0.25000 0.70000 0.25000 0.70000 0.25000
True Values: σ 0.03729 0.02417 0.03729 0.02417 0.03729 0.02417

Mean Estimates: µ 0.69878 0.25079 0.69878 0.25079 0.69957 0.25098
RMSE: µ 0.01295 0.01265 0.01295 0.01265 0.01227 0.01287

RWMSE - Units 0.03390 0.03257 0.03390 0.03257 0.03899 0.03402
Restricted Unit Estimates 0.00000 0.00000 0.00000 0.00000 - -

Simulation 2
True Values: µ 0.80000 0.15000 0.80000 0.15000 0.80000 0.15000
True Values: σ 0.03255 0.02058 0.03255 0.02058 0.03255 0.02058

Mean Estimates: µ 0.80018 0.15021 0.80018 0.15021 0.80113 0.14895
RMSE: µ 0.01165 0.01151 0.01165 0.01151 0.01197 0.01084

Weighted RWMSE - Units 0.02963 0.02801 0.02963 0.02801 0.03522 0.02893
Restricted Unit Estimates 0.00000 0.00000 0.00000 0.00000 - -

Simulation 3
True Values: µ 0.91000 0.04000 0.91000 0.04000 0.91000 0.04000
True Values: σ 0.02019 0.01237 0.02019 0.01237 0.02019 0.01237

Mean Estimates: µ 0.90809 0.04215 0.90951 0.04075 0.91687 0.03296
RMSE: µ 0.00674 0.00678 0.00749 0.00743 0.01001 0.00989

RWMSE - Units 0.01861 0.01703 0.01905 0.01739 0.02670 0.01944
Restricted Unit Estimates 0.00000 0.00810 0.00000 0.00810 - -

Simulation 4
True Values: µ 0.95000 0.50000 0.95000 0.50000 0.95000 0.50000
True Values σ 0.01147 0.02280 0.01147 0.02280 0.01147 0.02280

Mean Estimates: µ 0.94827 0.50234 0.94993 0.50065 0.95001 0.50028
RMSE: µ 0.00814 0.00926 0.00940 0.01028 0.01067 0.01075

RWMSE - Units 0.02188 0.02548 0.02241 0.02606 0.02402 0.03199
Restricted Unit Estimates 0.00980 0.00000 0.00980 0.00000 0.00000 -

Simulation 5
True Values: µ 0.60000 0.11111 0.60000 0.11111 0.60000 0.11111
True Values: σ 0.02526 0.01047 0.02526 0.01047 0.02526 0.01047

Mean Estimates: µ 0.59935 0.11122 0.59935 0.11122 0.60181 0.10926
RMSE: µ 0.01094 0.01096 0.01094 0.01096 0.01157 0.01036

RWMSE - Units 0.02788 0.02478 0.02788 0.02478 0.03426 0.02282
Restricted Unit Estimates 0.00000 0.00000 0.00000 0.00000 - -

Simulation 6
True Values: µ 0.95000 0.02500 0.95000 0.02500 0.95000 0.02500
True Values: σ 0.01404 0.00581 0.01404 0.00581 0.01404 0.00581

Mean Estimates: µ 0.94820 0.02730 0.94961 0.02593 0.95627 0.01846
RMSE: µ: µ 0.00490 0.00476 0.00527 0.00511 0.00907 0.00861

RWMSE - Units 0.01302 0.01186 0.01333 0.01209 0.02403 0.01585
Restricted Unit Estimates 0.00000 0.01370 0.00000 0.01370 - -

Notes: This table presents a comparison of the performance of our model, our model with no bound
constraints, and the King, Rosen, and Tanner (1999) model across six different simulations. The rows
contain the true values for µp and µq, the true values for σp and σq, the mean estimate for µp and µq

across all simulations, the root mean squared error (RMSE) of p̂ and q̂ for each model, the mean root
weighted mean squared error (RWMSE) across all simulations for the estimates of the unit level pairs
(pi, qi), and the average fraction of units where the bound constraints of p̂i and q̂i are active across all
simulations. See Section 4 for details regarding the previous parameters and estimators.
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Table 4: Simulation Study - Variance Estimates

σp σq

Simulation 1
True Values 0.03729 0.02417
Estimates 0.03643 0.02170
Estimates: Sample Variance 0.03011 0.02890
Simulation 2
True Values 0.03255 0.02058
Estimates 0.03092 0.01960
Estimates: Sample Variance 0.02585 0.02465
Simulation 3
True Values 0.02019 0.01237
Estimates 0.01841 0.01179
Estimates: Sample Variance 0.01637 0.01524
Simulation 4
True Values 0.01147 0.02280
Estimates 0.01165 0.02020
Estimates: Sample Variance 0.02012 0.02206
Simulation 5
True Values 0.02526 0.01047
Estimates 0.02414 0.00950
Estimates: Sample Variance 0.02331 0.02172
Simulation 6
True Values 0.01404 0.00581
Estimates 0.01308 0.00503
Estimates: Sample Variance 0.01160 0.01054

Notes: This table presents our model’s estimates for σp and σq for six different simulations. For each
simulation, rows contain the true values for σp and σq, the mean estimate for σp and σq, and the mean
estimate for σp and σq using the sample variance of p̂i and q̂i. See Section 4 for details regarding the
previous parameters and estimators.

model, while the RWMSE for qi across units is approximately 25% lower. The RWMSE
of our model is also always lower or equal to the one resulting from the unconstrained
version of our model, further illustrating Corollary 1.

The estimates for the standard deviations are also relatively accurate. Our estimates for
the variances computed as in Corollary 2 are very close to the true values in all cases, and
there is no evidence of a systematic bias in any direction. On the other hand, the sample
variance of the unit estimates p̂i and q̂i tend to overestimate the lowest standard deviation
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and underestimate the largest standard deviation. The sample standard deviation of the
unit estimates also tends to be very close to σp+σq

2
. This implies that while the sample

standard deviations may not be accurate estimates for σp and σq individually, they may
provide us with an order of magnitude for the overall dispersion in pi and qi across units.

These results show that our model successfully estimates µp and µq, the main parameters
we are interested in in most ecological inference applications. Importantly, there is no
parameter configuration where the Bayesian hierarchical model is strictly better, while
there are some where using our model yields substantial gains in accuracy. In particular,
our model tends to be better with true values close to 0 and 1. The estimates for the
standard deviations also perform well. If we want an alternative measure of the dispersion
in pi and qi can use the sample variance of the unit estimates to obtain estimates for the
true sample variance, keeping in mind that one of these estimates will tend to overestimate
the true value and the other will tend to underestimate it.

6. Application: 2x2 Case

In this section, we apply the previous approach to two cases of 2x2 ecological inference
with real data. In both cases, besides the aggregate data, the true values in the N tables
such as Table 1 are known, so we can compare our estimates to the true values and
compare the performance of our (weighted) model to the King, Rosen, and Tanner (1999)
Bayesian hierarchical model. In all applications, we estimated both models in the same
way as we did in Section 5. Note that these known quantities are realized fractions rather
than underlying probabilities. In line with the discussion at the end of Section 4, in these
applications we estimate these fractions rather than other parameters. To avoid introducing
more notation, in what follows we refer to the true unit-level fractions by pi and qi, to the
true aggregate fractions across all units by µp and µq, and to the sample variances of the
unit-level fractions by σ2

p and σ2
q .

6.1. 2x2 Application: US

Our application to the US is slightly different from the examples of ecological inference
that we have considered thus far in that no election is involved. However, it may be recast
in the same framework. We divide the voting-age population (in what follows, voters) into
two groups: voters of color and white voters. We then group voters into those who register
to vote and those who do not register, and let pi and qi be the fraction of voters of color
and white voters that register to vote. We are interested in µp, the aggregate fraction of
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voters of color who register to vote, and µq, the aggregate fraction of white voters who
register to vote. Therefore, we are estimating a voter transition matrix from white and
colored voters into voter registration and non-registration.

The data is available at the county level (so that each unit corresponds to one county)
for 268 counties in Florida, Louisiana, North Carolina, and South Carolina. It includes
data on the total number of voters (ni +mi), voters of color (ni), and the total number
of registered voters (vi). We have access to the true values, so we also have data on the
true fraction of white and colored voters who register to vote in each county. In particular,
the true values for µp and µq are 0.58 and 0.82, respectively, so that on aggregate 58% of
colored voters and 82% of white voters register to vote. Figure 2 plots the true pairs of
fractions (pi, qi) for the 268 counties along with the (µp, µq) pair in red.

The figure shows that there is substantial heterogeneity in the true values. There are
also many unit-level fractions that are 0 or 1, meaning there are counties with no voter
registration by voters of color and counties where all white voters are registered to vote.

Figure 2: US 2x2 Application - True Values

Notes: This figure plots in blue the true values for pi, the fraction of registered voters of citizens of color
in unit i, and qi, the fraction of registered white citizens in unit i, for 268 counties in four states in the
US south. The red dot corresponds to the aggregate fractions µp and µq across all counties.
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The true values for µp and µq, their estimates, and the RWMSE for the unit estimates are
presented in Table 5 for our model and the King, Rosen, and Tanner (1999) hierarchical
model. Table 6 presents results regarding the estimation of σ2

p and σ2
q .

Table 5: US 2x2 Application - Results

Voter Registration
True Values Minimum Distance Hierarchical Model

Race Yes No Yes No Yes No
Total 6,748,677 2,095,023 6,748,677 2,095,023 6,748,677 2,095,023

POC 1,961,476 0.58182 0.41818 0.58918 0.41082 0.58825 0.41175
(0.20005) (0.20005) (0.03198) (0.03198) (0.04357) (0.04357)

White 6,882,224 0.82270 0.17730 0.81203 0.18797 0.81426 0.18574
(0.15495) (0.15495) (0.01535) (0.01535) (0.01363) (0.01363)

RWMSE - Unit Estimates - pi: 0.12852 qi: 0.05316 pi: 0.13929 qi: 0.05137

Notes: This table presents the resulting estimates for the true values of the parameters using our model
and the King, Rosen, and Tanner (1999) model. Sample standard deviations are in parentheses for the
true values. Bootstrap standard errors using 10.000 samples are in parentheses for the Minimum Distance
model. Standard deviations of the samples drawn out of the posterior distribution are in parentheses for
the Bayesian hierarchical model.

Our model and the Bayesian hierarchical model provide relatively accurate estimates of
µp and µq, with the Bayesian hierarchical model providing point estimates that are slightly
closer to the true values than ours. However, they are not statistically different, and they
are both within one standard deviation of the true values. The values for the weighted
RWMSEs on the last row imply that our model and the Bayesian hierarchical model have
a relatively similar performance. Specifically, our unit estimates in this application are
superior overall but have a slightly larger error when estimating the fraction of white
voters registering to vote.

Table 6: US 2x2 Application - Standard Deviation Estimates

σp σq

True Values 0.20005 0.15495
Estimates 0.27925 0.13665

Estimates: Sample Variance 0.08639 0.14706

Notes: This table presents our estimates for σp and σq. These are the standard deviations for the fractions
of voters of color and white voters who register to vote in four states in the US, respectively. In order,
rows contain the true values for σp and σq, our estimates for σp and σq, and the estimate for σp and σq

using the sample variance of p̂i and q̂i. See Section 4 for details regarding the previous parameters and
estimators.
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Our estimate of σq in Table 6 is close to the true value for σq, but our estimate for
σp is far off the true value. The fact that many of the true values are either 0 or 1 and
the high dispersion of these values shown in Figure 2 may make the estimation of these
standard deviations difficult. However, they are closer overall to the true values than the
estimates using the sample variance, consistent with the discussion in Section 4 and the
results in Section 5.

Overall, our model estimates µp and µq accurately, which are the fractions composing
the aggregate voter transition matrix and are, therefore, the values we are most interested
in. It also partially succeeds in estimating σp and σq. In this particular application, however,
there is no significant difference in accuracy between our model and the King, Rosen, and
Tanner (1999) model.

6.2. 2x2 Application: Chile

We now illustrate our model with an application regarding voter turnout in Chile. In each
election, we divide the voting-age population (or voters) into voters (ni) and non-voters
(mi), as in the example we considered in Section 2. Let pi and qi be the fraction of first-
election voters and non-voters that vote in the second election. We are interested in µp,
the aggregate fraction of first-round voters who vote in the runoff, and µq, the aggregate
fraction of first-round non-voters who vote in the runoff. This means we are estimating
the aggregate voter transition matrix between voters and non-voters in the first round of
the elections and voters and non-voters in the runoff.

The data consists of the voting-age population and the number of votes in the first
round and runoff of the 2013 Chilean presidential election for each unit. As in the previous
application, we have data on the true voter transition matrix. In this application, this
means that for each unit we also have data on the number of first-round voters and
non-voters who voted in the runoff. Each unit consists of one voting table of approximately
350 voters on average. For ease of exposition, we call these tables ballot boxes in the rest
of this subsection.9

After eliminating ballot boxes with no votes either in the first round or the runoff, we
are left with data on 41,094 ballot boxes. We use data on the 50 largest municipalities
in the country, as measured by their number of voters. These municipalities encompass
approximately 60% of all voters and contain approximately 20,000 ballot boxes. Figure 3

9In Chile, each citizen is assigned to a table with one ballot box within a voting locale. Each table
groups approximately 350 voters, and votes are counted and logged for the ballot boxes in each table at
the end of the election. Therefore, this consists of the lowest possible level of aggregation.
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Figure 3: Chile 2x2 Application - True Values for All Ballot Boxes

Notes: This figure plots the true values for pi, the fraction of first-round voters in the 2013 Chilean
presidential election who voted in the runoff in unit i, and qi, the fraction of first-round non-voters in the
2013 Chilean presidential election who vote in the runoff in unit i, for all ballot boxes in the 50 largest
districts in the country.

plots the true pairs of fractions (pi, qi) for each ballot box in the final sample along with
the true values for µp and µq in red. They are, respectively, 0.71 and 0.11, meaning that on
aggregate 71% of first-round voters and 11% of first-round non-voters vote in the runoff.

Figure 3 shows that there are some outliers along the y-axis and that the variance
along the x-axis is much larger than along the y-axis. This means that the decision to vote
in the runoff for first-round voters is relatively heterogeneous across units. In contrast,
the decision to vote for first-round non-voters is more homogenous and concentrated on
lower values. Approximately 85% of the ballot boxes have a value of pi of at least 0.6,
which explains why the true values of µp and µq lie relatively far off to the right of the
unit square despite the distribution of the true unit-level fractions.

We present three sets of estimates. First, we estimate the transition matrix using all
ballot boxes in the sample together, meaning we estimate µp and µq using approximately
20,000 units. In this case, we present estimations for our model and Goodman regressions
(see Section 2), given that such a large number of units makes the estimation of the
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Bayesian hierarchical model in King, Rosen, and Tanner (1999) unviable. This is among
the disadvantages of these approaches that were outlined in Section 3. For our second
set of estimates, we estimate µp and µq separately for each of the 50 municipalities in
the sample, using a number of ballot boxes ranging from 200 to 1000 per municipality.
To estimate the true values for µp and µq for the whole sample, we then average these
estimates over the 50 municipalities weighting each estimate proportionally to the number
of voters in each. We present estimations for our model and the King, Rosen, and Tanner
(1999) model. In our final set of estimates, we show how our model may be extended to
deal with multiple clusters in the true values of pi and qi.

All Ballot Boxes

We first present results for our model and for Goodman regressions estimated using all
20,000 units in the sample together. Table 7 shows the estimation results and the RWMSE
for the unit estimates, while Table 8 presents results regarding the estimation of σ2

p and
σ2
q .

Table 7: Chile 2x2 Application - Results by Ballot Boxes

Runoff
True Values Minimum Distance Goodman Regression

First Round Votes Abstains Votes Abstains Votes Abstains
Total 3,138,010 4,700,772 3,138,010 4,700,772 3,138,010 4,700,772

Votes 3,778,113 0.70894 0.29106 0.71019 0.28981 0.86907 0.13093
(0.13436) (0.13436) (0.00111) (0.00111) (0.00391) (0.00391)

Abstains 4,060,669 0.10611 0.89389 0.10726 0.89274 -0.05700 1.05700
(0.05436) (0.05436) (0.00075) (0.00075) (0.00350) (0.00350)

RWMSE - Unit Estimates - pi: 0.07093 qi: 0.05264 pi: 0.20966 qi: 0.1717

Notes: This table presents the resulting estimates for the true values for µp and µq using our model and
Goodman (1953) regressions. Sample standard deviations are in parentheses for the true values. Bootstrap
standard errors using 10.000 samples are in parentheses for the Minimum Distance model. Robust standard
errors are in parentheses for the Goodman regressions.

As expected given the large number of units, estimates from our model are quite accurate
for both µp and µq. In particular, our estimates are within two standard deviations from
the true values. This is not the case when estimating µp and µq with Goodman regressions.
The estimate for µp is much larger, while the resulting estimate for µq is negative. None
of these estimates are within two standard deviations of the true values. This highlights
that Goodman regressions are often inadequate for ecological inference, given that it
returns estimates outside the [0, 1] interval for the relevant parameters despite having been
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Table 8: Chile 2x2 Application - Standard Deviation Estimates by Ballot Boxes

σp σq

True Values 0.13436 0.05436
Estimates 0.05379 0.07146

Estimates: Sample Variance 0.08247 0.05424

Notes: This table presents our estimates for σp and σq. These are the standard deviations for the fractions
of first-round voters and non-voters who vote in the runoff to the 2013 Chilean presidential election,
respectively. In order, rows contain the true values for σp and σq, our estimates for σp and σq, and the
estimate for σp and σq using the sample variance of p̂i and q̂i. See Section 4 for details regarding the
previous parameters and estimators.

estimated with approximately 20,000 units and a relatively low level of aggregation. Its
large RWMSE for its unit estimates results from the assumption of uniform fractions pi
and qi across units.

Our estimates for σp and σq, presented in Table 8, are relatively accurate for σq but
not for σp. This is likely a consequence of the odd distribution of the true values in Figure
3, which might make accurately estimating these parameters difficult. In this case, the
sample standard deviations of our unit estimates provide more accurate estimates for the
sample standard deviations of the true unit-level fractions.

As with the previous application, the estimation of µp and µq is carried out successfully.
Furthermore, we conducted our estimation using a number of units that did not allow for
the use of more computationally intensive models, highlighting one of the advantages of
our approach over others in applications with a relatively low level of aggregation such as
this.

By District

We now present the results for our second set of estimates. In this case, we first estimate
µp and µq within each municipality individually. We then compute an estimate of these
fractions for the whole sample by taking a weighted average of the previous estimates with
weights proportional to the number of voters in each municipality. Since we are estimating
µp and µq within municipalities as our first step, in Figure 4 we plot the (pi, qi) pairs
for four of the largest municipalities as colored points along with the (pi, qi) pairs for
the whole sample in the background. The same general pattern in Figure 3 holds for all
four municipalities. However, in some, the pairs (pi, qi) are more clearly separated into
two groups. For instance, in the panel on the bottom left, for La Florida, they form two
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clusters. This suggests that the estimation of µp and µq within each municipality may not
be as precise as the estimates presented in the previous section for all ballot boxes since
we are estimating bunching all ballot boxes together rather than using the fact that there
are two somewhat clearly distinguished clusters. This was not the case in the previous set
of estimates, since using all ballot boxes together blurs that there seem to be two clusters
in some districts, leading to a single (dispersed) cluster in the data. However, the case
of the bottom-left panel is not true in all districts. As a result, the aggregate estimates
resulting from a weighted average of p̂ and q̂ across the fifty municipalities still provide
accurate estimates of the true values for the whole sample, as shown below.

Results are presented in Table 9. In this case, we do not present results regarding the
estimation of σ2

p and σ2
q . For our model, the point estimates when using this estimation

strategy are not statistically different from the point estimates in the previous case. The
standard errors of our estimates are slightly smaller in this application, and the point
estimates remain extremely close to the true values. Table 9 also shows that the Bayesian
hierarchical model leads to estimates far off the true values. This could be due to our
model being more robust to the presence of multiple clusters in some municipalities (such
as La Florida in Figure 4), in the sense that the precision of our model’s estimates is less
affected by the presence of multiple clusters. Consequently, the RWMSE for both unit
estimates is much lower for our model.

Table 9: Chile 2x2 Application - Results by Districts

Runoff
True Values Minimum Distance Hierarchical Model

First Round Votes Abstains Votes Abstains Votes Abstains
Total 3,138,010 4,700,772 3,138,010 4,700,772 3,138,010 4,700,772

Votes 3,778,113 0.70894 0.29106 0.71069 0.28931 0.81007 0.18993
(0.13436) (0.13436) (0.00108) (0.00108) (0.00069) (0.00069)

Abstains 4,060,669 0.10611 0.89389 0.10408 0.89592 0.01013 0.98987
(0.05436) (0.05436) (0.00075) (0.00075) (0.00058) (0.00058)

RWMSE - Unit Estimates - pi: 0.07620 qi: 0.06272 pi: 0.11588 qi: 0.10767

Notes: This table presents the resulting estimates for the true values of µp and µq for the whole sample
using our model and the King, Rosen, and Tanner (1999) model. Sample standard deviations are in
parentheses for the true values. Bootstrap standard errors using 10.000 samples are in parentheses for the
Minimum Distance model. Standard deviations of the samples drawn out of the posterior distribution are
in parentheses for the Bayesian hierarchical model.

Overall, our model performs much better than the Bayesian hierarchical model in
King, Rosen, and Tanner (1999). Results are also virtually unchanged compared to our
estimates in the previous subsection, where we used all ballot boxes in one go (Table
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Figure 4: Chile 2x2 Application - True Values for Four Selected Municipalities

Notes: This figure plots the true values for pi, the fraction of first-round voters in the 2013 Chilean
presidential election who vote in the runoff in unit i, and qi, the fraction of first-round non-voters in the
2013 Chilean presidential election who vote in the runoff in unit i, for all ballot boxes in four of the fifty
largest municipalities in the country. The grey points are the true values for the whole sample, while the
colored points in each panel are the true values for each specific municipality.

7). The apparent two clusters in some municipalities in Figure 4 may lead to imprecise
estimates within districts, but they are not significant enough to affect the precision of the
aggregate estimates. However, this may not always be the case, and different approaches
are required to deal correctly with ecological inference in the presence of more than one
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cluster. We explore one such possibility in our final set of results for this application.

Multiple Clusters

As was previously discussed, Figure 4 shows that some municipalities have two clusters of
true values of pi and qi, while our model has thus far been estimated without taking this
feature of the data into account. This section shows that our model can be extended to
deal with this case in a straightforward manner.

We proceed in the following way. First, we estimate our model using all available ballot
boxes. This will result in estimates for the true fractions for each unit, i.e., for each ballot
box. Then, we use these estimates to identify two clusters of ballot boxes using k-means
clustering and estimate our model within each cluster. This, in turn, will result in estimates
for µp and µq within each cluster. To obtain estimates for µp and µq for the municipality as
a whole, we take a weighted average of our estimates for µp and µq in each of the clusters
weighting each estimate proportionally to the number of voters in each cluster. The crucial
requirement for this procedure to work is that we correctly identify the two clusters in
the true values of pi and qi using our estimates for these fractions rather than their true
values.

We illustrate the previous strategy using the example of La Florida (see Figure 4) and
estimate µp and µq in three different ways. First, we use all available ballot boxes and
ignore the issue of multiple clusters. Second, we use the previously outlined procedure.
Third, we use the previously outlined procedure but identify the two clusters using the
true values for pi and qi rather than our estimates. We provide these last sets of estimates
to compare the results of our procedure with those of identifying each cluster using the
true values. Results are summarized in Table 10.

Table 10: Chile 2x2 Application - Clusters (La Florida)

No Clusters Estimated Clusters True Clusters
µp µq µp µq µp µq

True Values 0.69889 0.11862 0.69889 0.11862 0.69889 0.11862
Estimates 0.68608 0.13731 0.69778 0.11842 0.69766 0.11818
Difference 0.01281 0.01869 0.00111 0.00020 0.00123 0.00044
RWMSE - Unit Estimates pi: 0.06730 qi: 0.06033 pi: 0.04343 qi: 0.04703 pi: 0.04203 qi: 0.04667
SD - Unit Estimates pi: 0.08366 qi: 0.06213 pi: 0.03196 qi: 0.02528 pi: 0.03233 qi: 0.02565

Notes: This table presents a comparison of the estimates when using clusters for the case of La Florida. In
order, the rows contain the true values for µp and µq, the estimates from the model in the column, the
absolute value of the difference between the estimate and the real value, the population-weighted RWMSE
for the unit estimates, and the standard deviation of the unit estimates.
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First, note that estimating separately by clusters before computing the aggregate
estimates leads to significant gains in accuracy whether these clusters are identified using
the estimated values for the unit-level fractions or their true values. The point estimates for
µp and µq are much closer to the true values, and the RWMSE for the unit-level estimates
drops by between 22% and 35% when clustering using either the estimated or true values.
This is to be expected, given that our model may not return accurate estimates (despite
them being consistent) in the case of multiple clusters. Second, the results of the estimated
and real clusters are very similar. The point estimates are slightly better for the case with
estimated clusters, but the RWMSEs for the unit estimates of pi and qi within La Florida
are lower when using the true clusters. This implies that the clusters identified using the
estimated values are almost exactly the same as those identified using the true values,
which are unobserved in a typical ecological inference application, and constitutes some
evidence that our approach may work in the general case in correctly identifying clusters
of units in the data. We also present the standard deviation of the unit-level estimates
to show the gain in precision that may be achieved when estimating separately for the
two clusters. The standard deviation in each case with clusters drops by more than half
when compared to the “No Clusters” case, which illustrates the gains in efficiency that
are achievable by this approach. Furthermore, the standard deviations with the estimated
clusters are very similar to those with the true clusters, further showing that our model is
able to correctly identify both clusters.

Overall, this is a promising method for dealing with the issue of multiple clusters. The
case of multiple clusters is empirically relevant, and it may arise in several applications
such as the above. Furthermore, these applications are the ones where our approach may
offer further advantages to other ecological inference methods. The estimation of two or
more clusters separately may not be viable with high computational costs, and different
approaches to deal with multiple clusters in other ecological inference models either rely
on being robust to the presence of multiple clusters or on extensions that compound on
the issue of their computational intensity. The approach presented here is free of both of
these issues. However, we will not focus on the case of multiple clusters in this paper but
explore this extension of our model in more detail in future work.

7. Application: RxC Case

We now use our model to estimate voter transitions between the runoff of the 2021
Chilean presidential elections and the 2022 Chilean Constitutional Plebiscite. We first
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offer some context. In the 2021 presidential election runoff, the competing candidates
were Gabriel Boric, a left-wing candidate representing a relatively new political coalition
consisting of several non-traditional left-wing parties, and José Antonio Kast, a right-wing
candidate likewise representing a new political movement outside of traditional right-wing
parties. Both candidates were on the extremes of the political spectrum. The candidates
representing conventional center-left and center-right coalitions came in fourth and fifth,
respectively, in the first round of the elections10. In the 2022 Constitutional Plebiscite, the
two competing options were to approve or reject the draft for a new constitution presented
by the Constitutional Convention after a year of work. Leading to the elections, several
controversies involving the elected representatives to the Convention and some of the
articles that were included in the draft, such as the one declaring Chile a plurinational
state, led to the most likely outcome being its rejection, despite the overwhelming result
in the 2020 Constitutional Plebiscite two years prior that led to the establishment of the
Constitutional Convention.

To estimate voter transitions between both elections, we group the voting-age population
(in what follows, voters) in each election into three categories, making this an RxC ecological
inference problem in the same fashion as that described at the end of Section 2. In the
presidential election runoff, voters are split between Boric voters, Kast voters, and a
group called Nulls, Blanks, and Abstentions (N-B-A), in which we group null votes, blank
votes, and those voters that chose not to vote. In the 2022 plebiscite, voters are likewise
split among Approve, Reject, and N-B-A voters. As in the 2x2 applications, we estimate
the realized fractions for these voter transitions rather than underlying probabilities. In
particular, we are interested in the fractions of Boric, Kast, and N-B-A voters that voted
for each of the three alternatives in the 2022 plebiscite, both at the aggregate level and at
the level of each unit.

7.1. Data

We use data from the Chilean Electoral Service (Servel) at the municipal level11 for each
election, which includes data on the number of voters for each option and the number of

10The candidate that came in third place, representing the populist Partido de la Gente, ran his whole
campaign from the US due to a standing alimony payment issue in Chile with his ex-wife.

11Like in the previous application for Chile, the lowest level of aggregation available is at the ballot box
level. However, the assignment to ballot boxes changed significantly between elections, so we cannot use
data at this level. Therefore, we group the ballot box data at the level of each municipality, which is the
next possible lowest level of aggregation. Doing this significantly reduces the chances of this change being
an issue for estimation.
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voters in each election12. Table 11 presents the election results.

Table 11: 2021 Presidential Election Runoff and 2022 Plebiscite Results

Number Percentage

Presidential Runoff
Boric 4,596,579 30.73%
Kast 3,640,606 24.34%

N-B-A 6,722,771 44.94%
Voting Age Population 14,959,956 100%

Constitutional Plebiscite
Approve 4,826,237 32.01%

Reject 7,862,072 52.15%
N-B-A 2,387,313 15.84%

Voting Age Population 15,075,622 100%

Notes: This table contains the results from the 2021 Presidential Runoff between Gabriel Boric and José
Antonio Kast and for the 2022 Constitutional Plebiscite. In both elections, the “N-B-A” category groups
null votes, blank votes, and voters who did not vote.

Note that there is a drastic decrease in the number of N-B-A voters between both
elections. This is due to the presidential election runoff being conducted under a voluntary
voting policy and a compulsory voting policy being implemented for the constitutional
plebiscite. Since voter registration in Chile is automatic, this meant that all citizens of
voting age had to vote or risk the possibility of a fine. There was also a significant increase
in the number of Reject voters compared to the number of Kast voters. These results
suggest that most Boric voters opted to approve the draft, while most Kast and N-B-A
voters opted to reject it.

One issue for the estimation of our model is that, as shown in Table 11, there was an
increase in the number of voters between both elections. Given that the time gap between
both elections is less than a year, the increase is marginal compared to the total number of
voters. However, as explained in Section 4, estimating our model requires the same number
of voters in both elections. To deal with this issue, we artificially modify the total number
of votes for each option in the runoff of the presidential election while keeping the results
in percentage terms unchanged. This should not significantly affect our results since (i) the
increase in the number of voters is only a small percentage of the total number of votes

12Data from the presidential runoff corresponds to the official results, while data from the constitutional
plebiscite corresponds to provisional data from Servel. Provisional data leads only to insignificant differences
in the total number of votes for each option, which have a negligible effect on the results.
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Figure 5: Presidential Election Runoff vs Constitutional Plebiscite Percentage Vote

Notes: Each panel plots the percentage obtained by each candidate in each unit in the runoff to the
presidential election against the percentage obtained by each of the two main options in the constitutional
plebiscite. The size of each point in the scatter plot represents the total number of voters in the runoff
in each unit. Official and provisional results for the runoff and the constitutional plebiscite, respectively,
were obtained at the ballot-box level from the Chilean Electoral Service.

and (ii) identification of the transition matrices for each unit and at the aggregate level
depends mainly on the percentage of votes obtained by each option in either election13.

13An alternative to the previous way of dealing with the change in the electorate is to incorporate the
change by modifying the number of people in the N-B-A category in the first election. For example, if the
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Figure 5 shows the relation between the percentage of total votes obtained by each
option in the runoff in each unit with the two main options in the constitutional plebiscite,
which provides further evidence regarding voter transitions between both elections along
with some caveats. First, while the percentage of Boric and Approve voters and Kast and
Reject voters have a strong linear relationship (see panels 1 and 4), such a linear relation
is absent in the other cases. For instance, there are several outliers in the relationship
between the percentage vote for Boric and the percentage vote to Reject. Second, the
percentage vote for the Reject option is larger than the percentage vote for Kast in every
municipality, but the same does not hold for the support for the approval of the draft and
the support for Boric. The outliers in each of the panels are units with a small number of
voters and three units where the support for Kast and the option to reject was particularly
strong (Las Condes, Vitacura, and Lo Barnechea). These three units consist of the three
wealthiest municipalities in Chile. In our estimation, we use only the 150 municipalities
with the largest number of voters, excluding Las Condes, Vitacura, and Lo Barnechea, as
a way to eliminate most of these outliers14. The sample encompasses slightly under 85% of
the total number of voters.

7.2. Results

We present estimates for the weighted version of our model for the RxC case. In particular,
we use the weighted version of (9), weighting units proportionally to their number of voters
and computing our estimates using the NLOPTR non-linear optimization library in R.
We also estimate the Rosen et al. (2001) RxC Bayesian hierarchical model using the PyEI
library in Python15 (Knudson, Schoenbach, and Becker, 2021) and assess convergence
in the same way as we did in Section 5. Table 12 presents the results for both models.
Since the true values are unknown, we cannot present the true transition matrix for this
application.

Our results are consistent with the previous discussion. First, approximately 92%
of Boric and 94% of Kast voters voted to approve and reject the constitutional draft,

number of N-B-A votes in the first election was two, but there was an increase in the electorate between
both elections of two voters, we change the number of N-B-A votes in the first election to 4. Since voters
who were incorporated between elections did not vote in the first election, this fits the definition of the
N-B-A category given in the main text. Results (not shown) when using this way of dealing with the
change in the electorate are very similar for both models and do not change the analysis.

14Including or excluding Las Condes, Vitacura, and Lo Barnechea has virtually no effects on the results
of either of the models that we present in this section.

15Results for the Rosen et al. (2001) model were similar when using the eiPack library (Lau, Moore,
and Kellermann, 2007) in R.
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Table 12: Chile 3x3 Application - Results and Comparison

Constitutional Plebiscite
Minimum Distance Bayesian Hierarchical Model

Presidential Runoff Approve Reject N-B-A Approve Reject N-B-A
Total 4,826,237 7,862,072 2,387,313 4,826,237 7,862,072 2,387,313

Boric 4,596,579 0.92410 0.05360 0.02230 0.95667 0.03229 0.01104
(0.01433) (0.01074) (0.00447) (0.00768) (0.00748) (0.00567)

Kast 3,640,606 0.01792 0.94277 0.03931 0.02982 0.88533 0.08485
(0.00565) (0.04600) (0.04418) (0.01596) (0.03273) (0.03080)

N-B-A 8,329,332 0.08269 0.60461 0.31270 0.05737 0.64676 0.29587
(0.00998) (0.03218) (0.02674) (0.00898) (0.01694) (0.01595)

Notes: This table presents the resulting estimates for the voter transitions from the 2021 presidential
runoff to the 2022 Constitutional Plebiscite using our model and the Rosen et al. (2001) model. Bootstrap
standard errors using 1000 samples are in parentheses for the Minimum Distance model. Standard
deviations of the samples drawn out of the posterior distribution are in parentheses for the Bayesian
hierarchical model.

respectively. This is consistent with panels 1 and 4 of Figure 5. However, the fraction of
Boric voters who voted to reject is higher than that of Kast voters who voted to approve,
which suggests that the Approve option was slightly less successful in gaining the vote
of sympathizing groups. Furthermore, of the large number of voters that voted either to
approve or reject the draft in the constitutional plebiscite but belong to the N-B-A group
in the presidential runoff, approximately 88% voted to reject and only 12% to approve the
constitutional draft. This is important since it is likely that these voters were brought on
by the compulsory voting policy implemented for the constitutional plebiscite.

Table 12 also shows that our results are similar to those of the Rosen et al. (2001)
model, although there are some differences in the point estimates, particularly in the
Kast to N-B-A transition and in the N-B-A to Approve and N-B-A to Reject transitions.
For the Kast to N-B-A transition, the point estimates for our model fall within the 95%
credible intervals for the corresponding Bayesian estimates, meaning there is no significant
difference between these estimates. This is not the case for the other two transitions, but
these differences do not alter the interpretation of the results. In both cases, most runoff
N-B-A voters rejected the constitutional draft. Furthermore, since most of the estimates
for these transitions are relatively close to 0 and 1 and given the results of Section 5, there
is reason to believe that our model may be more accurate in this particular application.

Figure 6 presents the unit-level estimates from our model for the transitions from each
option in the runoff into the two main options in the constitutional plebiscite. For each
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Figure 6: Chile 3x3 Application - Unit Level Estimates for the Minimum Distance Model

Notes: This figure plots the unit-level estimates for the voter transitions between the runoff of the 2021
presidential election and the 2022 constitutional plebiscite resulting from our model. Each point represents
one group of voters in the runoff for one unit. Its position along the x-axis indicates the estimated fraction
of voters in a given group that voted to approve the draft, and each point’s position along the y-axis
indicates the estimated fraction of voters in a given group that voted to reject the draft.

unit, each point represents one group of voters in the runoff. Its position along the x-axis
indicates the estimated fraction of voters from that group that voted to approve, while its
position along the y-axis indicates the estimated fraction of voters from that group that
voted to reject.

Several interesting results follow from this figure. First, Boric voters, predictably, have
a strong tendency to vote to approve the draft in all units. However, there is also some
heterogeneity in their choices. In particular, the unit-level estimates for the fraction of
Boric voters who voted to reject range from 0% to approximately 16%. Kast voters, on
the other hand, are more homogenous. Our estimates for the fraction of Kast voters who
voted to approve the draft range from 0% to just 4% across all units, and the median is
approximately 1%. This further illustrates the point made from Table 12 that Boric voters
were more likely to reject the draft than Kast voters were to approve it.

N-B-A voters from the runoff display two patterns. First, the estimates for the fraction
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of N-B-A voters that voted to approve range from 0% to approximately 13%, meaning
that the vote to approve among this group of voters is strikingly low in all units. The
range of these estimates across all units is actually lower than that for the fraction of Boric
voters who voted to reject the draft. On the other hand, the estimates for the N-B-A to
Reject transition range from approximately 37% up to 79%, with the 25th percentile for
these estimates at 59% and the median at 64%. Along with the estimates for the N-B-A to
Approve transition, these results imply that runoff N-B-A voters voted overwhelmingly for
the Reject option in most units. This also suggests that the primary source of heterogeneity
in the voting patterns of N-B-A voters results from the decision to either not vote despite
the compulsory voting policy16 or voting to reject, while the decision to approve is more
stable at low values across all units.

These results and those in Table 12 have significant implications regarding the analysis
of these results and the impact of the compulsory voting policy implemented for the 2022
plebiscite. First, the discussion around Figure 6 suggests that voters who had not voted
in the presidential election runoff and were thus likely brought on by the compulsory
voting policy in place in the 2022 plebiscite are either (i) relatively more right-leaning
than the rest of the population or (ii) “reactionary” voters who vote for the option that
punishes the incumbent, which in these elections meant voting to reject the draft for the
new constitution. Even though we cannot distinguish between these hypotheses based on
our results alone, this is an important contribution to further understanding the results of
these elections, providing to our knowledge the first evidence of these tendencies among
new voters17.

Second, since most new voters (the N-B-A group in the presidential election runoff)
voted to Reject, a plausible scenario is that the Reject option would have lost much of
its support without a compulsory voting policy. This is because the decision to not vote
tends to be persistent between elections (see, for example, the true values in Table 7),
and so we might assume that most of these voters would not have voted if not for the
compulsory voting policy in place. In an extreme scenario, assuming that none of the
runoff N-B-A voters would have voted, the Approve option would have won the election
with approximately 54%. In a more realistic scenario, the perception of this election as
more relevant than usual would have likely led to an increase in new voters relative to
other elections, even with a voluntary voting policy. However, given that the bulk of the

16Despite the possibility of a fine, the probability of actually being fined is very low. The perceived
likelihood of being fined is likely much higher than the actual probability, however, which possibly led to
the significant increase in the number of votes.

17We pursue this issue further in Altman et al. (2023).
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new votes for the option to reject came from N-B-A voters, it is highly likely that the
result under a voluntary voting policy would have been the approval of the draft rather
than its rejection.

8. Conclusion

This paper presented a novel approach to ecological inference, particularly to estimating
voter transition matrices between two elections. Our estimation procedure has the benefit of
having a clear intuition, which contrasts with the increasingly elaborate methods developed
to deal with this problem. In the 2x2 case, we divide voters in each election into two
groups and assume that voters in each group in the first election vote for each group in the
second election with an unknown probability which varies across units. We assume that
these probabilities are realizations of i.i.d. random variables with means and variances that
vary across groups of voters in the first election. Furthermore, we assume that voters vote
independently from each other. These assumptions imply that the conditional expected
value of the number of votes for each group in the second election is a function of these
probabilities. To estimate the means and variances of the previous random variables, we
impose these first moment conditions as constraints. We do this by replacing the expected
values with their sample means, in the spirit of the method of moments. Our estimates for
the expected values of the unit-level probabilities then consist of the points in the unit
square that minimize the squared Euclidean distance to these constraints.

We show that, under our assumptions, the resulting estimators are consistent. We
also obtain consistent estimators for the variance of the unit-level values across units.
Furthermore, our procedure has properties that simplify estimation significantly and make
it less computationally intensive than current approaches. In particular, we obtain our
estimates by solving an optimization problem with a unique solution and a quadratic
objective function. This allows our model to conduct inference on large voter transition
matrices and with large datasets, which is not always the case for the simulation-based
methods in King (1997), King, Rosen, and Tanner (1999), and Rosen et al. (2001).
Furthermore, simulation studies show that it accurately estimates the true parameter
values in small samples. In these simulations, we find that the performance of our model
(as measured by the RMSE of its estimates) is similar to more established approaches and
that it provides superior estimates when the true parameter values are close to 0 and 1.
Finally, we show how our model may be extended in a straightforward way to deal with
the presence of multiple clusters in the true values for the voter transitions.
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We illustrated our model with two 2x2 applications and one RxC application of
ecological inference. In both 2x2 applications, the true values of the transition matrix were
known, which allowed us to compare the estimates of our model to the true values and to
the King, Rosen, and Tanner (1999) model. In our application using US voter registration
data by race, our model returned similar estimates to more established approaches. We
presented three estimates in our application to the 2013 Chilean presidential elections. We
were able to show that our model is better suited than other approaches to work with large
datasets, that it provides more accurate estimates of the true values, and that it can be
extended in a simple way to work when there are multiple clusters of true voter transitions
across units. Our approach for this scenario correctly identified the two clusters observed
in the true values of the voter transitions and provided better, more precise estimates than
those that resulted from estimating our model ignoring the presence of multiple clusters.

For our RxC application, we estimated the voter transition matrix between the 2021
Chilean presidential election runoff and the 2022 Constitutional Plebiscite, in which voters
chose whether to approve or reject the draft for a new constitution proposed by the
Constitutional Convention. Our estimates were similar to the Rosen et al. (2001) model, a
more established approach to ecological inference. Furthermore, our results have interesting
implications for the analysis of these elections. In particular, we find that the voters
brought on to the 2022 plebiscite by new compulsory voting policies heavily favored the
option to reject the draft. Specifically, close to 90% of voters who did not vote in the
runoff but did vote in the 2022 plebiscite voted to reject it. Under the assumption that
most of these voters would have chosen not to vote under a voluntary voting policy, this
suggests that in the absence of a compulsory voting policy the result would have likely
been the approval of the constitutional draft rather than its rejection. In the extreme
scenario where only voters who voted for one of the competing candidates in the runoff
voted in the 2022 plebiscite, the draft for a new constitution would have been approved by
a margin of 54% to 46%.

The present work may be expanded in several directions. One possibility is to refine and
emphasize the extension to multiple clusters. This is important since there are numerous
potential applications where we might expect there to be more than one cluster in the
true voter transitions, as was the case for La Florida in the 2x2 application in Chile.
Furthermore, computationally intensive methods of ecological inference might not be as
straightforward to extend to deal with this scenario, meaning our approach may offer
further advantages to other models in cases with multiple clusters. Another avenue to
develop this work further is to rigorously extend our estimator to the RxC case by proving
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that the properties listed in Section 4 continue to hold in this more general case.
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Appendix A. Proof of Proposition 1

Take the first formulation of the problem:

min
{p̂,q̂}∈[0,1]2

N∑
i=1

[
(p̂i(p̂, q̂)− p̂)2 + (q̂i(p̂, q̂)− q̂)2

]
s.t. (p̂i, q̂i) ∈ argmin

p̂i,q̂i∈[0,1]
[(p̂i − p̂)2 + (q̂i − q̂)2] ∀i = 1, ..., N

s.t. vi = nip̂i +miq̂i

(A1)

Note that the objective function in the outer level of the problem is additive over i and
simply add the problems that are solved in the inner level for each i. This means that
solving the inner level of the problem of a pair p̂i and q̂i under its restrictions is the
same as minimizing the objective function of the outer level choosing p̂i and q̂i under the
same restrictions as the inner level. Therefore, we can turn this problem into a standard
optimization problem in the following way:

min
{{p̂,q̂},{p̂i,q̂i}Ni=1}

N∑
i=1

[
(p̂i − p̂)2 + (q̂i − q̂)2

]
s.t. p̂, q̂ ∈ [0, 1]

vi = nip̂i +miq̂i, i = 1, 2, ..., N

p̂i, q̂i ∈ [0, 1], i = 1, 2, ..., N

(A2)

Intuitively, in this equation, we are simultaneously restricting the first moment constraints
to the unit square and choosing the point (p̂, q̂) that is closest to these constraints. Since
we are restricting every p̂i and q̂i to be between 0 and 1, the bound constraints on p̂ and q̂
are redundant. Therefore, this simplifies to the following problem:

min
{{p̂,q̂},{p̂i,q̂i}i=1,2,...,N}

N∑
i=1

[
(p̂i − p̂)2 + (q̂i − q̂)2

]
s.t. vi = nip̂i +miq̂i, i = 1, 2, ..., N

p̂i, q̂i ∈ [0, 1], i = 1, 2, ..., N

(A3)

And the solutions to this problem for p̂ and q̂ are known to be p̂ = 1
N

∑N
i=1 p̂i and

q̂ = 1
N

∑N
i=1 q̂i. Replacing this into the objective function, we get the second formulation

of the problem.
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Appendix B. Proof of Proposition 2

To briefly recap the notation, consider N units indexed by i. For each unit, we have the
following information:

• ni: Number of votes in the first election.

• mi: Number of people that did not vote in the first election.

• vi: Number of votes in the second election.

It is easier to solve this problem by introducing some extra notation. Rename p̂i to p̂1i, the
probability that someone from group 1, first round voters, votes again, and q̂i to p̂2i, the
probability that someone from group 2, first round non-voters, votes in the runoff. The
problem that we solve to get the estimators for each unit is the following:

min
{p̂i,q̂i}i=1,...,N

∑N
i=1

[∑2
c=1(p̂ci −

1
N
p̂ci)

2
]

s.t. nip̂1i +mip̂2i = vi, i = 1, ..., N

p̂1i, p̂2i ∈ [0, 1], i = 1, ..., N

(B1)

To prove this is a convex optimization problem, we will first prove that the restrictions
define a convex set in which we choose the parameter values. We then prove that the
objective function is convex in this convex set. First, define the following sets for each
restriction in each unit:

Gi =
{
(p̂1i, p̂2i) ∈ [0, 1]2 : nip̂1i +mip̂2i = vi

}
, i = 1, ..., N

It is straightforward to see that these sets are convex for all i. Taking points p,p′ ∈ Gi,
λp+ (1− λ)p′ ∈ [0, 1]2 for λ ∈ [0, 1], and

ni[λp1i + (1− λ)p′1i] +mi[λp2i + (1− λ)p′2i] = λ(nip1i +mip2i) + (1− λ)(nip
′
1i +mip

′
2i)

= λvi + (1− λ)vi = vi

given that nip1i +mip2i = vi y nip
′
1i +mip

′
2i = vi. The set G over which we minimize the

objective function is the intersection of all sets Gi. Given that each set is convex and the
arbitrary intersection of convex sets is also convex, the restrictions define a convex set G
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over which we minimize the objective function.

Given that G is a convex set, to prove that the objective function F is convex, it is
enough to prove that the following is true for p,p′ ∈ G:

F (λp+ (1− λ)p′) ≤ λF (p) + (1− λ)F (p′)

We first rearrange the left-hand side:

F (λp+ (1− λ)p′) =
N∑
i=1

 2∑
c=1

(
(λpci + (1− λ)p′ci)−

1

N

N∑
i=1

(λpci + (1− λ)p′ci)

)2


=
N∑
i=1

 2∑
c=1

(
λ(pci −

1

N

N∑
i=1

pci) + (1− λ)(p′ci −
1

N

N∑
i=1

p′ci)

)2


Then the right hand side:

λF (p) + (1− λ)F (p′) = λ
N∑
i=1

[
2∑

c=1

(pci −
1

N

N∑
i=1

pci)
2

]
+ (1− λ)

N∑
i=1

[
2∑

c=1

(p′ci −
1

N

N∑
i=1

p′ci)
2

]

=
N∑
i=1

[
2∑

c=1

(
λ(pci −

1

N

N∑
i=1

pci)
2 + (1− λ)(p′ci −

1

N

N∑
i=1

p′ci)
2

)]

Finally, and given that f(x) = x2 is a strictly convex function, Jensen’s inequality implies
that the following is true for all r and c:

(
λ(pci −

1

N

N∑
i=1

pci) + (1− λ)(p′ci −
1

N

N∑
i=1

p′ci)

)2

<(
λ(pci −

1

N

N∑
i=1

pci)
2 + (1− λ)(p′ci −

1

N

N∑
i=1

p′ci)
2

)

Then, we have that F (λp+ (1− λp′)) < λF (p) + (1− λ)F (p′), and F is a strictly convex
function. Since strict convexity implies convexity, it follows that (??) is an optimization
problem where we minimize a convex function over a convex set. That is, it is a convex
optimization problem. Furthermore, given that F is strictly convex, it has a unique global
optimum. That it is quadratic is clear by looking at the objective function in the second
formulation of the problem.
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Appendix C. Proof of Proposition 3

Notation

For each area i = 1, 2, ..., n, define the following variables:

• ni: Number of people who voted in the first election.

• mi: Number of people who did not vote in the first election.

• vi: Number of votes in the second election.

• pi: Probability that someone who voted in the first round votes again in unit i.

If we condition on pi and qi, the number of votes in the second election is distributed as
the sum of two independent Binomial random variables:

(vi|pi, qi) ∼ Bin(ni, pi) + Bin(mi, qi),

where

pi ∼ (µp, σ
2
p),

qi ∼ (µq, σ
2
q ).

and both are bounded between 0 and 118. Then, using the law of iterated expectations
and the law of total variance:

E(vi) = niµp +miµq

Var(vi) = ni[µp(1− µp) + σ2
p(ni − 1)] +mi[µq(1− µq) + σ2

q (mi − 1)]

We can the write vi as follows:

vi = niµp +miµq + εi

where εi = (vi − E(vi)), and the following holds:

µi ≡ E(εi) = 0

σ2
i ≡ Var(εi) = ni[µp(1− µp) + σ2

p(ni − 1)] +mi[µq(1− µq) + σ2
q (mi − 1)]

18Note that these are the parameters, not our estimates.
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For ease of notation, define wi = (n2
i +m2

i )
−1, as well as the following matrices:

β =
(
µp µq

)′
Y =

(
v1 v2 . . . vN

)′
X =

(
n1 n2 . . . nN

m1 m2 . . .mN

)′

ε =
(
ε1 ε2 . . . εN

)′

W =


w1 0 . . . 0

0 w2 . . . 0
...

... . . . ...

0 0 . . . wN


we can then write our model as follows:

Y = Xβ + ε

We can rewrite our vector of estimators β̂ when there are only interior solutions using
the previous matrices as follows:

β̂ =

[ ∑N
i=1 n

2
iwi

∑N
i=1 nimiwi∑N

i=1 nimiwi

∑N
i=1m

2
iwi

]−1

1

N

[∑N
i=1 niwivi∑N
i=1miwivi

]
(C1)

= (X ′WX)−1(X ′WY ) (C2)

(C3)

while the estimators for the fractions within each unit are

p̂i = γ1ip̂− γ2iq̂ + niwivi (C4)

q̂i = γ3iq̂ − γ2ip̂+miwivi (C5)

where

γ1i = n2
iwi γ2i = nimiwi γ3i = m2

iwi
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and γj = 1
N

∑N
i=1 γji for j = 1, 2, 3. Then, if we ignore bound constraints, we have a

particular case of an OLS estimation with heteroskedasticity. We can rewrite β̂ as follows:

β̂ = β +

(
1

N
X ′WX

)−1(
1

N
X ′Wε

)
We can also get closed expressions for p̂, q̂, p̂i, and q̂i in the case with interior solutions by
solving (C3) and plugging these solutions into (C4) and (C5). This results in the following
expressions:

p̂ =
1

N

N∑
i=1

(Γ3ni − Γ2mi)wivi

q̂ =
1

N

N∑
i=1

(Γ1mi − Γ2ni)wivi

p̂i =
1

N

∑
j

[(γ3jΓ3 + γ2jΓ2)nj − (γ3jΓ2 + γ2jΓ1)mj]wjvj + niwivi

q̂i =
1

N

∑
j

[(γ1jΓ1 + γ2jΓ2)mj − (γ1jΓ2 + γ2jΓ3)nj]wjvj +miwivi

where Γj =
γj

γ1γ3−γ2
2
, for j = 1, 2, 3.

Consistency

We know that

β̂ = β + (X ′WX)
−1

(X ′Wε) .

From this, it follows that

β̂ ∼ N

(
β,

1

N

(
1

N
X ′WX

)−1(
1

N
X ′WΩW ′X

)(
1

N
X ′WX

)−1
)
.

where

Ω = E (εε′) =


σ2
1 0 . . . 0

0 σ2
2 . . . 0

...
... . . . ...

0 0 . . . σ2
N

 .
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Since it is unbiased, β̂ will converge in mean square to β if the variance goes to zero.
For this to happen, we need 1

N
X ′WX and 1

N
X ′WΩW ′X to converge to positive definite

matrices as N → ∞. If we let X̃ = W
1
2X and Ω̃ = W

1
2ΩW

1
2 , we can write

β̂ ∼ N

(
β,

1

N

(
1

N
X̃

′
X̃

)−1(
1

N
X̃

′
Ω̃X̃

)(
1

N
X̃

′
X̃

)−1
)
.

So we need to prove that the terms 1
N
X̃

′
X̃ and X̃

′
Ω̃X̃ converge to positive definite

matrices. To do this, it is sufficient to prove that the matrix X̃ meets the Grenander
conditions and that the terms on the diagonal of Ω̃, σ2

iwi, are finite for all i (see Amemiya
1985; Greene 2018). Letting λi =

n2
i

m2
i
, ai = 1

1+ 1
λi

, and bi = 1
1+λi

, the Grenander conditions

for X̃ are as follows:

• limN→∞
∑
ai = +∞ and limN→∞

∑
bi = +∞. For this to be true, we need 1/λi to be

bounded between 0 and any positive constant for all units or that as N → ∞, there
are always units in which 1/λi is bounded between 0 and any positive constant. This
is not restrictive in our context since it simply means that neither ni nor mi tend to
zero for all units as N increases.

• limN→∞
n2
i∑
aj

= 0 and limN→∞
m2

i∑
bj

= 0 for all i. Given that ni and mi are finite for all
i, this holds as long as the previous condition holds.

• The full rank condition for the matrix X̃ is always met as the sample size increases.
The only requirement for this to be true is that ni ̸= mi for at least one unit i and
that there is no constant c such that ni = cmi for all units.

For the condition involving Ω̃, note that

σ2
iwi =

ni[µp(1− µp) + σ2
p(ni − 1)] +mi[µq(1− µq) + σ2

q (mi − 1)]

n2
i +m2

i

<
ni[1 + σ2

p(ni − 1)] +mi[1 + σ2
q (mi − 1)]

n2
i +m2

i

<
ni[1 + ni − 1] +mi[1 +mi − 1]

n2
i +m2

i

= 1

where we used that µp(1 − µp) < 1 and µq(1 − µq) < 1 in the first inequality and the
fact that σ2

p < 1 and σ2
q < 1 in the second inequality. The latter inequalities result from

Popoviciu’s inequality on variances and the fact that each pi and qi is bounded between 0
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and 1. Given the previous points, we know that both 1
N
X ′WX and 1

N
X̃

′
Ω̃X̃ converge to

positive definite matrices as N increases. Therefore, the variance of β̂ goes to zero as the
sample size increases, and β̂ converges in mean square to β. This implies that it converges
in probability, which is the result stated in the main text.

Asymptotic Normality

We first rewrite β̂:

√
N(β̂ − β) =

(
1

N
X ′WX

)−1(
1√
N
X ′Wε

)
We know that 1

N
X ′WX converges to a positive definite matrix, which we call Q. Then,

it is enough to know the distribution of the following vector:

vN = Q−1 1√
N
X ′Wε = Q−1 1√

N

N∑
i=1

xiwiεi = Q−1 1√
N

N∑
i=1

(
niwiεi

miwiεi

)
We use the Lindeberg-Feller CLT, for which we need to verify that some additional
conditions are met. In our context, it is enough to prove that the variance of

√
wiεi is finite

for all i, that the average variance converges to a finite constant, and that the average
variance is not dominated by any term (see Greene 2018). Given that the variance of the
previous term is σ2

iwi, we can summarize the previous points in the following requirements:

• σ2
iwi <∞

• limN→∞
1
N

∑N
i=1 σ

2
iwi <∞

• limN→∞
max(σ2

i wi)∑N
i=1 σ

2
i wi

= 0

We have already shown that the first condition holds. The second condition holds given
that the sum is a series of non-negative terms with partial sums bounded by 1, which
holds since σ2

iwi < 1. Therefore, it converges to a positive constant. The third point holds
given that the denominator tends to infinity as N grows and each σ2

iwi is finite. We can
then use the Lindeberg-Feller CLT to get the following result:

√
N(β̂ − β)

d−→ N

(
0,Q−1plim

(
1

N
X ′WΩW ′X

)
Q−1

)
which is the same result stated in the main text.
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Appendix D. Proof of Corollary 1

Start with the following equation:

min
{p̂i,q̂i}i=1,...,N

∑N
i=1

[
(p̂i − 1

N

∑N
i=1 p̂i)

2 + (q̂i − 1
N

∑N
i=1 q̂i)

2
]

s.t. nip̂i +miq̂i = vi, i = 1, ..., N

p̂i, q̂i ∈ [0, 1], i = 1, ..., N

(D1)

Our estimators for µp and µq will be 1
N

∑N
i=1 p̂i and 1

N

∑N
i=1 q̂i, respectively. We want to

prove that p̂ and q̂ are consistent when imposing bound constraints on p̂i and q̂i in (D1).
We present the proof for p̂. The proof for q̂ is analogous.

Let p̂UR
i be the estimators that result from (D1) without using bound constraints and

let p̂UR = 1
N

∑N
i=1 p̂

UR
i . Define p̂BC

i and p̂BC similarly for the case with bound constraints.
Note that

MSE(p̂BC) = E
[(
p̂BC − µp

)2]
= E

( 1

N

N∑
i=1

p̂BC
i − µp

)2


= E

( 1

N

N∑
i=1

(
p̂BC
i − µp

))2


≤ E

( 1

N

N∑
i=1

(
p̂UR
i − µp

))2
 = MSE(p̂UR)

The inequality comes by noting that since 0 ≤ µp ≤ 1, the difference between each p̂BC
i

and µp will be equal to the difference between p̂UR
i and µp if and only if p̂UR

i falls between
0 and 1. Otherwise, p̂BC

i will be closer to µp than p̂UR
i . We can then write

0 ≤ MSE(p̂BC) ≤ MSE(p̂UR)

Since p̂UR is mean square consistent by Proposition 1 and Proposition 3, letting N → ∞
the term on the right-hand side goes to zero. The squeeze theorem then implies that p̂BC

is mean square consistent as well.
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Appendix E. Proof of Corollary 2

Start with the following expression:

1

N

∑(
p̂i −

1

N

∑
p̂i

)2

+
1

N

∑(
q̂i −

1

N

∑
q̂i

)2

.

This is the same as
1

N

∑
(p̂i − p̂)2 +

1

N

∑
(q̂i − q̂)2 .

We can replace p̂i and q̂i by their known values to arrive at

1

N

∑
n2
iw

2
i ε̂

2
i +

1

N

∑
m2

iw
2
i ε̂

2
i ,

where ε̂i = vi − nip̂−miq̂. We then reorder and note the following:(
1
N

∑
n2
iw

2
i ε̂

2
i

1
N

∑
m2

iw
2
i ε̂

2
i

)
p−→

(
1
N

∑
n2
iw

2
i σ

2
i

1
N

∑
m2

iw
2
i σ

2
i

)
= diag

(
1

N
X ′WΩW ′X

)

where we slightly abuse notation and let diag(Z) denote a column vector with the elements
on the diagonal of matrix Z, and

(
1
N
X ′WΩW ′X

)
is defined in Appendix C, where we

also proved that it converges to a positive definite matrix when proving the asymptotic
normality of the estimators without bound constraints. The matrix on the right-hand side
is therefore well-defined and equal to the following expression:(

1
N

∑
n2
iw

2
i σ

2
i

1
N

∑
m2

iw
2
i σ

2
i

)
=

1

N

( ∑
n3
iw

2
i

∑
n2
imiw

2
i∑

nim
2
iw

2
i

∑
m3

iw
2
i

)(
p(1− p)

q(1− q)

)

+
1

N

( ∑
n3
i (ni − 1)w2

i

∑
n2
imi(mi − 1)w2

i∑
ni(ni − 1)m2

iw
2
i

∑
m3

i (mi − 1)w2
i

)(
σ2
p

σ2
q

)

Then:

1

N

(∑
(p̂i − p̂)2∑
(q̂i − q̂)2

)
p−→ 1

N

( ∑
n3
iw

2
i

∑
n2
imiw

2
i∑

nim
2
iw

2
i

∑
m3

iw
2
i

)(
p(1− p)

q(1− q)

)

+
1

N

( ∑
n3
i (ni − 1)w2

i

∑
n2
imi(mi − 1)w2

i∑
ni(ni − 1)m2

iw
2
i

∑
m3

i (mi − 1)w2
i

)(
σ2
p

σ2
q

)
.

(E1)

55



Solving for σ2
p and σ2

q and reaplacing µp and µq by their estimators, we can then estimate
σ2
p and σ2

q as follows:

[
σ̂2
p

σ̂2
q

]
= N

[ ∑
n3
i (ni − 1)w2

i

∑
n2
imi(mi − 1)w2

i∑
ni(ni − 1)m2

iw
2
i

∑
m3

i (mi − 1)w2
i

]−1

[
1

N

[∑
(p̂i − p̂)2∑
(q̂i − q̂)2

]
− 1

N

[ ∑
n3
iw

2
i

∑
n2
imiw

2
i∑

nim
2
iw

2
i

∑
m3

iw
2
i

][
p̂(1− p̂)

q̂(1− q̂)

]]

These estimators are consistent by (E1), the result of Proposition 3 on the consistency
of p̂ and q̂, and the continuous mapping theorem.
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Appendix F. Proof of Proposition 4

Start by taking the first formulation of the problem:

min
{p̂,q̂}

∑N
i=1 ψi [(p̂i(p̂, q̂)− p̂)2 + (q̂i(p̂, q̂)− q̂)2]

s.t. (p̂i, q̂i) ∈ argmin
p̂i,q̂i∈[0,1]

[(p̂i − p̂)2 + (q̂i − q̂)2] ∀i = 1, ..., N

s.t. vi = nip̂i +miq̂i

(F1)

As in the proof for Proposition 1, since the objective function in the outer level of
the problem is additive over i, solving the inner level of the problem of a pair p̂i and q̂i

under its restrictions is the same as minimizing the objective function of the outer level
choosing p̂i and q̂i under the same restrictions as the inner level. Therefore, we can turn
this problem into a standard optimization problem in the following way:

min
{{p̂,q̂},{p̂i,q̂i}Ni=1}

N∑
i=1

[
ψi(p̂i − p̂)2 + (q̂i − q̂)2

]
s.t. p̂, q̂ ∈ [0, 1]

vi = nip̂i +miq̂i, i = 1, 2, ..., N

p̂i, q̂i ∈ [0, 1], i = 1, 2, ..., N

(F2)

Again, the bound constraints on p̂ and q̂ are redundant given the bound constraints on
each p̂i and q̂i. Therefore, this simplifies to the following problem:

min
{{p̂,q̂},{p̂i,q̂i}i=1,2,...,N}

N∑
i=1

[
ψi(p̂i − p̂)2 + (q̂i − q̂)2

]
s.t. vi = nip̂i +miq̂i, i = 1, 2, ..., N

p̂i, q̂i ∈ [0, 1], i = 1, 2, ..., N

(F3)

And the solutions to this problem for p̂ and q̂ are clearly p̂ =
∑N

i=1 ψip̂i and q̂ =
∑N

i=1 ψiq̂i.
Replacing this into the objective function, we get the second formulation of the problem.
The proof for Proposition 2 for the case with weights follows by starting with the second
formulation of the problem, letting prc =

∑N
i=1 ψiprci, and proceeding in the same manner

outlined in Appendix B. The proof for Proposition 3 follows in the same manner as
the proof Appendix C with only minimal changes by letting each wi be ψiwi, where
wi = (n2

i +m2
i )

−1. The proofs for Corollary 1 and Corollary 2 are likewise unchanged if we
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also let p̂ =
∑N

i=1 ψip̂i and q̂ =
∑N

i=1 ψiq̂i.

58


	Introduction
	The Ecological Inference Problem
	Literature Review
	A Minimum Distance to First Moment Constraints Approach
	Simulation Study
	Application: 2x2 Case
	2x2 Application: US
	2x2 Application: Chile

	Application: RxC Case
	Data
	Results

	Conclusion
	References
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Proposition 4

