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REDES DEFINIDAS POR SOFTWARE EN LA RED DE INTERNET CHILENA:
CONSTRUYENDO RESILIENCIA FRENTE A DESASTRES NATURALES

Chile, un país propenso a desastres naturales como terremotos, tsunamis, erupciones vol-
cánicas y deslizamientos de tierra, a menudo sufre daños generalizados que afectan no solo a
las personas, sino también a las redes de Internet.

Los desastres naturales son impredecibles, por lo que una arquitectura de redes que permita
la gestión dinámica de la red, como las Redes Definidas por Software (SDN, por sus siglas
en inglés), tiene el potencial de ofrecer nuevas soluciones para crear resiliencia y mejorar
calidad de servicio (QoS) en escenarios donde las redes de Internet pueden experimentar
interrupciones parciales debido a desastres. Sin embargo, la arquitectura SDN fue diseñada
originalmente para centros de datos y no para redes de área amplia (WAN).

El objetivo de este trabajo es estudiar la viabilidad de aplicar el paradigma SDN a WAN
para diseñar redes resilientes que mejoren la QoS de los usuarios en escenarios de desastre.

La investigación comienza con una Revisión Sistemática de la Literatura que examina la
aplicación general de SDN sobre WAN, con un enfoque en las técnicas de QoS y resiliencia, así
también como en el impacto específico de los desastres naturales sobre WAN y los beneficios
y desafíos que las SDN pueden aportar en tales situaciones. Con base en los resultados de
la revisión de literatura, se presenta una discusión que analiza los hallazgos e identifica áreas
en las que se necesita más investigación; concluyendo que las SDN se pueden aplicar a WAN
y que si bien existen estudios que utilizan SDN para mejorar la resiliencia en escenarios de
desastre, existe una falta de investigación en técnicas combinadas y la activación automática
de configuraciones de desastre.

Este trabajo propone el diseño y caracteriza un controlador SDN resiliente ante desas-
tres que utiliza tres niveles de priorización basados en IDs, que contiene funcionalidades
que pueden no ser fácilmente aplicables en redes tradicionales. Además, se realiza una im-
plementación del mismo utilizando el framework Ryu. Luego, se construye un entorno de
pruebas utilizando Mininet y Open VSwitch para simular SDN y probar el controlador im-
plementado en escenarios de redes afectadas por desastres, mediante tests funcionales y no
funcionales. Con los resultados de las pruebas, se concluye que el controlador diseñado e
implementado entrega herramientas efectivas para construir una red resiliente. El sistema
diseñado es extensible y permite la fácil adición de otras aplicaciones y funcionalidades al
controlador, lo que lo hace adaptable a nuevas necesidades.

La validación del controlador implementado muestra el valor de las capacidades de mon-
itoreo dinámico y gestión de QoS otorgadas por la arquitectura SDN para su uso en WANs
afectadas por desastres.
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SOFTWARE DEFINED NETWORKS OVER CHILEAN WIDE AREA NETWORKS:
BUILDING RESILIENCE AGAINST NATURAL DISASTERS

Chile, a country prone to natural disasters such as earthquakes, tsunamis, volcano eruptions,
and landslides, often experiences widespread damage that not only affects people but also
impacts the Internet networks.

Natural disasters are unpredictable, thus a networking architecture that allows dynamic
management of the network such as Software Defined Networks (SDNs) has the potential to
offer new solutions for improving resilience and quality of service (QoS) in scenarios where In-
ternet networks may experience partial outages due to disasters. However, SDN architecture
was originally designed for datacenters and not for wide area networks (WANs).

This research aims to study the feasibility of applying the SDN paradigm to WANs in order
to design a resilient network that can enhance QoS for end users during disaster scenarios.

The research starts with a Systematic Literature Review that examines the general ap-
plication of SDNs in WANs, with a focus on QoS and resilience techniques, as well as the
specific impact of natural disasters on WANs and the benefits and challenges that SDNs
can bring in such situations. Based on the results of the literature review, a discussion is
presented, analyzing the findings and identifying areas where further research is needed. The
discussion concludes that SDNs can be applied to WANs and that there are existing studies
that use SDNs to enhance resilience against disaster scenarios, but there is a lack of research
on combined techniques and automated triggering of disaster configurations.

As a contribution to the field, the author proposes a disaster resilient SDN controller
that utilizes three levels of ID-based prioritization. The features of the designed controller
are presented in detail and implemented using Ryu, an SDN controller framework, which
constitutes the second main contribution of this research.

For the third main contribution, the author builds a testbed using Mininet and Open
VSwitch to simulate SDNs and test the implemented disaster resilient controller. The tests
conducted include functional and non-functional tests, with a focus on simulating a disaster
scenario over the network.

Based on the testing results, it is concluded that the designed and implemented disaster
resilient SDN controller effectively provides features and tools to build resilience, as well as
implements new techniques that may not be easily applicable in traditional networks. The
extensibility of the designed system allows for easy addition of other applications and features
to the controller, making it adaptable to evolving needs.

The validation of the designed features of the controller demonstrates the value of the dy-
namic monitoring and QoS management features provided by SDN architecture in designing
a disaster resilient controller for WANs. This research contributes to the body of knowledge
on SDNs and their potential applications in disaster resilient networks.
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Chapter 1

Introduction

1.1 Motivation

Chile is a country susceptible to natural disasters such as earthquakes, tsunamis, volcano
eruptions, landslides, etc. These disasters are known for causing widespread damage in the
stricken area, which not only affects people but also impacts the Internet networks.

The Internet telecommunication systems are susceptible to failures under these scenarios.
An example is the 2010 Chile earthquake and tsunami that occurred on February 27th, where
64% of Chilean IP addresses were unreachable and 70% of networks were on average 9 hours
out of service [48]. Some of the reasons for these failures were the lack of power supply and
partial outages.

Natural disasters affect people negatively as it puts their lives at risk. Telecommunication
systems help in these situations by allowing the coordination of victims’ rescue operations
and confirming safety of peers.

1.2 Problem Statement

The traditional networking architecture approach is static and based on hardware network
appliances. A networking approach called Software Defined Networking (SDN) proposes a
programmable network that allows dynamic network configuration and management through
software applications.

Natural disasters are unpredictable, thus a networking architecture that allows dynamic
management of the network has the potential to enable the design and creation of new
solutions that could help achieve better levels of resilience and quality of service (QoS) in the
scenario of a disaster that causes partial outage of the Internet networks. However, the SDN
architecture was originally designed for datacenters and not for wide area networks (WANs).
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1.3 Purpose statement

The purpose of this work is to study the SDN paradigm and evaluate if it is possible to
apply it to WANs with the intention of designing a resilient network capable of improving
QoS for the end users in a disaster scenario.

1.4 Research questions

The main research questions that will help to determine the state of the art of SDNs in
the context of the problem statement are the following:

1. How can SDNs be applied on WANs?
2. What are the challenges to achieve different levels of QoS or resilience in SDNs?
3. How disasters affect WANs and how SDNs can help mitigate those issues?

And in order to test a developed design, the following research question is needed as well:

4. Which testing frameworks are available to experiment with SDN in WANs?

1.5 Objectives

To achieve the purpose statement in declared in Section 1.3, the specific objectives that
need to be fulfilled are the following:

◦ Perform a Systematic Literature review to determine the state of the art of SDNs in
the context of the problem.

◦ Identify existing frameworks that allow the implementation of SDN solutions.
◦ Design and implement an resilient SDN solution capable of improving QoS in a network

affected by a disaster scenario.
◦ Evaluate the proposed design by implementing a testing setup.

1.6 Importance of the research topic

Understanding natural disaster scenarios is essential for developing effective emergency
response and disaster management strategies. It can help to mitigate the impact of disas-
ters on communities and infrastructure, and ensure that critical services and resources are
available when they are needed the most.

This topic has been broadly studied in the context of traditional and current Internet
architecture. However, the failures seen in the 2010 Chile earthquake and tsunami show
that the Chilean traditional infrastructure was not solid enough to guarantee the operational
continuity [48], showing a necessity for disaster resilient solutions.
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This work proposes to step out of the box of using the traditional networking approach
and not limit the study or development of new disaster resilient solutions to the existing
architecture.

The software defined networking architecture is an emerging technology that is becoming
increasingly important due to its flexibility to manage networks. One of its key features
that allows said flexibility is the ability to maintain a centralized and up-to-date view of the
network, which looks like an excellent resource to analyze a disaster situation, assess damage
and to respond accordingly in a live manner.

However, the SDN architecture was originally designed for datacenters and not for wide
area networks (WANs), thus it is not clear if the current state of this networking paradigm
allows it to be applied to WANs in the first place. It is also not clear which tools allow the
development of solutions in a SDN architecture. This work aims to provide an answer to
these questions and moreover, to develop a disaster resilient SDN solution for WANs and
evaluate its performance.

A successful result on applying SDNs for this problem would open an area of research for
novel disaster resilient solutions.

1.7 Organization

The paper is organized as follows:

◦ Chapter 2 "Systematic Literature Review" provides a comprehensive review of the exist-
ing literature on SDNs, their appliance in WANs and their potential to design disaster
resilient networks.

◦ Chapter 3 "Review Discussion" analyzes and discusses the findings from the literature
review, identifying research gaps and areas for improvement.

◦ Chapter 4 "Framework Design" describes the key elements of the designed framework
and their functions.

◦ Chapter 5 "Framework Implementation" describes the implementation details of the
proposed framework, including the tools and technologies used.

◦ Chapter 6 "Testing and Results" presents the experimental setup, the testing method-
ology and the results obtained.

◦ Chapter 7 "Conclusions" summarizes the findings of the study, highlights contributions,
and suggests directions for future research.
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Chapter 2

Systematic Literature Review

2.1 Introduction

This Section presents a systematic literature review about SDNs, focusing on research
related to its appliance in wide area networks (WANs). This review was performed following
the protocol proposed by Kitchenham in [25].

2.2 Review planning

2.2.1 Objectives

The general problem is to evaluate how effective SDNs are in designing resilient networks
and improving QoS in the scenario of a WAN affected by a natural disaster.

Therefore, the purpose of this review is to study the state of the art of SDNs, starting
with their general application in WANs. It will then focus on QoS and resilience techniques,
before delving into the specifics of the impact of a natural disaster on a WAN and the benefits
or challenges that SDNs bring.

2.2.2 Research questions

Below are listed the research questions that we want to answer in this review:

1. How can SDNs be applied on WANs?
(a) What are the challenges in achieving different levels of QoS or resilience?
(b) How do disasters affect WANs and how can SDNs help mitigate those issues?

2. Which testing frameworks are available to experiment with SDNs in WANs?
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2.2.3 Search strategy

The search for primary studies was conducted using the electronic database IEEE. This
repository was chosen for its relevance in the field of computer science.

Below is the search pattern applied to the aforementioned database. Logic connectors
such as AND, OR, and NOT were used. A bullet below each connector represents elements
separated by the respective connector. An asterisk (*) is used as a wildcard that matches any
word starting with the specified prefix (e.g., resilien* will match resilience, resilient, etc.).

◦ AND
■ software defined network*
■ OR

□ quality of service
□ resilien*

■ OR
□ wide area network*
□ disaster*
□ earthquake*

■ NOT
□ survey

■ NOT
□ vehic* network

The aforementioned query represents the idea of searching for “papers that study SDNs,
mentions either QoS or resilience, discuss WANs, disasters or earthquakes, are not a survey
and do not discuss vehicular networks”.

In Table 2.1 the specific query performed on the database is shown.

Repository Query

IEEE Xplore

( ("All Metadata":"software defined network*") AND
( ("All Metadata":"quality of service") OR ("All Meta-
data":resilien*) ) AND
( ("All Metadata":"wide area network*") OR ("All Meta-
data":disaster*) OR ("All Metadata":earthquake*) ) AND
NOT ("All Metadata":survey) AND
NOT ("All Metadata":"vehic* network*) )

Table 2.1: Query performed on IEEE repository in order to retrieve primary studies for this
review.
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2.2.4 Study selection criteria

To select papers for study, the following inclusion and exclusion criteria were applied:

◦ Inclusion criteria
■ The paper is written in english
■ The paper is a primary study (journal or proceeding)
■ The paper was published between 2007 and 2017
■ The paper study SDNs applied in WANs
■ The paper shows conclusions about their study

◦ Exlusion criteria
■ The paper is not available online
■ The paper focus is vehicular networks
■ The paper is a survey

2.2.5 Study selection process

The papers were selected by the author based on the inclusion and exclusion criteria. The
author read both the title and abstract of each paper obtained through the search strategy.
Following the study selection criteria, the author decided whether the paper was approved
for further steps.

2.2.6 Study quality assessment

In addition to the inclusion and exclusion criteria, it is important to assess the quality of
the primary studies. Therefore, the following questions must be answered positively by the
study:

◦ Was the topic of study described appropriately in the paper?
◦ Were their contributions explained in detail?
◦ Does the paper present results and conclusions?
◦ Are the results concrete and comprehensive?

2.2.7 Data extraction

To accurately record the information obtained from the primary studies, a data extraction
form was designed. The contents of this form are detailed below:

◦ Title
◦ Abstract
◦ Authors
◦ Source (repository)
◦ Publication type
◦ Research question’s answers
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The data extraction was performed by the author, who filled in the aforementioned form
to record the relevant information obtained from the primary studies.

2.2.8 Data analysis

The research questions were dissected to obtain accurate information. The details of this
breakdown are shown in Table 2.2.

Context Question Possible answer
General Main problem studied Name and description

of the problem studied

Applying SDN
in WANs

Challenges of applying SDN
in WANs

List of challenges
Potential solutions

Benefits of applying SDN in
WANs

List of benefits

Challenges to resilience
List of challenges
Potential solutions

Challenges to QoS
List of challenges
Potential solutions

Which disasters are men-
tioned?

List of disasters

Challenges observed once a
disaster strikes

List of challenges
Potential solutions

Testing
framework

Real or virtual? real, virtual, n/a
Protocols used List of protocols used
Tools used List of tools used
Data used real, simulated

Table 2.2: Data gathering form used to extract information from the selected studies.

2.3 Results

2.3.1 Statistical results

The search strategy yielded 57 studies that matched the criteria in the IEEE library. Out
of these, 45 studies passed the study selection criteria and quality assessment. A summary
of the selected studies per publication year is shown in Table 2.3.

Year Number of papers published Number of papers selected
2013 5 3
2014 10 9
2015 13 11
2016 12 9
Total 57 45

Table 2.3: Summary of selected studies per publication year.
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Note that even though the study selection criteria includes studies published since 2007,
the oldest papers that appear were published in 2013. This aligns with the fact that SDNs
were conceptualized around the timeframe of 2008 at Stanford University [36]. Furthermore,
initially SDNs were primarily designed for campus networks [37], thus early studies focused on
developing the technology. As time progressed, SDN studies shifted towards applying them
in various contexts to address diverse problems. In particular, based on the data collected in
this study, research on SDN-WANs began in 2013. The number of studies published on this
topic reached its peak in 2016, as depicted in Table 2.3.

Table A.1 shows a summary of the 45 articles that were selected for the data extraction
process and their main research topic.

2.3.2 Data analysis results

The studies that passed the selection criteria and quality assessment share a common
topic: SDNs applied to WANs. However, the data analysis breakdown reveals that this field
of study encompasses a wide range of sub-problems. In this section, we will first present the
general concept of SDN and then discuss the main problems studied by the papers included
in this review.

2.3.2.1 SDN overview

The main idea behind the development of SDN is to separate the data plane from the
control plane, thereby creating an abstraction between the controller (control plane) and the
network elements [44].

Decoupling the control and forward (data) planes makes the network programmable and
provides logic centralized control [59] through the controller. Therefore, the SDN controller
is often referred to as the brain of the network [56], because it has a global and accurate view
of the network and orchestrates all operations in the data plane [10].

The centralized controller(s) can be programmed to manage network resources and oversee
operations taking place at all network devices under its supervision [24].

To manage the data plane, communication between the control plane and the data plane
is facilitated through a southbound API such as OpenFlow [27].

OpenFlow is a protocol that allows a SDN controller to communicate with an OpenFlow
Logical Switch [18]. It provides a method to establish a controller-switch connection (channel)
which is used to send messages between these entities. Depending on the situation, these
messages can be initiated by either the controller or the switch.

An OpenFlow Logical Switch contains of one or more flow tables (which perform packet
lookups and forwarding), a group table, a meter table, and one or more OpenFlow channels
which connect it to an external controller. Figure 2.1 illustrates the aforementioned switch
components.
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Figure 2.1: Main components of an OpenFlow Switch [19].

A traditional switch uses a routing table to determine the appropriate forwarding path for
incoming packets. In contrast, an OpenFlow Switch processes all incoming packets through
the OpenFlow pipeline. The OpenFlow pipeline consists of one or more flow tables, each
containing flow entries.

The pipeline processing always begins with ingress processing at the first flow table. When
a packet is processed by a flow table, it is matched against the flow entries in that table to
select a flow entry:

◦ If a matching flow entry is found, the instruction set included in that flow entry is
executed. These instructions may include directing the packet to another flow table,
where the same process of matching and instruction execution is repeated. Pipeline
processing can only proceed forward and does not allow backward traversal.

◦ If the matching flow entry does not direct packets to another flow table, the current
stage of pipeline processing terminates at this table.Tthe packet is then processed with
its associated action set, which typically involves forwarding the packet to its intended
destination.

◦ If a packet does not match a flow entry in a flow table, it defaults to the table miss
flow. The instructions defined in the table-miss flow entry in the flow table determine
how to process unmatched packets. Useful options include dropping them, forwarding
them to another table or sending them to the controller via packet-in messages over
the control channel.

A packet-in message is used to notify the controller about a new flow, and based on its
configuration, the controller can make decisions such as installing new flow entries, tables,
etc.

The pipeline within the switch is defined by the controller immediately after establishing
the controller-switch connection. Consequently, it is the controller who configures all the
rules installed on the switch. This approach transforms the switches in the network into
simple packet forwarding devices [29].
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Lastly, this architecture is complemented by the application plane. The application plane
manages the control plane through applications, also referred to as controller applications [20].
These applications request information from and provide instructions to the control plane.
The application plane interacts with the control plane through a northbound API. These
applications serve as the programmable components of SDNs, enabling dynamic network
management.

The three planes of the SDN architecture: data plane, control plane and application plane,
are summarized in Figure 2.2

Figure 2.2: Main functional layers or planes of the SDN architecture.

The SDN architecture makes the networks programmable and provides centralized control
of multi vendor environments [29].

2.3.2.2 SDN applicability on WANs: Challenges overview

The primary motivation for proposing the SDN architecture in WANs is to leverage the
advantages of network programmability and management offered by this innovative archi-
tecture. As previously mentioned in Section 2.3.1, SDNs were initially designed for campus
networks, i.e. local area networks (LANs). LANs and WANs differ in terms of their in-
tended use and scale. This Section will highlight the challenges that SDNs must address to
be effectively implemented in WANs.

10



The first challenge identified is scalability. As mentioned in [37], scalability becomes a
concern when applying SDNs to WANs due to the centralized nature of the original SD-
N/OpenFlow model. The issues highlighted are if the controller has the capacity of handling
a huge number of OpenFlow requests, and if it is possible to keep a global view of a WAN
inside of it. The concerns raised include whether the controller can effectively handle a
large volume of OpenFlow requests and whether it can maintain a global view of the entire
WAN within its control. Similarly, [52] also point out that early deployments of SDN re-
lied on physically-centralized control-plane architectures with a single controller, which can
lead to scalability, performance, and reliability problems in a large network deployment such
as WANs. They also emphasize that the centralized design is vulnerable to disruptions and
attacks, particularly due to having a single point of failure. Both studies aforementioned pro-
vide the same solution, which is to rely on multiple controllers to manage the network. This
approach is known as a distributed (or decentralized) control plane, and is further analyzed
in Section 2.3.2.3.

Following the distributed control plane approach, another challenges that arises are deter-
mining the optimal placement of multiple controllers, the required number of controllers, and
how to connect them to the switches to achieve satisfactory levels of reliability and perfor-
mance [34]. This particular area of study is referred to as the Controller Placement problem
and is discussed in detail in Section 2.3.2.4.

Another important aspect to consider is that the Internet infrastructure face numerous
challenges in normal operation, such as power outages, link failures, device failures, and
more [37]. Some of these challenges are not experienced in controlled environments such as
campus networks or data centers, which were the original deployment scenarios for SDNs.
These challenges in WANs translate into multiple issues for SD-WANs. Firstly, the phys-
ical separation between the control plane and the forwarding plane reduces the reliability
of their communication. If a failure occurs that disconnects their communication channel,
the forwarding plane could be disabled, leading to packet loss, degraded performance, and
reduced resilience. Secondly, the controller in an SD-WAN environment deals with a con-
stantly changing network. This includes component failures and configuration changes, which
are particularly common and extensive in disaster scenarios. Maintaining an accurate and
up-to-date view of the network becomes crucial so that the controller can make informed
management decisions in a timely manner. These challenges highlight the need for resilient
and adaptive mechanisms in SD-WANs to ensure reliable and efficient network operation,
particularly in the face of disruptions and dynamic network conditions. These challenges
highlight the need for recovery strategies in the event of network changes, as well as in criti-
cal scenarios such as disasters. These strategies aim to enhance network resilience and ensure
quality of service (QoS) for end users. In Section 2.3.2.5, we will delve deeper into the review
of these strategies, which focus on improving network resilience and QoS in SD-WANs.

Securing communications in WANs is another challenge that was not initially addressed
by the original concept of SDNs designed for LANs. WANs, with their widespread design
and connection through the public internet, introduce additional security considerations.
Potential solutions to this challenge are reviewed in Section 2.3.2.7.
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The final challenge of deploying SDNs in WANs is the presence of multiple Internet Service
Providers (ISPs) and the variability in their domain configurations across the WAN. This
lack of uniformity makes coordination between ISPs non-trivial and introduces complexities
in managing the network [37]. Additionally, there is a possibility of interconnecting SDN
domains with non-SDN domains [8], further adding to the challenges of network management
and coordination. These limitations and their implications are analyzed in Section 2.3.2.10.

2.3.2.3 Distributed Control Plane in WANs

SDNs advocate for a logically centralized control plane, which can be physically composed
of either a centralized controller or distributed physical controllers. Distributing the control
plane is often necessary to achieve scalability in large networks, enhance resilience, and
prevent a single controller from becoming a point of failure [41].

Phemius et al. [46][47] propose DISCO, a Distributed SDN Control plane for WAN and
overlay networks. In their proposed architecture, each DISCO controller is in charge of
a SDN domain. A DISCO controller contains intra-domain and inter-domain functionali-
ties. The intra-domain module monitors the networks and manages flows (i.e. data plane
management). The inter-domain module communicates with neighbor domain controllers to
exchange aggregated network-wide information through two key components: (1) a messen-
ger module which provides a control channel between neighboring controllers and (2) agents
that use this channel to exchange network wide information with other controllers. The
details of the intra-domain work was extended from a previous study [45] (not included in
this review), which shows that data plane management does not care if the control plane is
composed by single controller or by multiple distributed controllers.

By having a number of high performance controllers and successful deployment, the scal-
ability problems are solved and the focus is directed at improving performance and resilience
of SDN WANs [37].

Controller deployment in terms of number and placement inside the network is further
reviewed in the next Section. Performance and resilience in SDN WANs is reviewed on
2.3.2.5.

2.3.2.4 Controller placement problem in WANs

The controller placement problem (CPP) indicates the number of required controllers to
handle the switches’ demands as well as their location (in the network topology) in an efficient
and cost effective manner [3]. This problem reduces to a Facility Location Problem and is
proven to be NP-Hard [44].

The general controller placement problem is well explored and now more and more authors
have addressed the Facility Location problem in the context of controller placement in SDN
networks [27]. Furthermore, this review gathered five studies ([34], [52], [52], [54], [44]) which
analyzes the problem specifically in the context of SDN-WANs, which accounts for 11.1% of
the papers studied in this review.
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The reason this problem continues to be studied is because depending on the constraints
applied to formulate the problem, different algorithms are created to account for them.

In [27] the authors focus on two constraints: (1) minimizing the average latency between
the nodes and their controllers and (2) minimizing the load imbalance among controllers; to
propose an algorithm to solve the CPP.

In [44], authors propose a formulation of the problem that aims to minimize the number of
controllers taking into account the maximal allowed latency between routers and controllers,
the maximum allowed latency between controllers, and the load balancing constraint between
the controllers sub-domains.

In [54], the authors formulate the problem from a resilient point of view by taking into
account the capacity of the controllers as well as the demands of the switches, and also
assuming in-band control (i.e. no dedicated links between controllers and switches).

In [34], the authors provide an algorithm to solve the CPP in large scale SDNs under the
following constraints: controllers placed on existing nodes location, controller-switch channel
using existing transport network, traffic flow considered as existing demand on the network,
priority on nodes with highest bandwidth processing and latency calculated as propagation
latency.

In [52], the authors tackle the problem from a disaster resilient point of view. They design
the control plane considering survivability requirements of the network, i.e. they decide on
the total number of controllers and their placement in the topology based on the following
constraints: number of controllers guaranteed per switch, number of controllers active at
any time, maximum number of switches assigned per controller, Pij set of paths available
between nodes i and j of the network, Uy

p probability of path p surviving disaster y and a set
of disasters.

2.3.2.5 Resilient SD-WANs

With a decentralized approach, the failure of a controller no longer constitutes a single
point of failure as long as mechanisms are in place to ensure continuity of service.

The OpenFlow protocol allows a switch to establish communication with multiple con-
trollers since version 1.2. Having multiple controllers improves reliability, as the switch can
continue to operate in OpenFlow mode if one controller or controller connection fails. The
hand-over between controllers is initiated by the controllers themselves, which enables fast
recovery from failure and controller load balancing [19].

In the context of fast recovery, Obadia et al. [41], present two failover mechanisms to
migrate control of orphan switches to other active controllers. The strategy involves the
active controllers discovering the failure of its neighbor controllers.
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In the context of a controller channel failure, Nguyen et al. [36] propose using multiple
paths for each controller-switch communication and argue that having a single path for Open-
Flow channel decreases reliability of the SDN WAN. The authors propose using multipath
in-band control with TCP/IP connectivity due to cost-effectiveness instead of building and
maintaining a dedicated out-of-band control channel. They evaluate their work on [42].

In the context of load balancing, Singh et al. [53] propose an algorithm to optimize load
balancing among controllers by taking the decision of when to migrate a switch from one
controller to another based on the controllers response time, in order to minimize it.

Chang et al. [10] design the SDN control plane with the purpose of addressing the high
traffic load on edge routers in WANs. Their approach focuses on dynamically controlling the
traffic at ingress devices according to the overall state of the network. They also propose a
method to logically enlarge the network buffers of routers through global packet caching.

2.3.2.6 Routing algorithms in SD-WANs

The routing algorithms found in this review for SD-WANs are mostly traditional algo-
rithms for WANs adapted to the SDN architecture. One of the main features of SDN that
benefits the implementation of these algorithms is having a centralized and global view of
the network, which reduces the communication overhead needed to achieve the same view in
traditional distributed approaches [3]. In this review, we found two articles that completely
focus on routing algorithms in SDNs.

Firstly in [57], the authors use a modified Dijkstra algorithm to route new flows and ensure
maximal resource utilization. They implement this algorithm as a controller application.

In [3], the authors proposed a routing algorithm called Shortest-Feasible OpenFlow Path
(SFOP) to find the optimal path between nodes, reduce latency, and enhance resource utiliza-
tion without increasing computation complexity. They use a modified shortest-widest path
algorithm in conjunction with the inputs: (1) residual bandwidth and (2) feasible bandwidth.
These inputs are obtained from statistics collected from the OpenFlow interface.

2.3.2.7 Security in SD-WANs

This literature review did not recollect articles that specifically address SDN architectural
security in WANs. However, two studies address how to secure user communications through
SD-WANs.

In [56], the authors describe a method for establishing a secure overlay network over
SD WAN, with the purpose of having a safe mechanism for data transmission between two
locations and prevent interception by unauthorized third parties. They propose a SDN
control plane, encrypted links through VXLAN tunneling and virtual switching using Open
vSwitch.

Authors in [15] propose an SDN framework for airborne connectivity. The key features
include securing cockpit traffic through tunneling and separating it from cabin traffic, as well
as prioritizing cockpit traffic over cabin traffic.
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2.3.2.8 Disaster scenario in traditional WANs

In order to design recovery strategies for disaster scenarios, it is essential to characterize
these scenarios to understand how they affect WANs. This review identified eight different
studies that provide detailed information about specific events, their consequences, and the
faults they generate in WANs.

Concrete events analyzed by the authors of studies gathered by this review are detailed
below:

◦ World Trade Center disaster in 2001 [29].
◦ Tsunami in Asia-Pacific (2004) [29].
◦ Hurricane Katrina in the United States of America in 2005 [29].
◦ Sichuan earthquake in 2008, where around 30,000 km of fiber optic cables and 4,000

telecom offices were damaged [52].
◦ The Great East Japan Earthquake and Tsunami in 2011 [42][51][50], where around

1,500 telecom buildings faced long power outages by the main shock on March 11th.
There was a widespread blackout over northern and central Japan [50]. While most
were fixed, 700 telecom buildings experienced power outages by the aftershock on April
7th, 2011 [52]. In addition, many Japanese coastal areas were geologically isolated [50].

Furthermore, other events mentioned in [58] and [38] include earthquakes, hurricanes,
floods, fires, power outages, electronic attacks and intentional attacks.

In general, natural disasters are characterized as unexpected [38], unpredictable, and dis-
ruptive [58]. During major disasters, it is common to observe significant network congestion
and experience service outages due to infrastructure damage [26]. [26] also highlights that
emergency scenarios can lead to high levels of packet loss, which can be attributed to network
congestion or infrastructure damage.

In the context of Internet services, infrastructural damage caused by a disaster results in
widespread node and link failures [38], failure of wired communication network, power supply
failures in communication equipment, equipment failures, and high levels of congestion in the
communication network [51].

One characteristic of natural disasters is their potential to simultaneously destroy multiple
network facilities within a specific geographical area [58]. Such disasters may cause partial
or complete damage to the terrestrial Internet infrastructure, leading to an inability of the
network to handle the usual surge in resource demand and provide the required bandwidth
and quality of service (QoS) guarantees [26]. Under these conditions, emergency communi-
cations reporting catastrophic or emergency events may experience packet loss, resulting in
incomplete and/or delayed communications [29].

The loss of transmission capability of disaster information can cause delays in rescuing
victims, directing people to the shelters, confirming safe evacuations and providing urgent
medical treatment [50]. A timely and fast response is crucial in disaster situations as a
significant portion of fatalities occur within the first few hours of the disaster [29].
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On top of high congestion and large scale node and link failures, Ogawa et al. [42] identify
the following limiting factors:

◦ Some network administrators change the network configuration manually. If the admin-
istrators of information infrastructures are unable to reach the place of the information
infrastructures at disasters, network configurations can not be changed. This highlights
the need for automated network operations.

◦ Network configuration technologies should not control the networks of other organi-
zations. Therefore, changes in configuration can only be performed in the controlled
domain.

◦ Latest research shows the existence of disaster areas where the Internet is available even
immediately after the earthquake. Therefore, connections among the different available
parts of communication networks can provide some level of communication in damaged
areas at disasters, as long as these surviving areas can be reconnected.

2.3.2.9 SD-WANs for disaster scenarios

The first challenge for SD-WANs is whether the SDN architecture design is able to endure
disasters. Thus, K. Nguyen et al. [37] investigate the deployment of SDN in a realistic
network topology and simulate a disaster scenario. They evaluate two important issues: the
communication between networking devices and controllers, and the recovery process after
link failures. The evaluation results confirm the applicability of SDN on disaster-resilient
WANs.

The second challenge is to detect the disaster scenario, which is necessary to enable restora-
tion techniques. While manual user input can be used to notify the controller about a disaster,
there are alternatives, such as using sensors that provide information to the controllers or
leveraging SDN network monitoring features ([50], [39]), to trigger disaster configuration.
OpenFlow provides built-in messages that allow the switch to communicate link failures to
the controller. It also offers messages to verify the liveness of a controller-switch connection
and measure latency or bandwidth [18]. These combined features enable the development of
disaster detection techniques.

Benet et al. [6] consider techniques that utilize OpenFlow to detect link failures as reactive
link failure recovery. They argue that although accurate, the process of (1) the switch
notifying the SDN controller and (2) the controller reacting and installing new forwarding
rules might take over 150ms. Therefore, the reaction time, from when the disaster occurs
until it is detected by the controller, must be taken into consideration.

Then, the next challenge is to address changes in the network caused by multiple compo-
nent failures and to design recovery strategies to handle the disaster scenario.

In [5], it is argued that reroute techniques based on shortest path restoration do not
guarantee the fastest recovery time in scenarios involving multiple node failures. As a result,
they formulate the problem of flow restoration with minimum operation cost in OpenFlow
networks. They considered the number of flow operations required for path restoration and
developed rerouting algorithms. Additionally, they prove that the problem of discovering the
path with the minimum operation cost has a polynomial complexity.
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In [58], the authors design a control plane with the objective of achieving fast recovery
and improved reachability. They employ a combination of pre-computed backup topologies
to rebuild failed connections and propose a controller module to identify new paths when
necessary. The pre-computed backup topologies help reduce the routing computation load
on the controller. Their approach is implemented by utilizing the multiple tables pipeline
processing and fast failover group tables of OpenFlow.

V. Nguyen et al. [39] propose a method for selecting appropriate backup paths to reroute
flows based on location trustworthiness. Their Location Trustworthiness framework gathers
disaster data from sensors and calculates trustworthiness values for locations, links, and
switches. They design their framework within an SDN architecture using OpenFlow switches
and develop a controller application to implement the framework.

Finally, the last challenge to address is high congestion. In this scenario, authors propose
methods to ensure the QoS for critical communications.

One technique that is applied is prioritizing important traffic. The authors in [60] empha-
size that prioritizing crucial traffic, such as mail, phone, or social networking services (SNS),
instead of mobile video traffic, has been proven to be effective in disaster scenarios. In [23] it
is explicitly stated that resource prioritization may be required in order to maintain a level
of QoS in an emergency situation.

Manic et al. [29] propose a framework for Emergency Communication Systems (ECS)
using SDN. In their design, each service or application is allocated a dedicated "channel"
utilizing VLANs for isolation. They employ SDN and OpenFlow to achieve dynamic priori-
tization within the framework.

Ogawa et al. [42] propose a method to prioritize crucial communications that are associ-
ated with disaster areas. Their approach utilizes OpenFlow functionalities to assign "Disaster
IDs" to packets related to disaster areas, which allows the switches to identify and prioritize
them.

Their method relies on having an IP address and geographical location mapping database
at the controllers. When a switch receives a new flow, it sends the first packet to the controller.
Then, the controller determines if this flow is related to a disaster area by examining the
source and destination IP addresses. Subsequently, the controller installs a rule in the switch
to assign a disaster ID (or a "non-disaster" ID) to packets belonging to that flow. This enables
all network equipment to make processing decisions based on the IDs without constantly
consulting the controllers.

The switches handle and prioritize packets based on IDs through pre-installed set rules
by the controller. Thus, reading and prioritizing IDs from existing flows does not require
querying the controller or the database.
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2.3.2.10 SD-WAN and multiple Internet Service Providers

One of the main advantages of SDNs is that this network model is dynamic and can
be easily controlled by the administrator solely through the control plane [53]. However,
in WANs there are multiple ISPs, and each ISP implements its own set of policies. The
studies collected in this review make different assumptions regarding domains and their
configurations.

Most studies in this review don’t address the multiple service provider scenario and authors
test their proposals inside a single domain configured by them.

Some authors assume that SDNs are deployed throughout the entire WAN. For instance,
in [31], it is assumed that the entire transport network is managed as a unified logical for-
warding domain, where the SDN controllers make the forwarding decisions. Similarly, in
[33], authors assume that each WAN service provider operates its own SDN platform, but
the SDN controllers are interconnected, exchanging information about their respective do-
mains. The proposal by Ogawa et al. [42], which is reviewed in Section 2.3.2.9, also requires
organizations to adopt the same SDN configuration in order to facilitate cooperation.

The aforementioned setup allows for collaboration between domains. However, even if
SDNs are implemented in all WAN domains, challenges can arise due to potentially having
different configurations. In [24], the authors address the issue of using different OpenFlow
versions among domains, particularly in the context of quality of service (QoS). The Open-
Flow protocol has supported per-flow QoS since version 1.3, whereas older versions do not
have the capability to manage per-flow bandwidth. To overcome this, their proposal functions
as a proxy between SDN controllers and network devices, monitoring and intercepting Open-
Flow messages to use Open vSwitch Database Management protocol to manage bandwidth
at the switch’s output ports.

The scenario where no assumptions can be made about neighboring domains is only ad-
dressed in one study. Specifically, the authors in [8] acknowledge the possibility that SDN
domains may be interconnected through non-SDN domains. In response to this scenario,
they propose a northbound interface to allow SDN domains management through Network
Function Virtualization (NFV) orchestrator to account for this scenario.

2.3.2.11 SD-WAN implementation and testing

The studies included in this review use a variety of tools and protocols in order to im-
plement and test their proposals. This Section summarizes the tools and protocols used
specifically for the context of implementing and testing an SD-WAN. Tools which were used
for other purposes (e.g. to test algorithms runtime) were omitted.
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2.3.2.11.1 SDN Controller Platforms

Six different controllers were used by authors in this review to perform their experiments:

◦ NOX is the first SDN controller developed and is only used by one study in this review
[58]. It’s open source and written in C++.

◦ POX is a sister project of NOX written in Python, and it is used by four papers in this
research ([24], [3], [30], [37]). It’s also an open source project.

◦ ONOS controller is an open source project written in Java and is used in two studies
([16], [8]).

◦ Ryu controller is a component-based SDN framework. It is written in Python and open
source. One study uses it to implement their controller [9].

◦ OpenDaylight is an open source Java-based controller used by five studies in this review
([59], [39], [49], [21], [6]).

◦ Floodlight is a community developed, open source, Java controller. It is used by ten
studies [53, 43, 38, 33, 25, 22, 19, 11, 9, 2], making it the most used controller in this
review.

The reasonings of why a controller was chosen over another are only listed in three studies:

◦ Authors in [57] mentioned that they initially used NOX for their prototypes. However,
since NOX development has been stopped on GitHub, they migrated to Floodlight
because it has an active community of contributors.

◦ In [24], authors include both POX and Floodlight in their experiments due to being
“the most popular SDN controllers”.

◦ In [26], authors decide to use Floodlight because of it being “relatively easy to use”.

And after deciding on a controller, two authors mentioned difficulties in working with it:

◦ Authors in [56] mention that Floodlight does not have good documentation for config-
urations in the v1.1 release, while also highlighting that high availability features are
missing in the same version.

◦ In [14], authors also highlight that Floodlight GUI is not reliable and does not update
correctly.

In summary, it is shown that all authors in this review decided to use open source con-
trollers. The only factors mentioned that led to choosing one controller over the other are
popularity, ease of use and having an active development community.

2.3.2.11.2 Southbound API

As previously mentioned in Section 2.3.2.1, a southbound API in the context of SDN
is used to communicate controllers and switches or routers of the network. In this review,
sixteen papers specified the southbound API chosen, and all sixteen of them used OpenFlow.
In particular, ten articles did not specify the exact version ([51], [56], [14], [21], [29], [8], [8],
[30], [41], [47], [46]), two specified they used OpenFlow 1.0 ([24], [37]) and four studies used
OpenFlow 1.3 ([60], [49], [26], [58])
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2.3.2.11.3 Real and virtual testbeds

Regarding testbed used or constructed, most authors chose to simulate virtual networks.
In particular, twenty one studies chose to simulate virtual networks [4], [29], [44], [24], [39],
[33], [14], [49], [53], [26], [3], [8], [58], [37], [41], [47], [46], [10]. [6], [28], [7], while only seven
[50], [35], [14], [51], [16], [52], [7] use real testbeds. Authors in [7] use a combination of both
real and simulated testbed for their experiments.

2.3.2.11.4 Topologies

In terms of topologies used, the following authors only mentioned the amount of nodes in
their topology:

◦ The authors of [39] mentioned a topology with 40 nodes and 70 links.
◦ In [49], the authors utilized a topology with 4 nodes, each representing a different site.
◦ A physical network with 14 nodes and 32-Gbps link capacity was used by the authors

in [52],
◦ In [14], the authors employed a real network topology that included 5 WAN switches,

3 ships, and 2 data centers at shore.
◦ A WAN topology with 10 routers and 2 controllers was used in [53].

Authors in [37], [27] and [54] used topologies obtained from the Internet Topology zoo,
which are based on real topologies.

Other authors used known topology types:

◦ Authors in [41] used a linear topology of N switches and 3 controllers.
◦ In [6], two k=4 fat tree topologies were used.

Other studies such as [58] and [7] use random topologies, while authors in [47] and [10]
both emulate enterprise production networks.

2.3.2.11.5 Network emulators and simulators

Different tools exist which allow the creation of virtual networks. This Section summarizes
the ones used by the authors in this review.

◦ Mininet is a network emulator which is able to create a network of virtual hosts,
switches, controllers, and links [13]. It is the most used network emulator in this
review with fourteen studies using it ([24], [39], [33], [14], [49], [53], [26], [3], [8], [58],
[37], [41], [47], [46]).

◦ ns-3 is a discrete-event network simulator [40] and is used by one study in this review
[10].

◦ CORE emulator is a tool for building virtual networks [12] and is used by one study
[6].

◦ netem provides network emulation functionality by emulating properties of WANs [17].
It is also used by one study [41].

20



A relevant note is that authors in [41] combined both Mininet and netem in their simula-
tions.

2.3.2.11.6 Virtual Switch

In the case of simulated or emulated SDN testbeds, these need virtualized switches that
are compatible with the SDN architecture. The list below summarizes all the virtual switches
found that were used in the studies gathered by this review:

◦ FLARE switch, which was used by one study [60].
◦ OpenVSwitch, which was used in ten studies ([42], [51], [56], [20], [14], [26], [29], [41],

[47][46]).

2.3.2.11.7 Other tools

Some additional tools that were utilized by multiple authors include:

◦ iPerf, used in [60], [39], [20], [53] and [21].
◦ matlab, used in [31], [27] and [54].
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Chapter 3

Review Discussion

3.1 Introduction

This Chapter proposes a discussion based on the results of the Systematic Literature
Review performed on Chapter 2. The discussion will focus on analyzing the results of the re-
view, formulate overall answers to the research questions and identify areas that lack existing
studies; with the purpose of generating novel contributions and develop the core ideas that
a resilient SDN framework designed for Chilean networks should consider and implement in
order to be effective.

3.2 Applicability of SDN on WANs

Based on the conducted review, it is concluded that SDNs can be applied over WANs
and is proven to be an effective technology. The studied articles show the original SDN
architecture was studied and enhanced in order to provide a solution and support the new
challenges present on WANs.

3.3 Security on WANs

As it was previously reviewed in Section 2.3.2.7, security in the context of protecting the
SD-WAN architecture is not covered by this review. This is not a surprise to the author
considering the focus of the systematic literature review was resilience and QoS over SD-
WANs, and securing SD-WANs is out of the scope of this work.

3.4 Disaster resilient WANs

This literature review compiled a set of techniques which, by taking advantage of the SDN
architecture, are able to provide resilience and QoS on WANs affected by disaster scenarios.
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Authors of the reviewed studies propose methods in isolation, which is not surprising
given the publication format of the articles. Combining techniques to ensure resilient SD-
WANs is not explored in the studies gathered by this review, which becomes an open field
for contributions. Thus, in this work we will explore combining techniques, and the reasons
of which methods were chosen are going to be discussed in the following Sections.

3.4.1 Disaster detection in WANs

This literature review confirmed SDN monitoring capabilities provide useful tools to design
disaster detection techniques. However, other than mentioning sensor usage or monitoring
link and switch failure as a strategy, no further implementation details are provided.

Questions such as under which conditions should disaster configuration be triggered and
how a controller can be automatically re-configured to switch from normal execution into
disaster configuration are not answered. Moreover, when should normal execution be restored
is another topic not covered by studies in this review.

Disaster detection is key in order to develop a SD-WAN disaster resilient framework.
Thus, this work will propose an answer to these questions by developing a solution using the
SD-WAN architecture and providing details and considerations about how to implement it.

3.4.2 Prioritization

Prioritization was agreed on and proven to be effective as a QoS measure to ensure critical
communications in highly congested networks, which are characteristic of disaster scenarios.

3.4.2.1 ID usage to determine prioritization

ECS prioritization was proposed by Manic et al. [29]. However, their prioritization method
of providing dedicated channels to each prioritized service is not scalable and can only ensure
channels to a limited amount of services.

Prioritization using IDs, proposed by Ogawa et al. [42] is an idea that can be enhanced.
In their proposal, prioritization IDs are assigned to communications related to disaster areas.
In this work we propose to enhance ID attachment by also including ECS messages into the
list of important messages.

It is also worth noting that ECS messages are only emitted by a select amount of senders
and it can be argued that are more important than a randomly picked message related to
a disaster area. Due to this reason, we decided to assign a different disaster ID to ECS
messages, which allows to (1) differentiate them from other disaster related messages and (2)
to manage them differently and provide a higher level of prioritization.
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3.4.2.2 Prioritization based on IP address versus packet content

Ogawa et al. [42] defines “messages related to disaster areas” as packets that have their
source IP address or destination IP address located in a geographical area affected by a
disaster. They also review the possibility of attaching disaster IDs based on packet contents.
Ogawa et al. analyzed the latter method and they encountered a flaw which corresponds
to false rumors. False rumors related to a disaster would also get prioritized with a packet
content analysis approach. They end up not implementing ID attachment based on packet
content and label it as a potential future work.

We decided against using packet content as a method to determine disaster IDs attachment
based on Ogawa’s review and also based on the considerations of controller reaction time
highlighted by Benet et al [6]. Requesting the controller to decide if an ID should be attached
to a flow already has a baseline reaction time of one round time trip (RTT) in the controller-
switch channel, thus the time the controller needs in order to process the request must be
minimized. Packet content analysis, depending on how accurate it needs to be, requires more
processing power than querying an IP database, which is why prioritization based on IP
addresses is considered as the better alternative by the thesis author.

3.4.2.3 Challenges of prioritization based on IP address and geographical loca-
tion

Prioritization based on IP address is not a perfect solution and it is important to under-
stand the challenges and difficulties that come by using this method.

A flaw in prioritization of messages based on geographic location affected by a disaster is
that not all communications coming from or going to disaster areas are necessarily disaster
related, thus ending up prioritizing messages that are not relevant. Ogawa et al. do not
mention nor discuss this potential issue.

Another challenge, which is mentioned by Ogawa et al. [42], is that communications that
go through servers such as e-mails and social media do not get prioritized by their method.
They specifically mention “the packets that the recipients send and receive to and from the
e-mail servers do not have source or destination IP address that is related with disaster areas.
Therefore the packets are not prioritized.”.

We argue that while the statement is correct, it is not an issue and on the contrary, is a
desirable behavior. To explain this reasoning, consider the following scenario: an user located
in a geographical area affected by a disaster scenario sends an email to a family member. In
this scenario, the participants are:

◦ Sender, which will send an e-mail directed to the recipient. The e-mail will pass through
an e-mail server before arriving at the recipient.

◦ E-mail server, which will receive the e-mail from the sender and will pass it down to
the recipient upon request.

◦ Recipient, which will request potential e-mails to the e-mail server and will eventually
receive the e-mail sent by the sender.
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This scenario experience variations in terms of which messages get prioritized depending
on the location of the participants:

1. All participants are located in areas affected by a disaster. This is the trivial case where
all communications get prioritized, as shown in Figure 3.1. This is because all source
and destination IP addresses are located in the area of the disaster and all packets of the
communication will get a disaster ID assigned, which means all packets get prioritized.

2. The sender and the e-mail server are located in areas affected by a disaster, while the
recipient is not. This case is shown in Figure 3.2. Communication from the sender to
the e-mail server is prioritized because all packets get assigned their disaster ID. The
main difference from case one is that the communication between the e-mail server and
the recipient is partially prioritized, which means the only packets that get prioritized
are the ones that traverse links inside the area of the disaster. This works as follows:
when the recipient sends a request to the e-mail server to retrieve new e-mails, this
request will first travel through switches and links that operate normally, as this area
of the network is not affected by the disaster. Eventually, the request will reach a
switch that is operating in special mode due to being located in an area affected by
a disaster. This switch will attach a disaster ID to the packets of the request due to
the destination address (IP address of the e-mail server) being in a disaster area. This
means that the request will get prioritized while it travels to the e-mail server. Upon
receiving the request, the e-mail server will answer by delivering the e-mail sent by the
sender to the recipient. As the source IP address (the e-mail server) is in a disaster
zone, disaster IDs will also be attached to this new flow. This means the e-mail will
get prioritized through disaster affected links until it exits the critical area. Now under
normal operation mode, the e-mail will be sent as usual (as any other communication)
to the recipient. This makes sense because if the recipient is not in (or near) an area
affected by the disaster, communications around them should not be negatively affected
by it. Thus, prioritization in the network around the recipient is not needed because it
is operating under normal circumstances and packets should arrive as expected.

3. Only the sender is located in an area affected by a disaster and both the e-mail server
and the recipient are not. This case is shown in Figure 3.3. In this case, communication
between the sender and the e-mail server gets partially prioritized, and communication
between the e-mail server and the recipient is not. Due to the same reasons explained
in case two, partial prioritization between the sender and the e-mail server is expected:
packets get prioritized only in the links that require it. The network between the e-
mail server and the recipient are not affected by the disaster, thus it is correct to not
prioritize the packets as they are under a normal operating network.

4. Sender and recipient are in disaster areas, while the e-mail server is not. This case
is shown in Figure 3.4. In this case all communications are partially prioritized, with
both ends (sender to e-mail server, and e-mail server with recipient) explained in afore-
mentioned cases two and three.

The scenario where the recipient is the user affected by the disaster can be extrapolated
from the cases explained above by switching the roles of the sender and recipient. The final
scenario where only the e-mail server is located in a disaster area also generates the case
where all packets are partially prioritized, which is similar to case four.
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Figure 3.1: Example of packets being prioritized depending on the location of the
participants. As all participants are located in a disaster area, all communications get

prioritized.

Figure 3.2: Example of packets being prioritized depending on the location of the
participants. Communications between sender and e-mail server are fully prioritized, while

the communication between recipient and e-mail server gets partially prioritized.

Figure 3.3: Example of packets being prioritized depending on the location of the
participants. Communications between sender and e-mail server are partially prioritized,

while the communication between recipient and e-mail server gets fully prioritized.
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Figure 3.4: Example of packets being prioritized depending on the location of the
participants. All communications get partially prioritized.

Another argument that could be made is that a network not directly affected by the
disaster (i.e. has not experienced physical damage in its components) can still experience
challenges to normal operation due to high congestion caused by a raw increase in commu-
nications. This network could be geographically close to the disaster, but that is not always
the case. Any transit network involved in the communication could be affected by high
congestion due to a disaster.

Considering the topology that the Chilean networks have, congestion in transit networks
needs to be accounted for in order to achieve a disaster resilient solution. Figure 3.5 shows
the Chilean’s National University network (Red Universitaria Nacional 2018, REUNA [32]),
which shows a simplified view of the national network topology. If the yellow link that
directly connects Santiago and Osorno fails, all the traffic usually going through this link will
be redirected into the remaining links and nodes inside the white rectangle. These nodes will
all become transit networks.

Figure 3.5: Example of nodes becoming transit networks over the Chilean’s National
University Network (REUNA 2018 [32]). Consider the Santiago and Osorno nodes circled in
red. If the yellow link between them fails, all communications between these cities needs to

be re-directed between the remaining nodes inside the white rectangle.
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This is why the we propose to not only have two methods of operation (disaster and
non-disaster) as originally proposed by Ogawa et al. in [42], but to also have a third mode
which also prioritizes packets that have a disaster ID attached, but the switches inside a
network that works under this mode would not attach disaster IDs to packets coming from
(or arriving to) it, as its geolocation was not struck by the disaster. A potential high level
condition to trigger this third execution mode could be “high congestion is detected in the
monitored network and a disaster occurred recently at a different location”.

3.4.3 Network configuration with multiple Internet Service Providers

In Section 2.3.2.10 we see that authors of the reviewed studies designed their SDN solutions
based on different assumptions regarding domains and their configurations.

Enforcing the same configuration across different ISPs is not a realistic measure to im-
plement because SDN implies a change in the core architecture of the network. Therefore,
for this work, we will assume that the implementation of the solution will be within ISP
domains. Specifically, we will assume implementation at the Autonomous System (AS) level.

With this implantation level no assumptions about neighbor domains are made. Either
traditional or SDN architecture could be used by the neighbor ASs. Even if they were using
SDN as their architecture, they could be using a different SDN configuration.

If a neighbor AS happened to implement the same SDN solution proposed, some features
could be designed for the purpose of having a “cooperating mode”, but these should be kept
as features and not be a requirement for the core functionality of the designed system.

3.5 Implementation and testing

The authors of the studies gathered in this review were specific about listing the tools
used to implement and test their proposals.

However, implementation details of their solutions were usually not described. We were
not able to find details such as class diagrams nor programming patterns used. Controller
applications, one of the core features of the SDN architecture and where most of the solutions
should be implemented, were barely described nor discussed. This topic is further reviewed
in Section 3.5.3.

Sections 3.5.1 and 3.5.2 aim to first detail the tools chosen for this work. The remaining
Sections aim to provide specific details about how to take advantage of the SDN architecture
and OpenFlow features in order to design a disaster resilient solution.
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3.5.1 Network simulator

The literature review shows in Section 2.3.2.11.5 that Mininet is by far the most used
network emulator in the reviewed articles. In addition to this, we found that Mininet is
actively developed and supported, it is open source and also it is well documented online
[13]. Due to these reasons and because of the ability it provides to experiment with SDNs,
we decided to use Mininet as the emulator of choice to create virtual networks for testing
purposes.

3.5.2 SDN Controller Platform

Different SDN controller platforms were chosen by the studies of this review: NOX, POX,
ONOS, Ryu, OpenDaylight and Floodlight. They all follow and implement the SDN ar-
chitecture. As reviewed in Section 2.3.2.11.1, the reasoning of choosing one controller over
another is not well explored, with the few reasonings provided not dependent on the controller
framework specifics such as implementation language, OpenFlow compatibility, etc.

We decided to choose over the controllers found in the literature review due to all being
open source and being already tested by experts in the area.

Due to the author’s familiarity with the language, using a Python based controller was
preferred. Out of the controllers found in the literature review, POX and Ryu meet this
preference.

Regarding OpenFlow compatibility, POX only supports OpenFlow 1.0 [2] while Ryu fully
supports OpenFlow from versions 1.0 to 1.5 [11]. As key features such as QoS control are
only available since OpenFlow version 1.3, Ryu was deemed as the best candidate out of
these two controllers.

We continued research and found that Ryu is well documented online [11] and is also
compatible with Mininet, the most used network simulator found in the literature review.

Due to these reasons, it was decided to use Ryu as the controller platform for this work’s
implementation.

3.5.3 SDN Controller Applications

Studies found in the literature review at most mention whether they implemented their al-
gorithms and proposals as SDN controller applications. Other implementation details related
to SDN applications are not explained. This is likely because (1) the northbound interface
depends on the specific controller framework used, resulting in variations in the specific fea-
tures provided by the controller for application use; and (2) as the core SDN features remain
the same, the reviewed proposals could have been implemented in any controller framework
that supports the SDN architecture.

To make the most out of the features provided by the Ryu controller, its API is analized
in the next subsection.
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3.5.3.1 Ryu Controller Applications

As Ryu was chosen as the controller framework, we summarized the main features of the
Ryu Application API below [1]:

◦ The Ryu application programming model is based on threads, events and event queues.
◦ Ryu applications send asynchronous events to each other. The controller itself can also

send events to the applications and receive events from them.
◦ Each Ryu application has a FIFO receive queue for events and a thread for event

processing. This thread calls the appropriate event handler from the application and
blocks it, preventing the processing of new events. We consider this feature important
as it eases implementation of applications, but is also aware of a potential bottleneck
if the application takes a long time to process the event.

◦ Ryu provides OpenFlow events classes that support OpenFlow messages and functional-
ities. The controller emits these events to the Ryu applications to communicate status
and changes in the data plane. The controller also receives events to, for example,
perform changes in the data plane.

◦ Ryu events are extensible, allowing creation of new events. These can be used to
customize communication between applications.

3.5.4 Data plane management with OpenFlow and controller appli-
cations

SDN controller applications are the programmable components that allow dynamic man-
agement of the data plane. As explained in Section 2.3.2.1, once a new flow is discovered on
the switch, a packet-in message is issued to the controller. The controller then notifies the
applications about this new flow.

Applications then may install a new instruction on the switch that emitted the packet-in
message to handle this new flow, usually related to routing instructions, QoS rules, etc. This
is the most common example of data plane management found in the literature review and
it makes sense considering, for example, that routing instructions are specific to the switch.

There is, however, nothing that prevents installing rules on multiple switches simulta-
neously after, for example, receiving a packet-in message from a single switch. This idea
seems useful to the author because it has the potential to improve performance due to the
multiple switches not having to request instructions to the controller. Figure 3.6 illustrates
this scenario. The performance gains are (1) not having to wait for an RTT (packet-in sent
to the controller and response from the controller), (2) not having to wait for the controller
application to process the request and (3) reduce the controller load by having less requests
to process.
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Figure 3.6: SDN Controller installing rules in multiple switches after processing a single
Packet-in message.

Now, the next question is which rules can be applied to multiple switches. In the context
of this study, rules related to prioritizing packets with disaster IDs can be issued to multiple
switches at the beginning of a controller switching to disaster configuration.

Similarly, when switching from disaster configuration to normal execution, removing the
prioritizing rules from all switches can be done all at once without having every switch
consulting the controller to do so.

The specific rules proposed by in this work that can be applied to multiple switches at
once are:

1. OpenFlow rules for ID assignment. If a controller knows that its monitored area is
affected by a disaster, it can apply the rule “add a disaster ID to all packets generated
in the monitored zone” to all switches controlled in the affected area.

2. OpenFlow rules for prioritization management. OpenFlow meters allow the controller
applications to manage maximum bandwidth per flow. Default rules can be applied to
all switches as soon as the controller switches from normal operation mode into disaster
configuration.

3.5.4.1 OpenFlow’s usable features for Prioritization management

One of the key features that OpenFlow provides that is useful for applying QoS measures
is the “meter” feature. OpenFlow introduced meters into the protocol for the first time in its
version 1.3. Meters allow to control ingress traffic of the switch and guarantee a maximum
bandwidth by, for example, dropping packets. This feature is completely manageable through
the controller, and thus, through the controller applications.

By installing OpenFlow meter rules in the switches it is possible to ensure QoS for disaster
related messages by reserving bandwidth for priority packets.
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Adjusting specific bandwidth ratios for priority packets versus normal ones on each switch
would still benefit from data analysis on a case by case scenario, because:

1. Different switches have different throughputs.
2. Links connected to output ports of the switch can have different bandwidths.

However, as metering rules do not affect decisions such as which output port to use,
the switch does not need to hold a packet until the controller decides on a metering rule.
The pre-installed metering rules can be used and the packet can be sent, and if a bandwidth
adjustment is needed a new rule can be installed later, which would take effect on subsequent
packets of the flow.

Because of the aforementioned reasons is that an SDN solution that aims to build a
disaster-resilient WAN must consider OpenFlow meters in their implementation. For this
work, it was decided to use meters as the main tool to apply QoS measures.

3.5.5 Conclusion

From the discussion presented in this Chapter, we conclude that SDN can be applied
to WANs. There are existing studies that use SDNs to enhance resilience against disaster
scenarios, but the methodologies proposed work on isolation and combining techniques is
not explored. In addition, there are unanswered questions regarding when and how disaster
configuration should be triggered, and how the controller can automatically switch between
normal and disaster configurations.

Based on the analysis, we propose designing a disaster-resilient controller that utilizes
three levels of ID-based prioritization, each for ECS, disaster-related, and non-disaster-related
communications. To make a significant contribution to the field of study, the author should
focus on providing answers to the aforementioned questions.

Additionally, the disaster-resilient controller should consider transit networks in its design.
It is also important to note that a unified network configuration will not be assumed.

To implement the proposal, Ryu will be used as the controller framework and Mininet
will be utilized to simulate a SDN.
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Chapter 4

Framework Design

4.1 Introduction

This Chapter describes the framework design, explaining the key functionalities of the
controller and the actions it performs according to each situation.

4.2 Controller as a state machine

The controller will be based on the state design pattern. For the framework, three states
were defined based on the status of the network managed by the controller.

◦ Normal operation state: Corresponds to the default state of a controller. This state
represents the scenario in which the network managed by the controller operates under
normal conditions.

◦ Disaster In Situ state: Corresponds to a special state of the controller. This state
represents the scenario in which the network managed by the controller is geolocated
in the same place where a disaster occurred.

◦ Disaster Ex Situ state: Corresponds to a special state of the controller. This state
represents the scenario in which the network managed by the controller is geolocated
in a different place than the disaster location.

Based on the current state, the controller will perform different actions. These actions are
defined in the following Sections of this Chapter.

4.2.1 State change trigger

State changes will be performed upon detecting a combination of the following triggers:

◦ The beginning or the end of a disaster.
◦ The location of said disaster.
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The diagram in Figure 4.1 shows the state transitions with their specific trigger conditions.

Figure 4.1: State diagram that ilustrates the state transitions of the controller.

All controllers that implement the framework, no matter the current state, will monitor
switches and links for aliveness, connections and disconnections that occur on their monitored
network. However, the active state determines what actions are performed based on the
collected information.

4.3 Network monitoring and notifications

The controller will always monitor the network for failure and recovery of switches and
links. The controller’s current active state does not interfere with the monitoring. However,
the current active state does determine how the information about switches and links is used.

If there is no disaster geolocated in the monitored network, meaning the controller could be
either in Normal operation or Disaster Ex Situ state, the controller will analyze disconnections
and failures of switches and links and will compare the data with a failure threshold. Once
the threshold is reached, the controller switches into Disaster In Situ state, and notifies other
controllers about the change.

If a controller in Normal operation state receives the notification that another controller
moved into Disaster In Situ, the receiver changes its state into Disaster Ex Situ, meaning
that the receiver controller is aware that a disaster struck a network out of its monitoring
area.

A controller in a Disaster In Situ state will continue to monitor its network, however this
state analyzes new switch connections and link recovery data. Once the network reaches a
recovery threshold, the controller transitions into a Normal operation state or a Disaster Ex
Situ state, depending on the state of the other remote controllers. A notification will also be
sent to other controllers so they register the state transition.

The Disaster In Situ state prevails over the others, meaning that if a controller in this
state receives a notification of a different controller moving into Disaster In Situ, the receiver
does not perform a state change. It will however, store these notifications so it can check
them when exiting the Disaster In Situ state to determine whether it should move into a
Normal operation State or into a Disaster Ex Situ state. The former will be picked only if
there is no other controller in Disaster In Situ state, and this is determined by reading the
notifications previously registered.
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4.4 Databases

This Section lists the databases (DB) needed in the framework and how they are updated.

4.4.1 In-network host IP Address DB

Every controller has a DB of IP addresses of hosts directly connected to nodes of the
network managed by it.

4.4.2 ECS IP Address DB

The ECS IP Address DB contains IP addresses from registered ECS. This is a pre-
constructed DB and it is not expected to dynamically update based on disasters.

4.4.3 Disaster IP Address DB

The Disaster IP Address DB contains IP addresses of hosts geolocated in an area struck
by a disaster. Every controller maintains this DB and it associates controller IDs and In-
network host DBs. This DB gets updated upon state changes of the controller itself or upon
state changes of other controllers.

When the controller moves into a Disaster In situ state, it means the network managed
is geolocated in a disaster area, thus it emits a notification to all listening controllers and
passes it’s controller ID and its In-network host DB.

Every controller that implements this framework (including the remittent controller) reads
the notification and adds the received In-network host DB into their Disaster IP Address DB.

When a controller moves out of the Disaster In situ state, it means its hosts are no longer
under a disaster scenario, and it emits a “exited Disaster In Situ” notification and passes its
controller ID.

Every controller that implements this framework (including the remittent controller) reads
the notification and removes the In-network host DB related to the controller ID received.

4.4.4 Disaster In Situ Controller DB

As seen in Section 4.2.1, when a controller exits the Disaster In Situ state it moves to
either a Normal operation or Disaster Ex Situ state. To decide which state is picked, each
controller maintains a DB which registers other controllers in Disaster In Situ state.

The database gets updated upon receiving notifications of other controllers moving into
and exiting a Disaster In Situ state. It stores the IDs of controllers currently in Disaster In
situ state. The IDs get removed if that controller exits said state.
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4.5 Prioritization IDs

In Section 3.4.2.1 the thesis author proposed to assign IDs to ECS communications, com-
munications coming from or going to a disaster area, and non-disaster related communica-
tions. The specific IDs used are defined below:

◦ ECS ID: Packets emitted from ECS (or directed to them) get this ID attached.
◦ Disaster ID: Packets emitted from areas affected by the disaster (or directed to them)

get this ID attached.
◦ Non-Disaster ID: Packets that do not match the previously described conditions get

this ID attached.

Packets that do not already have an ID should go through an ID assignment process.
The Non-Disaster ID exists to mark packets that already went through the process of ID
assignment and did not get a high-priority ID, preventing future queries for assignment.

4.6 ID assignment algorithm

The ID assignment process varies depending on the controller state. The general idea
behind this statement is that under normal operation there is no need to prioritize, thus
there is no need for the IDs. This means that controllers will only attach IDs if they are
either in a Disaster In Situ or Disaster Ex Situ state. The algorithm for ID assignment used
in Disaster in situ state and Disaster ex situ state ID attachment is described below.

4.6.1 Algorithm for ID attachment

1. If a packet does not have an ID and has a source or destination IP address present on
the ECS IP Address DB, the controller attaches an ECS ID to the packet.

2. If the packet did not get an ECS ID, the controller attaches a Disaster ID only if the
packet has a source or destination IP address present on the Disaster IP Address DB.

3. If the packet did not get Disaster ID, the controller attaches a Non-Disaster ID.

While the algorithm is the same for Disaster in situ state and Disaster ex situ state,
each controller maintains their Disaster IP Address DB differently based on its current state,
which leads to different ID assignments.
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4.7 Packet prioritization

The prioritization should be active only when disaster scenarios exist, thus the controller
states that enable this behavior are Disaster In Situ and Disaster Ex Situ states.

Prioritization will be performed by distributing the available bandwidth based on the
priority levels defined in Section 3.4.2.1. Thus, packets with IDs defined in Section 4.5 will
be prioritized as follows:

◦ ECS ID: Highest priority.
◦ Disaster ID: Second priority.
◦ Non-Disaster ID: Lowest priority.

Note that packets with ECS ID are expected to be the lowest in quantity, as only a limited
number of registered entities emit them. The bulk of packets are the ones containing either
Disaster or Non-Disaster IDs.

Bandwidth assigned to ECS ID packets should be the minimum that prevents packet
loss. The remaining bandwidth is distributed between Disaster and Non-Disaster ID packets,
favoring the former.
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Chapter 5

Framework Implementation

5.1 Introduction

This Chapter describes the implementation details of the proposed Disaster Resilient SDN
Framework for Chilean networks. As previously discussed in Section 3.5.2, Ryu was chosen
as the SDN controller platform, thus the proposed framework uses the Ryu API to manage
the network and implement the features and functionalities described in Chapter 4.

5.2 Key technology

5.2.1 SDN Hub Starter Kit

SDN Hub created a VM which contains various software and tools pre installed. It contains
Ryu 3.22 which is the version in which this framework got implemented.

5.3 Controller applications

In order to implement all functionalities described in Chapter 4, three controller applica-
tions were designed. The applications are:

◦ Disaster monitor application: Monitors the network and notifications, and sets the
controller state accordingly.

◦ ID attachment application: Attaches ECS IDs, Disaster IDs and Non-Disaster IDs to
packets when needed, based on the current state of the controller.

◦ Prioritization application: Applies QoS policies and manages flow prioritization based
on the ID each flow has, based on the current state of the controller.
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The design decision of separating functionalities in different applications was taken with
encapsulation, maintainability and extensibility principles in mind:

◦ The disaster detection application works on its own and could be used in any context.
Any future new application could read the controller’s current state and apply policies
based on the disaster situation, allowing the development of new features.

◦ The ID attachment application and the Prioritization application work closely as they
apply and read the same IDs, respectively. However, the Prioritization application does
not need to know how an ID was applied, nor the ID attachment application needs to
know the mechanism used to prioritize flows.

In order to use the features provided by the Ryu controller framework, each application
is implemented as a Ryu application. Every Ryu application is a class that extends the
RyuApp class, provided by the Ryu library.

5.3.1 Disaster monitor application

The Disaster monitor application monitors the network and listens to notifications sent
from other controllers to set the current status of its controller. It is the core application
of the proposed framework as the remaining applications decide which actions should be
performed based on the current state of the controller.

The application contains two key objects that allows it to execute its core functionalities:

◦ Switch counter object
◦ State object

Their functionalities are described in their class definitions in the following Sections.

5.3.1.1 Switch counter class

The switch counter class is, as the name suggests, a class whose main functionality is to
keep track of the number of active switches and the historical maximum number of active
switches.

Their methods allow to register connections and disconnections; and get statistics such as
the current number of active switches and the active switch ratio, defined as the number of
active switches divided by the historical maximum number of switches.

The disaster monitor application has access and makes use of these methods as it contains
an instance of this class.

5.3.1.2 State module

The state module corresponds to four classes that follow the State design pattern. The
UML class diagram on Figure 5.1 shows the general architecture.

Each state instance has a reference to the Disaster monitor application that contains it so
it can send messages to it through its methods.
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The behaviors that differentiate each state are listed below:

1. The type of notification that instructs the Disaster monitor application to be sent to the
applications upon creating the state. The notification is determined on the constructor
of each State.

2. How it processes the switches’ information. This behavior is implemented in the switch
handler methods.

3. How it processes notifications received from remote controllers regarding their disaster
status.

Due to limitations of the testing environment, the notification management between re-
mote controllers were not implemented as they would have not been able to be tested. Thus,
remote controller notifications are proposed as future work in Section 7.2.

Figure 5.1: UML class diagram of the State module.

5.3.2 ID attachment application

The ID attachment application attaches ID to packets based on the controller current
state. In particular, it attaches IDs when the controller is in any state different from Normal
operation state. The application makes use of the OpenFlow capabilities to attach IDs
through the Ryu API.

5.3.2.1 Flow entries management for ID attachment

The application reserves a flow table for itself in each switch of the controller’s network,
which we call the ID attachment table. The application manages this table’s flow entries and
is able to manipulate packet IDs through them.

When the application starts, it sets a default flow entry to all switches:

◦ Default “Table miss” flow entry: It matches all packets and has the lowest priority
(zero). It sends packets directly to the Routing table.
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Under a Normal operation state controller, the application does nothing and the ID at-
tachment table only forwards packets through the switch pipeline by using the Table miss
flow entry. Once the application reads an “exited Normal operation state” event from its
controller, it starts modifying the ID attachment table so it begins to attach IDs.

The application then creates and sets up three kind of flow entries in the ID attachment
table:

◦ Default “Has ID” flow entries: These flow entries match packets that already have
their ID assigned, thus it directly sends them to the next table in the pipeline, the
Prioritization Table. These flow entries get the highest priority in the table (ten).

◦ Default “Attach ECS ID” flow entries: These flow entries are created to match flows
that have a source or destination address present on the ECS DB. Packets belonging to
these flows get an ECS ID attached and are forwarded to the next table in the pipeline,
the Prioritization Table. These flow entries get the second highest priority in the table
(nine).

◦ Default “No ID” flow entry: This flow entry matches all packets and is created with
the second lowest priority (one) in the table. This flow instructs to send a packet-in
message to the controller so this application can decide which ID should be attached
to packets belonging to this flow by setting a new “attach” flow.

Note that a packet only reaches the default “No ID” flow entry if it doesn’t match any
other flow entry with higher priority in the table. With these newly defined flow entries
present in the table, the default “table miss” flow entry defined at the beginning is not going
to be reached.

It is important to mention that the switch only consults the controller if the first packet of
a new flow reaches the “No ID” flow entry. Once the controller receives the packet-in message,
the application extracts the source and destination IP address of this packet and checks if
any of them are present in the Disaster IP Address DB. With this process the application is
able to determine whether a Disaster ID or Non-Disaster ID should be attached. Then, it
attaches one of the following flow entries:

◦ Dynamic “Attach Disaster ID” flow entries: This flow entry matches flows that have
a specific source or destination IP address that belongs to a disaster stricken area.
Packets belonging to these flows get a Disaster ID attached and are forwarded to the
next table in the pipeline, the Prioritization Table. These flow entries get the third
highest priority in the table (eight).

◦ Dynamic “Attach Non-Disaster ID” flow entries: This flow entry matches flows that
have a specific source and destination IP addresses and neither of them belongs to a
disaster stricken area. Packets belonging to these flows get a Non-Disaster ID attached
and are forwarded to the next table in the pipeline, the Prioritization Table. These
flow entries get the fourth highest priority in the table (seven).

Once the flow entry is installed on the switch, the switch is going to be able to pro-
cess packets of the same flow without having to consult the controller again, because these
subsequent packets will match with the recently installed dynamic flow entry.
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Finally, when the controller transitions into a Normal operation state, the application
deletes all flow entries on the ID attachment table, with the exception of the default Table
miss flow entry.

In summary, in a Normal operation mode the table should only contain the default Table
miss flow entry. In any other state, the table will contain multiple flow entries. An example
of a populated ID attachment table is shown in Figure 5.2.

Figure 5.2: Example of the ID attachment table. Packet matching against each flow entry
is performed based on the priority field of the latter, starting from the highest priority.

Once a match is found the process finishes and no other flow entries are evaluated.

5.3.3 Prioritization application

The Prioritization application also acts based on the controller current state, dictated by
the Disaster Monitor application. Similarly to the ID Attachment application, the Prioritiza-
tion application starts its active mode when the controller state is different from the Normal
operation state.

The sole purpose of the Prioritization application is to manage bandwidth rates based on
the ID each flow has. Note that ID assignment is a problem already solved and handled by
the ID Assignment application described in Section 5.3.2.

The Prioritization application makes use of the OpenFlow capabilities through the Ryu
API in order to achieve its objective. In particular, it uses the meter features introduced in
OpenFlow 1.3. Meters enable OpenFlow to implement rate-limiting as a QoS constraining
operation.
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5.3.3.1 Meter entries management

Meter are defined on each switch on its Meter table. The application defines three meter
entries in the Meter table, one for each prioritization ID defined in Section 4.5. The meter
will measure and control the rate of all packets forwarded to it.

5.3.3.2 Flow entries management

In order to perform the packet forwarding process into the Meter table, the prioritization
application reserves a flow table from each switch connected to the controller, which we call
the Prioritization table. The only requirement for this table is that it must have a higher table
ID than the ID attachment table, so it is guaranteed that packets will have a prioritization
ID once they reach the Prioritization table.

When the application starts its active mode, it sets the three default flow entries in the
Prioritization table, each one matching each prioritization ID defined in Section 4.5 with the
instruction to forward packets to the corresponding meter previously defined in the Meter
table.

If the packet was not dropped by the meter entry that processed it, the packet continues
traversing the switch’s OpenFlow pipeline.

5.4 Relation and dependency on other Ryu applications

In order to manage routing over the monitored network, the controller must have a routing
application that takes care of this task. For this purpose, the author decided to use a modified
version of L2LearningSwitch, an application that by default comes with Ryu.

This application manages routing by using one flow table of the pipeline on each switch.
By default, it used the first table in the pipeline. For the purpose of this framework, we
made it use a flow table with higher ID than the Prioritization table from the Prioritization
application. We will refer to this table as the Routing table.

Another useful application that comes with Ryu is the Switches application, which main-
tains an up-to-date view of the switches in the network. The ID attachment application and
the Prioritization application both request switch data to the Switches application so they
can install their default flows on them.

These two applications, L2LearningSwitch and Switches, could be replaced by any other
application that performs the same tasks.
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5.5 Disaster resilient controller within the SDN architec-
ture

Having delineated the applications and modules of the disaster resilient controller, we can
now show how the controller operates within the SDN architecture.

Figure 5.3 depicts the SDN architecture, showcasing the applications presented in this
Chapter and their relationships with the implemented modules.

Figure 5.3: Implemented disaster resilient controller within the SDN archietcture.

5.6 Source code

The source code of the implemented disaster resilient controller can be found on the
repository [43].
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Chapter 6

Testing and Results

6.1 Introduction

The testing and results Chapter provides an overview of the evaluation of the disaster
resilient controller with its three designed applications in the context of a Mininet and Open
vSwitch (OVS) testbed. The Chapter lists the testing methodologies, including simple and
complex scenarios for both functional and non-functional testing, with the latter focusing on
simulating a disaster scenario over a network. Limitations and challenges were found, which
are also discussed. Overall, this Chapter presents the testing details and the results obtained
from the experimentation with the designed applications and the controller in a simulated
SDN environment.

6.2 Key technology

Similarly to the framework implementation, for testing we again used the SDN Hub VM
which, by default, has the following software installed that allows to create a simulated
network for testing:

◦ Mininet 2.2.1: Network simulator
◦ Open VSwitch 2.3: Open source virtual switch that supports OpenFlow.
◦ iPerf 2.0.5: Tool for traffic generation and bandwidth measurements.

However, while Open VSwitch 2.3 supports Openflow 1.3 messages, it is not able to process
all of them. In particular, the support for OpenFlow Meters in Linux datapath was released
in version 2.10.0 in 2018, meaning a newer version needed to be installed.

The chosen version of Open VSwitch was 2.17.3 as at the time of building the testing
platform, was the most recent release from the long term support (LTS) series.

These tools, in addition with Ryu 3.22 which also comes with the SDN Hub VM, allow to
create a testing environment capable of deploying SDN and OpenFlow features.
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6.3 Setup

The testing setup requires configuring the network topology through Mininet, configuring
the switches through Open VSwitch and starting the Ryu controller. For all these steps, the
thesis author programmed the scripts detailed in this Section to automate the setup. We will
refer to these three scripts as the Setup scripts.

6.3.1 Simple topology builder script

A simple topology can be built using the script set_mininet.sh. It invokes a Mininet
command to create the desired topology, determine the type of the switches and set the
controller type and its default IP address. Setting the IP is critical so the switches can
connect to the controller.

6.3.2 Switch configuration script

After the topology is built, we need to configure every switch in the network to use the
correct OpenFlow version and the datapath type. This configuration is needed to support
meters. To achieve this, we invoke Open VSwitch’s commands on each switch with the script
set_bridges.sh.

6.3.3 Ryu script

The sole purpose of this script is to launch the Ryu controller with the required applica-
tions. This switch does not depend on the aforementioned scripts.

The script minimal_ryu.sh launches a Ryu command to start the controller with the
desired applications. The applications launched are the ones proposed in this work:

◦ Disaster monitor application
◦ ID attachment application
◦ Prioritization application

The other applications mentioned in Section 5.4 are coded as a requirement for the latter
two, thus these get instantiated automatically by them and there is no need for them to be
explicitly called on launch.

6.4 Test scenarios

This Section is divided into functional testing and non-functional testing, with the latter
focusing on simulating a disaster scenario.
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6.4.1 Functional testing

To test the basic functionalities of the developed framework, a small topology is picked
to ease the analysis. The chosen topology can be seen in Figure 6.1, which corresponds to a
linear topology of four switches where each of them has one host connected.

Figure 6.1: Linear topology with four switches and hosts, used for functional testing.
Visualized through Miniedit, a GUI editor for Mininet.

6.4.1.1 Starting the controller

If everything was configured correctly, the controller should be able to successfully start
and load the applications. Simply running the Ryu script is enough.

Figure 6.2 shows the log emitted by the controller upon a successful start. It shows all
the applications loaded into it.

Figure 6.2: Log emitted by the controller upon a successful start.
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6.4.1.2 Switch discovery

Mininet sets the controller IP onto the switches of the topology. Thus, the controller
should be able to discover the switches automatically after being started, i.e. after executing
the setup scripts (Topology builder, Switch configuration and Ryu scripts). Figure 6.3 shows
the controller discovering the switches.

Figure 6.3: Log emitted by the controller when it discovers new switches.

In addition to discovering the switches, the default flow entries should be installed in
the flow tables. These can be seen in Figure 6.4. As described in Section 5.3.2, the ID
attachment application installs its default table miss flow entry on the ID attachment table
(table zero), which directs all packets into the Routing table (table twenty, which is managed
by the Routing application).

From these results, we conclude that the Mininet configuration over the virtual switches
allows them to communicate with the controller. The controller is also able to register them
and to correctly apply the default flows required by the different applications.

Figure 6.4: Use of Open VSwitch comand to see the current flow entries installed on switch
"s1". The flow entries shown correspond to the default ones installed on said switch upon it

being discovered by the controller.
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6.4.1.3 Routing test

As the applications proposed by the author manipulate flow tables, it is important to
confirm that the routing capabilities of the controller are not disrupted by the flow table
management of said applications.

We again execute the three setup scripts for this experiment, then we perform the pingall
command in Mininet to test the connectivity of all four switches in the network. The purpose
of this test is to confirm that the necessary flow entries for routing get installed and that
every host is able to communicate with all destinations.

Figure 6.5 shows the pingall command executed in Mininet and the connectivity results,
which are successful. Figure 6.6 shows the packet-in messages the controller received which
triggered the installment of flow entries into the switches. Finally, Figure 6.7 shows one of
the switches with its respective new flows. In this case we can see the same existing flows as
shown in the Switch discovery experiment and the new routing rules that allowed all switches
to be reachable.

We conclude from this result that the routing application used (L2LearningSwitch) pro-
vided by Ryu is capable of performing simple network routing discovery and correctly applies
flow entries that allow packet forwarding. The results also show that the ID attachment ta-
ble, the Prioritization table and the Routing table work together and do not disrupt packet
forwarding.

Figure 6.5: Use of Mininet command pingall. Full connectivity is achieved due to the
controller correctly installing routing flows.
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Figure 6.6: Controller log that shows the reception of packet-in messages sent by the
switches.

Figure 6.7: Use of Open VSwitch comand to see the current flow entries installed on switch
s1. The flow entries shown correspond to the default ones installed on said switch upon it

being discovered by the controller and the new flow entries added due to routing
management.

6.4.1.4 Switch failure and recovery

We now want to test the monitoring capabilities of the controller, in particular, being able
to identify a switch that is longer responsive.

We again execute the three setup scripts for this experiment, thus all four switches are
discovered by the controller. We then execute the Mininet command switch s3 stop to turn
the switch off and then execute the Mininet command pingall to confirm that the switch s3
stopped working. Figure 6.8 shows Mininet’s console and the expected result of only h1 and
h2 hosts being reachable between themselves, because s3 going down means that now the s4
switch is now isolated. Figure 6.9 shows the controller point of view, which recognizes the
switch with datapath ID three (dpid=3) being no longer responsive.

We then re-connect the switch s3 by executing the Mininet command switch s3 start and
again perform the pingall command. Figure 6.8 shows that now all nodes are reachable,
confirming that s3 is now up. Figure 6.9 shows the controller successfully capturing the
reconnection of the switch.
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Figure 6.8: Mininet log which shows the experiment of a switch failure and recovery. Switch
s3 is stopped by the command switch s3 stop, which isolates switch s4. After re-connecting

s3 with the command switch s3 start, the connectivity is recovered.

Figure 6.9: Controller log during the switch failure and recovery experiment. Initially all
four switches are up. Then, switch s3 gets disconnected which is captured by the controller.

Once s3 reconnects, the controller recognizes it. Note that the controller recognized it is
the same switch that was disconnected and reconnected due to its datapath ID (dpid).

6.4.2 Simulating a disaster scenario

In the previous Section it is shown that the network simulator setup allows testing of the
basic functional capabilities of the designed SDN disaster-resilient controller. We now want
to simulate disaster scenarios to validate the correctness and effectiveness of the controller
when it applies its designed features.
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6.4.2.1 Multiple switch failure and recovery

This experiment is similar to the one described in Section 6.4.1.4, but here it is scaled up
to test multiple switch failures and to trigger status changes in the controller.

For this experiment, the controller is configured with an enter disaster threshold of 70%
active switches, and an exit disaster threshold of 80% active switches. The chosen topology
corresponds to a tree topology that contains 127 switches. The controller starts as default,
meaning it starts in a Normal Operation state.

To test both thresholds, switches get disconnected and reconnected in four steps. Each
step and its purpose are listed below:

1. Step A: This experiment disconnects switches without reaching the enter disaster
threshold, meaning the Normal Operation state should be maintained.

2. Step B: We continue to disconnect switches and the active switch ratio goes below the
enter disaster threshold, thus the controller’s state should change into Disaster In Situ.

3. Step C: Now switches start re-connecting, however the exit disaster threshold is not
met yet, thus the Disaster In Situ state should be maintained.

4. Step D: More switches reconnect and the active switch ratio goes above the exit disaster
threshold, thus the controller should go back into Normal Operation state.

The results of the multiple switch failure experiment are summarized in Table 6.1 for steps
A and B. Table 6.2 shows the results of the multiple switch recovery experiment for steps C
and D.

In Figure 6.10 we see the controller log generated when processing steps A and B. Similarly,
Figure 6.11 shows the controller log generated when processing steps C and D. The controller
logs from step B and C also show that, when the Disaster In Situ state is active, it installs
the required flow entries for ID assignment and prioritization. The logs from step B and D
also show that the state transitions take place immediately after the switch counter crosses
the respective threshold (meaning 88 active switches in step B and 102 active switches in
step D).

Initial
state Step

Number of
switches in
the network

Number of
active switches
post disaster

% of active
switches

post disaster

Should move
into Disaster
In Situ state?

Moved into
Disaster In
Situ state?

A 127 95 74.8 No NoNormal
Operation B 127 85 66.9 Yes Yes

Table 6.1: Results of the multiple switch failure experiment for steps A and B.
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Initial
state Step

Number of
switches in
the network

Number of
active switches
post disaster

Number of
active switches
after recovery

% of active
switches post

recovery

Should move
into Normal

Operation state?

Moved into
Normal

Operation state?

C 127 85 95 74.8 No NoDisaster
In Situ D 127 95 110 86.6 Yes Yes

Table 6.2: Results of the multiple switch recovery experiment for steps C and D.

(a) Step A. The controller log shows that the disconnections are
captured, but no state transition is performed.

(b) Step B. The controller log shows that the enter disaster
threshold is reached and the state transition is performed.

Figure 6.10: Controller log generated when processing steps A and B of the multiple switch
failure test.
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(a) Step C. The controller log shows that the reconnections are
captured, but no state transition is performed.

(b) Step D. The controller log shows that the exit disaster threshold
is reached and the state transition is performed.

Figure 6.11: Controller log generated when processing steps C and D of the multiple switch
recovery test.
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6.4.2.2 Traffic congestion

To simulate a traffic congestion scenario, we need a network topology and data streams
that will saturate one or more links. A minimalistic setup that shows the scenario is shown
in Figure 6.12, where the link that connects switches s1 and s2 is the focal point of study.
For this setup, all links were configured to support a bandwidth of 100 Mbit/s and the hosts
have IPs addresses that represent ECS, Disaster and Non-Disaster located users.

Figure 6.12: Minimalistic topology used to simulate traffic congestion, visualized through
Miniedit, a GUI editor for Mininet.

For easier setup, the author implemented the script traffic-minimal.sh which firstly cleans
up Mininet and Open VSwitch to then call traffic-test-minimal.py, which is a Python script
that performs the following steps:

1. Builds and configure the Mininet topology.
2. Uses set_bridges.sh script to configure Open VSwitch.
3. Uses minimal_ryu.sh to launch the Ryu controller with the designed applications.
4. Performs a ping test.
5. Starts the iPerf servers which acts as data receivers.
6. Starts the iPerf clients which send data to the servers.

The controller’s configuration and the sender’s data stream bandwidth were modified to
create different scenarios. As Mininet is a non-deterministic simulator, each experiment was
performed five times to create reliable and stabilized data.

The graphical representations depicted in Figures 6.13, 6.14 and 6.15, present a summary
of the results obtained from the experiments which will be described in this Section. The
primary objective of this visual summary is to facilitate a straightforward comparison of
the findings in a user-friendly format. The comprehensive results of each experiment are
presented in a graphical form in Annex B.
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Figure 6.13: Summary of the results obtained from the traffic control experiments which
shows the average bandwidth measured from the sender in Mbits/s. Communication types

are ECS, disaster (D) and non-disaster (ND).

Figure 6.14: Summary of the results obtained from the traffic control experiments which
shows the average bandwidth measured in the receiver side in Mbits/s. Communication

types are ECS, disaster (D) and non-disaster (ND).

56



Figure 6.15: Summary of the results obtained from the traffic control experiments which
shows the average packet loss percentage of the communications. Communication types are

ECS, disaster (D) and non-disaster (ND).

6.4.2.2.1 Baseline scenario

For the baseline scenario we use a default controller without disaster configuration, i.e.
the controller does not apply any QoS feature and only performs routing management. The
senders each create data streams of 33 Mbits/s, meaning the s1-s2 link would not be con-
gested. Figure B.1 (a) and (b) show the measured bandwidth on each end user of the
communications.

On the sender side, all senders’ average bandwidth ranges from 34.1 to 34.2 Mbits/s and
the median ranges from 34.1 to 34.3 Mbits/s. These values are 1 Mbit/s higher than the
configured bandwidth value for the data stream, but close enough to consider them accurate.

On the receiver side, the expectation was to measure a bandwidth of 33 Mbits/s across
all receivers given that the s1-s2 link should not become a bottleneck. However, we see that
the measured bandwidth for the non-disaster communication is 21.7 Mbits/s on average and
has a median of 20.6 Mbits/s, lower than expected.

Figure B.1 (c) shows the packet loss percentage on each communication. Non-disaster
communications showing a higher packet loss percentage are consistent with the lower band-
width measured.

The author suspects that a default traffic control configuration on the switches might
be causing the unexpected results. The author proceeded with the next experiments to
determine if the measured bandwidth on any of the receivers continued to exhibit lower
values.
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6.4.2.2.2 Baseline congested scenario

For the baseline congested scenario we again use a default controller but now each sender
creates data streams of 100 Mbits/s, creating traffic congestion on the s1-s2 link. Figure B.2
(a) and (b) shows the measured bandwidth on each end user of the communications.

On the sender side, all senders’ average bandwidth ranges from 78.8 to 80.4 Mbits/s and
the median ranges from 76.5 to 80.5 Mbits/s. While lower than the configured bandwidth to
be sent, there is no major difference between senders.

On the receiver side, the measured results vary across each communication type. ECS
communications show the higher bandwidth averaging 38.8 Mbits/s, disaster communications
show an average bandwidth of 25.3 Mbits/s and non-disaster communications show an average
bandwidth of 7.3 Mbits/s. These results show a non-equal bandwidth allocation.

The s1-s2 link is successfully acting as the bottleneck, thus effectively limiting the total
aggregated bandwidth of all communications to a value lower than 100 Mbits/s.

The non-equal bandwidth distribution shows again a lower allocation for non-disaster
communications, favoring ECS communications the most. This result is consistent through
all runs. The author researched this issue and found a limitation between Mininet and
Open VSwitch setup. The following comment found in Mininet’s source code explains the
situation: “Unfortunately OVS and Mininet are fighting over tc queuing disciplines. As a
quick hack/workaround, we clear OVS’s and reapply our own.”.

The script set_bridges.sh is used to configure the switches with Open VSwitch commands
after Mininet has finished its configuration step, rendering the hack ineffective. This Open
VSwitch configuration is needed for meter support.

To verify if the conflict in traffic control configurations between Mininet and Open VSwitch
was indeed the issue, a similar test was conducted with the exception of skipping the config-
urations that enable support for meters (i.e., not using set_bridges.sh). The results of this
experiment are depicted in Figure B.3. The receiver’s measured bandwidth for ECS, disaster
and non-disaster communications are 31.9 Mbits/s, 32.0 Mbits/s and 31.3 Mbits/s on aver-
age, respectively; and the median is 31.9 Mbits/s, 32.6 Mbits/s and 30.1 Mbits/s respectively.
It can be observed that the bandwidth is evenly distributed among all communications, thus
confirming that the conflict between Mininet and Open vSwitch configurations impacts the
traffic control management policies of the switches.

The next question is whether the QoS policies implemented by the proposed disaster
resilient controller in this study are sufficient to circumvent the conflict between Mininet and
Open vSwitch, and if the data generated from the experiments conducted on this testbed
can be deemed reliable. Experiment A in the following Section will specifically address this
question.
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6.4.2.2.3 Disaster resilient controller in congested scenarios

For this scenario the controller will apply its disaster QoS policies defined by the proposed
applications. Different experiments were tested in this scenario by modifying the bandwidth
of the data streams created by the senders and also by setting up different rate limiting
policies on the switches using the Prioritization application. The values used are summarized
in Table 6.3.

Data stream per
communication type [Mbits/s]

Controller’s rate limit per
communication type [Mbits/s]

Experiment ECS Disaster Non-Disaster ECS Disaster Non-Disaster

A 100 100 100 33 33 33
B 100 100 100 70 20 10
C 20 100 100 20 50 30

Table 6.3: Data stream bandwidths and rate limit policies used to test the designed disaster
resilient controller. The rate limits are enforced by the Prioritization application.

Experiment A is designed to assign an equal bandwidth distribution between all commu-
nication types, with the purpose of determining if the meter management performed by the
controller is enough to override the conflict of traffic control configurations between Mininet
and Open VSwitch. With each sender creating data streams of 100 Mbits/s and having
a rate limiting policy of 33 Mbits/s on all communication types set by the controller, we
can directly compare the results with the Baseline congested scenario shown in the previous
Section. Figure B.4 shows the measured results for experiment A.

The results for experiment A show that the receivers’ measured bandwidth for ECS,
disaster and non-disaster communications are 28.62 Mbits/s, 29.22 Mbits/s and 27.04 Mbits/s
on average, respectively; and the median is 28.8 Mbits/s, 28.8 Mbits/s and 27.2 Mbits/s
respectively.

We see that the controller rate limiting policies from the Prioritization application took
effect, meaning the OpenFlow commands were able to configure the switches through the
Open VSwitch API, solving the configuration conflicts with Mininet that prevented achieving
a fair distribution of the bandwidth.

It is noteworthy that in the Baseline congested scenario where Mininet solely manages the
traffic control policies on the switches, the aggregated measured bandwidth on the receivers
is closer to the limit of 100Mbits/s set by the s1-s2 link, compared to the aggregated total
bandwidth measured on the receivers of experiment A. The author concludes from this result
that solely using OpenFlow meters for QoS does not allow to achieve an optimal bandwidth
usage, and further investigating other OpenFlow features for QoS management, such as
OpenFlow switches’ queue management, would be worthwhile. This is proposed as future
work in Section 7.2.
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Experiment B is designed to highly favor one communication type, in particular ECS.
The measured results are shown in Figure B.5. The results show that the receivers measured
bandwidth for ECS, disaster and non-disaster communications are 59.0 Mbits/s, 19.2 Mbits/s
and 9.2 Mbits/s on average, respectively; and the median is 59.0 Mbits/s, 19.2 Mbits/s and
9.3 Mbits/s respectively. Packet loss for ECS, disaster and non-disaster communications
shows an average of 30.6%, 77.4% and 88.8% respectively.

We again see a non-optimal bandwitdh usage with the aggregated total bandwidth mea-
sured on the receivers being lower than the limit enforced by the s1-s2 link. In particular,
ECS communications measured bandwidth on the receiver is 11 Mbits/s lower than the ap-
plied rate limit of 70 Mbits/s, meaning it only made use of 84% of its reserved bandwidth.
Disaster and non-disaster communications use 96% and 93% of their allowance, respectively.

The author concludes from this experiment that the differentiated bandwidth rate limit
policies were correctly applied by the controller. If we compare experiment A and B, we
see that the rate limit configuration enforced by the controller in experiment B effectively
improves QoS for ECS communications, reducing the packet loss from 66.2% to 30.6%.

Experiment C is designed to simulate a more realistic scenario, where ECS communications
present with a lower rate than disaster or non-disaster communications. In this case, the rate
limiting policy from the controller tries to allocate full bandwidth to ECS communications,
to then favor disaster communications over non-disaster communications. The simulation
results are shown in Figure B.6.

The results for experiment C show that the receivers’ measured bandwidth for ECS,
disaster and non-disaster communications are 19.4 Mbits/s, 44.4 Mbits/s and 21.0 Mbits/s
on average, with a median of 19.4 Mbits/s, 44.1 Mbits/s and 21.1 Mbits/s.

We see that the reserved bandwidth policies for ECS communications were effectively
applied, achieving 97% usage and only having an average packet loss of 7.6%. Out of the
remaining bandwidth, disaster communications were correctly favored by the controller.

6.5 Limitations

While the testing of the disaster resilient controller over the Mininet and OVS testbed has
yielded positive results, some limitations were identified.

One limitation observed was the conflict between Mininet and Open VSwitch over traffic
control disciplines on the switches. Care must be taken to avoid such conflicts, and further
investigation may be needed to ensure smooth functioning of traffic control policies in the
testbed.

Another limitation found by the author relates to the creation of a network that uses more
than one controller. While Mininet easily allows the configuration of the communication
channel between the switches and the controllers, the author was unable to configure a
communication channel between the controllers themselves. This limitation has hindered the
testing of the Disaster Ex Situ state and its notification system.
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Additionally, the routing application provided by Ryu was found to be simplistic and
lacking dynamic rerouting capabilities, which prevented the testing of bandwidth measure-
ments in a constantly changing network. As a future improvement, implementing a dynamic
routing application for the controller could address this limitation.

6.6 Conclusions

The testing of the three designed applications in the testbed using Mininet and OVS has
shown promising results. The functionalities of the applications were tested in both simple
and complex scenarios, and the designed applications were found to work effectively with
other applications (in this particular case, with the routing application).

The designed disaster resilient controller demonstrated its ability to detect disasters, man-
age different levels of prioritization, and apply disaster QoS policies dynamically as needed.
The rate limiting policies were found to be effective in controlling the usage of bandwidth.
However, further investigation into QoS queuing policies may be needed to optimize the usage
of assigned bandwidth.

The testbed using Mininet and Open VSwitch proved to be a capable tool for simulating
SDNs, despite some limitations. While Mininet is not a deterministic simulator, the consis-
tency of results between runs provides reliability. The conflicts between Mininet and Open
VSwitch over traffic control policies were overcome by the QoS management performed by
the controller. However, the inability to configure communication between two controllers in
the testbed is a limitation that could be addressed in future work.

The identified limitations require further attention and improvement for more compre-
hensive and realistic testing in the future. Addressing these limitations will contribute to
evaluating the robustness and reliability of the designed applications of the disaster resilient
controller, ensuring their effective performance in managing disasters and applying QoS poli-
cies.

Overall, the testing of the disaster resilient controller proposed in this work has provided
valuable insights into the SDN functionalities, performance, and limitations of the existing
tools.
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Chapter 7

Conclusions

7.1 Main contributions

The systematic review on software-defined networks (SDNs) in the context of disaster
resilient WANs has provided a comprehensive overview of the state of the art in SDNs,
their existing applications in wide area networks (WANs), and the benefits and challenges
associated with using them to create disaster resilient networks. The review also identified
useful tools, APIs, and frameworks for open source SDN development.

With the information gathered, we were able to successfully answer the research questions
that motivated this study. Firstly, we found that SDNs can be applied to WANs as long
as the original concept of SDNs is enhanced to solve the scalability, performance, reliability,
and security issues found. We also found that SDN applicability over WANs has been widely
studied, and multiple solutions to these issues have been proposed. Secondly, we identified
that the control plane design is key to achieving acceptable levels of QoS and resilience.
This encompasses physical components such as the controller’s placement and its capacity to
handle requests, as well as software components such as controller applications that handle
management, routing, and recovery algorithms. Lastly, we reviewed how disaster scenarios
affect traditional WANs and the specific challenges they present for normal operation. In
addition, we found SDN-WAN studies aiming to tackle and handle those challenges.

As a result of this review, we found that the methodologies proposed in the reviewed
articles work on isolation and combining techniques is not explored. We also found unan-
swered questions regarding when and how disaster configuration should be triggered in an
SDN-WAN controller and how this controller can automatically switch between normal and
disaster configurations. Furthermore, we found that implementation details of the controller
applications were not explained.

With this unexplored field identified, this study aimed to propose answers to these open
questions by designing, implementing, and testing an SDN controller with a specific focus on
disaster resilience.
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The SDN architecture has demonstrated its effectiveness in providing features and tools to
combat disasters, as well as implementing new techniques that may not be easily applicable
in traditional networks. The extensibility of the designed SDN controller allows for easy
addition of other applications and features to the controller, making it adaptable to evolving
needs.

The identification of simulation techniques for testing the SDN controller, as well as the
simulation of disaster scenarios, has provided valuable insights into the controller’s perfor-
mance and resilience in various scenarios. However, it is important to acknowledge the
limitations of the testbed used for simulation, which should be considered when interpreting
the results.

The validation of the designed controller’s features has shown that the dynamic monitoring
and QoS management features are valuable in designing a disaster resilient controller for
WANs. Therefore, this research has made a significant contribution to the body of knowledge
on SDNs and their potential applications in disaster-resilient networks.

7.2 Future and proposed work

Further research and refinement of the designed SDN controller for disaster resilience can
greatly contribute to the development of more robust and efficient disaster resilient networks.
There are several areas that could benefit from additional investigation and optimization.

Firstly, optimal parameters and thresholds for state change triggers should be identified to
improve the controller’s ability to detect and respond to disaster events. This could involve
determining the most appropriate values for parameters such as threshold levels for state
change triggers, both for initiating a disaster state from normal operation and vice versa.
Fine-tuning these parameters can enhance the accuracy and timeliness of the controller’s
response to disaster events.

Additionally, considering user input as a possible trigger for state changes could enhance
the usability and practicality of the controller. User input, such as manual override or input
from emergency responders, can provide valuable insights and enable more informed decision-
making during disaster events. Incorporating user input into the controller’s operation can
enhance its responsiveness and adaptability in real-world disaster scenarios.

Secondly, meter bands and other parameters used for dynamic adjustment within the
controller could be further optimized. This could involve investigating different meter band
configurations, adjusting parameters based on network conditions, and dynamically adapting
the controller’s actions accordingly. This can improve the efficiency and effectiveness of the
controller in managing network resources during disaster events.

In addition, leveraging OpenFlow switches’ queue management capabilities to enhance
QoS effectiveness should be further researched. Investigating different queue management
strategies, optimizing queue configurations, and integrating QoS management into the con-
troller’s disaster resilience features can improve the network’s ability to prioritize critical
traffic during disaster events, ensuring efficient resource utilization and maintaining service
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quality for final users.

Thirdly, testing setups that enable communication between two or more controllers should
be explored. This would enable the testing of the proposed notification system between re-
mote controllers, enabling the Disaster Ex Situ state feature and allowing for coordinated
actions and responses in case of large-scale disasters that span across multiple network do-
mains. Such communication capabilities can enhance the scalability and effectiveness of the
controller in managing disaster events.

Moreover, testing the controller with dynamic routing applications can provide insights
into its compatibility and effectiveness in real-world networking scenarios. Dynamic routing
apps can introduce additional complexities and challenges in managing network resources
during disaster events, and testing the controller in such scenarios can help refine its perfor-
mance and resilience.

In conclusion, further research and refinement of the SDN controller’s features, perfor-
mance and testing can lead to more robust and efficient disaster resilient networks in the
future. Investigating optimal parameters, thresholds, user input integration, testing in real-
scale networks, communication between controllers, and leveraging OpenFlow switches’ capa-
bilities can contribute to enhancing the controller’s effectiveness in managing disaster events
and improving the overall resilience of SDN-based networks.
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Annexes

Annex A

Systematic review: Topic Summary

Cite Topic
[46] Distributed SDN Control plane for WAN
[5] SD-WAN for disaster scenario
[44] SDN Controller placement
[22] SD-WAN application
[54] SDN Controller placement
[47] Distributed SDN Control plane for WAN
[27] SDN Controller placement
[41] SD-WAN resilience
[7] SD-WAN application
[52] SDN Controller placement
[37] SD-WAN for disaster scenario
[58] SD-WAN for disaster scenario
[30] SD-WAN application
[8] SD-WAN application
[3] SD-WAN routing
[29] SD-WAN for disaster scenario
[26] SD-WAN for disaster scenario
[6] SD-WAN for disaster scenario
[57] SD-WAN routing
[23] SD-WAN for disaster scenario
[16] SD-WAN QoS
[55] SD-WAN QoS
[9] SDN QoS
[21] SD-WAN application
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Cite Topic
[53] SD-WAN resource optimization
[50] SD-WAN for disaster scenario
[10] SD-WAN resilience
[4] SDN QoS
[49] SD-WAN resource optimization
[14] SD-WAN resource optimization
[33] SDN QoS
[20] SD-WAN application
[34] SDN Controller placement
[31] SD-WAN resilience
[56] SD-WAN Security, SD-WAN resilience
[36] SD-WAN resilience
[51] SD-WAN resilience
[38] SD-WAN resilience
[42] SD-WAN for disaster scenario
[35] SD-WAN QoS
[15] SD-WAN Security
[39] SD-WAN for disaster scenario
[24] SD-WAN resource optimization
[60] SD-WAN for disaster scenario
[59] SD-WAN application

Table A.1: Topic summary of the approved studies for the Systematic Literature review.
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Annex B

Results of traffic congestion experiments

B.1 Baseline scenario

(a) Measured bandwidth on sender’s end. (b) Measured bandwidth on receiver’s end.

(c) Measured packet loss on receiver’s end.

Figure B.1: Baseline scenario. Subfigures (a) and (b) show the measured bandwidth on
each end user of the communication, and subfigure (c) shows the packet loss of each

communication type. iPerf is configured to create UDP streams of 33 Mbits/s on each
sender. The experiment was performed five times and the graphs show the measured values

of each run, the average value and the median.
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B.2 Baseline congested scenario

(a) Measured bandwidth on sender’s end. (b) Measured bandwidth on receiver’s end.

(c) Measured packet loss on receiver’s end.

Figure B.2: Baseline congested scenario. Subfigures (a) and (b) show the measured
bandwidth on each end user of the communication, and subfigure (c) shows the packet loss
of each communication type. iPerf is configured to create UDP streams of 100 Mbits/s on
each sender. The experiment was performed five times and the graphs show the measured

values of each run, the average value and the median.
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B.3 Baseline congested scenario with no meter support

(a) Measured bandwidth on sender’s end. (b) Measured bandwidth on receiver’s end.

(c) Measured packet loss on receiver’s end.

Figure B.3: Baseline congested scenario, without switch configuration to support meters.
Subfigures (a) and (b) show the measured bandwidth on each end user of the

communication, and subfigure (c) shows the packet loss of each communication type. iPerf
is configured to create UDP streams of 100 Mbits/s on each sender. The experiment was
performed five times and the graphs show the measured values of each run, the average

value and the median.
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B.4 Disaster resilient controller: Experiment A

(a) Measured bandwidth on sender’s end. (b) Measured bandwidth on receiver’s end.

(c) Measured packet loss on receiver’s end.

Figure B.4: Designed disaster controller in congested scenario. Subfigures (a) and (b) show
the measured bandwidth on each end user of the communication, and subfigure (c) shows
the packet loss of each communication type. iPerf is configured to create UDP streams of

100 Mbits/s on each sender. The controller limits the bandwidth of ECS, disaster and
non-disaster commnunication by 33 Mbits/s each. The experiment was performed five times
and the graphs show the measured values of each run, the average value and the median.

76



B.5 Disaster resilient controller: Experiment B

(a) Measured bandwidth on sender’s end. (b) Measured bandwidth on receiver’s end.

(c) Measured packet loss on receiver’s end.

Figure B.5: Designed disaster controller in congested scenario. Subfigures (a) and (b) show
the measured bandwidth on each end user of the communication, and subfigure (c) shows
the packet loss of each communication type. iPerf is configured to create UDP streams of

100 Mbits/s on each sender. The controller limits the bandwidth of ECS, disaster and
non-disaster commnunication by 70 Mbits/s, 20 Mbits/s and 10 Mbits/s respectively. The
experiment was performed five times and the graphs show the measured values of each run,

the average value and the median.
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B.6 Disaster resilient controller: Experiment C

(a) Measured bandwidth on sender’s end. (b) Measured bandwidth on receiver’s end.

(c) Measured packet loss on receiver’s end.

Figure B.6: Designed disaster controller in congested scenario. Subfigures (a) and (b) show
the measured bandwidth on each end user of the communication, and subfigure (c) shows
the packet loss of each communication type. iPerf is configured to create UDP streams of

20 Mbits/s on ECS sender and 100 Mbits/s for disaster and non-disaster senders. The
controller limits the bandwidth of ECS, disaster and non-disaster commnunication by 20

Mbits/s, 50 Mbits/s and 30 Mbits/s respectively. The experiment was performed five times
and the graphs show the measured values of each run, the average value and the median.
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