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|G| Order of the group G.
[G: H] Index of the subgroup H in G.
Gp Stabilizer subgroup of p.
G(p) Orbit of p under action of G.
HxnK Semidirect product of H by K (H 9 H x K)
C The Riemann sphere, this is CU {oo}
A Unit disk, thisis {z € C: |2| < 1}
oA {zeC:|2|=1}
S5/G Quotient space given by the actions of G on S.
Qlo($y The set of holomorphic forms on S.
Tr M The Trace of a square matrix M.
GL{n,C) | The set of n x n invertible matrices with entries from C.




Abstract

This work was intended as a contribution to the problem of equivalent group
actions on Riemann surfaces.

The main result of this thesis is the constructions of 1-parameter families
of Riemann surfaces admitting automorphism groups with two cyclic sub-
groups H; and H, that are conjugate in the group of orientation—preserving
homeomorphisms of the corresponding Riemann surfaces, but not conjugate
in the group of conformal automorphisms.

This property is interesting because it implies that the subvariety My(H,) of
the moduli space M, consisting of the points representing the Riemann sur-
faces of genus g admitting a group of automorphisms topologically conjugate
to Hy (equivalently to H, ) is not a normal subvariety.

This construction is done for subgroups of order 2* for each natural number
n > 3 and, in particular, for arbitrarily large genus.

The main tool is the theory of Fuchsian groups. A key result of this thesis
is the generalization of a theorem by Harvey that establishes a relation be-
tween cyclic coverings of order n of the Riemann sphere and epimorphisms
of certaing Fuchsian groups to the cyclic groups of order n, by means of the
rotation angles for the automorphism defining the cyclic group.




Abstract

Este trabajo nace como una contribucién al problema de equivalencia de
aciones de grupos en superficies de Riemann.

El principal resultado de la tesis es la construcién de familias 1-paramétricas
de superficies de Riemann que admiten grupos de automorfismos con dos
subgrupos ciclicos i1 v H2 que son conjugados en el grupo de homeomor-
fismos que preservan orientacién de las correspondientes superficies, pero no
son conjugados en el grupo de automorfismos conformes.

Fsta propiedad es interesante porque implica que la subvariedad M (H;)
de el espacio de moduli M, cuyos elementos representan superficies de Rie-
mann de género g que admiten un grupo de automorfismos topolégicamente
conjugado a H; (equivalentemente a Hs) no es un subvariedad normal.
Esta construcién es hecha para subgrupos de orden 2" para cada niimero
natural n > 3 y, en particular, para géneros arbitrariamente grandes.

La principal herramienta usada es la teoria de grupos Fuchsianos. Un resul-
tado clave de esta tesis es la generalizacién de un teorema de Harvey que
establece una relacién entre los cubrimientos ciclicos de la esfera de Riemann
de orden n y los epimorfismos de ciertos grupos Fuchsianos a grupos ciclicos
de orden n, por medio de los dngulos de rotacién de los automorfismos que
definen el grupo ciclico.




Introduction

When we consider a group G and say that G acts on ¢ Riemann surface S,
we are saying that there exists a group monomorphism from G to Aut(S),
where Aut(S) is the group consisting of the self-maps of § {(automorphism
or bi-holomorphic map) which preserve the complex structure.

In the study of Riemann surfaces, the classification of actions on compact
Riemann surfaces is an interesting problem. The classification of finite group
actions, up to topological equivalence, on a surface of low genus is studied
by A. Broughton in [3]. In the case where the group is cyclic, a relationship
between the local structure for the automorphisms with fixed points and the
epimorphism associated to the action is given by W. Harvey in [10]. Contin-
uing with the cyclic case, in particular for a group of prime order, a relation-
ship between two topologically equivalent actions for the generating vectors
is given by J. Gilman in [9]. In [8], G. Gonzdlez—Diez and R. Hidalgo give an
example of two actions of Z/8Z on a family of compact Riemann surfaces
of genus 9 that are directly topologically, but not conformally, equivalent,
except for finitely many cases. ?
Studying the classification of actions contributes to the understanding of the
properties of the moduli space M,.

For a compact Riemann surface Sy of genus g, consider the subgroup Hy <
Aut(Sp), the set

X (So, Ho) = {(S,H) : 3t € Homeo *(S,,5),tHot™' = H}

and the equivalence relation: (S, Hy) ~ (Si, Hp) if and only i{f there is
¢ € Isom(S5), Silso that ¢H1¢™! = H,.

We denote by M, (Hj,) the quotient space defined by the above relation. This
turns out to be a normal space.

Consider M, the moduli space associated to S, that is, a model of moduli

space of genus g¢.
Let Mg(Hg) = {[S] € Mg : 3t € Homeo +(S[],S) ,tHgt_l < Allt(S)}.
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The forgetful map is defined by

p: My(Ho) — My(Hp)
(S, H)] ~ [5]

As is well known, M,(Hy) is the normalization of M,(Hy). Moreover, p is
not bijective if only if there exists a compact Riemann surface S of genus
g admitting two groups of automorphisms H; and H; which are directly
topologically, but not conformally, conjugate to Hy. For further details, see

[7].
The Thesis is organized as follows:

Chapter 1 contains an overview of definitions and relevant results about
automorphisms of Riemann surfaces and Fuchsian groups.

Chapter 2 contains some our contribution to the problem of the classification
of actions. For cyclic groups, Theorem 13 gives a condition on the generating
vectors under which two actions are directly topologically equivalent. Also,
we generalize a result due to Harvey [10, Theorem 7).

In Chapter 3, inspired by the paper of G. Gonzdlez—Diez and R. Hidalgo (8],
we produce for each n € N the families G; and G3. By definition, &; with
i=1,2, consists of the Riemann surfaces of genus 3(2" — 1) defined by

far (@) =" — 2% (&* - 1)" (5" = ) (a° - A7)

When 7 = 1 {resp. ¢ = 2), the automorphism group for the elements of &,
(resp. o) is Z/2"PZ x Z/2Z (resp. Z/2"1'Z %y Z/2Z). In both cases,
there exist two cyclic subgroups which define directly topologically, but not
conformally, equivalent actions.




Chapter 1

Preliminary Results

In this chapter we recall several definitions and results. They may be found
in [17}, [12], [16] and [6].

1.1 Little Group Method

In this section we give a Theorem for computing the irreducible representa-
tion over C of a finite group G, such that

G=K=xH

where K is a abelian group.
This method is know as Little Group Method. For more detail see [21].

Proposition 1. Let G = K x H be o semidirect product of finite groups.
Assume that K is an abelian group. Then the irreducible representations of
G, {B:;}ij, are given by the induced representations of

i = P ® O
where {p;}; is the irreducible representations set of K and the o;; are deter-
mined by the p;.

We will see the definitions for the representations p; and oy ;.
Consider Ry the set of all the irreducible representations for K.
R is a finite set, in fact [Rg| = |K|. We will use p; to denote the elements
in RK. .




CHAPTER 1. PRELIMINARY RESULTS 8

Consider the action of G on R, given by
gepi=pl: Pk} = pilgkg™)

where g € G, p; € R.

We denote by RE the set of the representatives of the orbits under the
action of H.
For each p; € Rf we consider

Hi={heH :heop;=p;}
Gi={9€G:gep;=p;}

Now we have G; = K » H; and thus we may extend p; to GG;. The extension

is given by Q) .
- _ i 1) ,g¢€ i
p"(g)m{pj(g) ,geK}

Finally we consider the irreducible representations for H;. We denote these
representations by {o;;}:.
Now also we may extend o;; to G;. The extension is given by

Fiilg) = { ngg ,,gg ee gg }
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1.2 Automorphisms of Riemann Surfaces

A Riemann surface is a connected Hausdorff topological space S endowed
with a complex structure, We say that S has a compler structure if for all
p € S, there exist U, an open neighborhood of p and a homeomorphism
¢p: Uy — V C C (the pair (Uy, ¢,) is called chart on S) and if for any two
charts (U, ¢1) and (Us, ¢2) such that Uy N Uz # @, we have the diagram

Uniy
2 N (L1)
¢2 (U1 N U2) gy (,b]_ (U]_ M Ug)

where T = ¢; 0 ¢;" is a holomorphic funetion.
When p € U is such that ¢(p) = 0 we say (U, ¢) is a chart centered ot p.

Since for any two charts, diagram (1.1) holds, we have that T is an in-
vertible holomorphic function.

We may suppose that ¢,(p) = 0 = ¢,{(g), and then we have 7°(0) = 0,
and T locally at zero is of the form

T(z)=alz+a222+»~=zamzm,

(its Taylor series form) where a; # 0 since T is invertible (R = T~!) and
thus
1=(RoT)(z) = R(T(2})T'(2) (1.2)

(chain rule).

Further it is clear that 7'(0) = a; and thus by the equation (1.2) we have

R(0) = ﬁ .

Definition 1. Let ¢ : Sy — 5 be a map between Riemann surfaces. We

say o is a holomorphic maep at p € Sy if for each (U, ¢} chart centered at p
and each (V, ) chart centered at ¢ = o(p) € S, we have the diagram

Unel(V)c 8 —— S DV neU)
¢ ¥

¢ (UNo™'(V))

= P(VNo(®)
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where 1) 0 ¢ 0 ¢! is a holomorphic function.

We say o is a holomorphic map if ¢ is a holomorphic map at p for each
pPE Si.

We may take the expansion series at 0, and we have

poood (@) =3 ona™.
m>1
Now we may consider
mg = min{m : ¢, # 0}.

The number myq is called the multiplicity at p .
When mg > 1 we say p is a ramification point of ¢ with multiplicity mg.
The point ¢ = o(p) is called branch point of o with multiplicity my.

For a bijective holomorphic map, ¢ : 55 — S;, we say o is a bi-
holomorphic map or a isomorphism between Riemann surfaces.
When S = S, we say o is an automorphism of S .
From now on, Isom(Sy, Sa} (respectively Aut(S)) denotes the isomorphisms
set between Sy and Sy (respectively automorphism of S).

As ¢! is a holomorphic map, we see that © o o 0 ¢~! is an invertible
holomorphic function, then ¢; # 0, where

Yooodi(z) = Zcmz’",

m>1

then the automorphisms of Riemann surfaces do not have ramification points,
in fact since for each p € § we have ¢; # 0, the multiplicity of p is 1.

Consider S a compact Riemann surface of genus g > 2.
By the Riemann Hurwitz’s theorem [17, pag. 82] we have

| Aut(S)| < 84(g—1).

Now for each p € S, consider the subgroup of Aut(S) given by
Aut(9), = {0 € Aut(S) : o{p) = p} ,

called stabilizer subgroup. Now let (U, ¢) be a chart centered at p, and ¢ €
Aut(S), then we have

pocogdz) =) em(0)a™

m>1
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and we define

— OF

c1{o}

8, + Aut(S),

a o~

11

first we will see that this map is well defined, in fact if we take (V| ¢} another
chart centered at p, then we have the following diagram:

pogog—!

2{UNV)

pop?

P (UNV)

™~
/

pelUNVecsS —Z=8>VnUsyp

/

$(UNV)

goyt

¥V nU)

explicitly we have

YoagoyH{w)

Theorem 1. The map ép

Pogoy—!

podlo(pogod)odoy T (w)

pog o ¢oao¢‘)(2b

m>1

(Z cx(o) Z bmw’“

k>1 m>1

(g

= ayei{o)bz + higher terms

)

pL

izl k21

(z ci(o)

= ¢(o)z+ higher terms

eyclic finite subgroup of Aut(S).

Proof. Now we will see that 0, is a group homomorphism .

)

is a group monomerphism. Further, Aut(S), is a

Let o,7 €
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Aut(S)Pa
pooTo¢p (z) = doooglodorogd i(z)

= ¢ooo qﬁ”l (E ck('r)zk)

k=1
= > tnlo) (Z ck('r)z"’)
mz21 k=1

= e¢i(o)ei(r)z + higher terms
Furthermore 4, is 2 monomorphism, because if we let o € ker g,
doood2) =24 cp(o)z™ -
where m > 2 such that ¢ = ey, (o) # 0 then we have

pocgod™i(z) = z+cx™ mod 2™
= poctodH(z) = z+2z™ mod 2™

by induction
poc*op(z) = z+kez™ med 2™

but the group Aut(S), is finite and therefore ¢ must have finite order, and
for some k, kc must be zero, forcing ¢ = 0, therefore o(2) = =.

If the order of o € Aut(S), is n, then dy(o) is a nth root of unity, fur-
thermore as J, is a monomorphism §,(c) is a primitive nth root of unity.
Therefore the group Aut(S), is isomorphic to a finite subgroup of 5, thus
Aut(S), is a cyclic group.

Alternative proof

Since Aut,(S}) is a finite group we may find a neighborhood U of p which
is invariant under Aut,(S). Without loss of generality we can assume U is
contained inside a chart neighborhood and also that this simply-connected.
Consider a chart ¢ : U — V. By the Riemann mapping theorem, we may
assume V the unit disc and that ¢(p}) = 0. The result it follows apply
Schwarz’s lemma.

O
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1.3 Fuchsian Groups
Definition 2. Consider the unit disk
A={zeC:z|<1}.

We say a subgroup I' < Aut{A)} is a Fuchsian Group if I is a discrete sub-
group of Aut(A).

Consider the group

“Z+Z  ad — be £ 0, a,b,c,defC} .

PSL(2,C) = {z —

We have that PSL(2,C) is a topological space endowed with the quotient
topology given by

C' - {(a,b,c,d) : ad —bc =0} — PSL(2,C)

(a,b,c,d) ~~» (z—>jji§)

Since the group Aut(A) < PSL{2,C), saying that I" is a discrete group
means that T' is a discrete set with this topology. It can be noted that this
topology is the pointwise convergent one. As each Mobius transformation is
uniquely determined by its action at three different points, then it coincides
with the local uniform convergence; and as the Riemann sphere is compact,
then it coincides with the uniform convergence topology.

Let T be a subgroup of PSL(2,C), and 2 € C. We say that T acts
properly discontinuously at zg provided that:

i} The stabilizer subgroup
Tow={T€T:T(z) = 20}
is finite, and
ii) There exists a neighborhood U of z such that

TU) = U \VTeT, and
UnTUy =9 VI'eT-T,
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We denote the region of discontinuity of T by Q(Y). In other words
QUT)={z¢ € : T acts properly discontinuously at z}.
The set N
ATY=C-Q(T7)

is called the limit set of 1.
A Fuchsian group I' (acting on the unit disk A) must satisfies that A C
Q(r).

Theorem 2. Let K be a Fuchsian group such that K is torsion—free and
A(K) = 8(A). Then the quotient space S = AJK is o Riemann surface so
that I1,(S) = K. If K is a finitely generated and has no parabolic elements,
then S is a compact Riemann surface of genus g > 2.

Proof. We may find the proof of this Theorem in [6].

Theorem 3. Let K, K' be Fuchsian groups such that K, K’ are torsion—free.
Then S = A/K and §' = A/K' are bi-holomorphic Riemann surfaces if
only if there exists T € Aut(A) such that

K' =TKT™.

Remark 1. Let I' be a Fuchsian group. Since I' acts on A, we may consider

the natural projection
i A — AJT

O = A/T" has a Riemann orbifold structure, that is,

(i) an underlying Riemann surface structure O so that 7 : A —~ O is a
holomorphic map;

(ii) a discrete collection of cone points (branch values of 7); and

(iii) at each cone point p a cone order; this being the order of the stabilizer
cyclic subgroup of any point g so that w(g) = p.

If T" is finitely generated, without parabolic transformations and A(T') =
8{A), then O is a compact Riemann surface of some genus v and there are
a finite set of cone points.
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Definition 3. . If I is finitely generated, without parabolic transformations
and A(T') = 9(A), whose underlying Riemann surface has genus < and the
cone orders are my, ..., mr, then we define its signature (for both, I' and )
as the tuple {v;ma, ..., M},

The holomorphic map 7y is called a branched covering of type (v; mu, ..., my).

When a Fuchsian group I' has signature (v;my,mg, -+ ,m,), there is a
presentation associated for the group I, this is, there exist
a1, b1, ,ay,by, 21, -+, € I such that T has a presentation:
¥ T
I'= <alsblx' ° :a'ﬁb"y,xl:' T m11n1 == :E;nr = [aiabi]]:[xj = 1>
i=1 5=1

where [a;, b;] = a:ba7 ;.
Further, we have that for each j, the subgroup generate for < z; > is a
maximal finite cyclic subgroup. Moreover, this subgroup is the '— stabilizer
of a unique point in A, and each element of finite order in I' is conjugate to
a power of some x;.

. 27
When z; is conjugate (in Aut(A)) to the rotation R(z) = exp (?nm) z (re-

J
. 2wi . s .. .
spectively R(z) = exp | —— | 2), say «; is a positive minimal rotation (re-
m .

J
spectively non-positive minimal rotation).

We remark that for every signature (vy; my, ma,--- ,m,} such that

1
27_2+Z(1"E) >0

i
there exists I' a Fuchsian group, uniquely determined up conjugation in
Aut(A), with this signature.

For more details see [15], [6], [12] and [16].

Definition 4. Consider two Fuchsian groups I'y,I's . We say that Iy is
geometrically isomorphic to Ty if there exist a self-homeomorphism of A,
say T' € Homeo (A), and a group isomorphism x : I'y — I'y such that for all
z € I'y the following holds

x(@)=TozoT .
We also say that the group isomorphism x : I'y — I’z can be realized

geometrically if there exists 7' € Homeo (A) such that the previous condition
is true.
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For more details see [15].
In the paper of Macbeath [15] we find the following example:

Example 1. Consider the group

= <p5 2~ OXD (%) z :w52> ~ Z/5Z
and let x denoie the automorphism of I' given by

x(ps) = Pk -

This isomorphism can not be realized geometrically.

Note that ps is @ minimal rotation and x(ps) = pZ is not a minimal ro-
tation. Conjugation of a minimal rotation,by any homeomorphism, still a
minimal rotation. Orientation-preserving homeomorphisms conjugates posi-
tive minimal rotations to positive minimal rotations.

Theorem 4. Let y : 'y — T's be an isomorphism between finitely generated
Fuchsian groups with A(T;) = 8(A), for j = 1,2. Assume that

(1) z € Ty is parabolic if only if x(x) & 'y is parabolic; and

(2) z € Ty is a minimal rotation if and only if x(z) € I'y is a minimal
rotation.

Then x is geometric.
See [20].

Corollary 1. Let x : I'y — I'y be an isomorphism between finitely generated
Fuchsian groups, both without parabolic elements , with A(I';) = 9(A), for
=12 If

(1) z € Ty is a minimal rotation if and only if x(x) € I'y is a minimal
rotation.

Then x is geomelric.

It was proved by Macheath that in the above Corollary we may delete
the assumed condition on rotation, that is, the following holds.
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Theorem 5. Let x : Ty — T's be an isomorphism between finitely generated
Fuchsian group, both without parabolic elements, with A(T';) = 0(A), for
§=1,2. Then x is geometric.

The preceding theorem holds at the level of Non Euclidean plane Crystal-
lographic groups (NEC groups), that is, finitely generated discrete subgroup
of isometries of the hyperbolic disc containing no parabolic elements. See
[15, pag. 1201].

At this point it is important to note that two homeomorphism, say
F,Fp: A — A, defining the same isomorphism y : I'y — I';, must have
the same orientability type. In fact, the homeomorphism F; o Fy : A — A
defines the identity automorphism of I';. It can be proved that, in this case,
F;! o Fy is homotopic to the identity.

Remark 2. Consider the following example. Let
I'=< Zy1,T72,23 :.’IJ? = I'g = .'L‘g =Z1Toxz3 =1 >

whose fundamental polygon is the following

Tz ~r Taly

since x3 = T, "x; " and it has order 5, then z,z; has order 5. Hence zox; has

order 5, in fact

(.'Eg.’L‘l)s = :1’52(2'}1532)4211 = 322(232_1231_1)2}‘1 =1
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Note that our isomorphism sends positive minimal rotations to non-
positive minimal rotations.
By the preceding theorem the isomorphism x is geometric. Assume that
F: A — A is a homeomorphism inducing y. It is clear that F' must fix
the fixed points of z; and 2, and must permute the fixed point of 2,z with
the fixed point of (z1z2)~! (the same fixed point of z12,). Now, it follows
that the homeomorphism g = 7 o I fixes the fixed points of z, T2, 2%; and
z127. These four points are the vertices of the hyperbolic polygon. Now it is
easy to note that, up homotopy, we may assume that g induces the identity
isomorphism to see that g is the identity homeomorphism of A.

Now, all the above permits to see that in general we may not assume the
homeomorphism that realizes the isomorphism should be orientation preserv-
ing.




Chapter 2

Equivalence of group actions

2.1 Actions on Riemann Surfaces

We say that a group & acts on a Riemann Surface S, if there exists a

monomorphism
£: G — Aut(S),

where Aut(S} denotes the automorphisms group of S.
We call to the monomorphism & an action of G on S.

When we consider a compact Riemann Surface of genus g > 2, and G
a group acting on S then necessarily G is a finite group, by the Hurwitz’s
Theorem.

Remark 3. We may consider for each p € § the stabilizer subgroup of p,
this is

Gp=1{D € G e(D)p) =p} .
Since £(G,p) < Aut(S), then G, is a cyclic group.

Given an action € : G — Aut(S) of G on S, we have the natural projection
78— S/e(@).

As before we have S/e(G) is a Riemann surface so that 7 is a holomorphic
map. Since S is a compact Riemann surfaces then S/e(G) is a compact
Riemann surfaces of genus .

Further we have that p € S is a ramification point of « if only if G, #
{Id}, furthermore the multiplicity of p is |Gp|. Then w is a smooth covering
(unbranched covering) on the complement of a finite set, the ramification

19
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points sef.
We called to w a branched covering , and we say that 7 has a signature

(y;mi, ma, .., My},

where m; are the multiplicity of the ramification points, and r is the number
of the branch points of #. Sometimes also we will say G acts on S with
signature (vy; my, ma, .., My ).

We consider the numbers m; with the following order

my 2 2 M.

Theorem 6. Let I' be a Fuchsian group with signature (v, my, ma, - ,m,)

and let 8 : ' — G be an epimorphism of groups with K = ker & torsion—free |
Fuchsian group and A(K) = G{A).

Then G acts on the Riemann surface S = AJ/K with signature (y; my, ma, -+ ,my).

Furthermore, S has genus g given by

g=lGl(7—1)+1+€—'j§(1—i),

My
where g > 2.

Proof. First by the Theorem 2 we have that § = A/K is a compact Riemann
surfaces of genus at least 2, then g > 2.
For each z € T', since K is a normal subgroup of I', then

tKe =K.
Thus we have the following diagram
A —Z -

A
s —F.g

where Z(K2) = Kz(z).

Since z € Aut{A) then T € Aut(S).

S



CHAPTER 2. EQUIVALENCE OF GROUP ACTIONS 21

Hence for each D € GG, we may take € I such that 8(z) = D. Further,
if for y € " we have 6(y)} = D = 6(z) then

zy e K,
therefore T = ¥.

Now we may define

g€g: G — Aut(S)
D ~ 7 ,0(z)=D

gy is well defined because ker§ = K.
Since @ is a group homomorphism, then &y is a group homomorphism.
We may see that €g is a monomorphism , in fact if gg(D) = Id, then for
x € T, such that 8{z) = D, we have

z=1d .
Thus we have the following diagram
A —— A
\ JP
7
S

therefore z € K, and thus D = 0(z) = 1.

We will compute the signature for the action:

Since I has signature (vy; 7, -+ ,m,) then there exist a;, b;, z; € I' such that
~ r
= <a1:bl1"' 7a’y:b'y:$1:"' 1 Lr L mTl = :m:"r = H[ai)bi]l—_[wj = 1>
=1 j=1
(2.1}

where [a;, b;] = a;1b;  a;b;.
Further, we have A/T" is a compact surface of genus y and r branch points
with multiplicity my,--- ,m,. In other words the natural projection

mp: A — AJT

is a branched covering with r branch points.
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Now we have the following diagram

A

4
AJK r
AJT

Since p, mr are holomorphic maps, then 7 is a holomorphic map.

In general we have for each @@ € A/T
Q) = {Z(Kz): z €T} = {ep( D)} Kz) : D € G},
where 7r(z) = @, in fact

ze A —=— A 3z(2)

o P

Kze 8§ —2+ 8§35 Kuz(z)

\ :

AJT3Q

Hence the covering 7 is induced by the action £4. Sinece 7p is a branched
covering, and p is a regular covering, we have that 7 is a branched covering
with r branch point in A/T, say {Q1,- -, @r}-

We recall that I has a presentation as (2.1) where we may choose z; such
that for each j the subgroup < z; > is the stabilizer of a single point in A,
say zj.

Then for P; = Kz;, we have that P; is a fixed point in S and

Stabp, ((G)) =< ; >,

as K is a torsion free, we have Z; has order m;.
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Now if P is a fixed point by the action g4, then P = Kz where z is a
fixed point by the action I, Since the fixed point for I' belongs n51(Q;) for
some j, then

Pecn}(Q;) = {Z(Kz):z eT}.

The multiplicity for these points is m;, and

@) = 2L,

iy

By the Hurwitz formula we have the genus of S is

G| < 1
g=|G|(7—1)+1+%Z(1——) .

=1 iy

Theorem 7. Let S be a compact Riemann surface of genus g > 2 and let G be
a finite group. There is an action € of G on S with signature (y;my, -+ ,m;)
if and only if there are a Fuchsian group T’ with signature (y;mq, -+ ,m.) ,
an epimorphism 0, : ' — G such that K = ker{f.) is torsion—free Fuchsian
group and AJK, the quotient space induced by the action of K on A, is a
Riemann surface bi-holomorphic to S.

Proof. First we will prove the implication =,
By the Uniformization Theorem (see [6, pag. 191,192]) and the Existence
theorem branched covering we know that there is I' a Fuchsian group with

signature (y;my, - ,m,) and K <T a torsion free Fuchsian group such that
A—F—Xx
AJK —L 5

AT —— 5/e(G)




CHAPTER 2. EQUIVALENCE OF GROUP ACTIONS 24

where each level is an isomorphism of Riemann surfaces, and X is the uni-
versal covering for S.
Now for each z € T, we consider

A ——— A

AJK —E~ AJK
Since z € Aut(A) then T € Aut(A/K).

For T, we have
foFo ft e Aut(S)

then we have the following diagram

x = op—=2-n—F . x
s 2 Ak —Eak L g
1d
5/¢(G) AJT AJT —— §/e(G)

therefore foZ o f~! € e(Q).
Now we may define

b.: T — &(G)
T ~ foXof!
Using the diagram it easy check that 8 is a group homomorphism and

ker.(6) = K.
Further for 7 € £(G) as X is the universal covering for S, we may take a lift
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X X
i S

BFloZo0F)=r1.

of 7, 5, this is N

——
T
—_—

Then F"'loZo F €T and

The converse was proven in the Theorem 6. O

2.1.1 Topological Equivalence

Definition 5. Let S; be a Riemann Surface for j = 1,2, and G be a group.
The actions &1, €2 of G on $; and S respectively, are called fopologically
equivalent if there exist ® € Aut (@) and ¢t € Homeo (57 — S3) such that
the following diagram is commutative

& B e1(@)

v

G i" EQ(G)

where U,(7) :=to7ot™! and Homeo (S — S3) is the group of homeomor-
phisms of 5; on Ss.

Ift ¢ Homeo *(9; — S3) then we say that €1, €, are directly topologically
equivalent, where Homeo *(8; — S} is the group of orientation preserving
homeomorphisms of S on Ss.

Remark 4. Let &1, &5 be topologically equivalent actions as before.
For t € Homeo (S; — S3), according to the notation of the Theorem 7, we
may lift f; ot o fi to T € Homeo (A), this is

R FyoToFy! Fl
A Xi X A

.

L S, A/K;

AJK,

St
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Let z be an element in I', 61(z) € 1(G) then ¥;(6:(z)) € e2(G). In the
diagram we have:

A—T1 A2 LA A

Y Ll I8 (a); Y1z} fu fatth Yt

A8 A RN R 2 ALK,

then T oz oT-! € I'y and

02(TozoT ™y = foo(fy'tfro fil0(x)fio fit ™ fo) o 57
= to 9]_(5‘.’.’) o} t_l
= Uy(6i(2))

Therefore we have the following commutative diagram
é
Pl —1" £1 (G)

XT } 1

8
Iy — EZ(G)

where yr(z) =T oz o T
Note that if £ € Homeo *(S; — S3) then T € Homeo *(A).

Theorem 8, Let ¢; be an action of G on S, for  =1,2.

Let 8; : Ty — €;(G) be the epimorphism associated to e; given by the Theorem
7fori=1,2.

Then gy is topologically equivalent to 4 if only if there exists a group isomor-
phism x : I't — I'y and a group isomorphism @ . &1(G) — &3(G) such that
the following diagram is commutative

Iy — &(G) ’

X (]

Iy —— &2(G)
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Proof. The implication = is the preceding remark.

We will prove the converse,

Since the diagram is commutative, we have x(X1) = K, where K; = ker 8,
forj=1,2.

Since I'y, I'; are Fuchsian groups with compact quotient, then by the Theorem
5 the isomorphism x : I'y — U5 is geometrically realized, this is there exists
T ¢ Homeo (A) such that

x(z)=TozoT™!
therefore I'y = TTyT"! and K, = TK T 1.

We have the following diagram:

A

AE R A K,

Claim: We have the following diagram:

G o Er (G)

£ Id

a1(G) =4 £,(G)

£(G) —L 65(G)

£2 Id

G =2 EQ(G)

where Uy(7) =toTot™!
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In fact for g € G, €;(g9) = 61(z) for some z € I';, then

Uyer(g)) = toby(z)ot™
0o(ToxoT 1)

= ba(x(z))

= ®(6:(z)) = B(ea(9))

Recalling the Definition 5, by the commutative diagram then the actions are
topologically equivalent. O
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2.1.2 Conformal Equivalence

Definition 6. Let S; be a Riemann Surface for j = 1,2, and G be a group.
The actions £y, £5 of G on §; and S; respectively, are called conformally
equivalent actions if there exist @ € Aut (@) and ¢ € Isom (S;, S3) such that
the following diagram is commutative

G — €2(Q)

¥

E1

G — a(G)

where (1) :=torot™ L.

Theorem 9. Let e; be an action of G on S;, for j = 1,2 and 8; : T; — £;(G)
be the epimorphism associated to €; given by the Theorem 7 for j = 1,2. Then
g1 18 conformally equivalent to e if only if there exists T € Aut(A) and a
group isomorphism @ : £,(G) — €2(Q) such that the following diagram is
commutative .

r 1 — El(G)

XT P

| P i’- Ez(G)
where xr(z) =T oz o T,

Proof. By the preceding theorem we have that the actions are topologically
equivalent.

When the action are conformally equivalent, we know that there exists t €
Tsom (S, Sz), then we may lift f;'tfi (using the previous notations) to an
automorphism T of A, this is

A

A

-1
ARy R Ax,
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Then T define a group isomorphism between I'; and Ts.

For the proof of the converse, we have that since T" € Aut(A), and by
the commutative diagram K, = T'K;7!, then using the Theorem 3 we have
T induce an isomorphism, {, between S and S; according to the previous
diagram.

O

Remark 5. If two actions are conformally equivalent, then they are directly
topologically equivalent.

Corollary 2. €; and €3 are actions on S conformally equivalent if only if
€1(G)} and g4(G} are conjugate groups in Aut(S).

Proof. By the remark 4 we have ® = ¥,, and since in this case T € Aut(A)
then ¢ € Aut(S). 3

Remark 6. According to the Theorem 7, for each action &, we have associ-
ated an epimorphism 0. and for each epimorphism # we have associated an
action gg.

Claim: the actions ¢ and gy, are conformally equivalent.

The corresponding diagram is

G = Aut (S)

&(G) - Aut(A/K)

where U4(7) = f~lo7o0 f and f is given by

F

AJT —— 8§/5(G)
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such that each level is an isomorphism of Riemann surfaces.
We recall the definition of &,

gg (T} =7,
where 0,(z) = 7= foZ o f~! and T is determined by the following diagram:

A——— A

AJK —2+ AJK
therefore
Ege (T) = ‘I’f (T) .
Remark 7. For € and &' actions of a group G on S, such that
e(G) =€'(G),
then we have that £ and ' are actions conformally equivalent.
To prove this, we recall the theorem 7, then we have the following diagram

F' Pt

A X A

AJT —— S/e(G) —— AJT

therefore the groups I' and IV are conjugates by T = F~1 o F € Aut(A).
We use this T for to find the commutative diagram.
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2.2 Properties of § -
Recall the definition of é in the Theorem 1.
First we will present an example of the computation of d,.
Example 2. We consider
§={[X,Y,Z e PPC: X*+Y*+ Z* =0}

S 1s a compact Riemann surface of genus 3.

Let o[X,Y, Z] = [iX,Y, Z] be an automorphism of S.
It is easy to check that the order of o is 4.
The fized points for o are:

o[X,Y, 2] = [X,Y, 2]
& iX.Y,Z]=[X,Y,Z]
= fized points on S: {[0,ws, 1], [0, tws, 1], [0, —ws, 1], [0, —ttws, 1]}

2

where wg = exp (?)

We have
Us={[X,Y,Z] e P’)C: Z #0} o= C?

X,Y,Z] o (% %)

P= [O:WS) 1] s P = (O}WB)
Obuiously the point p is a zero of
flayy=2"+y"+1

as %(p) # 0, then by the Implicit function’s theorem, we have that there

exist an open neighborhood U of p , e holomorphic function, h, and t > 0,
such that h(0) = wy and

U = {(z,(2)) : z € B(0,8)} C {{z,y) € C*: f(x,y) = 0},
thus a chart for P = [0,ws, 1] is
o U —s C .
[z,h(z),1] ~ =
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Now we calculate the Rotation constant for o at P

pooog~lz) = ¢oofz h(z),]]
= @iz, h(z), 1]
= iz

then 8p(o) = 1.

In the literature we may find the concept of Rotation Constant .
For p € S, and ¢ € Aut(S), we say that the Rotation constant of o at p is

5?(‘7_1) = 5?(‘7)_1 ~
The following lemma we give a relationship between the local structure
for the points in the same orbit, under action of G.
Lemma 1. Let 0,7 be in Aut(S), and suppose o € Aut(S),, then
8o(ToT™h) = b,(0),

where ¢ = 7(p).
Proof. Let (1, V) be a chart centered at g, then

gevcs g i 5§ —+8>5V>3gq
¥ ¢ $ ¥
U Uy —— (U
w(V)Wlw_les( )Q,,md)"I ( )¢070¢‘1 (V)

thus we have

Yorocor oy Hw) = Yoroglo (gﬁoa’oqﬁ_l)othoT_lO'qb_l(w)

porogd! (Z cx(o) (Z amwm) k)

k>1 m>1

= ¢ (o)w+ higher terms
0p(0)w + higher terms

I

recall (1 o 7 0 ¢~) (0) is the multiplicative inverse of (¢ o 7L 0 96~1) (0). O
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Now we will see an important theorem providing a relationship between
the local structure and the lifts of an automorphism of S.
First recall that for S we have there exist K a Fuchsian group that uniformis- \

ing S, this is
F

A X
P
A —Lo g

where each level is an isomorphism of Riemann surfaces, and X is the uni-
versal covering for S.

Theorem 10. Let o € Aut(S), < Aut(S) of order n, and let
L={TeAut{A): Iz € A, fop(z) =p,T() =2 and (floooflop=poT}

Then there is unique primitive complez nth root of unity ¢ such that for
all T € £ we have that T is conjugate to multiplication by ¢, R(z) = (z, in
Aut(A).

Furthermore ¢ = 6,(0).

The proof of this theorem may to find in [2].

Since ¢ is a primitive complex nth root of unity, we may write { = wi

where w, = exp (??) and the numbers j, n are relative primes ((j,n) = 1).
We call 2%31- the rotation angle for o at p.
2.2.1 Analytic Representation

Let 0°(S) be the set of holorhorphic forms on S. We know that Q19(S) is
a complex vector space of dimension g, where ¢ is the genus of S.

Let & : G — QL%(9) be the group representation of G given by:
B(o)(w) = o *xw=w(c"1).

This representation is called the Analytic representation for G, and its degree
is g.
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Theorem 11 (Eichler trace formula). Let S be a compact Riemann surface
of genus at least 2, and let o be an avtomorphism of § of order n > 1.
Suppose L(c) is @ matriz via its isomorphism between QV%(S) and GL(g,C).
Then

Tr¥(o) =1+ Z T 60Ty ip((ﬁ':(—oll)

a(p)=p

For more detail see [6, pag. 254]

2.2.2 Epimorphisms and Local structure

As we have seen, for an action, &, of a finite group G on a compact Riemann
surface S of genus at least 2, according to Theorem 7 we have an epimorphism

6. : T — g(G),

where K = ker(#,) is a torsion-free Fuchsian group and I is a Fuchsian group
with the same signature that the action, and S is a bi-holomorphic to A/K.
We recall the definition of 6, for & € I we have

x

A

A

AJK 5 AJK
thus we define
Oc(z) = foFo f1,
where f: A/K — S is an isomorphism between A/K and S.

We will give a relation between the epimorphism #, and the homomor-
phism ép , for P fixed point of the action.
We have that if zp € T" is an automorphism of A with fixed point,say zp, then
Tg is conjugate in Aut(A) to a rotation, R(z) = wz, therefore

6p(0c(20)) = w,

where P = f(Kz).
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When ¢ has signature (0;my,--- ,m;), I has a presentation:
F={@,2 o= =z =1z 25, =1},

where for each 7 = 1,..,r — 1, we may choose z; as a counterclockwise rota-

2
tion about z; through angle %
i
For more detail see [1].

Hence we have that for each j = 1,..,7 — 1, 8.(z;) is an automorphism of
S with a fixed point P; = f(Kz;) and

27

dp;(0e(%;)) = wm; = exp (__) :

My
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2.3 Equivalence of Cyclic Groups

Let G = Z/nZ be a cyclic group of order n. We consider G as the integers
module n, this is

¢=1{0,1,--,n~1}.

Consider I’ a Fuchsian group with signature (y;m;,- -+, m,) and presen-
tation

¥ r
RPN (£ R — —_ —
I'= <G1,b1,"‘ ’aT’b'T"Tl’”- s Ly 3 2}'11 = "'—m:.nr—H[ai,bi]Hmj _'1> .
i=1 j=1

The following lemma was given by Kuribayashi (see {14, Lemma 3.1]).

Lemmsa 2. Let 8 : T — G be a group epimorphism and assume that g is a
generator of G. Then for any permutation p of {1,--+ ,r} with mp; = m;
(7 =1,---,r), there exists an automorphism x of T’ such that

(i) Box(a)=0ox(b;)=g withi=1,--+,7;
(ii) x(z;) = Djzp3y D7, for some D; €T with j =1,--- 7.

Remark 8. The following list corresponds to the automorphism of I" used
to compute the automorphism y of the preceding lemma.

Xt a — azh
X o — alblafl ;b — afl
X@) T — ag:nja;l ,(=1,.,7) ;a1 azay ; ap — blﬂgbl_l ;
by — aghoay b7t 0 — agaiey’ 3 by — asbiayt , (6=3,..,7)
Xit @ = @ipn 3 b — biga 5 aipr = C3aiCign 5 by — C54biCin i=1,.,7—1
where Oi+1 = [CL,'.;.]_, b,'.;_l]
Xz —arwian, (F=1,..7) ;a1 [a7t (z - 2) 7 ag; A=1,.,7
by — bal (zr- - -z )
Xk Tk = Tptt § Thyt — m;—;-lmkwk+1 h=1.,r—1
where my, = mp4a

Note that theses automorphisms are geometric induced by orientation
preserving homeomorphisms.
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We have the following relations

X{l)([ahbl]) = [a1,b1]
x@ ([a,b1]) = [a1, ]
x@) (a1, bi)[az, b)) = azlar, bu]laz, byag™
xa ([0, 8]} = aolas, bilazt, i=3,.,7
Now for w;, X1, ¥ we have the following relations
Xi ([, 6]) = Ciy1 = [@iga,biza]
xi ([ais1, bi41]) = Cziles bi)Cin
xi ([as, @i, bia]) = @i, b][@it, b

%i([o1,01]) = [arh (zm-e - 2)Hlaw, b
Xe(TrTr1) = TkTesl

Now on, no loss of generality consider the group epimorphism & given by

: T — &
a; ~ 1 , withi=1,.,v
b ~ 1 , withi=1,.,v
T, ~ & , withj=1,..,r

where K = kerd is a torsion free group.

Theorem 12. Let x be an automorphism of the list in Remark 8. There
exists o ® € Aut(G) such that diegram (2.2) commutes

0 K r—2.g¢ 0
m\ |x qa (2.2)
0 K r —4-¢a 0

if only if there exist 1 < k < r such that

$2 =1 mod
1 mod my;, withj#kk+1

I

)

where ®(1) = s.
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Proof. Let & € Aut(G) be such that

0 K r G 0
! [
0 K T & 0

Then for z € K we have

Bx(z) = @ (0(z)) = ¥(0) =0
Sxlz) e K

Therefore, x|k : £ — K is an automorphism of K.

First we will prove the implication =.
It follows from the list of Remark 8 that

0oxmyz) = O(z;) = & Yje{l,.-,r}
fox@lz) =  Oz;) = & Vje{l-,r)
fox@(z;) = 6aazjay’) = & ,Vie{l-,r}
Boxi(z;) = 0(z) = & Vie{l,--,r}
o xi(z;) = G(G,I'IQSjal) = & Vie{l, - ,r}
O(wx+1) = &1 forj=k
6 o Xr(z;) = { Oz ZeThir) = & , forj=k+1 } _
0(z;) = & , otherwise

We have that ®(1) = s = 1 for the first five equations, and we obtain the
commutative diagram (2.2).

For the last equation, we have the following three conditions:
fir = O(zri) = 8(x(zr)) = 2(0(z1)) = (&) = 36k

& = Oz Zetra) = 0(x(@rs1)) = C(O(zp41)) = B(brs1) = Ekta

& = 0(z;) = 0(x(w;) = B(0(z)) = (&) = s Ak k+1.

Then
s = &
§%Ek i1 €yl (2.3)
& = & JFkE+L

Il
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Recall that the each element x; € I' has order m;. Since K is a torsion
free group, we have that 6(z;) = ¢; has order m;. Recall also that the
elements of order m in G = Z/nZ are given by

{-n—t: (m,t) =1, 05t<m}.
m
Thus for each § we have

=

I my

Since t; and m; are relative primes, there exists ; such that

—

tit; =1, mod m; .
Hence _
- tiks 1+ 7
§jtj=njj——~n( +mJ)Ei, mod n.
g m; myj
According to equations (2.3), we have
s%€, = & mod n | - %
n n
$2— = — mod n
Mg me
n
< PN = —+nt L
g mg n
& s = 1+ myt
& 5° = 1 mod my,

Proceeding for k+ 1, just as we did for k, yields the same condition for s.
Again, proceeding for j # k,k+ 1, just as we did for k, yields

s=1 mod my jFkE+1.
Using the condition for s, we see that the converse is clear. In fact,

suppose 1 < s < n. Then if s = 1, we may take x = x(1). Now if s # 1, we
may take x = Xi. O
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Topological equivalence

Comnsider I' Fuchsian group with signature (y; my, .., m,).

According to the paper of L.Keen [13] (also see [12, Theorem 4.3.2]) we
may construct for I' a hyperbolic polygon with 4y + 2r sides. The polygon
has r external isosceles hyperbolic triangles such that the angles between the

. . 27 2m
equal sides of the triangles are —, - - - o
iy

Hence I" has a presentation according to the hyperbolic polygon associ-
ated, this is

¥ T
S R M —
I'= <a1,bl..,an,,b7,$1..,$,. cgt = =gl = H[ai,bg] Ha:j = 1> .
i=1 j=1
where z; is a positive minimal rotation, in other words z; is a counterclock-
. . , T
wise rotation about a some point through angle —,
m

J
The following figure is the hyperbolic polygon for y = 2,7 =3,
™y, M, mz > 2 and my = 2.

In this hyperbolic polygon it has a;{c}) = o; and b;(8]) = f; fori ==1,... ,~.

Remark 9. We may find a system of generators, with the same presentation,
but with non-posifive minimal rotations. Take,

S | T | — 1
M=Z. =T, 9, =217,
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@ = by, by = @y, .., 0y = by, by = @y.

Now we consider two Fuchsian group I',I' with signature (vy;my,..,m;)
and presentations according to your hyperbolic polygons associated

= <a1,b1..,a7,bT,m1..,mr Pyt = =g = H[a,-,b,-] H:n_,- = 1> .
= <a’1: 1 ,a' b, xl ) :' : w;ml == x:-mr =H[aisb;]]:[$; = 1> :

Theorem 13. Let T', I be Fuchsian groups both with signature (v;my, .., ;)

and presentations according to your hyperbolic polygons associated.
Let 8,0 be epimorphisms given by

g:T — Z/nZ
ai, b~ 1 yE=1, .7
.'L'j ~y gj ,j = ].,..,T

9:I" — Z/nZ
a, b, ~ 1 i=1,.,7

i Yi

’ ’ -
z; o~ & g=1.r

where K = ker @ and K' = ker & are torsion free groups.

If there exists an s € Z with (s,n) = 1, such that

£11 }fr) = S(gll . 15"): mod n (2'4)

then the actions induced by 6 on A/K and by 8’ on A/K' are directly topo-
logically equivalent.

Proof. Suppose that we have the equation (2.4), then we may define the
homomorphism

& Z/nZ ~— LI,
induced by ®(1) = s, then for each j we have
() =36 =&
Since s and n are relative primes, ® is an automorphism.

We. consider the following diagram
8

0 K T Z/nZ 0
Px FS
+ H ,
0 K I Z/nZ 0
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hence we may define
x(e;) =a;,  x(b) =8,  x(z;) = 2]

and then we have that the diagram is commutative.
Since x maps generators on generators, and these elements satisfy the same
relation, we have x is an isomorphism,

Furthermore x(K) = K’ since for z € K, we have

x(z) = ®0(z)=a(0)=0
therefore x(z) € K’

therefore x|g : K — K’ is an isomorphism.
It follow of Theorem 8 that the actions induced by ¢ and by & are topologi-
cally equivalent.

Our next claim is that the actions induced by # and #' are directly topo-
logically equivalent. We have to construct according to [13] the hyperbolic
polygons associated I" and I".

Since z; and 7 are positive minimal rotation in the same angle, we have
the automorphism y is induced by a f € Homeo *(A). |
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Remark 10. Let € and &’ be actions of Z/nZ on S and 9’ respectively, such
that the signature for the actions is (y;mq,--- ,m,). Suppose € and £ are
topologically equivalent actions. Then by Theorem 8 we obtain the diagram

r —2 . &(Z/nZ)

XT -]

I 4 (Z/nZ)

where xr, ®; are group isomorphisin.
Since € is a monomorphism, then e(Z/nZ) ~ Z/nZ, the same for £, thus
associated to the previous diagram we have

(el)?
r e(Z/nZ)y —— Z[nZ

xr\ \rm 3
T

' e[yt
r % . o@zmzy E25 zmz

fle

then & is an automorphism of Z/nZ.

We recall I" is a Fuchsian groups with signature (v;my---m,) then we
have

r'= (al,bl..,ay,b.,,,ml..,mr : sc?" = l,H[a,-,bi] H:cj = 1> ,

Since the kernel of 8. is torsion free, we have that for each j§
ord(0(z;)} = m; .

Now if we call
0 =(e|) " o,
g = (E’])“1 0 by,

we have for each 7§ _
D0(w;) = 6'(xr(z5)) ,

and since @ is an automorphism, we have that there exists 1 < s <n -1,
(s,n) =1, such that ®(1) = s, then

0 (xr(z5)) = 5- 8(z5) .
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By the preceding remark it follow the Theorem 14. Observe that this
result is a generalization of a result of J. Gilman in which n is a prime
number (See [9, Lemma 2, p. 54].)

Theorem 14, If ¢ and €' are topologically equivelent actions, then we have
the following commutative diagram

r —2 . Z/nZ
XT &,
r —— Z/nZ

such thaet, for each j, we have
0 (xr(z;)) = 5 (=)

where ®(1) = s.
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2.4 Generalization of Harvey’s result

In this section we generalize a result due to Harvey. In [10] Harvey gives a re-
lationship between cyclic covering of Riemann sphere and the epimorphisms
of Fuchsian group using the rotation angles. Our result gives a relationship
for any covering of Riemann sphere.

Let S be a compact Riemann surface of genus at least 2.
Let G be a subgroup of Aut(S), where G acts on S with signature (0; my, - - - ,m,.).
Then there exists a Fuchsian group X uniformising S and I' a Fuchsian group
with signature (0;my, - ,m,), such that we have the following diagram

I

A X

AK —L g

AT — §/G
where in each level we have isomorphisms of Riemann surfaces.

Then we have the following exact sequence
1—-K—~T%g—1
where 8(z) = f oZ o f~! and T is given by the following diagram:

A— A

AJK —E+ AJK

We remark that for z;,--- ,z, € I’ such that

o Ly =1,
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o '=<m, 2 >
» for each j = 1,..,7—1, we have z; is a counterclockwise rotation about

2
z; through angle Eﬂ-_,
7

then we know

dp; (6(x5)) = wm; = exp (%?—) ,  with Py = f(Kz).

¢

Theorem 15. The epimorphism 0 is determined by the fired points of the
action and their stabilizer groups. In other words, if we consider x; and P;

as before, then
0(zs) =75’

where < 7; >= Gp;, and where the number §; is determined by the equations

op(r5) = Wik, 1 <y <my, (05, my} =1,
T]j'fj 1 mod my

where 1 < & < my, with (§;,m;) = 1.

Proof. Let 7; be a generator of the group Gp,.
As 0(zx;) € Gp;, then
6'(-"Uj) = T;’j )

for some 0 < &§; < m;.
We recall dp, (0(x;)) = wm;, but as dp, is a group monomorphism there

exists a unique &;, with 1 < & < my, (§,m;) = 1 and dp, (Tf’) = W
Now we will calculate §;. If

0p;(75) = wig,

then
e, (1) = Wi

therefore
nj-& =1 modmy
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If we take another generator of Gp;, say 7j, then we may to do the same
calculations, hence

0(z;) =75
where
g (T) = wik
ﬁja = 1 modmy

As 7; is a generator of G'p;, we have there exists 0 < ¢ < m; such that

thus we have
Wty = 82,(73) = 8p, () =

then
W o= mi-t modmy  |-&
ﬁ?é‘-? = nj-ftht modm,- [6_7
=616 = t-§ modmy
therefore - z
Tf:' — T;'Ej — ﬁ?:'

Remark 11. If we take o € G, then o(F;) € G(P;), where G(F;) is the orbit
of F; by the action of G.
Now we may consider (oo f) : A/K — §, and we have the following diagram

A—tux T x

AK g — v 35

then we may define an epimorphism from I' to G associated to o o f:

5(.’23) = 0’?
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where < 0; >= Go(p)) =< 00750 o~! > hence by the previous

5(.'123) =go T;-Sj 1

ool =cof(z;)o0!
therefore we have the following diagram
LI

|+

.

id

N

where ¢,(7) = coToa™ L.

Remark 12, Take the automorphism y = ¥,. We have that

B(x(zx)) = Ozesr) = Tt
Ox(Trs1)) = O(Titizamipr) = Tpprirfergtit

However, we cannot conclude whether the actions are equivalent, or in other
words we do not know, in general, whether there exists a © € Aut(G) so that
the following diagram is commutative

4

—_—

G
lq,
foyx

_..,G

—
ju 3
M —

Let S be a compact Riemann surface of genus g > 2.

Definition 7. Let G be a subgroup of Aut(S) such that G acts on S with
signature (0;mg, -+ ,m,).

We say that the r—tuple (o1,--- ,0,) € GT is a generating vector for G of
type (0;my, -+ ,m,) if

l. G=<0y, - ,0, >.
2. ord(o;) =m; ,foreach j =1,..,r.

3.0y 0,=1.
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For the action of G on S, we have that for each 7 = 1,.,,7 — 1, there is
z; € I a counterclockwise rotation about z; through angle E%E
¥
By definition,
9(33_1) = Tfj
where K = ker(8), P; = f(Kz), 7; € Gp; and 6131.(73-5") = Wy,
According to [19], the tuple

(9(3;1)_1, e :9(:‘71")—1))

determines the decomposition of the Analytic Representation into complex
irreducible representations of G by the following formula.

Proposition 2 (Chevalley-Weil formula ). Consider {pi,..,p,} the complex
irreducible representation of G. Then the multiplicity n, for p; in the ana-
lytic representation is given by

T 7?1,"—1
k
= —dog (o) + 30 3 N~ ) +9
— my
=1 k=0
where
o ¥ =1 if p, is the trivial representation,; otherwise ¥ = 0,
o (k) =k — [k], where [k] is the integer part of the number k.
o Ny is the cardinality of the eigenvalues of p, (9($;1)) which are equal

k 2im
to Wr,., where wm, =exp | — ).
m.
i




Chapter 3

Families of Riemann Surfaces
with equivalent actions

In this chapter we produce for each n, two families of Riemann surfaces of
genus 3(2" — 1) with group of automorphisms of order 2"*? and signature
(0; 27+ 27+1 9= 93, For one of the families the group we will be abelian, and
for the other it will be a semidirect product. In both cases, we will have that
there exist two cyclic subgroups which define directly topologically, but not
conformally, equivalent actions.

3.1 Structure of the groups
3.1.1 The group Gy = Z/2""Z x Z/2Z

Consider .
Z)2 T =< A AT =1 >

and
)27 =< C:CE=1> .,

Since (4 is an abelian group, it is not difficult to verify that the elements
of Gy are

Gy={1,41, 4, 480, 4G, AT

Proposition 3. Gy has a presentation of the form

n+1 n+1
<91,gz c gl =g5 = 1,gf=g§,glgz=gzgl> -

51
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Proof. We first take
a=A4, @=A"7C

Since A; has order 2"*! and C; has order 2 it follows that g; and g, holds
the relationship.
We claim that g; and g, generating G. In fact

Ai=gi, Ci=gf g

Elements on G

For now on we call By = gs. _
Using the relationships above, we may compute the elements of G as follows:

elements exponent number of this type
A.i 1] S ‘7 S 2n+l -1 2n+1
B 4 is an odd numer 2n
AlB; | § is an odd number 2n
1
27+2 elements

In addition, for each element in él we may compute its order as follows.
Computing \
(A1By) = ATOHD

for § = 2%¢ — 1 we have

i n—k+1 —
ord(A{B,)={2 k<nt=1 mod2}

2 , otherwise

Group Representations

Since (; is an abelian group, the number of irreducible representations over
C is equal to the order of G;. Thus the number of irreducible representations
is 2712,

Now for 0 < j < 2"*1, the irreducible representations are

pin:Gr — C
Al ~ w;n-{-l
Bl ~ w;n+1
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pin:G — C
141 ~rd onitl

Bl aad _w%n+1 .

o
Here wy, = exp (—WE) .
m

3.1.2 The group Gy = Z/2""Z x3 Z/27Z

Consider .
Z)2NT =< Ayt AT =1 >

and
Z/2L =<Cy:C;=1>.

We define the map

h:<Co> — Aut(< Ay >)
Cg ~r h(cz) H Ag — 02A202 = A%n-ﬂ .

Thus Gy =< Ag > X < Oy >.

Proposition 4. G; has o presentation of the form

ntl n+1 u}
<%m:£ = g3 =Lﬁ=£@m=£“m>

Proof. We first take
g=4HAs  p=ATTC

Since As has order 27! and € has order 2 it follows g; and g holds the
relationship. In fact

B o= AT, AT ST _ g g
2n+1

—on—1 —_on—1 1 T
ea = ATV T CA = AT AT G = AT =g Mo

It follows immediately that g; and g, generating Gs. O




CHAPTER 3. FAMILIES OF RIEMANN SURFACES WITH EQUIVALENT ACTIONS54

Elements of (G,

We consider G2 with presentation (4). For now on we call By = gp.
(3, is a group of order 2°%, we may calculate all elements on G5 and its

orders, we have \ )
( Al Bz) - A§(2 +j+1)
and thus for j =25 — 2771 -1

; vkl k<m,t=1 mod 2
7 _ g o ity
ord(A3Bs) = { 2 ,in other case }

then we have the following table of elements on G»

elements exponent number of this type
A.; 0< ] < 2n+1 —1 2n-!—1
B 7 is an odd numer n
AlBy | jis an odd number an
2"+2 elements

Furthermore we have

g exponent gAsg™!

A Ti<j<2P 1 | Ay

B} | jisan odd numer | A3 ™
AlBy | 7 is an odd number | A3"*!

Group Representations

Using the Little Group Method (see Proposition 1), we may compute the
complex irreducible representations of G, which we explain in the next
Proposition.

Proposition 5. Let G; be a finite group of order 2%+% with presentation as
in (4). Then Gg has 3 - 2"} irreducible representations, where 2"+! of them
have degree 1, and 2! of them have degree 2.

Proof. We use the Little Group Method.
We have

R4, = {irreducible representations of < Ay >}
= {pj: Ap > Wl 10 <G <2}

2mi
where Wont1l = EXD 'QTIT .
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G, acts on R,,, the actions is given by: for each g € Ga, p; € Ra, we
define

gepi=pl:  pN(Az) = pi(gAsg™)
Then we have
p; = P
&4 = pilAa)

& pilgAag™) = pi(Ay)

- Al ge< Ay >
A = { A(zﬂfum ’
2

i € 2Z

, another case

Now we calculate the orbits for the action, for example for 7 = 1 we have

pi(d2) = pilgAg™)

pr(As)  ,gE<Ap >
p1{AZ"+Y) |, another case

. Ay ,gE< Ay >
- AZ"*1 | another case

therefore the orbit for gy is

(o1} = {p1, pam1a}
Using the same ideas we have
[p']={ {ri} ,J € 2Z
7 {pi: pins1j} = {pj» pensy} , another case
where p(an41); = panyj, since for j = 2k + 1 we have
2Z*"+1i = 2% +J

P2k +1)+2k+1
2"HE 2" 2k + 1

= 2" 42" 4

I

Thus we call ’R,fg the orbits space under the action of X, more precisely
if pj,, pi» € RY, then pj, are not same orbit that pj,. Then we have

o B 4 is an odd number ,0< 7 < 2"
A 7 177" 4 s an even number ,0 < j < 2"*!
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Now we consider I =< Agn_l_lB >. Recalling the previous calculations
we see that

RY, =R
and the cardinality of RS2 is 2%~ 4 2n.

For each p; € ’Rﬁ; we consider
Kj={kEK<G22k.pj=pj}
and then we have

o = H 7 is an even number al) — Ga ,J i8 an even number
771 {1} ,jisan odd number |’ " | < A2> ,jisanodd number [’

The process continue extending the action p; to G0,
When j is an odd number, this is trivial, since we have G =< A, >.
Now we extend when 7 is an even number, this is

- _{Pj(l) g€ H }

T pig) sgE<Aa>

For H we have two irreducible representation, if we call Cy = A" ~1B,,

they are
{o0:C2 — 1, o1:Cy — —1}

Now we may extend the representation, this is
El_={Cﬂ'(9) g€ H }
o1} ,gE€E< Ay >
When j is an even number and 0 < j < 2!, we may define
@i =P © T
where i =0, 1.

Therefore we have 2"+ irreducible representations of degree 1.

When j is an odd number the before process is not produce representa-
tions for Ga.
Now we will calculate the induced representation for p;, that we denote by
B;, with 0 < j < 27,
We know Go =< A > U (5 < Ay > then

deg(8;) = |Ga :< Az > | deg(p;) = 2

Therefore we have 2"~ irreducible representations of degree 2. O
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Remark 13. We now compute the representations.
When 7 is an even number we have:

0;,5(Az) = 7;(A2) @ T(1) = wl,ia
@;i(Ch) = p;(1) @ T3(Co) = { Hll iy

For By = A;“z““‘cg we have

{(1~2n—1)

— _an-— — o
af:j(B2) = pJ(A% 2 1) ® O—i(CQ) = { 2(:1*-1271—1)3- i
—Won41 yi=1

i=0

When 7 is an odd number, we consider V = C & C,C. Thus

A2 -1 = Az
Ay Co A¥7'B,

= AYT1A,B,
AT B AT
Cz Ag"-i-l

1l

Then we have
Ag . (Z]_ & (32’2) = A221 &) 02A§"+122

and

Bi(Az) = pi(A2)zy ® Copi(AF TH)za

i (27+1)5
= w;n-}-lzl & C2w2n+1 22

7 i
Wyn121 @D —Catyari 22

therefore the matrix associated to $;(A4s) in the canonical basis is

= (55 ). \

Now for Cs, we have

Co (21 @ Cozp) = Cozy @ 20
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therefore the matrix associated to §;(Cs) in the canonical basis is

o= (9 ¢)

Finally, we compute the matrix for 8;(Bs). Since By = A" C,, the
matrix in the canonical basis is
0 I
[65(B2)] = ( W2 - )

2n+1 0
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3.2 Families of Riemann Surfaces

In this section we define Riemann surfaces of genus 3(2" — 1). This construc-
tion is adapted from [8].

Theorem 16. Let f, » be the polynomial given by
far (@ y) =97 —2* (2" = 1)" (2" = ¥) (" — A7)

where n,a € N, A€ C, and X #£1,0.

Then, for each odd number a and each A, we have that f, \ defines a Riemann
surface S of genus 3(2" — 1).

Furthermore, the possible singular points for the homogeneous polynomial
associated to f, are

case | sign(2* —3a—4) | a condition singular points
1 T Z1 |2 —3a—5#0|1{[0,0,1,[1,0,05,1,0,1,~1,0, 1}
5 T £1]2"—3a—5=0 {[0,0,1],[1,0,1], =10, 1]}
3 ¥ 2" —3a—5+#0 {[1,0,00}
4 + n =3 0
J - # 1 {[0:0:1]1[0?110]’[1a01 1]1[_1:0) 1]}
6 - 1 n=12 {[0,1,0]}

Remark 14. Observe that, for the conditions given in the above Table, we
have the following.

1. If 2" — 3a — 4 = 0 (hence 3¢ = 2™ — 4), then a is an even number.

2. We have 2" — 5 = 3a, for some odd number a, if and only if n is an odd
number. In fact, we use the induction process. For n = 1 it is clear.
Now suppose 2" + 5 is multiple of 3. Then

s =04 +5=2"3+1)+5=2".3+2"+5.

Moreover if @ = 1, then 2* = 8. Hence n = 3.
3. The equations 2" — 3a ~— 3 = 0 has not solutions.

Proof. We have two cases for the homogeneous polynomial associated to f, ».

*
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1. Cage 2" —3a—4 > 0.

Fl (X, Y" Z) — Y2“ Hxaz2“—3a—4 (X2 _ ZQ)“ (X2 _ AQzZ) (X2 _ AH222)

g% — _xyae-lg2"-3a-4 (X2 . Zz)a—l [a (X2 _ Z2) (X2 _ A2Z2) (X2 . )\_22’2)
+2aX? (X2 - N2Z%) (X* - X227
+2X% (X? - Z%) (2X% - (N + A7) 2%)]

@. _ ny 2% —1

ov = %Y

%% — _Xa.22“H3a-—5 (X2 . ZZ) a—1 [

(2" —3a—4) (X2 - Z%) (X® - N2 (X* - X227
+2a7% (X% — X*Z%) (X* - A227)
—2Z(X* - 23 (X + A B X2 —227%)]

Recall that P # 0 is a singular point if only if

R oF, . OF

B(P)= g5 (P) = 557(P) = 5=

(P) (P)=0.

then we have ¥ =0

Burther if
e ¢ #1,2"—3a—530, we have 4 singular points, they are
{io,0,1},[1,0,0],[1,0,1],{-1,0,1]} .

o a#1,2" —3a—5 =0, then n is an odd number and the singular
points are

{lo,0,1],[1,0,1},[-1,0,1]} .
e a=1,2" — 30— 5 # 0, then n > 3, since
2" —7>0and 2" —8#£0.

Then the singular points are

{[1,0,0}
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o g=1,2" — 3¢ — 5 =0, then n = 3, since
2" —~7>0and 2" —-8=0

Then in this case Fy has not singular points.

Charts for the singular points:

(a) Pl = [0, 0, 1]
‘We consider the local coordinates:

(z,9) = (%g—) ,

thus the objects on S, ) near at P; are determinate by the following
polynomial

flz,y)= ¥ —z® (:r:2 — 1)“ (.'E2 — Az) (a:2 — )\_2) .

This is an irreducible polynomial on Cfy]{z} if only if a is an odd
number.
2n

For z = s, we have:

f (Szn,y) = (32" _ 1)4 (szﬂ _ )\2) (32" _ A2)
2“

= 1 —ss())

ji=1
where (h;(s))*" = (82" — 1) (s¥" — A%) (s*" — A?).

Thus h; is determinate by some of these roots, we denote hg such

Therefore by the Normalization process, we have a chart for P,
given by
5 e [s7, 5%ho(5), 1] .

(b) For the points P = [1,0,1] and P; = [~1,0,1] we may define
charts using the same previous process.
Thus the chart is given by

5w [$27 41, 8%h4(s), 1],
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where hy(s) is a root 2"th of

(" +1)" (" +2)" (T +1)7 = 2) (" +1)" - 27%)

(c) Py=1[1,0,0]
‘We consider the local coordinates

W= (5%

thus the objects on S, » near at Py are determinate by the following
polynomial

foo (w,v) = u?" + 07 73741 —0B)2(1 — M%) (1 — A"2?).

Then we have f,, is irreducible on Clujv if only if 2* — 3a — 4 is
an odd number, and this is equivalent to that ¢ is an odd number
too.

For v = t¥" we have

Foo (W #7) = w42 E S0 (1 202 g (42
2ﬂ
= JT(u—2"7"hs(t))
i=1
where (hj(t))2" = (1 - tZ“'“)a (/\2 _ t2n+1) (/\_2 _ t2n+1).

Then h; is determinate by some of these roots, we denote A such
that heo(0) = 1.

‘Therefore by the Normalization process a chart for Py = [1,0,0]
is given by
t e [L, 1273074 (1), 17]

2. Case 2" — 3a—4 < 0.

Fy(X,Y,2) = Y 732" _xa (X2 — 22)% (X% - X22%) (X2 — x222)
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%_‘FXE — _aXo.—l (X2 _ Z2)“_1 [G. (X2 _ Z2) (XZ . A2Z2) (X2 . A_2Z2)
+2aX? (X* - X223 (X* - X22%)
+2X% (X2 - Z%) (2X% — (A2 +272) 2%)]

3_1*__'2_ —  ouy2"—1304-27

o = 2Y7Z

P2 = (Bata-2mZRETYT X (X0 2) 7

2a (X* — N22%) (X2 - X277)
+ (X2 = Z%) (W + A7) X2 - 227

Then we have P #£ ( is a singular points if only if
OF; _ OF, _0F _

If @ # 1 , we have that the singular points with Y = 0 are
{lo,0,1},[1,0,1],[-1,0,1]} .

Further for Z = 0, we have {0, 1,0] is a singular point , since for all n
we have 3a -+ 3 — 2" £ 0.

Now when @ = I as 2" — 3a — 4 < 0 then we have n < 2. These cases
are studied by G. Gonzélez-Diez and R. Hidalgo in [8].

Charts for the singular points:

(a') Q1= [Oa 0, 1]

We consider locally coordinates

(z,y) = (%%) :

thus the objects on S, ) near at @1 are determinate by the follow-
ing polynomial

flay) =y —a (5 = 1)" (2" = ¥*) (= - 17%) .

This is an irreducible polynomial on C[y]{z} if only if a is an odd
number.
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For z = 5%, we have:
f (Szﬂ,y) — " (32" _ 1)ﬂ (52" _ }‘2) (32" _ Az)
211
= [T -s%g(s)
j=1

where (g;(s))”" = (s —1)* (s*" =A%) (s¥" — »?).
Thus we have g; is determinate for some of these roots, we denote
go such that go(0) = 1.

Therefore by the Normalization process a chart for Q1 = [0,0, 1]
is given by
5~ 8%, 5%g0(s), 1]

{(b) For the points Q2 = [1,0,1] and @3 = [-1,0,1] we may define
charts using the same previous process. Then a chart for ¢J is
§ b [32" + 1: sagl(s): 1] 3
where ¢, (s) is a root 2"th of

(7 +1)* (™ +2)" (7 +1)" = 07) (7 +1)" = x7?) .

(c) Q«=1[0,1,0]

We consider the local coordinates

ma-(32),

thus the objects on S,  near at Q4 are determinate by the follow-
ing polynomial

foo (1 0) = @7 b r2(r® — ?)°(r® — N2 (r® — X3¢

Thus we have that the Taylor expansion series for f., as sum of
homogeneous polynomial is

foo(r, q) = ,r3ﬂ.+4 _]_ o _]_ q3a+4_2n i

Then for (0,0) there is a tangent but this has multiplicity 3a +
4—27
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Therefore by the Normalization process a chart for @4 = [0,1,0]
is given by
t o 1317 g0 (1), 1,871

where goo{0) = 1.

Now using the Normalization process, in either case and as a is an odd
number and A* # 0,1, we get a Riemann Surfaces of genus 3(2" — 1}, since
we may define

T Sgpn — W

(z,y) ~ =

\

This map is a holomorphic map of Riemann surfaces.
Further for each zy € C -~ B where

B = {0,00,%), £X71, £1}

we have that the cardinality of the set #71(z) is 2°. Then the map has
degree 27,

Now according to the homogeneous polynomials, we have that the points
in the following sets, either

{[0,0,1},[1,0,0], [%1,0, 1), [£X,0,1], [£271,0,1]},

> {[0,0,1},[0,1,0), [%1,0,1], [£A,0,1], (A7, 0,1]},

they are Ramification points for 7, and they have multiplicity 27,
Now by the Riemann-Hurwitz formula we have that the genus of 5, is ‘

g = 2(0-1)-1-56"-1) \
—" 1 +4(27 - 1) |

- @-nE-
3(2" — 1)

ad

Remark 15. For each point in S; », its chart we will be one of the following
list according to the homogeneous polynomial associated to f,
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For F; we have (2 —3a¢ — 5 # 0 and a # 1):

singular point local coordinate
010: 1 8~ i ah’U( ) 1] hD(O) # 0
1,0,1 5~ [s‘ —!— 1,8%h(s),1] | h1(0) #0

[_1: 0, 1] s [82“ —1, Sah’—l(s)’ 1] h’—l(o) ?é 0
0,00 [£w (L heat), ] | heal0) £0

And for the non-singular points the charts are

o If %(P) # 0, where P = [z, Y0, 1], then

he(),u, 1]~y hp(ys) = 0.

o If %(Q) # 0, where @ = {1, 4y, vg|, then

i1, u, ho(u)] ~ u yvho(to) = vp .

For F5, we have :

point local coordinate
0! 0, 1 g~ [32"! Sagﬂ(s)a 1] 90(0)
1,0,1 s~ [ +1,5%01(s), 1] a1(0)
[_1! 0! 1] &~ [Sgn - 1! Sag—l('s)'l 1] g—l(o)
[0,1,0] [#~ [0 2" g0(2), 1,81 | geo(0)

And for the points non singular the charts are

If %(P) # 0, where P = [zg, 3o, 1] then

lop() 1, )~y ,gp(10) = 0.

Remark 16. When a is even number the situation is different,
For example fora =2, n =2

flzy) =y — 2" (2% — 1)2 (2 =A%) (2 -2 .

Then we have the homogeneous polynomial associated to f is

F(X,Y,7)=Y"Z% — X? (X% - 2°)" (X? - X*2%) (X® - \"22%) ,
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thus the singularities are
{[0, 0: 1]: [O: 1: 0]1 [ly 0? 1]) [_1, 0: 1]} H

then we have

sing. point local equation normal. points charts
0,0,1 (12 — zho(2)) (¥ + zho(z)) {7, PP} t~ (£, 190(2))
1,0,1 (y° — wha (W) (v + uha(u)) {2, 1y} t~ (£ + 1,10 (7))

[-1,0,1] | (* —wha(uw)(® +uha(w) | {PL, P} |t~ —1t5 (1)
[0,1,0] —sm_|-...+.uﬁ

X Z
h == 2.
where (s, v) (Y’Y)
Using 7 : Sy — C defined by
(z,y) ~ =,

if we suppose [0, 1, 0] has two points in the Normalization, then the genus of
Sa,,\ is 6.
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3.3 The actions

The following theorem yields information about the antomorphisms group of
Sz,». The interest of the theorem is in the assertion that for each Riemann
surface S, the automorphisms group is not trivial.

Theorem 17. Let 71,72 be the self-maps of S, x defined by

1 (CL‘, y) = (—SE, w2“+ly)
1 Wons1 Y
7-2(‘7“1 y) = E! o

where ¢ is ¢ natural number determined by the equation
c- 2"t =2q+2,

Then 11,72 € Aut(S,) and they have order 2°%1 cach.
Furthermore depending on the values for a we have:

1. If ¢ is an even number, then Gy =< 7,70 > s an abelian group,
isomorphic to Z/2"E x Z/27.
We call &1 the corresponding family of surfaces.

2. If c is an odd number, then Gy =< 7,79 > is a group isomorphic to
Z[2Z, %, TJ2Z, where Tomy = T2 Timy,
We call &, the corresponding family of surfaces.

Proof. First we will see that 7, 7o are self-maps of S 5.
For 7y it is easy check that if (w,y} € C?, such that f, »(z,y) = 0 we have

Sap(ni(z,y)) = 0.

For 15 we have

n 1 1 a ]_ 1
far () = —Lm - = (— - 1) (; _ ,\2) (; _ ,\-2)

,y2“ (_1)a+1 a _
= — & + Z3aii (:r;2 — 1) (x2 - )\2) (m2 — A 2)

— w% (_yzﬂ + (_1)a+1$c2”—3a—4 (3;2 _ 1)“ (:a2 _ )\2) (:c2 . )\nz))

then we have 7, makes sense if a is an odd number and ¢2" —3a—4 = g, this

is
2" 1 =2a+2
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We may calculate 72, 72, this is:

2(z,y) = 7i(—%,wemny)

= (z,wint10)

1 Wony1
T;(.’B,y) = T3 (—'? 2+y)

r  z*
w2n+1y
= z zw n-1
’ ¢ 2

= (11?, wg“'i‘ly)

then we have ¥ = 72.
Further we may see that the order of 7f is 27, since w?.;1 is a 2"-th primitive
root of unity, then 7; and 7 has order 2"*!,

Now we consider 7y, 72 self-maps which are given by

AlX,Y,2) = [~X,wmn¥,Z]
X, Y, 2] = [Z2XYwpmnY 2o, X7,

To prove that 7,72 € Aut(S;,), we must prove that for any charts
(U, 9),(V,#), on S, , such that (V}NU # @ , the map
porod,

is a holomorphic function {(on some subset of C).
We will do the calculations for 7, at [0, 0, 1] and suppose 2* — 3a — 4 > 0
Recall that a chart at [0,0, 1] is given by

¢t 15~ [87, 8%hg(s), 1]
Using the homogeneous coordinates for 7 we have

1o[s?,5%hg(s),1] = [s7 ), wanr1s®ho(s), s2°]
[34a+4_2", Won+1 Saho (S), S4a+4]
[33a+4.—2ﬂ, Wan 1 hg(S), 33a+4]

— [1’ 28040 ho(s), s .

Evaluating at s = 0 we have 72[0,0, 1] = {1,0,0].
Now a chart at {1,0,0] is given by

@l t e 18R R (1), 8]




i
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By the infersection condition
[1, 8% 7 fwgni1hg(s), s7] = (1L, 7% b (£), £77].
Thus

worodH(s) = pomls®,sh(s),1]
= 1, 8% I Ypnr1hy(s), 32"]

= ws

where w is a 2"-th root of unity (we recall that 2" = s*"). Therefore, the
map is a holomorphic function.
It is not dificult to verify the preceding for the other charts.

Recalling that 2" !¢ = 2a + 2, we have

nnlX,Y, 2] = [-ZX 7 wiaZ°Y, X

on[X,Y, 2] = [(-1)7ZX7 wha Z2°71Y, (-1)°X°]

{ [-ZX° Y Wi Z°71Y, X9 ,cis an even number

[—ZXe 1 wihi2Ze1Y, X9 ,cis an odd number
{ n7[X,Y,Z] ,cis an even number

78 Y[ X,Y, Z] ,cis an odd number

Further for each odd number § we have

j_\2 2(5+1 .
(rim)” = 720t | c is an even number

i Z 2(4+1)+2n .
(An) =n G+ | ¢ is an odd number

Then

j=2%—1 ord(r{my) = ¢ even number

kbl k<n,t=1 mod2
2 , In other case

¢ odd number

n—k+1 < —
j=2kf—2ﬂ'"1—1 2 ,k_n,t_l mon}

ord(r{72) = { 2 yin other case
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Thus we may write, for both cases when either ¢ is an even number or ¢
is an odd number, the following complete list of elements on < 13,7 >

elements exponent cardinality of these type of elements
T]-T OSjSQn-}-l_l 211.-1-1
7 4 is an odd number on
7372 | j is an odd number Vi
2"+2 elements

Now when ¢ is an even number, then the group is abelian non cyclic and
it has elements of order 2**! | therefore it is isomorphic to

G1=Z/2"Z x Z[2Z.

Since 7; and 7 holds the relationships for the presentation give in Proposition
3, we may define the following group isomorphism

<7, T > — G

TL ~F Al

T2 ~ B 1

Now when c is an odd number, we have that 7 and 7, holds the relation-
ships for the presentation give in Proposition 4. Then we have the following
group isomorphism

Gy = Z/2"VT %, Z/27,

< T, T2 > —
n e A2
T3 & Bg
on—1_1
T T s (Ch

Recall h(Cs)(Az) = AZ*1,

Remark 17. We consider the particular cases.

1, When a =1,
The previous equation for c in this case it is the following

2" =2,




CHAPTER 3. FAMILIES OF RIEMANN SURFACES WITH EQUIVALENT ACTIONST2

thus as c € Z, then n < 3.

For n < 3 then c is an even number and these cases were studied [8].
Forn =3 then c= 1.

Further we conclude that the case (3) in the Theorem 16 is empty, this
is the Riemann surfaces defined by these condition has no automor-
phisms of type 7; for j = 1,2.

2.Casea>1,2"-3a—5=0and 2" —3a —4 > 0 (in this case the
homogeneous polynomial associated to f,x is F}.
We recall that this case, corresponds in the Theorem 16 to case (2).
Further we have that 2* — 3a — 5 = 0 if only if n is an odd number.
First we note that as 2" — 3a — 5 = (0, then the condition a # 1 is
equivalent to n 5 3.
Since 2" = 2a + 2, then

3c2™ 1 =6a+6,
now replacing 3a = 2™ — 5 we have
3c27 1 =27 10+ 6 =271 4.

For n =1, we have 3c = 0, then ¢ = 0 and @ = —1, then this case has
not sense.

For n = 2 has not sense because n most be odd number,

For n > 3, we may multiply by 27%, then

328 = vl
Sno= 3

and this is a contradiction.
Thus we have that this case is empty, in other words for n > 3 we have
not automorphism.

Theorem 18. Let ¢ be an even number. Consider Gy =< 11, 72 > the group
defined by this c.

Then for each 51 € Gy, the cyclic subgroups of G1 acting with fized points
(different) are given as follows:

1. Hy =< 7 > subgroup of order 2", acting on S, with signature
(0;2n+1 gn¥l gm on om)
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2. Hy =< 75 > subgroup of order 2", acting on S, with signature
(0; 27+ gntl on on 9n),

3. Hz =< 1 > subgroup of order 2%, acting on Sy with signature
(0; 2™, 2™, 27,27 2% 27 2% 2),

4. Hy =< Tf"_lc_lfg > subgroup of order 2, acting on S1 with signature
(2% — 1;27%1 . 2) (727 1y, has 2°F! fized points).

Furthermore, we have that the group G, acts on Sy with signature (0; 21, 27+1 9m 9)
and that Gy = Aut(S1), ezcept for finitely many 51 € &,.

We remark that 2°~'¢ — 1 = 2" — 1 mod 2**L, since ¢ is a non trivial
even. number, then we have

"l 1-2"-1=2"c—2)=0 mod 2",

Proof. We will compute the fixed points.
First we calculate for 71[X, Y, Z] = [- X, wans1Y, Z],
nlX,Y, 2] = [X,Y, 2]
= (—X, Wy Y, Z} = (tX,tY,t2)
&= X({t+1)=0 Z{t—1)=0 Yt —wonin) =0
{[0,0,1],{1,0,0]} ,2*—3a—4>0 }

=> the fixed point on S : { {[0,0,1],{0,1,0]} ,2"—8a—4<0

Now for 72[X,Y, Z] = [ZX°!, wyn+1 Z°71Y, X¢], we have

7'2[Xa Y, Z] = [X)Y; Z]
S HZXY wen Z97Y, X9 = (X,Y, Z)
X =#X%*1,  X(Q1-£X*%)=0
= [X,0,tX9 = [X,0,£X ] =[1,0,%1]
fixed point on S : {[1,0,1],[-1,0,1]}
We may see that according o the homogeneous polynomial, we have

either 7[0,0,1] = [1,0,0] or 7[0,0,1] = [0,1,0], in fact we recall that
2¢2""" = 2a + 2 then
Ta[s?", 8%ho(s),1] = [52"(5_1), won+15%ho(s), 87
[340.-}-4—2“, w2n+15ah0(3), S4a+4]

_ 1, wont18%73074p4(s), 67" 2" —3a—4>0
s34 pnsihg(s), 5%t 2" —3a—4 <0

;
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When j is an even number, we have 7§ [X,Y, Z] = [X, wgﬂHY, Z] then
Tf[X’Y:Z] =[X,Y,Z]

& (X, 0l Z2) = (X, 1Y, 12)
N X(t—-1)=0 Z(t-1)=0 Y{—wh)=0
= the fixed point onsj :

{{[0,0,1],[1,0,0],[:1:1,0,1],[:!:)\,0,1],[:tA‘l,O,l]} , 2" —32—43>0
{[0,0,1],[0,1,0], [£1,0,1], [£A,0,1], [£27%,0,1]} ,2"—3a—-4<0

H

For an odd number j, we consider 7 7[X, Y, Z] = [-ZX* !, wgﬂlYZ“”l, X4,
we recall ¢ is an even number, then we have the following equation:

"X, Y, 2] = [X,Y,Z]

(—ZX Wit Y2 X0 = (8X,1Y,t2)
-zZX 1t = tX (1)
withyzer =ty (2)
X¢ = tZ (3)

thus we have :
HXT+2%) =0, Y@iinzl-t)=0

Now we may see if X = Z = 0, the point [0,1,0] is not fixed point, and as
t € C*, we have X
Z =%, t= with 7o

Evaluating on the equation (1) we have

—ZXl = JZ2'X | Z
72Xl = w%:;llch
X = Wit zeX

Evaluating on the equation (3) we have the same equation. Thus when

. n—1
—Z =i= Wi We have
on—le  §4l
Wontl = Wonp
therefore 7 = 2" tc — 1.

, on-—1
And when 7 =i= wSZ" we have

3on—tls 541
Wont1 — = w;n-}l
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therefore j = 3- 2" l¢c — 1.
Finally as ¢ is an even number we have
3.9 1=5=2""1c—1 mod 27"
Then we have 1'12"_1“"1?2 has 2°*! fixed points, they are:

{ i) s 7 = —(20)%(1+ ) (1 +27%) }
[—i,¢,1] ¢ ¢¥" = (201 + A1+ 17?)

Now for each I we calculate the signature,
For this we use the Riemann Hurwitz formula.

n—-1._.
[ ] H4 =< T12 ¢ 17'2 >,

= fip 2l p7 = —(20°(1 -+ A)(1 4+ A7)

. o i,p, 11 p¥ = —(20)(1+ )1+ A~
Fixed points: { (Ci,g,1] @ = (20)*(1 -+ A2)(1 4 A2
Riemann Hurwitz formula:

n+1

2
3(2"—1) = 2y—-1)+1+
v = 2"—1

(2-1)

Therefore the signature for Hy is
(2" —1;2,---,2) = (2* - 1;2" . 2).
o Hy=<17}>,
| Hs| = 27,
Fixed points:

{[0,0,1], [1,0,0), [+1,0,1], [£A,0,1], [£A"1,0,1]} , if2* —3a—4>0
{[0,0,1],[0,1,0], [£1,0,1], [£A,0,1], [=A"1,0,1]} , if 2" —3a—4 <0

Riemann Hurwitz formula:
32" —1) = P(y—1)+1+ g(zn ~1)
vy =20
Therefore the signature for Hs is

(0; 27,27 27 97 9" 97 on o)
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e Hy=<m >,
|H1| =2n+1,

Fixed points : { {[0,0,1],1,0,0]} ,if2*-3a—4>0

1
{[0,0,1},[0,1,0]} ,if2*~3a—4<0

Fixed points 73: {[£1,0,1], [£A,0, 1], [£A71,0,1}}
Riemann Hurwitz formula:
1
32" —-1) = 2"y —1)+14 5 (2(2™! — 1) + 6(2™ — 1))
v =0
Therefore the signature for Hj is

(0; 21‘1-*—1, 21’1-!—1, 211, 21’1, 21"!) .

o Ho=<7 >
The calculations for 75 are equal to those for m, since H, has 2 fixed
points with multiplicity 2**! and 6 points with multiplicity 2", then
the signature is
(0; 27+ ¥l on om om).

o (G; =< T, T >.
By the previous data, using Riemann Hurwitz formula, we have
1

32" —1) = 2" (y—-1)+1+ 5

¥ = 0

(42" — 1) + 4(2* - 1) + 21 (2 - 1))

Therefore the signature for Gy is

(0; 27+, onHL om 9

Let T be a Fuchsian group with the above signature. By Singerman [22],
there is no other Fuchsian group with signature of the form (0; a, b, ¢, ) that
contains it strictly. It follows that it may only be contained in a triangular
signature. Hence by dimension arguments, [' cannot be contained strictly
in other subgroup as finite index subgroup except for a finite number of
possibilities (up to conjugation by Méebius transformations). Therefore, the
family of Riemann surfaces does not have any other automorphisms than
those of (74, except for finitely many 5} € &;.

a
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We can now state the analogue of the preceding Thecrem for the case no
abelian.

Theorem 19. Let ¢ be an odd number. Consider Gz =< 11,72 > defined by
this .

Then for each Sy € Gy, the cyclic subgroups of Ga acting with fized points
(different) are given as follows:

1. Hy =< 7 > subgroup of order 2", acting on Sy with signature
(0; 27+, an¥l 9m gm o7,

2. Hy =< 15 > subgroup of order 2", acting on S, with signature
(0;2n+L 2ntl om on gmy,

3. Hy =< 1% > subgroup of order 2™, acting on Sy with signature
(0; 2", 27,27 27 27 2" 2" 27),

4. Hy=< 737" 0, > subgroup of order 2, acting on Sy with signature
(5-202—1;27 . 2) (727, has 27 fized points).

5. Hs =< len—lc—1,r2 > subgroup of order 2, acting on S, with signature
(5-2n"2 —1;27.2) (r7" 7¢Iy has 2° fived points).
Hy is a subgroup conjugate to H,.

Furthermore, we have that the group G4 acts on Sy with signature (0; 2711, 2711, 27 2)
and that Gy = Aut(Sy), except for finitely many S, € G,.

Proof. The proof is similar to that of Theorem 18. In that proof, the only
instance we used the fact that ¢ was an even number occurred when we

showed

a=le—1  _ _3an—le—]
7-1 = Tl .

T2

This does not happen here. We thus have 2" fixed points for 'rf"_lc_l‘rg,

which are
{[i,p, 1] : p2n = _(2i)a(1 + Az)(l + )\'—2)},

and also we have 2" fixed points for 752" ¢!z, they are
{=5,0,1] : ¢ = (20)°(1 + 2)(1 + A )},

We remark that the fixed points of H, and Hy are in the same orbit under
action of G, since let [¢,p, 1] be a fixed point for Hj,

7 [‘i;p: 1] = [_i:w2“+1py 1] )
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and we have
(wpap)? = —p* = (2)* (T + X (1 4+ 177,
then 71[i, p, 1] is a fixed point for Hy.

Therefore the subgroups are conjugates.

For finish the proof we calculate the signature using the Riemann Hurwitz
formula. .

H, =< 77t
[H4| =2,
Fixed points: {[—i,¢,1] : ¢*" = (20)2(1 + A})(1 + A7)}
Riemann Hurwitz formula:

271
32" -1) = 2('}'—1)+1+?(2—1)
v = 52" 21

Therefore the signature for Hy is

(5-22-1;2...2) = (5-2"%2 - 1;2".2).

The signature for Hy is equal to the signature for Hy, since they are con-
jugates.
For the another subgroups we have the same calculations that in the previous
theorem.

a

It follows from Theorems 18 and 19 (item 3)) that the form of affine
algebraic equations that define S, 5 is of type

" = 2% (z — 1)z — M)z — M) (z — X6)B (2 — de) Bz — X))

where in thiscase dy = a, de=dg =a, ds=ds=dsg=d; =1, A3 = -1,

M=Xds=-X,d=ATland ;=27

Our next objective is to determine the local structure for each automor-
phism with fixed points.

Remark 18. We give the details for the computations in the case 2" — 3a —
4>0,a>1,2"—3a—5 # 0 where the homogeneous polynomial asscciated
to fa,x is F1. These computations hold for the elements in both &; and ..

We first recall the charts for the fixed points of Theorem 16.
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1. A =10,0,1)].
Chart for P;:
¢71 5~ [s7, %ho(s), 1]

(]51 o © qfal_l(s) = ¢1‘[—Szn,w2n+13ah0(8), 1]

Jo

where )
w;ﬁ: : _]-: 2.(3:—1 = Wiantl ,
then we have 7, is an odd number, and joe =1 mod 27,
Therefore dp, (1) = wg‘,’,ﬂ. Furthermore since dp, is a group homomor-

phism we have
dp, (Tl) = (5}"1 (Tl)) 2n+1 = lWgn+1 .

2. P, = [1,0,0].
Chart for Py:
¢4 [ tznmaaniihoo(t) t?a"]

droTiodr(t) = dafl,wd I T h (1), —t7]

= w;n+1

where _ ot
gffl =-1, w%?-sl e Wgnjll :
then we have jo, is an odd number, and jo(2" — 3a - 4) = 2" +1
mod 277!, and this is equivalent to
Joo(—3a—4) =1 mod 2",

since § is an odd number then 2*(j5 — 1) =0 mod 2™,

3. P2 = [1,0, ].]
Chart for Ps:
b3t s~ [s% 4+ 1,5%h(s), 1} .

1 w2n+1s“h1 (S) :I

¢207_2°¢‘2~1(S) = ¢2 [32n+1: (S2n+1)c '

= ¢ [Z(—Szn)k,W2n+ISah1(S) (Z(—sgn)k) ,1}

k=0 k=0
= ¢2[1_32n +"' ,W2n+13ah1(s) +-.. ,1]
= wgul-.“S
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where
. T
12" 1,

e
okl = — Whnit1r = Wantl ,

then we have 7; is an odd number, and jie =1 mod 2"F!.
4. P3 = [—1, 0, 1].

Chart for By
¢3' 15~ [ = 1,6%h4(s), 1]

1 wan+15%h_1(5) 1]

¢3°7'2°¢4Tl(s) = ¢ [32"-"1’ (52"—1)°

= ¢ l" Z(Szn)k’(—l)cwznﬂsah—l(s) (Z(Szﬂ)k) 11}
k>0 k>0
¢3[—1 —S2n e ,w2n+1s“h_1(s) +oee ,1] ,C=2
{ gs[—1 ~ & oo wi Hsthy(s) +-- 1) ,e=2+1
{ 2.;115 ,j1a =1 mod 2"+ ,e=2
18 ,J-16=2"+1 med 27 e=2+1

where j_; is an odd number.

When c is an odd number, we have 8p,(75) = wi i
If we take j = 2™ + 1 then dp, (157 ) = won+1, since
2P +1\20 1 41 1
(@I = (—wpen )T = —wZH = wann

The previous calculus we summarize in the following table:
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order T P local auto. dp(7)
S WS .
gt T [0,0,1] joz=1 mod 2nl il
Jo is an odd number
2n+1 T]‘.l [0: 0: 1] Woni1
i~ w;:n+1t .
oril T [1,0,0] Joo(—3a~4) =1 mod 271 A
Joo 18 an odd number
P s [1,0,0] Wan i1
$ Wi S .
onit T2 [1,0,1] fle=1 mod 27! Wi 1
71 18 an odd number
2n+l T'f [lr 0: 1] Won+1
71 -
s~ il s wi-t
on+l Ty [-1,0,1] j_1z=1 mod on¥! antl

j_1 I8 an odd number ¢ is an even number

Won+1
-1 a _ 2
2 T3 [-1,0,1] ¢ is an even number
71 ;
8~ Whni1 8 J-1
on+l T [-1,0,1] joie=2"4+1 mod 2+ ) wfi:;l b
j—1 15 an odd number € 15 ah odd number
" R
n a _ "
2 T2 [ 1,0, 1] ¢ is an odd number
bl (2" +1) 5 Waon+1
2 ) [ 1,0, 1] ¢ is an odd number
N 1,0, Y~ Winny wan
2n 7'3 [_)\: 0, 1] y~— w%"“y Won
on Tiz [A_la 0, 1] y~ wg“‘*'ly Wan
o | % |[A500] Y~ Wiy wan

Remark 19. Casen=3,a=1,¢c=1.
In this case we have that there is not singular point.
When Y = 0, we have the following points

{[0,0,1],[%£1,0,1], [, 0,1], [£A71,0,1]}.

Then the charts for these points are given by

[hp(y)$ Y, 1] Y,

where hy, is holomorphic function defined in a neighborhood at 0, such that

h’p(o) =D,
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where p € {0, £1, A, =21},

Now [1,0,0] has locally coordinates
Foolt,v) = v® +v(v? — 1)(1 — M?)(1 = X"%?),
Y Z
where (u,v) = (}’E)'_ o
Then a chart in this point is given by

1,2 hoo(u)] ~+ u,

where A, is holomorphic function defined in a neighborhood at 0, with
heo(0) = 0.

Now we may calculate for each point dp. Then we have

order | T P dp(7)
16 T1 0, 0, 1 Wi
6 |~n| [1,0,0 WY
16 Tiq 1, 0, 0 kg
16 T2 [1, 0, 1 e
16 T —-1,0,1 wi’ﬁ
16 |7 | [-1,0,1 Wig
8 'T'iz [A, 0, 1] g
8§ [ N0 | ws
8 T12 [Aul, 0, 1] g
8 7'12 [—'A_l, 0, 1] Wy

Remark 20. Now we give the details for the computations in the case
2" —3a—4 < 0, a > 1, where the homogeneous polynomial associated
to fa,x is Fo. These computations hold for the elements in both &; and &,.

‘We note the charts for ¢}, (Jz, (J3 are the same that for P, P, Fs.
We must calculate for @4 = 0,1, 0]
A chart for Q4 is:

gttt [t3“""4_2ngm(t), 1,859,

Thus we have

$s0m 0 ¢ (E) = Gulwiii P goo(t), 1, gt

=
= whnnt
Y
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where
joo (304427 n_ joo (3044 -
wgnﬁﬂ" ) = §n+11, w;n-}Fl ) = w2n1+1 .
Then j,. is an odd number and jo(3a+4) = —1 mod 2™,
Therefore dg, (17°%74) = won1.
Now we may summarize this case in the following table

order T P ép(7)
ontl o 0,0,1 Wins1
antl 8 0,0,1 Wani1
g+l 1 [0, 1, 0] gntt
on-+tl 7-1_“‘1_4 [O, 1, 0} Wont1
g+l Ta 1,0,1 w’;&.+1
on+l TS 1,0,1 Wan+1
it
on+l T [_11 0! 1] Bt
¢ is an even number
-+l a - W2ni1
2 T2 [ 1,0, 1} ¢ I an even number
2n+1 ™ [_1 0 1] 2;-}-1
P ¢ is an odd number
1 wg“‘*‘l
21’1—{" o _1 1 n+1
T2 [ 0, ] ¢ is an odd number
n--1 a{2"+1) _ Y2ni1
2 Ty [ 1,0, 1] ¢ is an odd number
an 712 [A: 0! 1] Wan
2» T12 [_A7 07 1] Wan
2n 7'12 [A_la 0, 1] Waon

2” T}? [_/\Hl, 0, 1] Won
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3.3.1 Geometric Presentation

We have showed that, for each S} € &1, the group
Gi=Z/2"MZ xZ/2Z

acts on S; with signature (0;2"+!,27+1 2" 2). For this action, we have that
the 4-tuple :

(78,78, 7, 0
is a generating vector. Using the polygon method [1], according to geometric
data, we find a presentation for G;. We thus obtain the polygon

& o
0.6
T{.= T: 0st T;h 3u
04} “
os} nh

02t 1:'; A

05 05 o
0.1t

We call D;, D, D; the elements associated respectively to 78, 78, 72.
From the picture we conclude the relationships

D3D‘11D3 1 blue
D,D\D;'DiY = 1, red

DiD;* = 1,  green

DiD;' = 1,  yellow

The reader should keep in mind that we are in the case where ¢ is an even
number and 2" 'c = 2a + 2. It is not difficult to verify that j = 2"1¢ — 2.
Indeed, since a is an odd number, we have

jra=2"lea—2a=2""tca—-2""1c+2=2"""c(a-1)+2=2  mod 2",

The following is a consecuence.
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Proposition 6. G has a presentation of the form

Dy =Dyt =D =D}=1
<D1:D2:D31D4 : ! 2 8 1 > :

DiDsDsDy =1, D2D;2=1, D2 2p;l=1
(3.1)
where ¢ is an even number.

Proof. Let

- 2n+1 — gn+1 — an — 2=
Gl=<D1,D2,D3,D4: D =Di S0y =Dl >

DiDyDsDy =1, DiD;*=1, D& 2p;l=1

First we may see that Dy D, = D, D, since D2 = D2 and Dy = D" —2
thus Dy = szn_l“ng, then since D4 has order 2

1=D} = D7D, D" 1D,y
Diqczn—l_SDleDg

D 3Dy, D)\ D,

= D[3D,D\Ds

Dl—l D2—2+1 DyDs

DD,

I

[l

1

s DDy

Now we have
Gi={D{Di:0<j<2" 0<i<1},

then él is an abelian group of order 2"t and we have the following isomor-
phism

51 — G]_
Dy~ A
D2 ~ Bl
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Also we have showed that, for each S; € G,, the group
Gz = Z2"VE »y, Zf2Z

acts on Sy with signature (0; 27!, 27+1 2% 2). For this action, we have that
the 4-tuple .
(78,7 )

is a generating vector. As before, using the polygon method [1], according to
geometric data, we find a presentation for G,. We thus obtain the polygon

Zd

0.6+

T{‘= ‘t: 05t T:a ™
04t :
03} T

02t ; T

t:
0.1
I é./\-:;

.1

0.2+

We call D;,D,, D3 the elements associated respectively to 7f, 75, 7.
From the picture we conclude the relationships
RDs* = %, green
DID;' = 1,  yellow
The reader should keep in mind that we are in the case where ¢ is an odd
number and 2" '¢ = 2a+ 2. It is not difficult to verify that j = 3-2" 1¢—2,
for n > 3, in fact
joa = 3-2"ca—2a
Bea2r =27 o412
2" 1e(3a — 1) +2
= 2" 'c(3a+3—-4)+2
= 2" 1¢(32" %c—4) + 2
3cPartignd 1 2 mod 2"+
2 mod 27!

il
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For n = 3 we have a = 1 hence j = 2.
The following is a consecuence.

Proposition 7. For n > 3, G2 has a presentation of the form

on+l _ an+1 — on _ 2 _
<D1, Dy, D3, Dy : Dy =D Dy Dy =1, >

DiDyD3Dy =1, DiID;%?=1, D}¥'e2p;l—1
(3.2)

Proof. Let

- 2n+1 — 2n-£—1 — an — 2 —
Ge = <D1, Dy, D3, Dy : D D Ds Di=1, >

DiD:DsDy =1, DiD3*=1, D} e?pyl=1

First we will see that DyD; = Df"'HDg, in fact as D4 has order 2,
Dy = DyDyDs and Dy = D327 2 y D? — D2 we have

1 = DyDyD3DD;Dy
D§-2““1c—lD2D?-2“”‘1c—lD2
= DS 8D,Dy D,
o.DaDy = DDyt = DIT*%ep,

but as ¢ is an odd number we have
1-3-2%c=2"+1 mod 2™+,

Then we have the following isomorphism

6{2 e Gz
.DI ~¥ Az
Dy ~ By
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3.4 Classification of actions on &; and &,

In this section we will study the epimorphisms associated to the actions
defined in the previous section.

From now on we consider the notations as in Theorem 7.

We recall that in any case (abelian and no abelian} H; =< 7, > is a subgroup
of Aut(S;) for 7 = 1,2, and acts with signature (0; 27!, 27+1 27 97 97} then
we have, according to the Theorem 7, epimorphisms 6, ; associated to the
action.

By the Theorem 7, there exists a Fuchsian group I'; ; with signature

(0; 27+ gn+l 9m 97 9m) then

on-+1 _ gn+1l on an on
Dy < ’

T4y 22,4, L350 T4,y X5 1 Ty = Loy —Tgy =Ty = L5 = 1= xl,iwz,ii‘ca,im,z’ws,i)

where we may choose foreach 7 = 1,2, 3,4, =;; as counterclockwise rotation

2
about z;; through angle —ﬂ-, for
e

my =g =2 g =my =2,
Hence we have
fi:Ty — Hi
Tji ~ Ori()
Further we recall that there exists isomorphisms fy; : A/K;; — S;, where

K13 = ker(6h,)-
We call .Pj,i = f1’£(K1,iZj,i) then we have

5P1,.~(91,i(5€1,z')) = (Wan+1
6P2,i(61,'£(m2,i)) = (Wontl
Op, (Bri(z3:)) = won

6P4,i (91"&(3;4‘7:)) = Wgn
‘We may choose
Pl,i = [0: 01 1]1 PZ,:' == TE(P]-V‘.)’ P3,i = [1, 0, 1], P4|i = [A, 0, 1] ’

thus according to the tables of the previous section we have

bra(z1:) = 7
0r4(22:) = T
Ori(zss) = 7°
Ori(zag) = 75

Oilzss) = T
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We may do the same process for Hy =< 1 >,
Hy is a subgroup of Aut(S;) and acts on S; with the same signature that H.
By Theorem 7 there exists a Fuchsian group I'y; with signature (0; 27+, 2n+1 an g on)
then

2n+1

n+1 n 1] n
Poi = <y1,i, Y2,is Y34y Yd,iy Ys,i - yf,,- =Y = y%,,- = yi;- = y?,,- =1= yl,i?J'Z,iy3,iy4,in,i>
where we may choose for each j = 1,2,3,4, y;; as counterclockwise rota-

2
tion about w;; through angle —ﬂ——, with m; as before.
my

Hence we have epimorphisms
a1 Tgy — Hy.
Further we have the isomorphism associated fo; : A/Ks; — S; where
Ks; = ker(fs;).
We call Qj; = fo,i(Kow;;), and may choose
Qui=[1,0,1], @2 :=[-1,0,1}, Qas:=1[0,0,1], Qu5=[10,1].
According to the tables of the preceding section, we have

1. If ¢ is an even number, then

oi(n1) = 7
92.1(?;2,1) = Ty
O21(ys1) = 7
Oa1(y1) = 7
Ooa(ys1) = 7

We remark that since 4da + 4 = 2%¢ and ¢ is an even number, then
da+4 =0 mod 2", therefore

B2,1(¥1,1)02,1 (y2,1)02,1 (y3,1}02,1 (¥4,1)02,1 (y5,1) = 1.
2. If ¢ is an odd number, then

tho(yre) = 75

O2,2(Y2,2) TP
92,2 (ys,z) = T22 “
Ooa(ya2) = 73

Ba2(ys2) = 75
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We remark that since 4a 44+ a2" = 2%c+- 2%a = 2™(a - ¢) and ¢, g are
odd number, then 4a +4 + a2* = 0 mod 2"*!, therefore

B2,2(y1,2)02,2(y2,2)02,2(Y3,2)02,2(y4,2)02,2(y52) = 1.

Theorem 20. Assume thet 2" —~3a—5 # 0 and a > 1, Then the actions
induced by Hy and Hy on S; € G; for each ¢ = 1,2, are topologically, but not
conformally, equivalent, except for S; defined by A = £1 £ /2.

Proof. By Theorem 8 it is enough to prove that there exists a commutative

diagram for the corresponding epimorphisms.

Using the previous computations, we may define an isomorphism between
I'y; and I'y;, by
x:Tyy — Doy
Tii  ~* Uy
Since z;; and y;; satisfy the same relations, it is clear that x is an isomor-

phism,
Then we have the following diagram:

Ty b H,
x‘ I@ (3.3)
’ 82‘

where ® is the isomorphism given by
(13(1'1) =Ta2.

We now prove this claim.
When ¢ is an even number, we have the following generating vectors associ-
ated to 811
(7'1[1,7-1 :Tl ,TI?TI)
and to 63,
(7'237'2’7'2 !72:7-2)

Since ¢ is an even number, we have

—3a—4=a mod?2™!
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(recall that da + 4 = 27¢).
Therefore we have the commutative diagram (3.3).

When c is an odd number, we have the following generating vectors as-

sociated to ) ;

a .—3a—4 ,_2a .2 2
(TI:TI » 71 ’7'1’7'1):

and to 92,2
a _a(2®+1} 24 2 2
(72,72 yTa 1 T2, 73 )

Now we have
—3a—4=a(2*+1) mod 2",

in fact since 4a 4 4 = 2"¢ and q, ¢ are odd number then
a2 +da+4=2"(a+¢)=0 mod 2.

Therefore we have the commutative diagram (3.3).

Alternative proof for topological equivalence.
We consider the isomorphism between H; and Z/2*+'7Z given by

H;, — Z/2"PZ
o1

With this isomorphism we may associate to each generating vector a 5-
tuple of elements in Z/2"17Z.
'Thus we have

e If ¢ is an even number, then

(a,a,2a,2,2) = (a,—3a — 4,20,2,2) mod 2"*.

» If ¢ is an odd number, then

(a,a(2" +1),20a,2,2) = (a, —3a — 4,2a,2,2) mod 2",

By Theorem 13 we have in these cases s = 1, then the actions are directly
topologically equivalent.

Now we will prove that for S; defined by A # %1 & /2 the actions on
are not conformally equivalent.
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We will follow the idea of the proof given by G.Gonzdlez-Diez and R.Hidalgo
[8] in the case n =2 witha =1 and c=2.

By contradiction we suppose that are conformally equivalent; that is, there
exists o on Aut(S;) such that

a7 = TQTIU:
where j is an odd pumber.
Now we consider the holomorphic branched covering associated to the
action of Hy =< 1¥ > on &, this is
T 5 — C
X

7z —

,since 72(z,y) = (z,wany) then for P = (zq,%0) ,
Hay(P) = {7(P): 7 € Hs} = {(z0,what0) : 0 < § < 2"}.
Hence we have the following diagram

S; z S;

where T is given by ,
T(z) = (a(z,v)) ,
for z & C, where (z,y) € 7 1(z).
Since o, = 750, then
2

wori(z,y) = 175 0(z,y) = 70 (z,y),

and T is well defined.

We have that T is a holomorphic map, because ¢ is holomorphic,

For P, = [0,0,1] let

B [ [1,0,0] 2*—3a—4>0
P“"‘TQ(Pl)‘{[o,l,o] 9. 3q—4 < 0

Now we have the following properties
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1. Consider the set of fixed points of Hj:
B ={P, P, [#1,0,1],[+X,0,1},[x7,0,1]} .

Each point P in B, is a fixed point of 7¥ (Theorems 18,19), hence we

have . _
o(P) = o(ri(P)) = 73 (o(P)) = {’(c(P)),

and therefore o(F) € B.

7(B) = {0,00,£1, £, £X71};

since o(B) = B then
T (n(B)) =n(B).

It is easy to verify that
Furthermore T(0), T(00) € {1, —1}, because if 71(P) = P, then
o(P) = o(n(P)) = (a(P));
therefore o(P) € {[1,0,1],[-1,0,1]}, and n(P) € {0,00}.
2. T is a bijective function:

Since T is surjective then T is surjective.
If T(z1) = T(z2) we have

no(z, ) = 70(T2, Ye)
a(z,y1) = Tzzjg(ﬂ?z,yz)
oz, 1) = UTfk(ﬂfz,yz)
Sz m) = 712’“(5'32,9’2)
ST = Xe

3. T is a Mdbius transformation, since ' is a bijective and holomorphic
map of C.

Now consider the coverings associated to the subgroups H; and Hj,
Let m; : € — C be coverings, for i = 1,2, given by

iz} = 2°

1
sz(x) = r+ E
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Then we have the following commutative diagram

S; o S
ki3 m
o~ T ~
C C
1 2

where R(z) = moT'(zq), with m(zo) = .

Let us verify that R is well defined. .
First we remark that if we consider T; : C — C for j = 1,2, given by

T}(&?) = —I
Th(z) = %

then we have
Tir=x1; ,9=12.

Further it is easy to check that for each j we have 77 = Tj.

Now we have

T(-z) = Tr(—=z,y)
"TO'('_'SC:y)
mom(z,y)
rr3o(z,y)
Tymo(z,y')
= DTT(z)
1
T(z)

I

Il

Thus if m{z1} = m(z2) then

Tq € {:131, —:L‘l} .
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Using the previous calculations we ha‘jre
|

T(xz2) € {T(xl)?‘ﬁ} ,
then
m(T(21)) = T(=1) +

and therefore R is well defined.

Ty = (T,

We remark that for each j, 7; is the covering associated to the action T},

It has the following properties:

1. R is a Mobius transformation, in fa‘!ct
R is a holomorphic map because T\ls a holomorphic map.
Further since m and s are sur]ectlve then R is surjective.
Now if R(z) = R(2), for 22 = z and 22 = z we have

& (T(zo) - T(zn)) (T(z0)T(20) —~1) = 0
= T(Z(]) = {T'(LUU), ﬁ}

2 € {#0, —20}
z=zi=axt=1x

2. We recall that
T(n(B)) = m(B) ={0,00,1, %, A7},
and T'({0, c0}) = {1,—1}.
Then we have

R ({0,00,1, )%, X7%}) =Hoo, &2, (A+ A1)},
and R(0), R(c0) € {2, —2}. |

3. We recall that a Mobius transformation is determmed by its values at
3 points. First we suppose R(0) = 2 and R(o0) =
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(a) I R(1) == o0, we have

_ 2z+2

f(z) —z+1

2(X% 4 1)

VR and then

thus R(A\?) =

R(O% = A+ 2 ter=-14+v2 or
R()) = =A-Xleaa=1:+v2

(b) If R(A?) = oo, we have

2z 4+ 227

R =—w
thus

R(1) = A Ao A=1£2, or
R1) = =2=xtaerx=-1x£/2

(c) If R(A?) = oo, we have

222z + 2)?2
fiz) = —Az41

then

R(1) = AAled=-1+v2 or
R(1) = -A-Aler=1+12

In the other case, when R(0) = —2 and R(co) = 2, we obtain the same
resuits.

Therefore the Mobius transformation R exists if only if

Ae{1+v2,+1+v/=2}.




CHAPTER 3. FAMILIES OF RIEMANN SURFACES WITH EQUIVALENT ACTIONS97

Theorem 21. Forn = 3,a = 1 and ¢ = 1, the actions induced by H,
and Hy are directly topologically, but not conformally, equivalent, except for
A=+142

Proof. Using remark 19, the generating'vectors associated to the epimor-
phisms &;, are:
- (Tl :Tlg ,7'12 :7'12 :qu)

. 9 2 2 2
H2- (T2 T3 2 Tg Ty ,7'2)

Now by Theorem 13 we have that the actions I; and Hy are directly

topologically equivalents, we take s = 1.
The proof that the actions are not conforrmally equivalent is the same as that

for Theorem 20. O

Remark 21, Now we will see some examples in the case n = 3,a = 1.
We consider for n = 3 a group G as in Proposition 7; that is,

o apeapomo o,
G = <A1,A2,A31A4- AAAsA =1, ATPAZ=1, A%A3=1

r~ ZJ16Z % Z[27
We may define an action for G on Sy, by

e: G — Aut(S)
Ay~ 7

Az VT
Ag ~r 'T2

I
A4 ~r T i?' ™

Since £(A;) satisfy the same relations as A;, we have ¢ is a monomor-
phism.
Now using the Eichler trace formula, see Theorem 11, we may calculate the
character associated to the Analytic representation induced by €, and we
obtain the following table




1
4
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elements | Character of analytic Representation
1 91
Ay —ws i~ W§ — Wy
Ay —wg - Wi — Wi
Af —3 — dwj — dw? — 4w
Af —3 — 4wy
A% ,—3
ATA; [ 1
A3 —wg i wi — Wi
A? g —!7 wg + Lr.)g
A3 —wg Wi — wj
A3 wg — Wi +w
Af -3 — dwg + 4w — 4w
A —3 + 4wy — dwi + 4wy
A%_z —3 -+ 4&.?4
AP A, "—3
AP A, 1
A; W -Fl L&Jg + wg
Al wy Wy +wy
A —3 + dwj + dwi + 4w}
AP Ay F1

Now we consider the irreducible representations for G according to sec-

tion 1 of this chapter.

i
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Gp,0 - Al — 1 1,0 - A1 — 1
Ag — 1 Ag — -1
CGp,2 Al — Wy ‘i Qg A1 — Wy
Ag — —lg “ Az —r Wy
Qp4qt L — Wy ’I gt Ay —uny
To — Wy | Ag — —ly
. 3 . 3
age @ A — wi “ e A —wy
Ay — w3 1; A = —wj
Qs - Al — -1 H Q18 : Al — -1
Ag — —1 Ag — 1
Q¥p,10 * A — —uwy i 110 - Ay — —ws
Ag — —Wg . Ag —r Wy
Gp,ag ¢ Ay — —uwy ' 01,12 : Ay = =y
Ay — —uwy : Ay — wy
ap,14 ¢ A]_ — —wg ‘ 1,14 ¢ A]_ —* —«wg
A2 — —wg A2 — (.dg
3
wig 0 wig O
A Ay —
61 1 0 —Wig ﬁs 1 0 _wfﬁ
0 —w 0 -
Ag — [ 5 16 A2 — 7 16
I'.Uls 0 | —wm 0
- 5 °
Wis 0 ‘ wlg 0
Bs: Ar - Pr: A= |, 7
0 —ub —LWig
L Wi
3
r —w
0 e Ag — 3 16
A2 —r 16 0
—l1g 0

If we call ¥ the Analytic Representation induced by £, we have

B = a1 4B 006D 0D 0,10B00,12901,10P 200, 14D 114D Fs D20 @36y (3.4)

Consider E(Aj_l), for each 7, then we f}ave the following 4-tuple

15 _15 14 3
(7'1 yTo s T 1 Ty Ta)
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Now using Chevalley Weil formula, for this tuple, we may compute, the de-
composition for the analytic representation in to irreducible representations,
where denote by n;; the multiplicity associated to a;; and by n; the multi-
plicity associated to the representations f;

® gy =0

8 1
. n1,0=—1+(1—'ﬂ§)+§=0

14 6 6
. n0’2:_1+(1HIE)+(1_E)H+ (1——§)=U

14 6 1

® n1,2=—1+2(1—i€)+(1—§)!+§=0
12 1

L] 'n,g.4=—1-{-2(1—'i'6)+§_0

ol
I

12 4 1 1
'n1,4=—1+(1—‘—16)+( _16)+§+§—1
10 2 1
2 10 2
. nl'ﬁ——l—l_(l_ﬁ)+(1—E)+(1—§)—1

. n0’3=—1+2(1—1%)=0

8 i
on1,3=—1+(1—ﬁ)+—2-=0

. 6 6y
® nn,m:'—l'{-z(l—ﬁ)-{-(l—-g)—{—

1
2
6 14 6
* n1,m=—1+(1——1-€)+(1—1—)|+(1~§)=O
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4 4
. n0,12=h~1+2(1—ﬁ)+(1—§)=1

4 N\ 1 1
n1,12———l-!—(1—1—6—)-{-(1_1_6)_,_54_5_1

2 2\ 1
no,14=_1+2(1—ﬁ)+(1_§)+§=2

2 10Y 2
et (-3) (- 8) (- -

5 1 1
7 3 1
'”3=_2+Z+Z+§=1

9 1
ns=—2+7+3+5=2

11 7 1

Then the decomposition coincides with our previous caleulations in (3.4).
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3.4.1 Especial case X =1++/2

Theorem 22. For Ay = 1+ /2, consider Si5, the Riemann surface in &;
determined by Mg, with i = 1,2. Then for each i = 1,2, there ezists a finite
group of order 23 which acts on S, with signeture (0; 271,277 4), We
have the following two possibilities:

1, Ifi=1, then the group is
Goa = ZJ4AZ ¥y, Z/2"1Z

where ho : Zf2"1Z — Awt(Z/AZ).
Furthermore, Gy = Z/2*"'Z x Z[2Z is a subgroup of Go,1.

2. If i =2, then the group, say Goz, is an extension of Z/277 x Z/2Z by
a group Z{4AZ, that s,

0 — ZJAZ —> Gop — BJ2Z x TJ2T — 0.

Furthermore, Gy = Z/2"VZ %, Z./97 is a subgroup of Goz.

Proof. We recall the proof of Theorem 20. We had Mé&bius transformation
R and T'; now using Ay = 1 4 v/2 we may explicitely calculate R and T

. 2z +2
Rz} = T
1—=z

T(z) = 1+

In the proof we had the following commutative diagram

s 8
Size — Sing

oY
@)
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thus for (z,y) € S; 5, we have

0= f(a(m,y)) = f(T(.’L'), 02(3-:1 y))
= o} (&,y) ~ T(@)" (T()* - 1)" (T(2)* - X)) (T(2)* - \°)
92032( — 1)e
(2’,‘ 4+ 1)3a’&}~4
22a+2 s 2 1 af 2 A2 2 A-—-2
mx(m—)(m—o)(m-—ﬂ)
22&+2y2"

2a+292"

(.’B + 1)4a+4

(55' )_ 11—z \/ﬁ&)znﬂ@'
IEY =T\ Ty {z+1) )

= of (z,y) + 2%(z® + 2z — 1)(2® — 2z — 1)
= o} (z.) +
= o3 (z,y) +

Now choosing a root of we have

Note that

g (J("Ba y)) =

1+2’ (z+1)
z—1—1+z z+1 V2%l iy (x4 1)F
z+1 z4+1l4+1-2z" (z+1)¢ (1—-zs+z+1)
= ($,W2ny)
= 7'12(37’9)

and therefore ¢ has order 2711,

- (1 -z \f2—6w2n+1y)

Further we have o7 = mo:

1+=z \/2_‘;{,;: n
o7i(2,y) = 0 (=2, wpriry) = '.i(mr (1- ::)y) :

T2U(m!y) 1_!_3:1 ($+1)c

z+1 \/2_°wgn+1y ($+1)c
1-z" (z+1) (I-z)

_ (1 +a \/—2.?662“1!)

(1 - (/Q_ngnﬂy)

1-z' (1—xz)°
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Structure Description

Go; =< 11, T2, 0 >

We have

P -
(‘77'17) =T 12]+1T2 ¢ is an even number
2 — -
(C’Tf) = 7'12n+23+17'2 ¢ is an odd number
i N2 2+2) '
(nrio) =7 v

&,

Thus we have the following elements in the group Gy.

elements exponent number this type

7 |0 i< i
& j is odd numer, on

7 4 is odd number, on
o’ 4 is odd number an

7o | jis odd number on

o7} 7 is odd number; on

To7io | 7 is odd number on

'{ 273 elements

s When ¢ is an even number, case 1 = 1, it is easy to verify that

A2n+1 : an+1 — 02n+1 — 1, >

Go.1z<A,B’C= A'=B=(C% BA=AB, AC=CB

We will prove that
GU’]_ ~ Z/4Z >4th Z/QH-H'Z,

where hy defined below.
We consider the following subgroups of Gy

H=<1'1'10>, K=<m>.
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We have H is a normal cyclic subgroup of order 4, in fact

(r'e)? = 7
(rile)® = Tflqjérfla =15l = or]?
(iTle) = wlnln=1
o(rlo)e™t = ar{ﬁ
nrlort = o)
o), = ot

(we recall that for ¢ an even numbei? we have 17 = 7271.)
f
!

Is clear that H N K = {1}. “

We may define ‘

ho: K — Aut{H)
2 —  ho(7a): 7l ~ or

then H %, K is a subgroup of Gg,.
Since the order of H is 4 and the order of K is 2" the

| 45, K|j= 27,

therefore H xp, K = Gy 1.

o When ¢ is an odd number, case { =\2’ it is easy to verify that

A2n+1 %an-i-]. — 02n+1 —_ 11 >

GD.2 = <A’ B’C : Az = Bz = 02, " BA= A2n+lB1 AC=CB

We will prove that Gy is an extension of a group Z/2"Z x Z/2Z by a
group Z/AZ, this is

1 —s Z/4Z — Go'z —>'“Z/2“Z X Z/QZ — 1,
Now we consider a subgroup of Gy} given by

!
|
on_1 T T C |
H=<7 T n>={l,74 7,7 ,7 T2}

|
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Note that H is a normal subgroup Ff Goz:

( ant—1
(Tf o) =1 ln

,1 (7'1

and that HN < ¢ >=<7¥ >.

h -1
7@)7} =T] T2

I
1l —_
n)e =1 ln

Now we consider the quotient groupi)i Goa/H. Since H has order 4 then

Go2/H has order 2™,
We may write the elements in Gz /

class in Goof H n

number of classes

[ = {Tf,'fj 7+, 7j+2"}

2n—1

[07] = {JJ T 2a, Ty 1—2 -2

2n—1

[rio] T’r"o‘ ot T 0' 0"?’1}

2n—1

1t _jien)
[717'2] = {7172’7'1 ! "J

; 1
T2 it }

znwl

97+1 classes

Since [11][e] = [o][r1), Goz/H is an abelian group of order 2**1, and its
elements has order at most 27, then ;'we have the following isomorphism

Goo/H — Z/Z"ZXZ/QZ

[l ~ 4
(6] ~ 31

where we consider for Z/2"Z x Z/ QZ the presentation given by Propo-

gition 3. Therefore we have:

1—H— (;02 — C;mg/}y — 1.

il
\

[

Theorem 23. For i = 1,2, the group “GD, acts on S;,, with signature

(0; 27+, 27+ 4),
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Proof. If P is a fixed point for some element in Gy, say ¢, then for any 7,
¢(P)=P.

By the previous tables ¢? € G;, then P is a fixed point for the action of G;.
Therefore the fixed points for the action of Gp; are the same that for the
action of Gj.

It is easy to verify that [—Xo, 0, 1], [Ag", 0, 1] are fixed points for o.
Furthermore [Ag, 0,1}, [~A5",0, 1] are fixed point for o7, = 777 ot

-1 (:z:+1 ﬁtdgn-!—ly)

72072 1" (z—1)e

Now we will find elements ¢ € Gy, such that
e When c is an even number (case ¢ = 1), then

2 2nTla—1
¢ = Tl T .

e When c is an odd number (case i = 2}, then

2 on=le_1
=1 T,
or )
+ "‘_ —
§2 = 7_{32 ¢ 1,.[,.2 .

We will see that ¢ # Tng . We have
s = a0t
and the power this elements are conjugate to o or power of 7.
Then the only possibility is ¢ = 7 or ¢ = o7i.
If¢= Tf o, then by the previous tables
¢? =ty
o If 2 = 72717 then

2" le—1=2j+1 mod 2",

therefore § = 2" + 27%¢c — 1,
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o If ¢2 = 732"7e"1p, then
|

3.2" 1= 2j[—|— 1 mod 2",

therefore § = 2" +3.2%%¢c — 1, l

With these calculations we prove that there exist elements ¢ € Gyp; such
that they have fixed points of type

{lé.p. 2], [, 4, 11] :pq},
and as ¢? has order 2 then ¢ has order f4 Further we recall these points

belongs to the same orbit.
|

Now we remark that since &[0, 0, 1] ={[1, 0, 1] then the points

{[0,0,1],72[0,0, 1]'!, [+1,0,1]}

are in the same orbit under Gy;. "‘
!
|
Using the Riemann Hurwitz formula fi?r the branched covering

S - S/q';o,i :
|

we have !

3" —1) = ™y _1) 114 %(4(2"”; —~ 1) +4(2% — 1) 4- 27714 ~ 1))
sy = 0 l!
Ii

Therefore the signature for this action is §
i
!

(0; 2n+l, 211*}%1, 4)

I O

I
Remark 22, In the case whenn = 3,a =“1 and ¢ = 1, we have the following
table associated to the action of Gz on Sz a,!

!
".
11
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auto.

order

fixed point

G(),z —orbit

—
(=2

{[1,0,0},[0,0,1}

1,0,0],00,0, 1], [=L,0, 1

—
(s3]

{[11 0? 1]! [_1: 033[1]}

A

1,0,0],10,0, 1, [£1,0,1

Pt
[

_/\r 01 1]? [')\_11 Qa 1

{[EA0,1], [£275,0,1]}

—
(=)}

ey | e,

A) Oa 1]: [_)\“1) Qs 1

}
1

{[£2,0,1], [=A71, 0, 1]}

00

l
{G,p, 1] : p° = -2+ X1+ 17}

FEELETR),

(ETS TR EPN)),

i:pr 1}}]‘-}{ _iaf.:h 1 }

DI BD] D] | e | ] W] W) 0G| GO| OO
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