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Abstract 
 

Demand analysis is one of the cornerstones of any supply chain management system, and 
most of the key operational decisions in the supply chain rely on accurate demand predictions. 
Although there is a large body of academic literature proposing a variety of forecasting 
methods, there are still important challenges when using them in practice. A common problem 
is that firms need to decide about thousands of products and the patterns of demand could 
be very different between them. In this setting, oftentimes there is no single forecasting 
method that works well for all products. While some autoregressive models might work well 
in some cases, the demand for other products might require an ad-hoc identification of trend 
and seasonality components. In this chapter, we present a methodology based on meta-
learning that automatically analyzes several features of the demand to identify the most 
suitable method to forecast the demand for each product. We apply the methodology to a 
large retailer in Latin America and show how the methodology can be successfully applied to 
thousands of products. Our analysis indicates that this approach significantly improves the 
previous practices of the firm leading to important efficiency gains in the supply chain.   
 
 

 
Keywords: Forecasting, Meta-Learning, Time Series, Retailing.   
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1 Introduction 
 
The retail industry faces a dynamic and competitive landscape that has been confronted 
with the irruption of digital channels, the emergence of new formats, and the increasing 
use of technology in the value chain (Goic and Olivares, 2019). Among the long-term trends 
that have consolidated in recent years is the automation of a variety of processes, ranging 
from inventory management to self-checkout terminals. In this research, we propose a 
methodology to automate demand forecast at the product-store level, which is an 
important input for several key processes such as assortment planning or inventory 
management. For instance, to automate the replenishment of stores from the distribution 
centers, we need to project how much product is going to be sold in the near future in each 
store. Accurate forecasting has important consequences for operation performance. If the 
forecast underestimates the demand, the products will be out of stock, having a negative 
impact on sales. If the forecast overestimates the demand, the inventory cost would be 
unnecessarily high and it might even force the implementation of aggressive price 
reductions to reduce stocks.   
 
The academic literature provides numerous methodologies to forecast demand in the 
retail industry (Ma, Fildes, Huang, 2016; Huber, Stuckenschmidt, 2020). However, practical 
implementations of automatic forecasting systems imply important methodological 
challenges. First, most retailers consider a large assortment of thousands of SKUs in several 
dozen stores, which require the completion of several thousands of forecasting tasks. 
Although computational power is not an important barrier to estimating a large number of 
statistical models, there is a more fundamental difficulty in automating demand 
forecasting: the underlying time series of sales of different products can be radically 
different and there is no universal model to provide the best solution for all cases. While 
in some cases a simple autoregressive model can provide satisfactory solutions, other cases 
might require a more comprehensive identification of seasonal components.  A common 
practice to deal with this problem is to either commit to a forecasting model that works 
well on average or assign human analysts to inspect the series and decide case by case. In 
this research, we propose a methodology to automatically select the best estimation 
method for each series, facilitating the automation of key processes without sacrificing 
forecasting accuracy.  
 
The need of using different forecasting models comes from the existence of distinct 
components in different demand series. To illustrate the point, in Figure 1, we display the 
time series of sales of four different products. For product A, we observe very pronounced 
spikes in the demand. As this product belongs to the toy category, those spikes are 
associated with seasonal events such as Christmas or Children's Day, which are strongly 
associated with larger purchases in the toy category. For product B, demand is clearly 
higher in the second part of every year, but that is mostly associated with year seasonality 
and not to a single event. This pattern is fairly common to items in the clothing category 
where the demand tends to be very cyclical. In this set, we also have products with no clear 
seasonal patterns such as products C and D. On one hand, product C presents large 
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variations in sales, but those occur at different times of the year, possibly associated with 
promotions or other unobservable factors. On the other hand, product D presents less 
variation over time with almost no acute spikes in the observational period.   
 

 
Figure 1: Illustration of several time series with different seasonality and trend 

components. 

Overall, we observe series with very different components requiring different modeling 
approaches. To automate the forecast, we need to provide an adequate estimation for 
every case. However, some models provide better results in some cases and other models 
perform better in other cases. Our solution is based on a technique called meta-learning in 
which a machine learning model decides the best model to use in each case based on 
observable characteristics of the series, such as the trend and seasonality strength as well 
as the size of the autoregressive components. To calibrate this model, we need to produce 
a large number of forecasts using different models to identify which one performs best 
under different conditions.  

In addition to proposing a methodology to automatically select the best forecasting model 
for each series, using historical data we evaluate the impact of utilizing this approach on 
the accuracy of the forecast and we demonstrate that it could lead to better results. 
Furthermore, we conducted a business evaluation using a controlled experiment in which 
we compare sales and inventory levels for products in which we use the methodology to 
decide product replenishment, against a control where orders were decided using the 
standard business practices. Here we found that the model can indeed improve 
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operational efficiency in practice. To summarize, in this project we developed a predictive 
model to generate an accurate automatic forecast for a wide variety of products, thus 
reducing logistics and inventory management costs in the supermarket industry. 

The rest of the article is organized as follows. In section 2, we review the relevant literature. 
In section 3, we introduce the methodology that we use to build forecasts for a large 
number of products. Then, in section 4 we describe the empirical setting and provide some 
descriptive statistics of the thousands of products we consider in the empirical evaluation. 
In section 5, we present the result and we conclude in section 6 with the main takeaways 
of our research and a discussion with some avenues for future research. 
 

2 Literature Review 
 
This research is associated with three streams of research. First, from a substantive 
perspective, we relate to a vast literature exploring efficient demand estimation in the 
retail industry. Second, from a methodological perspective, our research is connected to 
recent advances in meta-learning. Lastly, from an operational perspective, we aim to 
produce forecasts with minimal human intervention and therefore our research also 
relates to the literature on retail automation. Next, we discuss these three streams 
sequentially.  
 
Regarding demand estimation, previous literature has recognized that the forecasting 
approach depends on the nature of the decisions they support. For instance, Fildes, Ma, 
and Kolassa, (2019) pose that strategic, tactical, and operational decisions require different 
methods and data aggregation levels.  In this work, we focus on providing forecasting at 
the product and store levels to support operational decisions such as order sizes and 
inventory volumes. Since the introduction of retail scanner data, a wide variety of methods 
have been proposed to forecast sales. While a common practice in the industry is using 
regressions (e.g. Macé and Neslin, 2004) or autoregressive time series models (e.g. 
Srinivasan, Pauwels, and Nijs, 2008), recent methodological advances have motivated a 
large number of investigations using more sophisticated forecasting models. For instance, 
Ali et al (2009) compare a variety of autoregressive, stepwise, and support vector 
regression models to forecast demand in the presence of promotion and found that, with 
more detailed input data, machine learning models can significantly improve the forecasts. 
More recently, Spiliotis et al (2020) compare statistical and machine learning methods to 
forecast daily demand and conclude that the latter reduces the bias and leads to more 
accurate predictions. Unlike these systematic evaluations that evaluate the aggregated 
performance of different forecasting models, our research aims to identify the best model 
for each particular case. In addition, while most of these studies consider a few dozen 
scenarios, our model is devoted to providing adequate demand forecasting for thousands 
of product-stores combinations.  
 
The desire of having estimation methods that can be generalized to multiple prediction 
instances has a long tradition in the forecasting literature. More than 30 years ago, 
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Mahmoud, Rice, and Malhotra (1988) already posed that no one sales forecasting method 
is appropriate for every situation (p 54). While the problem has been identified a long time 
ago, it has not been until the last decade that the literature has provided more systematic 
approaches to address it. Early approaches to finding general forecasting models within a 
given domain rely on aggregation methods (see, for example, Horvath and Wieringa, 2008). 
However, we believe these approaches are better suited for cases with a relatively short 
number of temporal observations for each unit, which is less of a concern in our empirical 
application. Another approach to aim for generalizability is using forecasting ensembles, 
where multiple models and data sources of different types are combined to produce a 
unified forecast (Wu and Levinson, 2021). In our empirical analysis, we consider ensembles 
as potential candidates to generate the best predictions, but we consider the possibility 
that one model by itself could be the most adequate for certain instances.   
 
The methodology we used to forecast the demand at the product-store level is based on 
meta-learning. The basic idea behind meta-learning is using a classifying method to select 
the most adequate model for a given time series (Prudencio and Ludermir, 2004). Unlike 
ensemble learning, which combines multiple forecasts, in meta-learning, we aim to select 
the best model for each case. With the proliferation of a wide gamut of time-series models, 
the need for some guidelines to decide on the best modeling approach has become more 
pressing. Early guidelines mostly relied on visual examination of the series (Pegels, 1969) 
or qualitative rules (Collopy and Armstrong, 1992). More recently, meta-learning methods 
have taken advantage of the important advances in machine learning to use a classification 
model to decide the most promising approach as a function of a large number of features 
characterizing a given time series (Talagala, Hyndman, and Athanasopoulos, 2018). Using 
a wide range of univariate time series from different domains, Wang, Smith-Miles, and 
Hyndman (2009) identify six clusters of series that might require different forecasting 
techniques. Similarly, Lemke and Gabrys (2010), identify an extensive set of features 
describing the time series and another set of features to characterize the forecasting 
methods. More recently, Ma and Fildes (2021) apply meta-learning methods in a retail 
setting and demonstrate they can significantly improve forecasting efficacy. Although they 
evaluate meta-learning using a publicly available dataset, in our work we effectively use 
this approach to support decision-making in the retail industry. In terms of the 
methodology, we find that the addition of a final step, in which we discard those models 
with worse performance, could play a critical role in facilitating the classifier to select the 
best model for each forecasting task.  
 
To conclude this review, our research is also related to previous work on retail automation. 
Considering the massive nature of retail operations and the high competition in the retail 
markets, there is constant pressure to systematize and automate processes (Begley, 
Hancock, Kilroy, and Kohli, 2019). The number of applications that automatize key retail 
decisions is vast. These include the evaluation of promotional effectiveness with a 
minimum of analyst intervention (Abraham and Lodish, 1987), the dynamic adjustment of 
store item-level prices (Zhou, and Piramuthu, 2009), and the delivery of automatic 
responses triggered by consumer actions (Goic, Rojas and Saavedra, 2021) to name a few. 
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The main goal of this research is to provide an automatic demand forecast at the product-
store level.  Although we expect that automation can lead to better forecasting in the long 
term, we aim to provide predictions that are, at least, as good as the current business 
practices that require manual examination of thousands of series.   
 

3 Methodology 
 
As illustrated in Figure 2, the proposed methodology consists of four main steps. First, we 
produce forecasts for a large number of cases using a variety of models and compute error 
metric for each model and case (1). Second, we generate several features to characterize 
each case (2), and third, we use those features to train a meta-learning model that 
indicates which model leads to smaller errors for given values of features (3). We conclude 
by applying the results of the meta-learning and evaluating its performance (4).  
 

 
 

Figure 2: Schematic representation of the proposed methodology.  
 
In the next subsections, we discuss each of these components in more detail.  
 
3.1 Forecasting with alternative models  
 
We start the methodology by estimating a variety of forecasting models for a large number 
of products. The objective of this task is twofold. First, it allows us to verify that there is no 
single model that generates the most accurate prediction for a majority of cases, which 
provides empirical justification for the inclusion of a meta-learning process to assign 
product demand patterns to models. Second, the results of these models work as an input 
for the calibration of the meta-learning algorithm. The assessment of the forecasting errors 

Model 1

Model 2

Model n

Model 3
Training 

data

ε2

ε1

ε3

εn

Best Model

Best Forecasting 
Method

εm
Testing 

data

yt

fk

fk

yt

2

1
3

4



7 
 

gives us the basis for the construction of classification labels that will be used in the training 
of the meta-learning step.  
The models that we consider in the evaluation are: 

• Moving Average (MA): This is the model used by the firm before the implementation 
of the meta-learning, and it generates the forecast for the next period as a weighted 
mean of the observed sales in the last two periods (Johnston, Boyland, Meadows, and 
Shale, 1999). 

• Autoregressive Integrated Moving Average (ARIMA): The values of the time series on 
a given period depend on their lagged values and lagged errors. To estimate the model, 
the series are further differentiated to allow for nonstationary processes (Newbold, 
1983). 

• Holt-Winters (HW): This model expands the simple exponential smoothing approach 
by allowing trends in the forecasting. Thus, the method comprises three smoothing 
equations for the level, the trend, and the seasonal components (Chatfield, 1978).  

• Exponential smoothing state space model with Box-Cox transformation, ARMA er-
rors, Trend, and Seasonal components (TBATS): This model uses a combination of ex-
ponential smoothing and Box-Cox transformations to automatically accommodate mul-
tiple seasonal components. Each of these seasonal components is modeled by a trigo-
nometric representation based on a Fourier series (De Livera, Hyndman, Snyder, 2011). 

• Time-delay artificial neural networks (TDANN): This model uses a flexible neural net-
work architecture to model the time series. In this structure, we use lagged values as 
inputs to the network (Clouse, Giles, Horne, and Cottrell 1997). 

• Seasonal-Trend decomposition using LOESS (STL): This model allows for the decompo-
sition of the time series into three components including seasonality, trend, and resid-
uals. To combine these components, this model uses a local regression approach that 
is robust to outliers (Cleveland, Cleveland, McRae, Terpenning, 1990). 

• Ensemble (EN): In this approach, the forecast corresponds to the combination of mul-
tiple models. While the literature suggests alternative approaches to combining mod-
els, in our case we simply consider a simple average, that often outperforms more com-
plex combination schemes (Bates and Granger, 1969). 

 
3.2 Model selection through meta-learning 
 
To select the best model for each time series, we use meta-learning. To perform meta-
learning, we need to generate a dataset with all the available time series and, for each 
series we need (i) a label indicating which model had the most accurate prediction for this 
series, and (ii) several features to characterize them a priori. With these components, the 
problem translates into a standard classification model. The labels with the best model are 
gotten from the extensive forecasting with alternative models that we explained in the 
previous subsection. The process to extract time-series features is explained in depth in 
the next subsection.  
 
Using, standard supervised learning approaches, we split the database into training and 
testing subsets. The model is calibrated using the training data and then evaluated in the 
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testing data. In our case, we use a random sample of 80% of the product-store series for 
training and the remaining 20% for testing. Although there are many alternative methods 
to perform the classification task, following previous work on meta-learning we use a 
random forest model (Talagala, Hyndman, and Athanasopoulos, 2018). In our case, the 
random forest is produced averaging 1,000 trees. We tried alternative specifications with 
a larger number of trees without observing a meaningful improvement in the performance 
of the classifier.   
  
The labels indicating which candidate is the best model are based on the Mean Absolute 
Error (MAE). Since the label are used to guide which model performs better for each shape 
of the time series, to feed the random forest classifier we only consider the case in which 
there is a clear winner among the competing model. Of the 5,000 time series analyzed, 
there are 1,103 series where there is no meaningful difference in the prediction errors of 
at least two models, which we discarded from the analysis. Thus, the classification is 
trained with 3,897 series. It is possible that other methods, could perform better without 
removing those cases from the training set, but this filter proved to lead to better 
forecasting results for our application.  
 
There is another variation in the classifier that proved to significantly enhance meta-
learning. This is, instead of calibrating the classifier to select the best model among all 
possible methods, we calibrate it to choose between the two models with the best 
performance overall. Restricting the classification to only those models with the smallest 
forecasting errors reduces the potential gain of the automation of model selection. In fact, 
as we will see in the result section, every model provides the best forecast for at least a 
few cases. Therefore, removing any of the models will necessarily lead to a worse possible 
solution for those series. Notice, however, that the gain in the forecasting capabilities only 
materializes if the classifier effectively identifies the best model for each series. However, 
with more labels, the classification task becomes more difficult. Thus, the key tradeoff here 
is between reducing the potential forecasting gains and augmenting the classification 
errors. As we will see in the result section, in our empirical application, the reduction in the 
classification error more than compensates for the selection of suboptimal methods and 
the meta-learning with the best models leads to better results overall.  
 
3.3 Extraction of time series features 
 
To calibrate a meta-learning step, we need to connect the performance of all forecasting 
methods to a series of observable features of the forecasting task. In this project, these 
observable features correspond to characteristics of the shape of the underlying time 
series. For instance, we consider the strength of the seasonal and trend components. The 
basic idea is that some methods might be more suitable to capture those components than 
others and, that the meta-learning step can identify those patterns by observing the 
performance of several methods in thousands of cases.  
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To define the list of time-series features to use in the empirical analysis, we closely follow 
previous literature on time-series meta-learning and for each demand series of product-
store combination, we compute 15 features such as trend, seasonal strength, and 
autocorrelation coefficients, as well as metrics of the internal variability such as entropy, 
spikiness, and maximum level shifts (Talagala, Hyndman, Athanasopoulos 2018; Ma and 
Fildes, 2021). To illustrate how different time series differ depending on the values of these 
features, in Figure 3 we display two series of demand with fairly different values for 
Seasonal Strength (by construction, the Seasonal Strength takes values in the range [0,1]). 
In the bottom panel, we display a series with high Seasonal Strength. In this case, sales 
during the summer times (November – March, in the southern hemisphere) are much 
higher than in the rest of the year. In the top panel, we display a series with low Seasonal 
Strength and, in this case, it is much more difficult to anticipate what would be the weeks 
with higher sales. In terms of the forecast, the need for a model that properly controls for 
seasonality appears to be more critical in the second series.  
 

 
Figure 3: Visual representation of two series of sales with different Seasonal Strength.  

 
3.4 Execution and Evaluation of Meta-models 
 
To complete the methodology, we apply the classifier for a large number of products and 
then we evaluate to which extent the resulting predictions improve with respect to 
standard forecasting tools. Considering that we apply the proposed methodology to a large 
number of products, we need an aggregated metric of performance. In our case, we use a 
weighted Mean Absolute Percentage Error (wMAPE) in which we give larger weight to 
products with larger sales levels. Our choice is not only justified because of its scale 
independence, but also because it is consistent with the business objective of having more 
accurate predictions for those products with a larger impact on revenues (Narayanan, 
Sahin and Robinson, 2019). 
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4 Empirical Setting 

 
From a practical point of view, we are interested in automatizing demand forecasting to 
use those estimates to feed different operational processes. The focal decision in this 
research is the daily number of units to distribute from the central warehouses to all stores 
scattered through the territory. On one hand, and considering the limited storage space in 
the store, demand overestimation could lead to large operational costs. On the other hand, 
demand underestimation could lead to lost sales due to out of stocks. While we formally 
analyze the inventory reorder process, the forecast could also be used to support other 
decisions such as assortment or promotional planning. 
 
In the empirical evaluation, we consider 5,000 demand series of different product-store 
combinations. The time series correspond to 143 weeks of sales from January 2017 to 
September 2019 for the clothing and toys categories. These series span 200 families of 
products and 130 stores in Chile. It is worth noting that not all product families are sold in 
all stores. Due to the constant product introduction, these two product categories are 
precisely among those the company has faced more difficulties in generating forecasting 
at the product-store level. The constant variation in the product offering motivates us to 
forecast at the product family and not at the SKU level. In Table 1, we display descriptive 
statistics of the demand for both product categories.  
 

  Weekly Sales [units] Price [CLP] 

Product Category No Products Mean Max Mean Max 

Toys 297 24.9 903 5,186 172,914 

Clothing 4,703 40.5 4,355 3,221 170,540 

Table 1: Descriptive statistics of the demand series for different product-stores combinations. 
Prices are reported in the Chilean currency (CLP). 

 

Statistics from Table 2 indicate that most of the series we consider in this numerical 
analysis correspond to clothing, which tends to have larger sales than the toys category, 
which also tends to have larger prices. For the purpose of our analysis, the key insight from 
these statistics is that the demand series might be fairly different between products, 
providing further qualitative support to the need for a meta-learning classifier that guides 
the best model to forecast each series.   
 

5 Results 

 
According to the methodology presented in Section 3, there are several components that 
are worth reporting. We first describe the results of the forecasting of all independent 
standard models. Then we describe the implementation of the time-series feature 
extractions. These two components are the basic inputs for the meta-learning stage that 
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we present next. We conclude this section by using the forecasting models to evaluate the 
business impact.  
 
5.1 Forecasting through standard models 
 
We first estimate each of the seven forecasting models for each of the 5,000 time series to 
complete a total of 35,000 forecasting tasks. The majority of these models require the 
calibration of hyper-parameters. For instance, for TBATS we need to determine if Box-Cox 
transformation is required, or for the ARIMA models, we need to decide the number of 
lags to use. We tune all these hyperparameters using cross-validation.  
 
In this exercise, the forecasts correspond to the daily sales of the last 4 weeks of the time 
series. This forecasting window is chosen to match the typical target for inventory reorders. 
In Figure 4, we illustrate the forecasts of all individual methods for a selected time series. 
Although the series largely differ in terms of their features (trend, seasonality, spikiness, 
etc.), this example represents a common pattern we find in most of the series: the 
predictions are not radically different between models. While this indicates that any model 
could provide a reasonable approximation, it also suggests that it might be difficult to 
classify what is the best model for a given series. Beyond the illustration of a given series, 
Table 2 reports the forecasting errors for the first week of forecasting for all models across 
the 5,000 series. In this table, we include the MAE that we use to compare predictions 
between models for a given series, and the wMAPE that we use later to evaluate the 
performance across series. Consistent with the previous example, these results indicate 
that all proposed models are competitive with relatively small differences in the 
aggregated performance metrics between the best and worst models.  

 
Figure 4: Illustration of alternative forecasting results for a selected series.  

 

MODEL MAE Sd wMape 

HW 13.7 20.5 33.2% 
TBATS 15.9 29.3 38.6% 
NNAR 17.9 25.0 43.5% 
STL 18.4 27.3 44.5% 
ARIMA 19.1 35.4 46.4% 
MA 19.2 25.5 46.5% 



12 
 

EN 13.6 21.2 33.0% 

Mean 16.8 26 40.8% 
Table 2: Forecasting Error across models for the first week. 

 

To complement previous results, in Table 3 we display the forecasting errors for all four 
weeks we use in these numerical exercises. As expected, the further in the future the 
forecasting window is, the lower the accuracy of the prediction. However, the notion that 
the differences between models are small, remains.   
 

Model w1 w2 w3 w4 Mean 

HW 13.7 15.7 16.4 19.2 16.3 
TBATS 15.9 16.2 16.8 18.2 16.8 
NNAR 17.9 18.9 21.7 19.9 19.6 
STL 18.4 18.8 21.0 20.8 19.8 
ARIMA 19.1 17.5 18.8 19.8 18.8 
MA 19.2 18.5 20.4 19.9 19.5 
EN 13.6 14.4 15.2 17.0 15.1 

Weekly Mean 16.8 17.1 18.6 19.3 18.0 
Table 3: Forecasting errors by week.  

 
Recall that in our methodology, the forecasting results from individual models are used to 
calibrate a classification model that determines what is the best model to predict each 
series. In this regard, the forecasting of individual models is the primary source to build the 
labels of the classification model. To produce these labels, we use the smallest forecasting 
error for each case. The frequencies of these labels are displayed in Figure 5, where we 
further decompose them by week. For instance, the ARIMA model has the smallest 
forecasting errors in 17.9% of the series in week 1. Similarly, the ensemble produces the 
best results in 13.7% of the series for the same week.  
 
Considering that we had previously found that the forecast errors were not dramatically 
different between models, it may not be surprising that we now find that no model is the 
best alternative for the majority of the cases. It is possible, however, that a particular 
model could be consistently better, but only by a small margin. The results in Figure 5 
indicate that this is indeed not the case and that some models work well for some series 
and other models predict better in other cases. This is precisely the pattern that justifies 
the need for a classifier to guide the decision of which model should be used for each 
specific prediction task. 
 
 



13 
 

 
Figure 5: Fraction at which each model provides the minimum forecasting error.  

 
The comparison across models reveals that the ensemble is the preferred model in the 
least number of cases. This is somewhat surprising considering that overall is the method 
with the smallest mean error. To conciliate these two empirical findings, it is worth 
emphasizing that the ensemble derives from averaging multiple models. Thus, while this 
approach generates consistently good solutions, it is often the case that there is one 
specific model that works better for that particular case.  While taking averages warrants 
the production of good models, at the same time it is influenced by relatively bad models 
which make it difficult to produce the very best solution.  
 
5.2 Generation of Features 
 
As explained in the methodology section, we compute features closely following what 
previous literature has used to characterize time series. This extraction considers trends, 
seasonality, and autoregressive factors among others.  In Table 4, we display the whole list 
of the time-series features we use for meta-learning along with their corresponding 
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descriptive statistics. For a more complete study of feature extraction, see Wang, Smith, 
and Hyndman (2006).  
 

Variable Description min mean max sd 

trend Strength of trend 0,000 0,131 0,815 0,111 

spike Spikiness 0,000 0,000 0,001 0,000 

linearity Linearity -5,934 0,371 9,025 1,914 

curvature Curvature -5,087 -0,381 4,696 1,420 

seasonal Seasonal Strength 0,228 0,600 0,970 0,156 

entropy Shannon entropy 0,598 0,890 1,000 0,065 

xacf1 First ACF of the series 0,017 0,572 0,938 0,150 

xacf10 SS of the first ACF of the series 0,006 0,924 5,646 0,753 

diff1acf1 First AF of the series differences -0,651 -0,271 0,348 0,118 

diff1acf10 SS of the first 10 ACF of the first differences 0,039 0,179 0,949 0,080 

diff2acf1 First ACF of the first differences -0,804 -0,561 -0,031 0,082 

diff2acf10 SS of the first 10 ACF of the second differences 0,159 0,435 1,774 0,135 

eacf1 First ACF of remainder series -0,387 0,370 0,842 0,172 

eacf10 Sum of squares of first 10 ACF of remainder series 0,005 0,352 2,150 0,257 

seasacf1 Autocorrelation coefficient at the first seasonal lag -0,292 0,191 0,589 0,155 

SS=Sum of the squares 

Table 4: List of time-series features for meta-learning with the corresponding descriptive statistics 
for the case study. 

 
According to the descriptive statistics presented in Table 4, except for spike, the features 
extracted from the different time series present significant dispersion. Consequently, the 
observed time series differ in their shapes providing enough variation to learn about their 
incidence in the performance in each model. 
 
5.3 Meta-learning 
 
Considering this is one of the most critical steps in the methodology, we describe two 
variants to learn from the best modeling approach to conduct the forecast for each series. 
Although both versions use a Random Forest to perform the classification, we consider two 
different sets of models in which the Random Forest must classify. First, we feed the meta-
learner with all forecasting models, and then we restrict the classification to the two 
models with the best overall performance. A perfect classifier would certainly benefit from 
selecting from a larger set of models. However, more candidates make the classification 
task more difficult, and therefore, which approach would lead to better results is an open 
empirical question.   
 
Before presenting the results of using a meta-learner to select the best model, in Figure 6 
we display the mean value for all time-series features depending on which was the model 
with the best performance. According to these results, we corroborate that some models 
tend to perform better for certain profiles of attributes. For instance, when STFL is 
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preferred, the underlying time series tend to have large values for curvature, eafc1, and 
eafc10. Similarly, a moving average is preferred for series with large values for trend, 
linearity, and spike. Overall, these results provide preliminary evidence that meta-learning 
can be effective in identifying the underlying patterns connecting time-series features and 
model performance.  
 

 
Figure 6: mean attribute value depending on which is the preferred model. 

 
Classification with all models 
 
In this first exercise, the meta-learning must decide the best model among seven 
competing alternatives. Table 5 reports the error of the Meta-Forecast against all other 
contenders and the fraction at which each model ended up being the best forecast (Win 
Rate).  
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MODEL MAE WMAPE WIN RATE 

HOLT 12.9 31.8% 19.3% 
TBATS 14.8 36.5% 12.8% 
STLF 17.0 41.9% 14.0% 
NNAR 17.2 42.4% 16.5% 
MM 18.3 45.1% 14.2% 
ARIMA 18.5 45.6% 14.1% 
ENSAMBLE 12.7 31.3% 9.2% 

Meta-Forecast 14.9 36.7% 19.3% 

Table 5: Performance of meta-Forecast against individual models.  

Results from Table 6 indicate that the meta-forecast, along with the Holt-Winters model 
has the highest win rate among all. This provides preliminary evidence that using a model 
classifier can have a positive impact on the overall performance of the system. Notice, 
however, that in terms of the forecasting error, the meta-forecast does not provide the 
best results and simpler approaches, such as the ensemble or Holt-Winters perform better 
on average. This indicates that while meta-forecast is oftentimes the best solution, the 
classifier could make important classification mistakes and some series were probably 
forecasted with models with large errors. These results motivate an alternative and more 
conservative approach in which, the classifier only selects among those models that 
perform well on average as we explore next. 
 
Classification with the best two models on average 
 
In this second exercise, the classifier only considers two labels associated with the Holt-
Winters and the ensemble model that performed better on average. Table 6 reports the 
errors of this new meta-forecast against all other contenders, and the fraction at which 
each model leads the smallest forecasting error (Win Rate). 
 

MODEL MAE WMAPE WIN RATE 

HOLT 12.9 31.8% 19.3% 
TBATS 14.8 36.5% 12.8% 

STLF 17.0 41.9% 14.0% 
NNAR 17.2 42.4% 16.5% 
MM 18.3 45.1% 14.2% 
ARIMA 18.5 45.6% 14.1% 
ENSEMBLE 12.7 31.3% 9.2% 

Meta-Forecast 11.0 27.1% 24.9% 
Table 6: Performance of Meta-Forecast against individual models.  

Compared to the previous case, this new meta-forecaster leads to much better results and 
it overperforms all other models in all relevant metrics. In fact, the meta-forecast model 
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not only provides a significant reduction in average error metrics with a wMAPE of 27.1%, 
which is 4.2 percentage points better than the closest competitor (Ensemble) and more 
than 18 percentage points better than a simple ARIMA model. These numbers lead the 
meta-forecast to provide the very best solution in 24.9% of the cases, which is almost 10% 
more than the closest competitor.  
 
Overall, these results indicate that meta-learning can add a meaningful boost of accuracy 
to make better predictions in the case of detailed retail demand sales. However, this gain 
is not automatic and it might be necessary to learn the best configuration for the classifier 
to achieve the best performance.  
 
5.4 Business Evaluation 
 
In previous sections, we have shown that the use of meta-learning helps to automate the 
forecasting process, allowing an algorithm to decide the most adequate model to produce 
the estimation for each combination of product and stores. Furthermore, the resulting 
forecasts could even lead to more accurate predictions. In this section, we empirically test 
if these improvements can be effectively applied in a real setting and we evaluate their 
impact on relevant business metrics.  
 
To measure the impact of the forecasting automation, we evaluate their impact in the 
process of product replenishment that requires estimation of the future demand at the 
product-store level. Our evaluation is based on a controlled experiment in the clothing 
department, where a selected group of products and stores operated their replenishment 
process using the automatic forecasting methodology proposed in this chapter, and a 
comparable group of products continue their replenishment processes using the standard 
business practices. While in the treatment, we forecast the demand using the automatic 
meta-learner, in the control, the forecast was performed by analysts who calibrate simple 
autoregressive models and they can make a judgment call to overwrite the forecast if they 
consider it necessary.  The selection of treatment and control groups was made to have 
similar demand levels pre-treatment and the experiment lasted two weeks. 
 
Certainly, the automation of the forecasting process brings several benefits that can only 
be observed in the mid-term. Those include more consistent decision-making, fastest 
processing, and cost saving associated with the process. For this evaluation, we will focus 
on the impact that can be measurable in the short term. More precisely, we look at the 
inventory levels and total sales. We expect that if the forecasting is successful, it should 
lead to lower inventory levels and more sales. Although we do not expect the forecasting 
by itself can increase the demand, a more precise forecast should be associated with a 
smaller number of out-of-stocks and therefore have a positive effect on sales levels. Table 
7 reports the daily mean for sales and inventory for this experiment.  
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Treatment Control 

Sales 277.1 250.5 

Inventory  18644.4 19096.6 

Table 7: Daily mean of sales inventory between treatment and control conditions. 
 
The treatment and control groups were selected to be balanced and therefore, the larger 
sales and smaller inventory in the treatment provide preliminary evidence that the forecast 
can have a positive effect on both metrics. However, a formal analysis requires detailed 
control for sales levels and temporal variations. To do so, we exploit the panel data 
structure of the experimental setting and estimate the following two regression models: 
 

𝑠𝑎𝑙𝑒𝑠𝑖𝑠𝑡 = 𝛼𝑖
1 + 𝛽𝑠

1 + 𝛾𝑡
1 + 𝛿1∙Treat𝑖𝑠𝑡 + 𝜀𝑖𝑠𝑡

2  (1) 

𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖𝑠𝑡 = 𝛼𝑖
2 + 𝛽𝑠

2 + 𝛾𝑡
2 + 𝛿2∙Treat𝑖𝑠𝑡 + 𝜀𝑖𝑠𝑡

2  (2) 

 
The key variable in this regression is ∙Treat𝑖𝑠𝑡 that takes the value 1 if the product i in store 
s, in day t was replenished using the automatic forecasting methodology. The dummy 

variables (𝛼𝑖
𝑘, 𝛽𝑠

𝑘, 𝛾𝑡
𝑘) control for product, store, and day fixed effects (𝑘 ∈ {1,2}). 

According to our previous discussion, we expect that 𝛿1 > 0 meaning that the automatic 
forecasting model increased the sales volume on average, and 𝛿2 < 0 meaning that the 
automatic forecasting model decreased the inventory levels. Results of the regression 
models are displayed in Table 8. In the table, we include two versions of the equation (1) 
and (2) that differ in whether we control for stores or not. In all cases, we reported 
clustered standard errors by product and day. In the analysis, we observe the sales of all 
products for all days in the experiment (N=9,705), but there is an imperfect recollection of 
inventory and therefore we only observe a fraction of them (N=5,470). 
 

Dependent Var: Sales Inventory 

Model: (1a) (1b) (2a) (2b) 

Treat 0.573* (0.249) 0.531* (0.235) -4.87* (2.21) -5.47* (2.36) 

Fixed Effect     
Product Yes Yes Yes Yes 
Day Yes Yes Yes Yes 
Store No Yes No Yes 

Observations 9,705 9,705 5,470 5,470 

Table 8: Regression results for the evaluation of the implementation of automatic 
forecasting using meta-learning.  

 
Results from Table 9, confirm our hypothesis about the direction of the impact of a 
successful implementation of automatic forecasting. In fact, we find evidence of a positive 
effect on sales and a negative effect on inventory levels.  
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6 Discussion and Future Research 
 
Modern retailing faces important challenges. The constant increase in product variety and 
the growing pressure to increase the efficiency of supply chain processes have pushed for 
automation in demand forecasting. Recent advances in data analytics offer a wide range 
of models that can be applied to improve forecasting. However, the suitability of the 
models depends on the case and there is no universal best model. With retailers having to 
plan inventories of thousands of products in hundreds of stores, manually choosing the 
best forecasting model is costly and can often be inaccurate.  
 
In our research, we present a methodology that takes advantage of recent advances in 
meta-learning to automatically select the best model for each forecasting task. In this 
chapter, we describe the methodology and then we numerically demonstrate that meta-
learning can have a meaningful impact on improving forecasting accuracy. Furthermore, 
we apply our approach in a controlled experiment and show that the replenishment 
process can benefit from it by reducing inventory levels and increasing sales. From a 
methodological point of view, it is important to notice that there is a trade-off between 
the use of multiple forecasting models and the difficulty in classifying models in the meta-
learning phase. In particular, in our case we found that restricting the set of eligible models 
to only those that perform well on average leads to better overall performance.  
 
To the best of our knowledge, this is one of the first studies showing that meta-learning 
can provide value in the retail industry. However, we identify several limitations and 
avenues for future research. First, we concentrate the analysis on only two product 
categories (clothing and toys) in a single retail chain. Despite expecting that the main 
findings generalize to other scenarios, more research is needed to understand the 
boundaries of the application of this technology. Second, in the empirical analysis, we 
focused on a limited number of forecasting models. Although we consider our list is 
representative of the most common forecasting approaches, the list can be enhanced with 
other models such as gradient boost (Chen and Guestrin, 2016) or Prophet (Taylor and 
Letham, 2018). Third, in our application, we only consider Random Forest as a classification 
technique. Further analysis could consider the exploration of alternative classifiers such as 
Naïve Bayes classifiers (Rish, 2001) or Support Vector Machines (Pisner and Schnyer, 2020). 
A final idea for future research is to use the insights of meta-learning to create customized 
ensembles. Although in our work we did consider a statistic ensemble, the creation of 
different ensembles depending on the features of the time series might lead to further 
improvements in the forecast. 
 
To conclude, in this research we have illustrated how recent advances in data analytics and 
automation can have a real impact on a regional retailer. While the technology is mature 
enough to have an impact today, we expect that this type of initiatives will continue playing 
an important role in improving the operational efficiency in the industry and they will 
become part of the standard way of operating in the near future.  
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