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symbol means 
IGI Order of the group G. 

[G:H] Index of the subgroup Hin G. 

Gp Stabilizer subgroup of p. 

G(p) Orbit of p under action of G. 

H"><lK Semidirect product of H by K (H:::) H :>q K) 

e The Riemann sphere, this is C U { oo} 

D.. Unit disk, this is {z E <C: lzl < 1} 

&D.. {z E C: lzl = 1} 

S/G Quotient space given by the actions of G on S. 

n1·º(S) The set of holomorphic forms on S. 

TrM The Trace of a square matrix M. 

GL(n, <C) The set of n x n invertible matrices with entries from <C. 
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This work was intended as a contribution to the problem of equivalent group 
actions on Ríemann surf aces. 
The main result of this thesis is the constructions of 1-parameter families 
of Riemann surfaces admitting automorphism groups with two cyclic sub- 
groups H1 and H2 that are conjugate in the group of orientation-preserving 
homeomorphisms of the corresponding Riemann surfaces, but not conjugate 
in the group of conformal automorphisms. 
This property is interesting because it implies that the subvariety M9(H1) of 
the moduli space M9 consisting of the points representing the Riemann sur- 
faces of genus g admitting a group of automorphisms topologically conjugate 
to H1 (equivalently to H2 ) is nota normal subvariety. 
This construction is done for subgroups of order 2n far each natural number 
n 2:: 3 and, in particular, for arbitrarily large genus. 
The main tool is the theory of Fuchsian groups. A key result of this thesis 
is the generalization of a theorem by Harvey that establishes a relation be- 
tween cyclic coverings of order n of the Riemann sphere and epimorphisms 
of certaing Fuchsian groups to the cyclic groups of arder n1 by means of the 
rotation angles for the automorphism defining the cyclic group. 

Abstract 
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Este trabajo nace como una contribución al problema de equivalencia de 
aciones de grupos en superficies de Riemann. 
El principal resultado de la tesis es la construción de familias 1-paramétricas 
de superficies de Riemann que admiten grupos de automorfismos con dos 
subgrupos cíclicos H1 y H2 que son conjugados en el grupo de homeomor- 
fismos que preservan orientación de las correspondientes superficies, pero no 
son conjugados en el grupo de automorfismos conformes. 
Esta propiedad es interesante porque implica que la subvariedad M9(H1) 
de el espacio de moduli M9 cuyos elementos representan superficies de Rie- 
mann de género g que admiten un grupo de automorfismos topológicamente 
conjugado a H1 (equivalentemente a H2) no es un subvariedad normal. 
Esta construción es hecha para subgrupos de orden 2n para cada número 
natural n;:::: 3 y, en particular, para géneros arbitrariamente grandes. 
La principal herramienta usada es la teoría de grupos Fuchsianos. Un resul- 
tado clave de esta tesis es la generalización de un teorema de Harvey que 
establece una relación entre los cubrimientos cíclicos de la esfera de Riemann 
de orden n y los epimorfismos de ciertos grupos Fuchsianos a grupos cíclicos 
de orden n, por medio de los ángulos de rotación de los automorfismos que 
definen el grupo cíclico. 

Abstract 



Studying the classification of actions contributes to the understanding of the 
properties of the moduli space M9. 

For a compact Riemann surface So of genus g, consider the subgroup H0 ~ 

Aut(S0}, the set 

X(S0,Ho) = {(S,H): 3t E Horneo +(s0,S) ,tH0r1 = HJ 
¡ 

and the equivalence relation: (S1, H1) ,...., (S2, H2) if and only if there is 
e/> E lsom(S1, S2) so that eflH1efJ-1 = H2. 
We denote by M9(H0) the quotient space defined by the above relation. This 
turns out to be a normal space. 
Consider M9 the moduli space associated to So, that is, a model of moduli 
space of genus g. 
Let M9(H0) = {[S] E M9 : 3t E Horneo +(So, S), tH0r1 < Aut(S)}. 

When we considera group G and say that G acts on a Riemann surface S, 
we are saying that there exists a group monomorphism from G to Aut(S), 
where Aut(S) is the group consisting of the self-maps of S (automorphism 
ar bi-holomorphic map) which preserve the complex structure. 
In the study of Riemann surfaces, the classification of actions on compact 
Riemann surfaces is an interesting problem. The classification of finite group 
actions, up to topological equivalence, on a surface of low genus is studied 
by A. Broughton in [3]. In the case where the group is cyclic, a relationship 
between the local structure for the automorphisms with fixed points and the 
epimorphism associated to the action is given by W. Harvey in [10]. Contin- 
uing with the cyclic case, in particular for a group of prime arder, a relation- 
ship between two topologically equivalent actions for the generating vectors 
is given by J. Gilman in [9]. In [8], G. González-Diez and R. Hidalgo give an 
example of two actions of Z/8Z on a farnily of compact Ríemann surfaces 
of genus 9 that are directly topologically, but not conformally, equivalent, 
except for finitely many cases. \ 

1 

Introduction 
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When i = 1 (resp. i = 2), the automorphism group far the elements of 61 

(resp. 62) is z;2n+iz X Z/2Z (resp. z;2n+lz ~h Z/2Z). In both cases, 
there exist two cyclic subgroups which define directly topologically, but not 
conformally, equivalent actions. 

The Thesis is organized as follows: 
Chapter 1 contains an overview of definitions and relevant results about 
automorphisms of Riemann surfaces and Fuchsian groups. 

Chapter 2 contains sorne our contribution to the problem of the classification 
of actions. For cyclic groups, Theorem 13 gives a condition on the generating 
vectors under which two actions are directly topologically equivalent. Also, 
we generalize a result dueto Harvey [10, Theorem 7]. 

In Chapter 3, inspired by the paper of G. González-Diez and R. Hidalgo [8], 
we produce far each n E N the families 61 and 62• By definition, 6i with 
i = 1, 2, consists of the Riemann surfaces of genus 3(2n - 1) defined by 

As is well known, M9(H0) is the normalization of M9(H0). Moreover, pis 
not bijective if only if there exists a compact Riemann surface S of genus 
g admitting two groups of automorphisms H1 and H2 which are directly 
topologically, but not conforrnally, conjugate to H0• For further details, see 
[7]. 

The forgetful map is defined by 

p: M9(Ho) 
[(S, H)] 

6 CONTENTS 
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where {Pi h is the irreducible representations set of K and the <Ji,i are deter­ 
mined by the Pi. 

We will see the definitions for the representations Pi and <Ji,j· 
Consider nK the set of all the irreducible representations for K. 
'RK is a finite set, in fact l'RKJ = [K[. We will use Pi to denote the elements 
in nK. · 

Proposition l. Let G = K >q H be a semidirect product of finite groups. 
Assume that K is an abelian group. Then the irreducible representations of 
G, {,6i,jh,i, are given by the induced representations of 

where K is a abelian group. 
This method is know as Little Group Method. For more detail see [21]. 

G=K)qH 

In this section we give a Theorem for computing the irreducible representa- 
tion over <Cofa finite group G, such that 

1.1 Little Group Method 

In this chapter we recall several definitions and results. They may be found 
in [17J, [12], [16] and [6]. 

Preliminary Results 

Chapter 1 



- ( ) { O'i,;(1) , g E te } O'iJ g = O'i,;(g) , g E Hi 

_ ( ) _ { Pi(l) , g E n, } 
pig ­ P1(g) ,gEK 

Finally we consider the irreducible representations for Hi. We denote these 
representations by { O'i,i j, 
Now also we may extend O'i,j to Gj. The extension is given by 

Now we have Gi = K ~ Hi and thus we may extend Pi to Gi. The extension 
is given by 

Hi = {h EH: h •Pi= Pi} 
G i = {g E G : g • P1 = Pi} 

where g E G, Pi E RK. 
We denote by R~ the set of the representatives of the orbits under the 

action of H. 
For each Pi E R~ we consider 

Consider the action of G on RK, given by 

8 CHAPTER l. PRELIMINARY RESULTS 



Definition l. Let a : S1 ~ S2 be a map between Riemann surfaces. We 
say a is a holomorphic map at p E S1 if for each (U, <P) chart centéred at p 
and each (V, 7,b) chart centered at q = cr(p) E S2, we have the diagram 

Un cr-1(V) e S1 ____::___... S2 :::J V n u(U) 

· l l · 

Further it is clear that T'(O) = a1 and thus by the equation (1.2) we have 

R'(O) = T'~O) . 

(chain rule). 
(1.2) 1 =(Ro T)'(z) = R'(T(z))T'(z) 

(its Taylor series form) where a1 -:/:- O since T is invertible (R = T-1) and 
thus 

We may suppose that </Jp(p) = O = </Jq{q), and then we have T(O) = O, 
and T locally at zero is of the form 

T(z) = a1z+ a2z2 + · · · = L amzm, 
m;::l 

<P2 (U1 n U2) ­­­­­ ef>i( U1 n U2) 
t/>10<1>21 

where T = (/)1 o <P21 is a holomorphic function. 
When p E U is such that (j)(p) =O we say (U,</;) is a chart centered at p. 

Since far any two charts, diagram (1.1) holds, we have that T is an in- 
vertible holomorphic function. 

(1.1) 

A Riemanm surf ace is a connected Hausdorff topological space S endowed 
with a complex structure. We say that S has a complex structure if for all 
p E S, there exist Up an open neighborhood of p and a homeomorphism 
</;p : Up ~V e C (the pair (Up, </;p) is called chart on S) and if for any two 
charts (U1, (/)1) and (U2, <P2) such that U1 n U2 -:/:- 0, we have the diagram 

U1nU2 

y~ 

1.2 Automorphisms of Riemann Surfaces 

9 CHAPTER l. PRELIMINARY RESULTS 



<Po(}" o <P-1(z) = I: ern(u)zm 
m~l 

Now for each p E 81 consider the subgroup of Aut(S) given by 

Aut(8)p = {a E Aut(S) : a(p) = p} 1 

called stabilizer subgroup. Now let (U,</>) be a chart centered at p, and u E 
Aut(S)p then we have 

] Aut(S)I ~ 84(g - 1). 

Consider 8 a compact Riemann surface of genus g ;::: 2. 
By the Riemann Hurwitz's theorem [171 pag. 82] we have 

then the automorphisms of Riemann surfaces do not have ramification points, 
in fact since for each p E S we have c1 #­O, the multiplicity of pis l. 

As 0'-1 is a holomorphic map, we see that -rf; o o­ o <1>-1 is an invertible 
holomorphic function, then c1 ::f. O, where 

-r/J o u o </J-1(z) = I: CrnZm, 
m~l 

mo = min { m : Cm #­ O} . 

The number m0 is called the multiplicity at p . 
When m0 > 1 we say p is a ramification point of u with multiplicity m0• 
The point q = u(p) is called branch point of u with multiplicity mo. 

Far a bijective holomorphic map, u : 81 -+ 82, we say a is a bi­ 
holomorphic map or a isomorphism between Riemann surfaces. 
When 81 = S2 we say u is an automorphism of 8. 
From now on, Isom(S¡, 82) (respectively Aut(S)) denotes the isomorphisms 
set between S1 and 82 (respectively automorphism of 8). 

Now we may consider 

-rf; o u o <P-1(z) = I: CrnZm. 
m~l 

where -rf; o a o </J-1 is a holomorphic function. 
We say a is a holomorphic map if a is a holomorphic map at p for each 

p E 81. 
We may take the expansion series at O, and we have 

10 CHAPTER l. PRELIMINARY RESULTS 



Proof. Now we will see that Op is a group homomorphism . Let a, r E 

Theorem l. The map Op is a group monomorphism. Further, Aut(S)p is a 
cyclic finite subgroup of Aut(S). 

explicitly we have 

'ifJ o a o 1f;-1(w) = 'l/J o qi­1 o (<,boa o <,b-1) o <,b o ?j;-1(w) 

1/1 o qi-1 o (ifi oa.­o ¡p-1) (L bmwm) 
m~l 

'l/Jo<,b-1 (Lck(a) (Lbmwm)k) 
k~l m;?.1 

- ~> (~c,(u) (~;>wm)} 
- a1c1(a)b1z + higher terms 
- c1 (a )z + higher terms 

'lj;(UnV) --------------- 'l/J(VnU) 
..poao,P-1 

rfJoao.p-1 
<ti (Un V) --------------- <,b (Un V) 

<. -: 
pEUnVcS __!!__ S::JVnU3p 

.>: ~ 

first we will see that this map is well defíned, in fact if we take (V, 'l/;) another 
chart centered at p, then we have the following diagram: 

oP : Aut(S)p -----+ C* 
a ~ c1(a) 

and we define 

11 CHAPTER l. PRELIMINARY RESULTS 
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Alternative proof 
Since Autp(S) is a finite group we may find a neighborhood U of p which 
is invariant under Autp(S). Without loss of generality we can assume U is 
contained inside a chart neighborhood and also that this simply-connected. 
Consider a chart <P : U -t V. By the Riemann mapping theorem, we may 
assume V the unit disc and that ef>(p) = O. The result it follows apply 
Schwarz's lemma. 

If the order of u E Aut(S)11 is n, then Óp(u) is a nth root of unity, fur- 
thermore as ó11 is a monomorphism óp(cr) is a primitive nth root of unity. 
Therefore the group Aut(S)p is isomorphic to a finite subgroup of 81, thus 
Aut(S)p is a cyclic group. 

but the group Aut(S)11 is finite and therefore u must have finite order, and 
for sorne k, kc must be zero, forcing e= O, therefore IT(z) = z. 

D 

where m;::::: 2 such that e= em(u) f. O then we have 

<Po a o <f>-1(z) z + czm mod zm+I 

=?<Po cr2 o <f>-1(z) - z + 2czm mod zm+I 

by induction 
</;o crk o <f>-1(z) _ z + kcz" mod zm+I 

Furthermore Óp is a monomorphism, because if we let a E ker Óp 

</>o (JT o <P-1(z) = </>o(}" o <P-I o <Po To <P-1(z) 

= <f>ouo<f¡-1 (l:ck(T)zk) 
k~l 

= ~ c.,(u) (~ c,(r)z') m 

= c1 (u )c1 ( T )z + hígher terms 

Aut(S)p, 

12 CHAPTER l. PRELIMINARY RESULTS 



, 'VT E Yzo and 
,VTEY­Yzo 

T(U) - U 
UnT(U) = 0 

ii) There exists a neighborhood U of z0 such that 

is finite, and 

Yzo ={TE Y: T(zo) = zo} 

C4 - {(a, b, e, d): ad­ be= O} ~ PSL(2, C) 

(a, b, e, d) ~ ( z ~ :: : ~) 

Since the group Aut(~) < PSL(2, C), saying that r is a discrete group 
means that r is a discrete set with this topology. It can be noted that this 
topology is the pointwise convergent one. As each Móbius transformation is 
uniquely determined by its action at three different points, then it coincides 
with the local uniform convergence; and as the Riemann sphere is compact, 
then it coincides with the uniform convergence topology. 

Let Y be a subgroup of PSL(2, C), and z0 E C. We say that Y acts 
properly discontinuously at z0 provided that: 

i) The stabilizer subgroup 

We have that PSL(2, C) is a topological space endowed with the quotient 
topology given by 

a, b, e, d E (C} . { 
az+b PSL(2,C) = z ~ ­­d: ad­be# O, ez+ 

Consider the group 

We saya subgroup r < Aut(~) is a Fuchsian Group if risa discrete sub- 
group of Aut(~). 

~ = {z E (C :[ z [< l} . 

Definition 2. Consider the unit disk 

1.3 Fuchsian Groups 

13 CHAPTER 1. PRELIMINARY RESULTS 



tt r : !),,, ---+ !),,, / I' 

O= b,,,/I' has a Riemann orbifold structure, that is, 

(i) an underlying Riemann surface structure O so that 7fr : /),,, -¡. O is a 
holomorphic map; 

(ii) a discrete collection of cone points (branch values of 7r); and 

(iii) at each cone point p a cone arder; this being the arder of the stabilizer 
cyclic subgroup of any point q so that 7r(q) =p. 

If r is finitely generated, without parabolic transformations and A(r) = 
8( /),,,), then O is a compact Riemann surface of sorne genus ¡ and there are 
a finite set of cone points. 

Remark l. Let r be a Fuchsian group. Since r acts on /),,,, we may consider 
the natural projection 

Theorem 3. Let K, K' be Fuchsian groups such that K, K' are torsion­free. 
Then S = b,,,/ K and S' = b,,,/ K' are bi­holomorphic Riemann surfaces if 
only if ihere exists T E Aut(b,,,) such that 

K' = TKT­1• 

D 

Theorem 2. Let K be a Fuchsian group such that K is torsion­free and 
A(K) = B(b,,,). Then the quotient space S = b,,,/K is a Riemann surface so 
that II1(S) ~ K. If K is a finitely generated and has no parabolic elemenis, 
then S is a compact Riemann surface of genus g 2:: 2. 

Proo]. We may find the proof of this Theorem in !6]. 

is called the limit set of Y. 
A Fuchsian group r ( acting on the unit disk /),,,) must satisfies that /),,, e 

n(r). 

The set 
A(Y) = C - ü(Y) 

We denote the region of discontinuity of Y by ü(Y). In other words 

Q (Y) = { z E C : Y acts properly discontinuously at z} . 

14 CHAPTER l. PRELIMINARY RESULTS 



x(x) =To X «r+. 
We also say that the group isomorphism X : I'1 ---T I'2 can be realized 

geometrically if there exists T E Horneo (~) such that the previous condition 
is true. 

Definition 4. Consider two Fuchsian groups r1, r2 . We say that r1 is 
geometrically isomorphic to r2 if there exist a self-homeomorphism of ~. 
say TE Horneo (~), anda group isomorphism X: I' 1 ---T f2 such that for all 
X E I' 1 the following holds 

where [ai, bi] = aibia¡1b¡1. 

Further, we have that for each j, the subgroup generate for < xi > is a 
maximal finite cyclic subgroup. Moreover, thís subgroup is the r- stabilizer 
of a unique point in~' and each element of finite order in r is conjugate to 
a power of sorne xi. 

When Xj is conjugate (in Aut(~)) to the rotation R(z) = exp (::) z (re- 

spectively R(z) = exp (- ::) z), say Xj is a positive minimal rotation (re- 

spectively non­positive minimal rotation). 

We remark that for every signature ( ¡; m1, m2, · · · , mr) such that 

2, - 2 + ¿ ( 1 - ~j) > o 
there exists r a Fuchsian group, uniquely determined up conjugation in 
Aut(~), with this signature. 
Far more details see [15], [6], [12] and [16]. 

When a Fuchsian group r has signature (¡;m1,m2, • · · ,mr), there is a 
presentation associated for the group I', this is, there exist 
a¡, b1, · · · , a­y, b­y, X¡,··· , Xr E I' such that I' has a presentation: 

T = / a1,b1, · · · , a.y. b­y,XI, • • · ,Xr: xr1 = · · · = X~r = Il{ai,bi] ÍI Xj = 1) 
\ i=l j=l 

Definition 3 .. If r is finitely generated, without parabolic transformations 
and A(r) =o(~), whose underlying Riemann surface has genus ¡ and the 
cone orders are m1, , m,; then we define its signature (for both, r and CJ) 
as the tuple (¡;mi, , mr)· 

The holomorphic map 7rr is called a branched couerinq of type ( ¡; m1, ... , mr). 

15 CHAPTER 1. PRELIMINARY RESULTS 



Then x is geometric. 

It was proved by Macbeath that in the above Corollary we may delete 
the assumed condition on rotation, that is, the following holds. 

(1) x E I'1 is a mínima[ rotation if and only if x(x) E I'2 is a minimal 
rotation. 

Corollary 1. Let x : r 1 ~ r 2 be an isomorphism between finitely generated 
Fuchsian groups, both without parabolic elements , with A(I'i) = 8(.b.), far 
j = 1,2. If 

Then x is geometric. 

Theorem 4. Let x : r 1 ~ r 2 be an isomorphism between finitely generated 
Fuchsian groups with A(ri) = 8(.b.), for j = 1, 2. Assume that 

(1) X E r1 is parabolic if only ij x(x) E I'2 is parabolic; and 

(2) x E r1 is a minimal rotation if and only if x(x) E r2 is a minimal 
rotation. 

See [20]. 

Note that p5 is a minimal rotation and x(p5) = p~ is not a minimal ro­ 
tation. Conjugation of a minimal rotation,by any homeomorphism, still a 
minimal rotation. Orientation­preserving homeomorphisms conjugates posi­ 
tive minimal rotations to positive minimal rotations. 

This isomorphism can not be realized geometrically. 

and let X denote the automorphism of r given by 

r = (Ps : z 'V'? exp (2;i) z = wsz) ~ 7!../57!.. 

Example l. Consider the group 

Far more details see [15]. 

In the paper of Macbeath [15] we find the following example: 

x(ps) = P~ · 

16 CHAPTER l. PRELIMINARY RESULTS 



since x3 = x;-1x¡1 and it has arder 5, then x1x2 has order 5. Hence x2x1 has 
arder 5, in fact 

x:r ~ r 
X¡ -1 

-v-t X¡ 

X2 ~ -1 
X2 

X3 ~ X2X1 

Consider the isomorphism (induced by r) given by 

... •" · .. · ... ,~~- . .... ~ , 

.//. -. 
{ : 

.¡ 'i 
\ ' 
~ t 

,• 
''... -~ .: 

'' -- .. - .. _!- _ -~ 

whose fundamental polygon is the following 

Remark 2. Consider the following example. Let 

r 5 5 5 1 =< X1,X2,X3: X¡= X2 = X3 = X1X2X3 = > 

At this point it is important to note that two homeomorphism, say 
F1, F2 : ..6.. ~ ..6.., defining the same isomorphism X: I'¡ ~ I'2, must have 
the same orientability type. In fact, the homeomorphism F2-1 o F1 : ..6.. ~ 6. 
defines the identity automorphism of r1• It can be proved that, in this case, 
F2-1 o F1 is homotopic to the identity. 

Theorem 5. Let X: f1 ~ f2 be an isomorphism between finitely generated 
Fuchsian group, both without parobolic elements, with A(ri) = 8(..6..), [or 
j = 1, 2. Then x is geometric. 

The preceding theorem holds at the level of Non Euclidean plane Crystal- 
lographic groups (NEC groups), that is, finitely generated discrete subgroup 
of isometries of the hyperbolic clise containing no parabolic elements. See 
[15, pag. 1201]. 
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Note that our isomorphism sends positive minimal rotations to non- 
positive minimal rotations. 
By the preceding theorem the isomorphism x is geometric. Assume that 
F : .6. ---t .6. is a homeomorphism inducing X· It is clear that F must fix 
the fixed points of x1 and x2 and must permute the fixed point of x2x1 with 
the fixed point of (x1x2)-1 (the same fixed point of x1x2). Now, it follows 
that the homeomorphism g = r o F fixes the fixed points of xi, x2, x2x1 and 
x1x2• These four points are the vertices of the hyperbolic polygon. Now it is 
easy to note that, up homotopy, we may assume that g induces the identity 
isomorphism to see that g is the identity homeomorphism of .6.. 

Now, all the above permits to see that in general we may not assume the 
homeomorphism that realizes the isomorphism should be orientation preserv- 
ing. 
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As before we have S / é( G) is a Riemann surface so that 7r is a holomorphic 
map. Since S is a compact Riemann surfaces then S/c(G) is a compact 
Riemann surfaces of genus ¡. 
Further we have that p E S is a ramification point of 7f if only if Gp =1- 
{Id}, furthermore the multiplicity of pis IGpl· Then 1í is a smooth covering 
( unbranched covering) on the complement of a finite set, the ramification 

7í: S -----4 S/c(G). 

Given an action e : G -t Aut(S) of G on S, we have the natural projection 

Gv ={DE G: c(D)(p) = p}. 
Since c(Gv) s; Aut(S)v then Gp is a cyclic group. 

Remark 3. We may consider for each p E S the stabilizer subgroup of p, 
this is 

When we consider a compact Riemann Surface of genus g ;:::: 2, and G 
a group acting on S then necessarily G is a finite group, by the Hurwitz's 
Theorem. 

e : G -----4 Aut(S), 

where Aut(S) denotes the automorphisms group of S. 
We call to the monomorphism e an action of G on S. 
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We say that a group G acts on a Riemann Surface S, if there exists a 
monomorphism 

2 .1 Actions on Riemann Surfaces 

Equivalence of group actions 

Chapter 2 
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Since x E Aut(.6.) then x .E Aut(S). 

where x(Kz) = Kx(z). 

Thus we have the following diagram 

where g ~ 2. 

Proo]. First by the Theorem 2 we have that S = .6./ K is a compact Riemann 
surfaces of genus at least 2, then g ~ 2. 
Far each X E I', since K is a normal subgroup of r, then 

IGI r ( 1 ) g = IGl('Y-1) + 1+2 f; 1- mj ' 

xKx­1 =K. 

Theorem 6. Let r be a Fuchsian group with signature (-y; m1, m2, • • • , mr) 
and let e : r ~ G be an epimorphism oj groups with K = ker e torsion­free 
Fuchsian group and A(K) = 8(.6.). 
Theti G acts on the Riemann surface S = .6./ K with signa tu re ( 'Yi m1, m21 • • • , mr). 
Furthermore, S has genus g given by 

We consider the numbers mj with the following arder 

where mj are the multiplicity of the ramification points, and r is the number 
of the branch points of 7r. Sometimes also we will say G acts on S with 
signature (¡;m1,m2, .. ,mr)· 

points set. 
We called to 7r a bronched covering , and we say that 1C has a signature 
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is a branched covering with r branch points. 

7ír : D. -----? D../r 

where [ai, bi] = a¡1b¡1aibi. 
Further, we have D../r is a compact surface of genus ¡ and r branch points 
with multiplicity m1, · · • , mr. In other words the natural projection 

I' = /a¡, bi, · · · , a1, b1, X¡,··• 1 Xr : X7{_'1 = · · · = X~r = ]J)ai, bi] ÍI Xj = 1) 
\ i=l j=l 

(2.1) 

We will compute the signature for the action: 
Since r has signature ('y; m1, ... 'mr) then there exist ai, bi, Xj E r such that 

therefore x E K, and thus D = O(x) =l. 

Thus we have the following diagram 

X= Id 

Eo is well defined beca use ker e = K. 
Since e is a group homomorphism, then Eo is a group horoomorphism. 
We may see that E9 is a monomorphism , in fact if Eo(D) = Id, then for 
o: E r, such that O(x) = D, we have 

E9 : G -----? Aut(S) 
D -v-t x ,B(x) = D 

N ow we may define 

therefore x = y. 

xy­1 E K, 

Hence for each DE G, we roay take x E r such that O(x) =D. Further, 
if for y E r we have O(y) = D = B(x) then 
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as K is a torsion free, we have Xj has arder mi. 

We recall that r has a presentation as (2.1) where we may choose xi such 
that far each j the subgroup <xi > is the stabilizer of a single point in b., 
say Zj. 

Then far Pi= Kzj, we have that Pi is a fixed point in S and 

Hence the covering 7í is induced by the action éo. Since 7rr is a branched 
covering, and p is a regular covering, we have that 7í is a branched covering 
with r branch point in b./r, say { Q1, · · · , Qr }. 

z E b. _x_ b. 3x(z) 

,¡ - ¡, 
KzES­=_.. S3Kx(z) 

~l· 
b./r 3 Q 

where ?rr(z) = Q, in fact 

7r-1(Q) = {x(Kz): x E I'} = {éo(D)(Kz): DE G}, 

In general we have for each Q E b./r 

Since p, 7rr are holomorphic maps, then 7r is a holomorphic map. 

b./r 
·~ 7r 

b./K 7rr 

Now we have the following diagram 
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!:::.. F X 

f 

j 
t::../K s 

l 
t::../r - S/c(G) 

Proof. First we will prove the implication ::::}, 
By the Uniformization Theorem (see [6, pag. 191,192]) and the Existence 
theorem branched covering we know that there is I' a Fuchsian group with 
signature ( 7; m1, · · • , mr) and K <l r a torsion free Fuchsian group such that 

Theorem 7. Let S be a compact Riemann surf ace of gen us g ~ 2 and let G be 
a finite gro u p. There is an action e of G on S with signature ( ')'; m1, · · · , mr) 
if and only if thete are a Fuchsian group r with signature ( 7; m1, · · · , mr) , 
an epimorphism ()e : r --7 G such that K = ker( ()e) is torsion­free Fuchsian 
group and !:::../ K, the quotient space induced by the action of K on !:::.., is a 
Riemann surf ace bi­holomorphic to S. 

By the Hurwitz formula we have the genus of S is 

p E 7f-1(Q;) = {x(Kzj): X E I'}. 
The multiplicity far these points is mi, and 

o 

Now if Pis a fixed point by the action t::o, then P = Kz where z is a 
fixed point by the action r. Since the fixed point far r belongs 7rr1(Qi) far 
sorne i, then 
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Using the diagram it easy check that () is a group homomorphism and 
kere:(e) = K. 
Further for r E e( G) as X is the universal covering for S, we may take a lift 

Oe:: r ~ c(G) 
X -v-t fo X o ¡-1 

Now we may define 

therefore fo x o ¡-1 E t:{G). 

b../r - S/c(G) Id S/c(G) - b../r 

S ­1--1 - b../ K ___!__ !:::,./ K ­1­ S 

j 

F ­­­x 

fo x o ¡-1 E Aut(S) 

then we have the following diagram 

For x, we have 

Since x E Aut(b..) then x E Aut(b../K). 

!:::,. __ x /),. 

¡ ¡ 

where each leve! is an isomorphism of Riemann surfaces, and X is the uni- 
versal covering for S. 
Now for each x E I', we consider 
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Remark 4. Let E1, E:2 be topologically equivalent actions as befare. 
Far t E Romeo (81 - 82), according to the notation of the Theorem 7, we 
may lift ¡2-1 oto f1 to TE Horneo (~). this is 

where Wt(r) :=to í o r1 and Horneo (81 - 82) is the group of homeomor- 
phisms of 81 on 82. 

If t E Horneo +(S1 - 82) then we say that é'¡, c2 are directly topologically 
equivalent, where Horneo +(S1 - 82) is the group of orientation preserving 
homeomorphisms of S1 on 82• 

2.1.1 Topological Equivalence 
Definition 5. Let Si be a Riemann Surface for j = 1, 2, and G be a group. 
The actions c1, t:2 of G on 81 and S2 respectively, are called topologically 
equivalent if there exist iI? E Aut (G) and t E Horneo (S1 - S2) such that 
the following diagram is commutative 

()(F­l o 3 o F) = T. 

Then p-1 o 3 o F E r and 

X ______:=__ X 

j j 
8 ­­2­ 8 

of r, 3, this is 

D The converse was proven in the Theorern 6. 
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Theorem 8. Let t:i be an action of 9 on Si, for j = 1, 2. 
Let ej : rj -7 Ej(G) be the epimorphism associated to Cj given by the Theoretti 
7 for j = 1,2. 
Then c1 is topologically equivalent to t:2 if only if there exists a group isomor­ 
phism x : f'1 -7 f'2 and a group isomorphism <P : c1(G) --? t:2(G) such that 
the f ollowing diagram is commutative 

where xr(x) =To X o r-1. 

Note that if t E Horneo +(s1-? 82) then TE Horneo +(D.). 

r, ~ t:1(G) 

XT l j ., 
r, ~ c2(G) 

Therefore we have the following commutative diagram 

B2(T o X o r-1) !2 o (f:¡1t!f o J¡181(x)f1 o r11t-1 !2) o ¡:¡1 

to B1(x) o c1 

= Wt(B1(x)) 

then T o~ o r­1 E f' 2 and 

T-1 :r T 
D. ---- D. --- D. ---- D. 

Let X be an element in r1,IJi(x) E c1(G) then Wt(B1(x)) E c2(G). In the 
diagram we have: 
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where Wt(T) =to To r1 

G --E1- c1(G) 

Claim: We have the following diagram: 

Id 

T !:::,.---+- 

We have the following diagram: 

x(x) = ToxoT­1 

Proo]. The implication ==? is the preceding remark. 
We will prove the converse. 
Since the diagram is commutative, we have x(Ki) = K2 where Ki = kerBj 
far j = 1,2. 
Since r 1, r 2 are Fuchsian groups with compact quotíent, then by the Theorem 
5 the isomorphism X: r1 -----+ r2 is geometrically realízed, this is there exists 
T E Horneo ( !:::,. ) such that 
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Recalling the Definition 5, by the commutative diagram then the actions are 
topologically equivalent. O 

'11t(c1(g)) - to 01(x) o r1 
= B2(T º x º r-1) 

= 02(x(x)) 
= <P(81(x)) = <P(c1(g)) 

In fact for g E G, c1(g) = 01(x) for sorne x E ri, then 

28 CHAPTER 2. EQUIVALENCE OF GROUP ACTIONS 



uihere XT(x) =To X o r-1. 

Proof. By the preceding theorem we have that the actions are topologically 
equivalen t. 
When the action are conformally equivalent, we know that there exists t E 
Isom (81, 82), then we may lift ¡2­1tf1 (using the previous notations) to an 
automorphism T of !:::., this is 

Theorem 9. Let Ej be an action of G on 8j, for j = 1, 2 and (}j: ri 1-7 
ei(G) 

be the epimorphism associated to Ej given by the Theorem 7 for j = 1, 2. Theti 
e1 is conformally equivalent to e2 if only if there exists T E Aut(.ó.) and a 
group isomorphism <I> : é1(G) ~ é2(G) such that the following diagram is 
commutative 

where Wt(r) :=toro t+. 

T !:::.---!:::. 

b.L ~ b./K, 

2.1.2 Conforma! Equivalence 
Definition 6. Let 8i be a Riemann Surface for j = 1, 2, and G be a group. 
The actíons e1, e2 of G on 81 and 82 respectively, are called conformally 
equivalent actions if there exist <I> E Aut ( G) and t E Isom ( 81, 82) such that 
the following diagram is commutative 
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~/r - S/c(G) 

f 
~/ K ­­­­­­­ S 

l 

F ~­­­x 
where W 1(r) = ¡-1 o To f and f is given by 

G __ e_ Aut(S) 

j ¡ ., 
ese 

é(G) - Aut(~/K) 

Remark 6. According to the Theorem 7, for each action e, we have associ- 
ated an epimorphism ee and for each epimorphism e we have assocíated an 
action Eo. 
Claim: the actions E and Eec are conformally equivalent. 
The corresponding diagram is 

Remark 5. If two actions are conformally equivalent, then they are directly 
topologically equivalent. 

Corollary 2. é1 and E2 are actions on S conformally equivalent if only if 
é1(G) and E2(G) are conjugate groups in Aut(S). 

Proof. By the remark 4 we have '1> = Wt, and since in this case TE Aut(~) 
then t E Aut(S). O 

o 

For the proof of the converse, we have that since T E Aut(~). and by 
the commutative diagram K2 = T K1T-1, then using the Theorem 3 we have 
T induce an isomorphism, t, between 81 and 82 according to the previous 
diagram. 

Then T define a group isomorphism between r1 and P2• 
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í 

therefore the groups r and I" are conjugates by T = p-i o F' E Aut(/j.). 
We use this T for to find the commutative diagram. 

D./r' - S/t::(G) - /j./r 

r ¡-1 
/j./K ­­ S ­­ /j./K 

then we have that e and e' are actions conformally equivalent. 
To prove this, we recall the theorem 7, then we have the following diagram 

c(G) = t:'(G), 

Remark 7. For e ande' actions of a group G on S, such that 

therefore 

/j./K ~ /j./K 

/j. __ x_....,_/j. 

where Be(x) = r = fo x o ¡-1 and ·x is determined by the following diagram: 

c1,dr) =x, 

such that each leve! is an isomorphism of Riemann surfaces. 
We recall the definition of co" 
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U3 ={[X, Y,Z] E IP'2C: z =I o} ~ C2 

[X,Y,Z] ~ (~, ~) 

P = [O,wa, 1] ~ p = (O,ws) 
Obviously the point p is a zero of 

f(x, y) = x4 + Y4 + 1 

as ~~ (p) =I O, then by the Implicit function's theorem, we have that there 
exist an open neighborhood U of p , a holomorphic function, h, and t > O, 
such that h(O) = w8 and 

U= {(x, h(x)): z E B(O, t)} C {(x, y) E C2: f(x, y) =O}, 
thus a chart for P = [O, w8, 1] is 

</> : u ---.¡.e 
[x,h(x),1] "­"'X 

We have 

(27ri) where wa = exp S . 

=> fixed points on S: {[O,ws, lL [O, iws, 1], [O, ­ws, 1], [O, ­iw8, 1]} 

<7[X, Y, Z] = [X, Y, Z) 
[iX, Y, Z] = [X, Y, Z] 

Let <7[X, Y, Z] = [iX, Y, Z] be an automorphism of S. 
It is easy to check that the order of <7 is 4. 
The fixed points f or <7 are: 

S is a compact Riemann surface of genus 3. 

Recall the definition of ó in the Theorem l. 
First we will presentan example of the computation of Óp. 

Example 2. We consider 

s = {[X, Y, Z] E p2c : X4 + Y4 + Z4 = o} 

2.2 Properties of ó · 
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'¡/Jo 7 o Cío 7-l o 7/J-1(w) 'ifJ oro ¡p­1 o (</>o u o ef;-1) o <Po 7-1 o 1p-1 ( w) 

'i/J o 7 o ¡p-l (L ck(u) (¿ amwm) k) 
k~l m~l 

- c1 (a )w + higher terms 
­ Óp( a )w + higher terms 

recall ( 'ljJ o 7 o <J;-1 )'(O) is the multiplicative inverse of ((/)o 7-1 o 'i/J-1 )'(O). O 

thus we have 

-1 
qEVcS ~ S­­ª­­­­­ S ---2:.._.. S::JV3q 

where q = r(p). 

Proof. Let ('lj;, V) be a chart centered at q, then 

Lemma l. Let a, r be in Aut(S), and suppose u E Aut(S)p, then 

Óq(rar­1) = óp(a), 

The following lemma we give a relationship between the local structure 
far the points in the same orbit, under action of G. 

then óp(a) = i. 
In the literature we may find the concept of Rotation Constant . 

For p E S, and u E Aut(S)p we say that the Rotation constant of a at pis 

<Po a o c/J-1(x) <Po u[x, h(x), 1] 
- <P[ix, h(x), 1] 
= ix 

Now we calculate the Rotation constant for u at P 
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This representation is called the Analytic representation for G, and its degree 
is g. 

Let E: G ~ n1•º(S) be the group representation of G given by: 

E(a)(w) =u* w = w(u-1). 

2.2.1 Analytic Representation 
Let !11•º(8) be the set of holorñorphic forms on S. We know that n1•º(S) is 
a complex vector space of dimension g, where gis the genus of S. 

Since ( is a primitive complex nth root of unity, we may write ( = w~ 

where Wn = exp (2:i) and the numbers j, n are relative primes ((j, n) = 1). 

2rrji . We call -- the rotoiioti angle far <J at p. 
n 

Then there is unique primitive complex nth root of unity ( such that Jor 
all T E .C we have that T is conjugate to multiplication by(, R(z) = (z, in 
Aut(.6.). 
Fusthetmore ( = óp(a). 

The proof of this theorem may to find in [2]. 

Theorem 10. Let <J E Aut(S)p ~ Aut(S) of order n, and let 

.e= {TE Aut(b..): :lzo E .6. Jo p(zo) = p, T(zo) = Zo and u­lo a o!) o p = p o T} 

where each level is an isomorphism of Riemann surfaces, and X is the uni- 
versal covering far S. 

.6. F X 

,¡ 1 

.6./ K _!___ S 
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Now we will see an important theorem providing a relationship between 
the local structure and the lifts of an automorphism of S. 
First recall that for S we have there exist K a Fuchsian group that uniformis- 
ing S, this is 



where P = f(Kzo). 

We will give a relation between the epimorphism (}, and the homomor- 
phism ó p , for P fixed point of the action. 
We have that if Xo E r is an automorphism of D. with fixed point,say zo, then 
x0 is conjugate in Aut(b..) to a rotation, R(z) = uiz, therefore 

Oe(x) =Jo x o ¡-1, 

where f : D./ K --? Sis an isomorphism between b../ K and S. 

thus we define 

!).. __ x _ _.. !).. 

l 
b../K ~ b./K 

where K = ker(Oe) is a torsion-free Fuchsian group and risa Fuchsian group 
with the sarne signature that the action, and Sis a bi-holomorphic to b../ K. 
We recall the definition of eE:, for X E r we have 

As we have seen, for an action, s, of a finite group G on a compact Riemann 
surface S of genus at least 2, according to Theorem 7 we have an epimorphism 

2.2.2 Epimorphisms and Local structure 

For more detail see [6, pag. 254] 

Theorem 11 (Eichler trace formula). Let S be a compact Riemann surface 
of genus at least 2, and let O" be an automorphism of S of arder n > l. 
Suppose E(u) is a matriz via its isomorphism between 01•º(S) and GL(g, C). 
Then 
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Hence we have that for each j = 1, .. , r -1, Oe:(xi) is an automorphism of 
S with a fixed point P3 = f(Kz3) and 

For more detail see [1). 

where for each j = 1, .. , r - l, we may choose Xj as a counterclockwise rota- 
. 2~ tion about Zj through angle - . 

mi 

r = {x¡ .. 1Xr: x;i'1 = ·· · = X~r = 1,Xt ·· ·Xr = 1} 1 

When e has signature (O; m1, · · • , Tnr), r has a presentation: 
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Note that theses automorphisms are geometric induced by orientation 
preserving homeomorphisms. 

,k = 1, .. ,r -1 

,l = 1, .. ,r 

,í = 1, .. , 7 - 1 

X(l) : a¡ ­ a1b1 
b -1 b -1 

X(2) : ª1 - a1 1 ª1 ; 1 - ª1 
X(3) : Xj ­ a2x;a21 , (j = 1, .. , r) ; a1 - a2a1 ; a2 - b1a2b!1 ; 

b2----) a2b2a21b!1; ai ­ a2aía21 ; bi ­ a2bia21 , (í = 3, .. , 7) 
Xi : ai ­ ai+1 ; bi ­ bi+l ; aH1 - Cí-¡.11 aiCH1 ; bí+l ­ Ci-¡.11 biCi+I 

where Ci+l = [ai+li bH1] 
Xl : x; - a¡1x1a1 , (j = l, .. , r) ; a1 - [a¡\ (xl .. · Xr)-1] a1; 

b1 ----) b1a11(xl · · · Xr)a1 
~ -1 
Xk: xk-+ Xk+l ; Xk+I ­ xk+ixkxk+l 

where tru, = mk+l 

(i) e o x(aí) =e o x(bi) = g with í = 1, ... ) 7; 

(ii) x(xj) = DjXp(j)Dj1, for sorne Dj E I' with j = 1, · · · , r. 

Remark 8. The following list corresponds to the automorphism of r used 
to compute the automorphism x of the preceding lemma. 

Lemma 2. Let e: r---+ G be a group epimarphism and assume that g is a 
qeneraior aj G. Then far any permutation p aj {1, · · · , r} with fflp(j) = mj 
(j = 1, · · · , r ), there ezisis an automorphism X of r such that 

The following lemma was given by Kuribayashi (see [14, Lemma 3.1)). 

G={ü,1, ... ,n-1}. 
Consider r a Fuchsian group with signature ( 7; m1, • · · , mr) and presen- 

tation 

Let G = Z/nZ be a cyclic group of order n. We consider Gas the integers 
modulen, this is 

2.3 Equivalence of Cyclic Groups 
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---~- 

where 4>(1) =s. 

mod mj, 
mod mi, with j #­ k, k + 1 

s2 ­ 1 
s = 1 

if only if there exist 1 :::;; k < r such that 

(2.2) 

B o­K­r­c­o 
XIK j j X j ~ 

e o­K­r­c­o 

Theorem 12. Let x be an automorphism of the list in Remark 8. There 
exists a 4> E Aut( G) such that diagram (2.2) commutes 

where K = ker O is a torsion free group. 

O:r ---t G 
lli - 1 ' with i = 1, ··•'Y 
bi - 1 ' with i = 1, .. ,'Y 
Xj - ~j , with j = 1, .. , r 

Now on, no loss of generality consider the group epimorphism O given by 

Xi ([ai, bi]) = ci+l = [aí+l1 bi+l] 
Xi ([ai+11 bi+i]) = q-:¡_11[ai, bi]CH1 

Xi ([ai, bi][ai+11 bi+i]) = [ai, bi][ai+l1 bi+d 
xi ([a1,bd) = [a¡1, (xi··· Xr)-1l[ai, b1] 
Xk(XkXk+i) = XkXk+l 

Now far Xi, Xl, Xk we have the following relations 

X(1) ([a¡, b1]) = [a1, b1] 
X(2) ([a¡, b1]) = [a1,bi] 

X(3) ([a1, b1][a2, b2l) = a2[a1, b1l[a2, b2]a21 
X(3) ([ai, bil) = a2[ai, bi]a21, i = 3, .. , 'Y 

We have the following relations 
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(2.3) 
s2€k - f.k 

s2f.k+I ­ f.k+l 
sf.j _ f.j j =/: k, k + 1 

Then 

€k+I = B(xk+i) = O(x(xk)) = <I>(B(xk)) = <I>(f.k) = sf.k 
f.k = B(x¡;¡1xkXk+i) = B(x(xk+i)) = cI>(B(xk+i)) = <I>(f.k+i) = sf.k+1 
f.i B(xi) = O(x(xi)) = <P(O(xi)) = <I>(f.i) = sf.i j =/: k, k + 1. 

For the last equation, we have the following three conditions: 

We have that <I>(l) = s = 1 far the first five equations, and we obtain the 
commutative diagram (2.2). 

,VjE{l,···,r} 
, Vj E {1, · · · , r} 
,VjE{l,···,r} 

, Vj E {1, · · · , r} 
, l;/j E {1, · · · ,r} 

, for j = k } 
, for j = k + 1 . 
, otherwise 

eº X<1>(xj) = e(xj) = Ei 
80X(2)(Xj)= O(xi) ­ f.i 
e o X(3)(Xj) = e(a2Xja21) - f.j 

8 o Xi(xj) = O(xj) ­ f.j 
e o x1(xj) = e(a11xja1) f.j 

{ 

B(xk+i) = f.k+i 
e o Xk(xj) = O(x¡;¡¡XkXk+t) = f.k 

O(xi) = t;i 

First we will prove the implication =?. 
It follows from the list of Rernark 8 that 

Therefore, xlK: K ~ K is an automorphism of K. 

Bx(x) = <I> (B(x)) = <I>(O) =O 
:. x(x) E K 

Then far x E K we have 

Proof. Let el> E Aut(G) be such that 
(} o---K-r-G---o 

¡ l X l ~ 
• 8 

o---K-r---c---o 
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Using the condition for s, we see that the converse is clear. In fact, 
suppose 1 ::; s < n. Then if s = 1, we may take X= X(t). Now if s #­ 1, we 
maytakex=h. O 

j #­ k, k -i- i . s = 1 mod mi 

Proceeding for k+ 1, justas we did for k, yields the same condition for s. 
Again, proceeding for j #­ k, k + 1, justas we did for k, yields 

s2f.k - é.k modn 1 . ir. 
2 n n 

modn s­ - 
m1c mk 

2 n n 1. m1c # s- - ­+nt 
mk mk n 

# 82 - l+m1ct 

# 82 1 mod rn, 

Hence 

mod rnj , 

c._ nti 
<.,,3 - • 

mi 

Since ti and mj are relative primes, there exists ~ such that 

Thus for each j we have 

{ nmt ·. } (m,t)=l, o::;t<m. 

modn. c.­t. ­ ntlj ­ n(l + mj) = .!!:.... 
<.,,33- - - ' 

mi mi mi 
According to equations (2.3), we have 

Recall that the each element Xj E r has order mi. Since K is a torsion 
free group, we have that O(xi) = €i has arder mi. Recall also that the 
elements of order m in G = 'll/n'll are given by 
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Remark 9. We may find a system of generators, with the same presentation, 
but with non-positive minimal rotations. Take, 

-1 -1 -1 Y1 = x; , Y2 = xr-1 ' ... ' Yr = X1 , 

In this hyperbolic polygon it has ai(aD = O'.i and bi(/3D = f3i for i = 1, · · · , ¡. 

Consider r Fuchsian group with signature ('Y; m1, .. , mr). 
According to the paper of L.Keen [13] ( also see [12, Theorem 4.3.2}) we 

may construct for r a hyperbolic polygon with 4¡ + 2r sides. The polygon 
has r external isosceles hyperbolic triangles such that the angles between the 

al id f h . 1 21[" 27í 
equ s1 es o t e triang es are -, · · · , - 

m1 mr 
Hence r has a presentation according to the hyperbolic polygon associ- 

ated, this is 

r = (a1, b1 .. , a­y, b7, X1 .. , Xr : x;111 = · · · = x;ir = Il(ai, bi) ÍI Xj = 1) . 
i=l j=l 

where Xj is a positive minimal rotation, in other words Xj is a counterclock- 
. . b . h h 1 27í wise rotatíon a out a sorne pomt t roug ang e - . 

mi 
The following figure is the hyperbolic polygon far ¡ = 2 , r = 3 , 

mi,m2,m3 > 2 and m4 = 2. 

Topological equivalence 
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O --- K ­­­ r __.!!__ Z/nZ ­­­ O 

;x I · 
()' 

O --- K' ­­­ r' -... Z/n'll ­­­ O 

<I> : 'll/n'll ~ Z/nZ, 
induced by <I>(l) = s, then for each j we have 

<I>(~j) = S~j =e;· 
Since s and n are relative primes, <I> is an automorphism. 

We. consider the following diagram 

then the actions induced by e on 6./ K and by B' on 6./ K' are directly topo­ 
logically equivalent. 
Proof Suppose that we have the equation (2.4), then we may define the 
homomorphism 

where K = ker e and K' = ker O' are iorsion free groups. 

(2.4) 
If there ezists an s E 'll with (s, n) = 11 such that 

(e~, ... ,e~)= s(6, ... ,er), mod n 

e:r ---? 'll/n'll 
ai, bi ~ 1 , i = 11 .. , ¡ 

Xj ~ ej ,j = l, .. .r 

a': r- ---? Z/n'll 
I b' 1 ,i = 1, .. ,¡ ªÍ' i 

~ 

x'. ~ e; .i = 1, .. ,r J 

Theorem 13. Let I', I" be Fuchsian groups both with signature (¡; m1, .. , mr) 
and presentations according to your hyperbolic polygons associated. 
Let e, O' be epimorphisms given by 

Now we consider two Fuchsian group r, I" with signature (¡; m1, •. , mr) 
and presentations according to your hyperbolic polygons associated 

r = (a¡, b¡ .. , a,, b,, X¡ .. , Xr : ·x'f1 = ... = x~r = Il[ai, bi] II Xj = 1) . 
rl _ ( 1 b' t b' l I • 

1m1 
_ _ 'mr _ Il[ I b'] rr 1 _ 1) - a1, 1 .. ,a7, 7,x1 •• ,xr. x1 - ·• · - Xr - ai, i xj - . 
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Since xi and xj are positive minimal rotation in the same angle, we have 
the automorphism x is induced by a f E Homeo f'(zx). D 

~.···. 
·' ... ··"' ...... ~··- 

Our next claim is that the actions induced by (i and B' are directly topo- 
logically equivalent. We have to construct according to [13] the hyperbolic 
polygons associated r and I", 

therefore X[K: K ---T K' is an isomorphism. 
It follow of Theorem 8 that the actions induced by B and by O' are topologi- 
cally equivalent. 

O'x(x) = <I?O(x) = <I>(O) =O 
therefore x(x) E K' 

Furthermore x(K) = K' since for X E K, we have 

and then we have that the diagram is commutative. 
Since x maps generators on generators, and these elements satisfy the same 
relation, we have x is an isomorphism. 

hence we may define 
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and since <D is an automorphism, we have that there exists 1 :::; s :::; n ­ 1, 
(s, n) = 1, such that ~(1) = s, then 

we have for each j 

e = (t::l)-1 o Oe, 

O' = (t::'l}-1 o Be' , 

N ow if we call 

ord(Be(x;)) = m;. 

Since the kernel of Be is torsion free, we have that for each j 

We recall r is a Fuchsian groups with signature ( ¡; m1 · • • mr) then we 
have 

then (i; is an automorphism of Z/n'll. 

O (el)-1 r -·- t::(Z/n'll) ­ Z/n'll 

XT J j O, • 0 

r- ­º­·'­ t::'(Z/n'll) ~ Z/~Z 

where XT, <I>t are group isomorphism. 
Since e is a monomorphism, then t:(Z/n'll) '.'.::::'. Z/n'll, the same for e', thus 
associated to the previous diagram we have 

o 1 
f' __!_.. t:'(Z/n'll) 

r ___!!_:__.. t:(Z/nZ) 

XT 

Remark 10. Let e and t:' be actions of Z/n'll on S and S', respectively, such 
that the signature for the actions is ( ¡; m1, • · · , mr). Suppose e and e' are 
topologically equivalent actions. Then by Theorem 8 we obtain the diagram 
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uihere (i;(I) =s. 

such that, f or each i. we have 

r ____!.____. z / »z 

XTI l·· 
()' I" ­Z/nZ 

Theorem 14. Jf e and c1 are topologically equivalent actions, then we have 
the f ollowing commutative diagram 

By the preceding remark it follow the Theorem 14. Observe that this 
result is a generalization of a result of J. Gilman in which n is a prime 
number (See [9, Lemma 2, p. 54].) 
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• X¡··· Xr = 1, 

We remark that for xi, · · · , Xr E r such that 

where B(x) =fo x o ¡-1 and x is given by the following diagram: 

Then we have the following exact sequence 

1-K-r~G-1 

where in each level we have isomorphisms of Riemann surfaces. 

~ __ x_~ ~ 

1 
~/K ___i__ ~/K 

~ 
F X 

f l ~/K s 

j j 
~/r --- S/G 

Let S be a compact Riemann surface of genus at least 2. 
Let G be a subgroup of Aut( S), where G acts on S with signature (O; m1, • · • , mr). 
Then there exists a Fuchsian group K uniformising S and r a Fuchsian group 
with signature (O¡ m1, · · · , mr), such that we have the following diagram 

In this section we generalize a result dueto Harvey. In (10] Harvey gives a re- 
lationshíp between cyclic covering of Riemann sphere and the epimorphisms 
of Fuchsian group using the rotation angles. Our result gives a relationship 
for any covering of Riemann sphere. 

2.4 Generalization of Harvey's result 
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T/j · /;,j = 1 mod mi 
therefore 

then 

We recall Óp; (e(xi)) = Wmi' but as Óp; is a group monomorphism there 
exists a unique ~i, with 1 $ /;,j < mi, ( ~j, mi) = 1 and ó P; ( rfi) = Wm;. 
N ow we will calculate fr If 

far sorne O< ~j <mi. 

where < Tj >= G P;, and where the number /;,j is determined by the equations 

Ópj ( Tj) = w:k3 , 1 $ 1Ji < mi, (r¡i> mi) = 1, 
T/i · /;,j _ 1 mod mi 

where 1 ::; /;,j <mi, with (/;,j, mi) = l. 

Proof. Let Tj be a generator of the group G P;. 

As B(xJ) E Gp;, then 

Theorem 15. The epimorphism e is determined by the fixed points of the 
action and their stabilizer groups. In other words, if we consider Xj and Pi 
as bef ore, then 

then we know 

• far each j = 1, .. , r-1, we have xi is a counterclockwise rotation about 
27r 

Zj through angle -1 
IDj 

• r =< X1, · '' 1Xr > 
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then we may define an epimorphisro from r to G associated to a o f: 

­ e· O(xi) =a/ 

,6. F X ~-ª--- X 

l l l 
b./K .L: S u S 

Remark 11. If we take a E G, then a(Pj) E G(Pj), where G(Pj) is the orbit 
of Pi by the action of G. 
Now we may consider (ao f) : ,6./ K---+ S, and we have the following diagram 

therefore 

fii - 1Ji · t mod mj 1 · ~j 

fii . ~i _ T/i · ~it = t mod mi I · ~ 
~i = [.¡ · fii · ~i _ t · [.¡ mod mi 

then 

wfi; = óp. (r·) = Óp. (r~) = wr¡;·t m; 1 J 1 J m1 

thus we have 

As Tj is a generator of G P;, we have there exists O < t < mi such that 

fii · ~ - 1 mod mi 

where 

If we take another generator of G P;, say ~, then we may to do the same 
calculations, hence 
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3. O"¡··· <Ir = l. 
2. ord(aj) =mi , for each j = 1, .. ,r. 

l. G =< CT¡, • • • 10"r >. 

Definition 7. Let G be a subgroup of Aut(S) such that G acts on S with 
signature (O; mi, · · · , mr). 
We say that the r-tuple (u¡, ... 1 CTr) E ar is a generating vector far G of 
type (O; mi,··· , mr) if 

Let S be a compact Riemann surface of genus g ~ 2. 

r ___!!___... G 

Id l 1 ~ 
Box r--G 

However, we cannot conclude whether the actions are equivalent, or in other 
words we do not know, in general, whether there exists a <I> E Aut(G) so that 
the following diagram is commutative 

Remark 12. Take the automorphism X= Xk· We have that 

e(x(xk)) = O(Xk+i) = rZ~Y 
/l( ( )) ll( -1 ) -ek+1 ek e1:+1 u X Xk+l = V Xk+IXkXk+l = Tk+l Tk Tk+l . 

where '!/Ja( T) = u oro u-1. 

O(xi) =a o rJ; o a-1 =u o O(xj) o u-1 

therefore we have the following diagram 

where < Uj >= Ga(P;) =<u o Tj o a-1 > hence by the previous 
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• (k) = k ­ [k], where [k] is ihe integer part of the munber k, 

• Ntjk is the cardinality of the eígenvalues of Pt ( O(xj1)) which are equal 
k (2i7r) to wm., where Wm· = exp - . 

, J ffij 

• '!9 = 1 íf Pt is the trivial represeniaiion; otherwise {) = O. 

uihere 

r m;-1 ( k 
nt = - deg (Pt) + L L Ntjk ­ ~. J + '!9 

j=l k=O .1 

Proposition 2 (Chevalley-Weil formula). Consider {p1, .. ,pq} ihe complex 
irreducible representation of G. Then the multiplicity nt [or Pt in the arui­ 
lytic represeniatioti is given by 

determines the decomposition of the Analytic Representation into complex 
irreducible representations of G by the following formula. 

According to [19], the tuple 

O(xj) = r? 

where K = ker(O), Pj = f(Kzj), Tj E Gp; and óp;(rP) = Wmr 

By definition, 

For the action of G on S, we have that for each j = 1, .. , r ­ 1, there is 
Xj E r a counterclockwise rotation about Zj through angle 27r . 

ffij 
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Proposition 3. G1 has a presentation of the form 

Z/271.. =< C1 : Gf = 1 > . 
Since G1 is an abelian group, it is not difficult to verify that the elements 

of G1 are 

and 

Consider 

3.1 Structure of the groups 

3.1.1 The group G1 = z¡2n+1z X Z/2Z 

In this chapter we produce for each n, two families of Riemann surfaces of 
genus 3(2n - 1) with group of automorphisms of order 2n+2 and signature 
(O; 2n+1, 2n+1, 2n, 2). For one of the families the group we will be abelian, and 
for the other it will be a semidirect product. In both cases, we will have that 
there exist two cyclic subgroups which define directly topologically, but not 
conformally, equivalent actions. 

Families of Riemann Surfaces 
with equivalent actions 

Chapter 3 
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PJ,O: G1 ---+ e 
A1 - u4n+l 
B1 - u4n+l 

Group Representations 

Since G1 is an abelian group, the number of irreducible representations over 
C is equal to the order of G1. Thus the number of irreducible representations 
is 2n+2• 

Now for O $ j < 2n+i, the irreducible representations are 

d(Aj B ) { 2n-k+l , k s n, t = 1 mod 2 } 
or 1 1 = 2 , otherwise 

for j = 2kt - 1 we have 

In addition, for each element in G1 we may compute its order as follows. 
Computing 

elements exponent number of this type 
Ai O$ j $ 2n+l -1 2n+l 

Bi j is an odd numer 2n 

A{B1 j is an odd number 2n 
2n+:.! elements 

Elements on G1 
For now on we call B1 = 92· ~ 
Using the relationships above, we may compute the elements of G1 as follows: 

A e 2"-1 
1 = 91' 1 = 91 92 

A A1-2"c 91 = 1, 92 = 1 1 

Since A1 has order 2n+i and 01 has order 2 it follows that 91 and 92 holds 
the relationship. 

We claim that 91 and g2 generating G1. In fact 

Proo]. We first take 
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Since A2 has order 2n+i and 02 has order 2 it follows 91 and 92 holds the 
relationship. In fact 

92
2 A1-2n-1C A1-2n-1C - A1-2n-lA(1-2n-1)(2"+I) - A2 ­ 2 

- 2 2 2 2 - 2 2 - 2 - 91 

A1-2n-1C A ­ A1-2n-1A2"+1c - A2"+1 - 2"+1 
9291 = 2 2 2 - 2 2 2 - 2 92 ­ 91 92 

Proof We first take 

Proposition 4. G2 has a presentation of the [orm 

h :< 02 > ----? Aut(< A2 >) 
C2 ~ h(C2): A2 ­ C2A202 = Ar+1. 

We define the map 

Z/2Z =< C2 : Gi = 1 > . 
and 

Consider 

3.1.2 The group G2 = 7l/2n+1z ><lh 7l/27l 

(27ri) Here Wm = exp m . 

PJ,I : G1 ----? e 
A1 ~ ~n+l 

B1 ~ -~n+l• 
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( 27fi) where W2n+l = exp zn+l . 

RA2 ­ {irreducible representations of < A2 >} 
{pj : A2 --) w~ .. +1 : O ~ j < 2n+l} 

Group Representations 

Using the Little Group Method (see Proposition 1), we may compute the 
complex irreducible representations of G2, which we explain in the next 
Proposition. 

Proposition 5. Let G2 be a finite group of order 2n+2 with presentation as 
in ( 4). Then G2 has 3 · 2n-l irreducible representations, where 2n+l of them 
have degree l, and 2n-l of them have degree 2. 

Proof. We use the Little Group Method. 
We have 

9 exponent 9A2g-1 

A~ o~ j ~ zn+l -1 A2 
B~ j is an odd numer A2"+1 

2 
A~B2 j is an odd number A2"+i 

2 

Furthermore we have 

elements exponent number of this type 
AJ o s j ~ 211+1 - 1 211+1 

2 
B~ j is an odd numer 211 

A~B2 j is an odd number 211 
211+:¿ elements 

(A~B2)2 = A;'2"-1+i+i) 

and thus for j = zkt - 211-1 - 1 

j { 211-k+l , k ~ n, t = 1 mod 2 } 
ord(A2B2) = 2 , in other case 

then we have the following table of elements on G2 

Elements of G2 

We consider G2 with presentation (4). For now on we call B2 = g2. 
G2 is a group of arder 211+2, we may calculate all elements on G2 and its 

orders, we have 
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Thus we call n:42 the orbits space under the action of K, more precisely 
if Pii, Pi2 E n:42 then Ph are not same orbit that Pii. Then we have 

nª2 = { .. j is an odd number 'o~ j < 2n } 
A2 P3 • j is an even number , O ~ j < 2n+i · 

(2n + l)j = znj +j 
- 2n(2k + 1) + 2k + 1 
- 2n+lk + 2n + 2k + 1 

= 2n+Ik + zn + j 

Using the same ideas we have 

{ 
{p ·} ,J· E 2Z (p·] = J 3 {Pi, P(2"+1)j} = {Pi, P2n+i} , another case 

where P(2"+1)j = p2n+j, since for j = 2k + 1 we have 

therefore the orbit for P1 is 

pi(A2) = P1(gA2g­1) 

{ 
P1(A2) ,gE<A2> 

P1(Ar+l) , another case 

= { A2 , g E< A2 > 
Ar+i , another case 

Now we calculate the orbits for the action, for example for j = 1 we have 

g •Pi= PJ: PJ(A2) = Pi(gAig­1) 

Then we have 

PJ - Pi 
{:} pj(A2) = Pi(A2) 

{:} p;(gA2g­1) = Pi(A2) 

{;;?A~ { Ai ,gE<A2> 
= A~2ni1)i , another case 

{:} j E 2Z 

G2 acts on 'R,A2, the actions is given by: for each g E G2, Pi E 'R,A2 we 
define 
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When j is an odd number the befare process is not produce representa- 
tions for G2. 
Now we will calculate the induced representation for Pi• that we denote by 
f31, with O $ j < 2n. 
We know G2 =< A2 > U C2 < A2 > then 

where i = O, l. 
Therefore we have 2n+1 irreducible representations of degree l. 

N ow we may extend the representation, this is 

­ { ai(g) ,gEH } 
O'i = ai(l) , g E< A2 > 

When j is an even number and O $ j < 2n+l, we may define 

For H we have two irreducible representation, if we call C2 = Ar-1-1 B2, 

they are 

o 
deg(,Bi) = IG2 :< A2 > 1deg(pj}=2 

Therefore we have 2n-l irreducible representations of degree 2. 

The process continue extending the action pj to o». 
When j is an odd number, this is trivial, since we have G(j) =< A2 >. 
Now we extend when j is an even number, this is 

__ { pj(l) ,g EH } 
Pj ­ Pi(g) ,g E< A2 > 

,j is an even number } 
, j is an odd number ' 

and then we have 

H· = { H ,j is an even number } 
3 {1} .i is an odd number ' 

For each pj E 'R~~ we consider 

te, = { k E K < G2 : k • PJ = PJ} 

'T">H _ 'T">G2 
1'- A2 - 1'- A2 

and the cardinality of 'R,~2 is 2n-l + 2n. 

Now we consider H =< Ar-1-1 B >. Recalling the previous calculations 
we see that 
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Now for C2, we have 

therefore the matrix associated to {3i ( A2) in the canonical basis is 

and 

Then we have 

A2·1 = A2 
A2 · C2 Ar-1 B2 

= Ar-1-1 A2B2 
= A~n-l_¡ B2Ar+l 

C2Ar+i 

When j is an odd number, we consider V = C El1 C2C. Thus 

,i =o 
,i = 1 

Remark 13. We now compute the representations. 
When j is an even number we have: 
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Finally, we compute the matrix far /3i(B2). Since B2 = A~-2"-102, the 
matrix in the canonical basis is 

therefore the matrix associated to {3j ( C2) in the canonical basis is 
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Moreover if a = 1, then 2n = 8. Hence n = 3. 

3. The equations 2n - 3a - 3 = O has not solutions. 

Proo]. We have two cases for the homogeneous polynomial associated to fa,>.· 

Remark 14. Observe that, for the conditions given in the above Table, we 
have the following. 

l. If 2n - 3a ­ 4 =O (hence 3a = 2n - 4), then a is an even number. 

2. We have 2n - 5 = 3a, for sorne odd number a, if and only if n is an odd 
number. In fact, we use the induction process. For n = 1 it is clear. 
Now suppose 2n + 5 is multiple of 3. Then 

case sign(2n ­ 3a ­ 4) a condition singular points 
1 + fl 2n­3a­5 f O {[O, O, 1], [1, O, O], [l, O, l], [-1, O, 1] } 
2 + f. 1 2n­3a­5 =O {[O, O, l], [l, O, l], [-1, O, l]} 
3 + 1 2n-3a-5 f O {[1, 0,0]} 
4 + 1 n=3 0 
5 - fl {[O, O, l], [O, 1, O], [1, O, 1], [-1, O, 1]} 
6 - 1 n= 1,2 {[O, 1, O]} 

where n, a EN, ,\ E C, and ,\4 f. 1, O. 
Then, far each odd number a and each ,\, we have that fa,>. defines a Riemann 
surface Sa,>. of genus 3(2n - 1). 
Furthermore, the possible singular points f or the homogeneous polynomial 
associaied to fa,>. are 

In this section we define Riemann surfaces of genus 3(2n -1). This construc- 
tion is adapted from [8]. 

Theorem 16. Let fa,>. be the polynomial given by 

3.2 Families of Riemann Surfaces 
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{[1, O, O]} 

Then the singular points are 

2n - 7 > O and 2n ­ 8 =/: O . 

• a= 1, 2n - 3a - 5 =/=O, then n > 3, since 

{[0,0,1],[1,0,1},(-1,0,ll}. 

• a =f 1, 2n - 3a - 5 = O, then n is an odd number and the singular 
points are 

{[O, O, 1], [1, O, O], [1, O, 1], [-1, O, 1]} . 

• a=/: 1, 2n - 3a - 5 =/:O , we have 4 singular points, they are 

Further if 

then we have Y = O 

Recall that P =/: O is a singular point if only if 

F1(P) = °:1(P) = ~i;:(P) = ~i(P) =O. 

= ­XªZ2n­3a­s (X2 _ z2r-1 [ 
(2n ­3a­4) (X2 ­Z2) (X2 ->..2Z2) (X2 - .x-2z2) 
+2az2 (x2 - _x2z2) (x2 - _x-2z2) 
-2z2(x2 - z2) ((>..2 + .x-2) x2 - 2z2)l 

_ -xª-1 z2n-3a-4 (x2 _ z2r-1 [a (x2 _ z2) (x2 _ >..2 z2) (X2 _ _x-2 z2) 
+2ax2 (x2 ­ _x2z2) (x2 - _x-2z2) 
+2x2 (x2 - z2) (2x2 - (>..2 + _x-2) z2)l 

l. Case 2n - 3a - 4 > O. 
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(b) For the points P2 = [1, 0, 1] and P3 = [-1, O, 1] we may define 
charts using the same previous process. 
Thus the chart is given by 

s ­ [s2" + 1, sªh1(s), l], 

Therefore by the Normalization process, we have a chart for P1 

given by 

Thus hj is determínate by sorne of these roots, we denote h0 such 
that ho(O) = l. 

- IJ (y - sªhJ(s)) 
j=l 

This is an irreducible polynomial on C[y]{x} if only if a is an odd 
number. 
For x = s2", we have: 

thus the objects on Sa,>. near at P1 are determínate by the following 
polynomial 

(a) P1 = [O, O, 1] 
We consider the local coordinates: 

Charts for the singular points: 

Then in this case F1 has not singular points. 

2n - 7 > O and 2n - 8 = O 

• a= 1, 2n - 3a ­ 5 =O, then n = 3, since 
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2. Case 2n - 3a - 4 <O. 

where (hj(t))2" = ( 1- t2n+1) a ( ,\2 - t2n+1) ( ;.-2 - t2n+1). 
Then hj is determínate by sorne of these roots, we denote h00 such 
that h00(0) = l. 

Íoo (u, t2") = u2n + t2"(2"-3a-4)(1 - t2"+1r(,\2 - t2n+1) (>.-2 - t2"+1) 
2" 

= IJ (u - t2"­3a­4hj(t)) 
j=l 

Therefore by the Normalization process a chart for P4 = [1, O, O) 
is given by 

Then we have f00 is irreducible on C[u]v if only if 2n - 3a - 4 is 
an odd number, and this is equivalent to that a is an odd number 
too. 
For v = t2" we have 

thus the objects on Sa,>. near at P4 are determínate by the following 
polynomial 

(e) P4 = [1,0,0] 
We consider the local coordinates 

( 82n + l} a ( 82n + 2} a ( (s2n + l} 2 _ x 2) ( ( 82n + l) 2 _ x -2) , 

where h1 ( s) is a root 2nth of 
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This is an irreducible polynomial on C[yJ { x} if only if a is an odd 
number. 

thus the objects on Sa,>. near at Q1 are determínate by the fallow- 
ing polynomial 

(a) Q1 = [O, 01 1] 
We consider locally coordinates 

Charts far the singular points: 

Further for Z = O, we have [011, O] is a singular point , since far all n 
we have 3a + 3 - 2n #­ O. 
Now when a= 1 as 2n - 3a - 4 <O then we have n::::; 2. These cases 
are studied by G. González-Diez and R. Hidalgo in [8]. 

{[O, O, 1), [l, O, l], [-1, O, 11} . 

(x,y) = (~, ~) r 

If a f. 1 , we have that the singular points with Y = O are 

Then we have P f. O is a singular points if only if 

= (3a + 4 - 2n) z3a+3­2ny2" ­ Xª (x2 - z2r-1 Z[ 

2a (x2 - >.2z2) (x2 - >.-2z2) 
+ (x2 - z2) ((>.2 + ;.-2) x2 - 2z2)] 

= ­axa­1 (X2 _ z2) a-1 [a (X2 _ z2) (X2 _ >..2 z2) (X2 _ >..-2 z2) 
+2ax2 (x2 - ;.2z2) (x2 - >..-2z2) 
+2x2 (x2 - z2) (2x2 - (>..2 + >.-2) z2)l 
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Then for (O, O) there is a tangent but this has multiplicity 3a + 
4-2n. 

Thus we have that the Taylor expansion series for f 00 as sum of 
homogeneous polynomial is 

!oo(r, q) = r3a+4 + ... + q3a+4-2". 

thus the objects on Sa,>. near at Q4 are determínate by the follow- 
ing polynomial 

(e) Q4=[O,1, O] 
We consider the local coordinates 

(r,q) = (~, i) , 

s ~ [s2" + 1, sªg1(s), 1], 

where g1 ( s) is a root 2nth of 

(s2" +ir (s2" + 2r ( (s2n + 1)2 - .x2) ( (s2" + 1)2 - >.-2) . 

(b) Far the points Q2 = [1, O, 1] and Q3 = [-1, O, 1] we may define 
charts using the same previous process. Then a chart for Q2 is 

Therefore by the Normalization process a chart for Q1 = [O, O, lj 
is given by 

where (gi(s))2" = (s2" - ir (s2" - ,\2) (s2" - ,\2). 
Thus we have gi is determínate far sorne of these roots, we denote 
g0 such that go(O) = l. 

= TI (y ­ sªgi(s)) 
j=l 

2" 

Far x = s2", we have: 
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Remark 15. For each point in Sa,>.., its chart we will be one of the following 
list according to the homogeneous polynomial associated to fa,). 

D 

2n(o - 1) - 1 - ~ (8 (2n -1)) 
2 

-2n + 1+4 (2n - 1) 
(2n-1)(4-1) 

= 3 (2n -1) 

g 

they are Ramification points for 7r, and they have multiplicity 2n. 
Now by the Riemann-Hurwitz formula we have that the genus of Sa,). is 

or 
{[O, O, 1], [O, 1, O], [±1, O, 1], [±>.,O, 1], [±>.-1, O, 1]}, 

{[O, O, 1], [1, O, O], [±1, O, 1]1 (±>.,O, lj, [±>.-1, O, 1]}, 

Now according to the homogeneous polynomials, we have that the points 
in the following sets, either 

we have that the cardinality of the set 7í-1(x0) is 2n. Then the map has 
degree z-. 

B = {0,oo,±.\,±,\-1,±1} 

This map is a holomoryhic map of Riemann surfaces. 
Further far each Xo E C - B where 

~ 
1í : Sa,),, ---+ r.c 

(x,y) ~X 

Now using the Normalization process, in either case and as a is an odd 
number and >.4 f. O, 1, we get a Riemann Surfaces of genus 3(2n - 1), since 
we may define 

t ~ [t3a+4-2n goo(t), 1,·t3a+4], 

where 9oo(O) = l. 

Therefore by the Normalization process a chart far Q4 = [O, 1, O] 
is given by 
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Then we have the homogeneous polynomial associated to f is 

Remark 16. When a is even number the situation is different. 
Far example for a= 2, n = 2 

And for the points non singular the charts are 
8F2 

If ax (P) f O, where P = [xo, y0, 1] then 

, gp(yo) = xo. [9p(y), y, 1) -v-+ y 

point local coordinate 
[0,0, 1] s ~ [s:.i", sªg0(s), 1] 9o(O) = 1 
[1,0, 1] s ~ [s2" + 1, sªg1(s), 1) 91 (O) f O 

[-1,0, 1] s ~ [s:.i·· - l,sª9_1(s)1 I] 9-1(0) fo 
[O, 1,0] t ~ [tila+4-2" 9oo(t), 1, t3ª+4] 9oo(O) = 1 

For F2 we have : 

8F1 
• If az (Q) fo, where Q = [1, Uo, vo), then 

[1, u, hQ(u)] ~u , hQ(Uo) = vo. 

[hp(y), y, i] ~y 

8F1 ] • If BX (P) =/=O, where P = [x0, y0, 1 , then 

And for the non-singular points the charts are 

singular point local coordinate 
[0,0, 1] s ~ [sz", sªho(s), 1] ho(O) =/=O 
[1, o, 1) s ~ (s:.i" + 1, sªh1(s)1 I] h1(0) =!=o 

[-1,0, 1) s ~ [s:.i .. - l1sªh-1(s)1 l] h-1(0) =!=o 
[11 O, O] t ~ [1, t­¿"­M­'lhoo(t), t­¿' l hco(O) f O 

For F1 we have (2n - 3a ­ 5 f O and a f 1 ): 
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if we suppose [O, 1, O] has two points in the Normalization, then the genus of 
Sa,>. is 6. 

where (s, v) = ( ~, ~). 
Using 7r : S>. ~ C defined by 

sing. point local equation normal. points charts 
[O, O, 1] (y2 - xh0(x))(y2 + xho(x)) {PP,Pn t ­ (f.!' tg?(t)) 
[1,0, 1] (y~ ­ uh1(u))(y2 + uh1(u)) {PLPi} t­ (t2+l,tgt(t)) 

[-1,0, 1] (y"./. ­ uh_1(u))(y~ + uh-1(u)) {P ·1 p,-1} t ­ w -1, tg¡1(t)) 1 ' 2 
[0, 1,0] ­sw + ... + vtí 

then we have 

{[O, O, l], [O, 1, O], [1, O, 1], [-1, O, 1]}, 

thus the singularities are 
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is 
then we have 72 makes sense if a is an odd number and c2n - 3a ­ 4 = a, this 

For 72 we have 

Far 71 it is easy check that if (x, y) E C2, such that la,>.(x, y) =O we have 

2. If e is an odd number, then G2 =< 71, 72 > is a group isomorphic to 
'll/2n+lz >4h 'll/2'71,, where 7271 = 7t+l72· 
We call 62 the corresponding Jamily of surjaces. 

Proo]. First we will see that r1, 72 are self-maps of Sa,>.· 

Then 71, 72 E Aut( Sa,>.) and they have order 2n+i each. 
Furthermore depending on the values [or a we have: 

1. Jf e is an even number, then G1 =< 71, 72 > is an abelian group, 
isomorphic to z¡2n+iz X Z/2Z. 
We call 61 the corresponding family of surfaces. 

where e is a natural number determined by the equation 

e· 2n-l = 2a + 2. 

The following theorem yields information about the automorphisms group of 
Sa,>.. The interest of the theorem is in the assertion that for each Riemann 
surface Sa,>. the automorphisms group is not trivial. 

Theorem 17. Let 71, r2 be the self­maps of Sa,>. defined by 

71(x,y) = (-x,W2n+iy) 

( ) _ (1 W2n+1y) 72 x,y - -,-- 
X Xc 

3.3 The actions 
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Using the homogeneous coordinates for r2 we have 

r2[s2", sªho(s), 1] = [s2n(c-l), W2n+1sªho(s), s2"c] 
= [s4a+4-2"' W2n+1sªho(s), s4a+4] 
- [s3a+4-2"' W2n+1ho(s), s3a+4J 
= (1, s2"-3ª-4W2n+1ho(s), s2n] . 

Evaluating at s =O we have r2[0, O, 1] = [1, O, O]. 
Now a chart at {l, O, O] is given by 

<p-1 : t __, [1, t2"-3a-4hoo(t), t2"]. 

is a holomorphic function (on sorne subset oí C). 
We will do the calculations for 72 at [O, O, 1] and suppose 2n - 3a ­ 4 >O 
Recall that a chart at [O, O, 1] is given by 

if>-1 : s--> [s2", sªh0(s), 1]. 

To prove that r1, r2 E Aut(Sa,.x), we must prove that for any charts 
(U, i.p), (V,</)), on Sa,.x, such that Tj(V) n U'/= 0 , the map 

,¡.,-1 
<f'º'TJº'+' ' 

r1[X,Y,Z] = [-X,w2n+1Y,Z] 
r2[X, Y, Z] = ¡zxc-I, W2n+1Y zc-1, xc). 

Now we consider r1, r2 self-maps which are given by 

then we have r'f = ri. 
Further we may see that the arder of r"f is 2n, since wi,..+i is a 2n-th primitive 
root of unity, then r1 and r2 has arder 2n+i. 

rf(x,y) = 1"¡ (­x, W2n+1 y) 
- (x,w~n+1Y) 

ri(x,y) (1 W2n+1y) - 72 -,-- 
X Xc 

( W2n+iy e ) = X,~XW2n+1 

= (x,w~n+1Y) 

We may calculate Tf, ri, this is: 
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j = 2kt-1 ord(r{r2) = 
2n-k+l ,k ~ n,t = 1 mod 2 e even number 2 , in other case > 

j = 2kt - 2n-l -1 ord(r{r2) = 
2n-n+1 ,k ~ n,t = 1 mod 2 e odd number 2 , in other case ~ 

Then 

e is an even number 

Further far each odd number j we have 

_j 2 2{j+l) 
TjT2 = T¡ 

r2ri[X,Y,Z] = [(-l)c-1zxc-1,w~n+1zc-1y,{-l)cXc] 
= { [-zxc-1,w~n+1zc­1y,xc¡ ,cisanevennumber 

[-zxc-l w2"+2zc­1y xc¡ ,e is an odd number ' 2n+l l 

= { r1r2[X, Y, Z] , e is an even number 

rt+Ir2[X, Y, Z] , e is an odd number 

e is an odd number 

Recalling that 2n-1c = 2a + 2, we have 

r1r2[X,Y,Z] - [-zxc-1,w~n+1zc-1y,xc] 

where w is a 2n-th root of unity (we recall that t2" = s2n). Therefore, the 
map is a holomorphic function. 
It is not dificult to verify the preceding far the other charts. 

cpor201p-1(s) - <por2(s2",sªho(s),1] 
- <p[l, s2n-aa-4W2n+iho(s), s2"] 
­ ws 

Thus 

By the intersection condition 
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c2n-2 = 2' 

1. When a= 1, 
The previous equation far e in this case it is the following 

Remark 17. We consider the particular cases. 

< T¡,T2 > ~ G2 = Z/2n+iz ><lh Z/2Z 
71 ~ A2 

T2 ~ B2 
2n-l_¡ ~ 02 T¡ T2 

Now when e is an odd number, we have that r1 and r2 holds the relation- 
ships for the presentation give in Proposition 4. Then we have the following 
group isomorphism 

< T¡,T2 > ~ G1 
T¡ - A1 
T2 ­ B1 

Since Ti and T2 holds the relationships for the presentation give in Proposition 
3, we may define the following group isomorphism 

Now when e is an even number, then the group is abelian non cyclic and 
it has elements of order 2n+1 , therefore it is isomorphic to 

elements exponent cardinality of these type of elements 
TÍ O :S j .:S 2n+l - 1 2n+l 

~ j is an odd number 2n 
TÍT2 j is an odd number 2n 

2n+:t elements 

Thus we may write, for both cases when either e is an even number or e 
is an odd number, the following complete list of elements on < T1, T2 > 
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Theorem 18. Let e be an even number. Consider G1 =< 71, r2 > the group 
defined by this c. 
Then for each 81 E 6i, the cyclic subgroups of G1 acting with fixed points 
{different} are given as follows: 

1. H1 =< 71 > subgroup of arder 2n+i, acting on 81 with signature 
(0·2n+l 2n+l 2n 2n 2n) , ' , , ' . 

and this is a cantradiction. 
Thus we have that this case is empty, in other words far n > 3 we have 
not automorphism. 

3c2n-3 2n-l - 1 
:.n = 3 

For n = 1, we have 3c =O, then e= O anda= -1, then this case has 
not sense. 
Far n = 2 has not sense because n most be add number. 
Far n 2: 3, we may multiply by 2-2, then 

now replacing 3a = 2n - 5 we have 

3c2n-l = 6a + 6 , 

2. Case a > 1, 2n ­ 3a ­ 5 = O and 2n ­ 3a ­ 4 > O (in this case the 
homogeneous polynomial associated to fa,>. is Fi). 
We recall that this case, corresponds in the Theorem 16 to case (2). 
Further we have that 2n - 3a ­ 5 = O if only if n is an odd number. 
First we note that as 2n - 3a ­ 5 = O, then the condition a # 1 is 
equivalent ton# 3. 
Since c2n-l = 2a + 2, then 

thus as e E Z, then n ::; 3. 
For n < 3 then e is an even number and these cases were studied [8]. 
Far n = 3 then e = l. 
Further we conclude that the case (3) in the Theorem 16 is empty, this 
is the Riemann surfaces defined by these condition has no automor- 
phisms of type 7j for j = 1, 2. 
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r2[X, Y, Z] = [X, Y, ZJ 
{::} t(zxc-1,w2 .. +1zc-1y,xc) = (X,Y,Z) 

X = t2 x2c-1, X(l - t2 x2c-2) = O 
=? [X, 0, tXc] =(X, 0, ±xc-c+lj = [1, O, ±1] 

fixed point on 81 : {[1, O, 1], [-1, O, ll} 

,2n - 3a­4 >O 
,2n ­3a­4 <O 

We may see that according to the homogeneous polynomial, we have 
either 72[0, O, 1] = [1, O, O] or r2[0, O, l] = [O, 1, O], in fact we recall that 
2c2"-1 = 2a + 2 then 

r2[s2", sªho(s), i] - [s2"(c-l), w2,.+isªho(s), s2"c] 
= [s4a+4­2",w2n+1sªho(s),s4a+4¡ 
= { [l,W2n+1s2"-3a-4ho(s),s2"J 

[s3ª+4-2" 1 W2n+1ho(s), s3ª+41 

We remark that 2n-1c - 1 = 2n ­ 1 mod 2n+i, since e is a non trivial 
even number, then we have 

2n-1c- l - 2n -1=2n-1(c- 2) =O mod 2n+i. 

Proof. We will compute the fixed points. 
First we calculate for 71[X, Y, Z] = [-X,w2n+1Y, Z], 

T1[X, Y, ZJ =[X, Y, Zj 
{::} (­X,w2n+iY,Z) = (tX,tY,tZ) 
{::} X ( t + 1) = O Z ( t ­ 1) = 0 Y ( t ­ W2n+i) = O 

h fi d . S { {[O, O, 1], [1, O, O]} , 2n - 3a ­ 4 > O } 
=? te xe pomton 1: {[0,0,1],[0,1,0]} ,2n­3a­4<0 

Furihermore, we have that the group G1 acts on 81 with signature (O; 2n+i, 2n+i, 2n, 2) 
and that G1 = Aut(S1), except for finitely many 81 E 61• 

4. H4 =< rr-ic-172 > subgroup oj arder 21 acting on 81 with signature 
(2n - 1; 2n+l · 2) {rr-1c-172 has 2n+l fixed points). 

3. H3 =< r'f > subgroup of arder 2n, acting on 81 with signature 
(0;2n,2n,2n,2n,2n,2n,2n,2n). 
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therefore j = 2n-1c - l. 

A d h X . 3.2n-1 h n w en z = -i = w2n+i we ave 

3.2n-lc .. i+l 
W2n+l = ~n+l 

Evaluating on the equation (3) we have the same equation. Thus when 
X . 2n-t h z = z = w2,.+1 we ave 

Evaluating on the equation (1) we have 

X . z =±i, 

Now we may see if X = Z = O, the point [0,1,0] is not fixed point, and as 
t E C*, we have 

t(X2 + Z2) = O, 

thus we have : 

l·Z ­ex=' 
_z2xc-1 

xc+i 

(tX, tY,tZ) 
tX (1) 
tY (2) 

= tZ (3) 

[X,Y,Z] rf r2[X, Y, Zj 
(­zxc­1 wi+l yzc­1 xc) = 

1 2n+l t 

­zxc­1 

Far an odd number i, we consider rjT2[X, Y, Z] = [-zxc-1, w~~.;1 Y zc­1, xc¡, 
we recall e is an even number, then we have the following equation: 

When j is an even number, we have TÍ [X, Y, Z] = [X, w~n+i Y, Z] then 
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,2n ­3a­ 4 >O 
,2n­3a­4 <O 

rf [X, Y, Z] = [X, Y, Z] 
(X,~n+iY,Z) = (tX,tY,tZ) 

X ( t - 1) = O Z ( t - 1) = O Y ( t - ~n+i) = O 
the fixed point onS1 : 

{ 
{[O, O, 1), [1, O, O], [±1, O, 1], [±>.,O, 1], [±,\-1, O, 1]} 
{[O, O, 1], [O, 1, O), [±1, O, 1], [±>.,O, 1], [±,\-1, O, 1]} 



1 
I 

Therefore the signature for H3 is 

3(271 -1) = 2n(¡ - 1) + 1 + ~(2n - 1) 
'Y - o 

Riemann Hurwitz formula: 

{ 
{[O, O, lj,[1, O, O], [±1, O, l], [±>.,O, i], [±>.-1, O, l]} , if 271 - 3a ­ 4 > O 
{[O, O, 1], [O, 1, O], [±1, O, 1], [±>.,O, 1], [±>.-1, O, 1]} , if 271 - 3a ­ 4 < O 

• H3 =< Tf >, 
IH3[ = 2711 

Fixed points: 

(271 - l; 2, · · · , 2) = (2n - l; 2n+l · 2) . 

Therefore the signature for H4 is 

2n+l 
3(2n - 1) = 2(¡ - 1) + 1 + -2-(2 - 1) 

1 = 2n- l 

Now for each H we calculate the signature. 
For this we use the Riemann Hurwitz formula. 

2n-1c-l • H4 =< 71 T2 », 
[H4[=2, 
Fixed points: { [i,.p, l] : . 

[-i, q, 1] . 
Riemann Hurwitz formula: 

3 · 2n-lc - 1 ;:::: j = 2n-lc - 1 mod 2n+l 

Then we have rt-1c-1r2 has 2n+i fixed points, they are: 

Finally as e is an even number we have 

therefore j = 3 · 2n-1c - l. 
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Let r be a Fuchsian group with the above signature. By Singerman (22], 
there is no other Fuchsian group with signature of the form (O; a, b, e, d) that 
contains it strictly. It follows that it may only be contained in a triangular 
signature. Hence by dimension arguments, r cannot be contained strictly 
in other subgroup as finite index subgroup except far a finite number of 
possibilities (up to conjugation by Mñebius transformations). Therefore, the 
family of Riemann surfaces <loes not have any other automorphisms than 
those of G1, except for finitely many 81 E 61. 

Therefore the signature for G1 is 

3(2n - 1) - 2n+2('y- 1) + 1 + ~ (4(2n+l -1) + 4(2n - 1) + 2n+l(2- 1)) 
'Y o 

• G1 =< n,r2 >. 
By the previous data, using Riemann Hurwitz formula, we have 

o 

• H2 =< r2 > 
The calculations for r2 are equal to those far r1, since H2 has 2 fixed 
points with multiplicity 2n+i and 6 points with multiplicity 2n, then 
the signature is 

Therefore the signature for H1 is 

3{2n - l} = 2n+1('y- 1) + 1 + ~ (2{2n+l -1) + 6(2n - 1)) 

'Y = o 

Fixed points r[: {[±1, O, t], [±,\,O, t], [±>.-1, O, l]} 
Riemann Hurwitz formula: 

• H1 =< r1 », 
IH1I = 2n+I, 

F. d . { {[O, O, l], [l, O, O]} 1 if 2n - 3a ­ 4 > O ixe pomts r1: {[O, O, I], [O, 1, O]} , if 2n - 3a ­ 4 < O 
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We remark that the fixed points of H4 and H5 are in the same orbit under 
action of G2, since let [i,p, 1] be a fixed point for Hs, 

71[i,p, 1] = [-Í,W2n+1p, 1}, 

{[i,p,1] :p2" = -(2i)ª(l+>.2)(1+,\-2)}, 

and also we have 2n fixed points for 7i°2"-1c-IT2 they are 

2n-lc-l 3.2n-lc-l 71 72 = 71 
This <loes not happen here. We thus have 2n fixed points for 7t-1c-l72, 
which are 

Proof. The proof is similar to that of Theorem 18. In that proof, the only 
instance we used the fact that e was an even number occurred when we 
showed 

4. H4 =< 7{°2n-ic-l72 > subgroup of order 2, acting on 82 with signature 
(5 · 2n-2 - l; 2n · 2) (7~·2n-lc-l72 has 2n fixed points}. 

5. H5 =< 7t-1c-l72 > subgroup of arder 2, acting on 82 with signature 
(5 · 2n-2 - 1; 2n · 2) (7f-1c-l72 has 2n fixed poínts). 
H5 is a subgroup conjugate to H4. 

Furthermore, we have that the group G2 acts on 82 with signature (O; 2n+1, 2n+1, 2n, 2) 
and that G2 = Aut(82), except for finitely many 82 E 62. 

3. H3 =< 7f > subgroup of arder 2n, acting on 82 with signature 
(o .2n 2n 2n 2n 2n 2n 2n 2n) 

1 , ' , , ' , 1 • 

2. H2 =< 72 > subgroup of arder 2n+I, acting on 82 with signature 
(0·2n+l 2n+l 2n 2n 2n) 

1 ' , , , • 

Theorem 19. Let e be an odd number. Consider G2 =< T1, T2 > defined by 
this c. 
Then for each 82 E 62, the cyclic subgroups of G2 acting with fixed points 
( different) are given as follows: 

1. H1 =< 71 > subgroup of order 2n+i, acting on 82 with signature 
(0·2n+l 2n+l 2n 2n 2n) 

' ' , ,. 1 • 

We can now state the analogue of the preceding Theorem for the case no 
abelian. 
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We first recall the charts far the fixed points of Theorem 16. 

Our next objective is to determine the local structure for each automor- 
phism with fixed points. 

Remark 18. We give the details far the computations in the case 2n - 3a - 
4 > O , a > 1 , 2n - 3a - 5 =f O where the homogeneous polynomial associated 
to fa,>. is F1. These computations hold for the elements in both 61 and 62• 

where in this case d1 = a, d2 = d3 = a, d4 = ds = ~ = d1 = 1 , ,\3 = -1, 
>.4 = ,\, As=->., >.6 = >.-1 and >.1 = ->.-1. 

It follows from Theorems 18 and 19 (item 3)) that the form of affine 
algebraic equations that define Sa,>. is of type 

y2" = xdi(x - l)d2(x - ,\3)d3(x - A4)d4(x - As)ds(x - A6)dª(x - -X1)d1 

The signature for H5 is equal to the signature for H4, since they are con- 
jugates. 
For the another subgroups we have the sarne calculations that in the previous 
theorem. 

o 

Therefore the signature for H4 is 

/ - 5 · 2n-2 - 1 

Far finish the proof we calculate the signature using the Riemann Hurwitz 
formula. 

H4 =< rf'2n-1c-1 > 
IH41=21 
Fixed points: {[-i, q, l] : q2" = (2i)ª(l + .\2)(1 + ,x-2)} 
Riemann Hurwitz formula: 

then ri[i,p, l] is a fixed poínt for H4• 
Therefore the subgroups are conjugates. 

and we have 
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[ 
1 w2"+1sªh1 ( s) ] 

r/>2 s2n + 1 ' ( s2n + 1 )e 1 1 

r/>2 [2=(-s2n)k, W2n+1sªh1(s) (2=(-s2n)k) e, 1] 
k~O k~O 

- efi2[l - s2n + · · · ,W2n+isªh1(s) + · · · , 1] 
j1 

W2n+1S 

3. P2 = [1, O, 1]. 
Chart far P2: 

then we have j00 is an odd number, and j00(2n - 3a ­ 4) = 2n + 1 
mod 2n+i, and this is equivalent to 

j00(­3a ­ 4) = 1 mod 2n+l , 

since j is an odd number then 2n(j0 -1) =O mod 2n+i. 

where 

= ~~+1t 

2. P4 = [1, O, O]. 
Chart for P4: 

then we have j0 is an odd number, and ioa = 1 mod 2n+i. 
Therefore ó Pi ( 71) = w~~+1• Furthermore sin ce ó p1 is a group homomor- 
phism we have 

where 

</;"11 : s ~ [s2", sªho(s), 1]. 

rP1 o 71 o <f11(s) -;- ef>1[-s2n 1W2n+1sªho(s), 1] 
io - W2n+1S 

l. P1 = [O, O, 1]. 
Chart for Pi: 
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The previous calculus we summarize in the following table: 

When e is an odd number, we have ó p3 ( T2) = w;:.;'.11. 

If we take i = 2n + 1 then ó p3 ( T;i) = W2n+i, since 

where j_1 is an odd number. 

,1.. [ 1 W2n+1sªh-1 (s) ] 
IÍJ3 o T2 o t/J41(s) - 'f'3 s2" ­ 1' (s2" ­ l)c '1 

- e/Ja [- 2:(s2")k, (-l)cw2n+1sªh-1(s) (2:(s2"l) e, 1] 
k~O k~O 

{ 
c¡)3[-l - s2" + · · · , W2n+1sªh-1(s) + · · · , 1] , e= 2 

- efi3[-l - s2" + · .. , w;:t11sªh­1(s) + · · · , 1] , e= 2+1 

4. Pa = [-1, O, 1]. 
Chart for P3: 

,c=2 
,c=2+1 

then we have j1 is an odd number, and j1 a = 1 mod 2n+l. 

where 
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where hp is holomorphic function defined in a neighborhood at O, such that 

[hp(y), y, 1] - y, 

Then the charts far these points are given by 

{[O, O, 1], [±1, O, l], {±A, O, l], (±A-1, O, l]}. 

Remark 19. Case n = 3, a = 1, e= 1 . 
In this case we have that there is not singular point. 
When Y = O, we have the following points 

arder í p local auto. op(1) 
2n+I [0,0, 1] 

s~ ~~+is 
~~+1 Íl }oa= 1 mod 2n+i 

jo is an odd number 
2n+i 1f [O, O, 1] W2n+l 

212+1 [1,0,0J 
t ~ w~~+1t 

~:'+1 í¡ j00(-3a- 4) = 1 mod 2n+i 
Joo is an odd number 

2n+l -;sa-4 [1, O, O] W2n+1 í¡ 

212+1 {1, o, 1] 
S"""' ~~+1S 

~~+1 T2 j1a = 1 mod 2n+i 
j1 is an odd number 

2n+i 1.ª [1,0, 1] W2n+1 2 
s ...... ~:¡1s j-1 

2n+I T2 [-1,0,1] Í-1ª = 1 mod 2n+I W2n+1 

J-1 is an odd number e is an even number 

2n+l T2 [-1,0,1] W2n+1 
e is an even number 

]-t j_¡ 
2n+l [-1,0,1] 

S ...... W2n+1S W2n+1 
72 J-1ª = 2n + 1 mod 2n+i 

j_1 is an odd number e is an odd number 
,.:·--¡-1 

2n+l T/j [-1,0, 1] W2n+1 
e is an odd number 

2n+l a(2"+1) [-1,0, l] W2n+l 
T2 e is an odd number 

2n Tf [ . x,o, l] ,2 W2n Y""' W2n+iY 
2n r{ [-A, O, 1) 2 W2n Y""' W2n+1Y 
2n r{ [A-1,0,1] ,2 Wzn Y.,,,..¡. W2n+1Y 
2n Tf [-A-1,0,l] Y""' wi .. +1Y Wzn 
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Thus we have 

<fa4 o Íl o </J41(t) = ef>4[w~:+h3a+4-2n goo(t), 1, w2n\1t3ª+4] 
­ wi00 t - 2n+1 

\ 

</J41 : t ~ [t3a+4-2" 9oo(t), 1, t3a+4j. 

We note the charts for Q1, Q2, Q3 are the same that for Pi, P2, P3. 
We must calculate for Q4 = [O, 1, OJ 
A chart for Q4 is: 

Remark 20. Now we give the details for the computations in the case 
2n - 3a ­ 4 < O , a > 1 , where the homogeneous polynomial associated 
to la,>.. is F2• These computations hold for the elements in both 61 and 62. 

Now we may calculate for each point Óp. Then we have 

where h00 is holomorphic function defined in a neighborhood at O, with 
hoo(O) =O. 

Now [1, O, O] has locally coordinates 

foo(u, v) = u8 + v(v2 ­ 1)(1 - ,\2v2)(1 - A-2v2), 

y z 
where (u,v) =(X' X). 
Then a chart in this point is given by 

[l,u,h00(u)] ~u, 

where p E {0,±1, ±A, ±A-1}. 
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order T p Óp(r) 
16 T1 [0,0, 1] W16 

16 T¡ [1,0,0] wr6 
16 í'<J [1,0,0] Wrn 1 
16 T2 [1, 0, 1] Wrn 

16 T2 [-1,0,1] wr6 
16 ri [-1,0, 1] W16 

8 Tf [A, o, 1] Wg 

8 rf [-A, O, 1] Wg 

8 72 [A 1, O, 1] Wg 1 
8 r{ [-.x-1,0, 1] Wg 



arder r p óp(r) 
2n+l T¡ [O, O, 1] ~~+l 
2n+i rª [0,0, 1] W2n+i 1 
2n+l T¡ [O, 1, O] ~:'+1 
2n+i -i!a-4 [O, 1, OJ W2n+i 'í¡ 
2n+l r2 [1, o, 1] ~~+1 
2n+i r2 [1, o, 1] W2n+i 

J-1 
2n+l T2 [-1,0, l] W2n+1 

e is an even number 

2n+l r2 [-1,0,1] W2n+1 
e is an even number 

w?_-1 
2n+l r2 [-1,0, 1] 2n+l 

e is an odd number 

2n+l [-1, o, 1] 
w.:··+i 

r2 2n+l 
e is an odd number 

2n+l a(2"+1) [-1,0,1] W2,.+1 
'í2 e is an odd number 

2n 'íf [.\,O, lj W2n 
2n r'f [->.,0,1] W2n 
2n r2 (.\ -i, o, l] W2n 1 
2" r[ [->.-1,0, 1] W2n 

Then j00 is an odd number and j00(3a + 4) = -1 mod 2n+i. 
Therefore OQ4(r13ª-4) = W2n+1. 
Now we may summarize this case in the following table 

where 
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The following is a consecuence. 

mod 2n+l. 

The reader should keep in mind that we are in the case where e is an even 
number and zn­lc = 2a + 2. It is not clifficult to verify that j = 2n-1c - 2. 
Indeed, since a is an odd number, we have 

D3DfD3 1, blue 
D2D1D21 D11 = 1, red 

D2D-2 1, green 1 2 
¡Y, D-1 = 1, yellow 1 3 

We call D1 , D2 , D3 the elements associated respectively to Tí', T:j, Tf. 
From the picture we conclude the relationships 

is a generating vector. Using the polygon method [I], according to geometric 
data, we find a presentation for G1. We thus obtain the polygon 

acts on S1 with signature (O; 2n+i, 2n+i, 2n, 2). For this action, we have that 
the 4-tuple 

We have showed that, for each 81 E 61, the group 

3.3.1 Geometric Presentation 
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then G1 is an abelian group of order 2n+2 and we have the following isomor- 
phism 

G1 = {DiD~: O::; j < 2n+i,o::; i::; 1}, 

Now we have 

o 

First we may see that D1D2 = D2D1, since Di= D~ and D3 = D'f"-1-2 
thus D4 = D'f"-1-1 D2, then since D4 has order 2 

\ 
D2n+1 - n2n+1 - or ­ i» - 1 ) - 1 - 2 - 3 - 4- ' G1 = D1, D2, o; D4: D2D 2 irr:' 2D 1 · D1D.2DsD4 = 1, 1 2 = 1, 1 - 3 = 1 

Proof. Let 

where e is an even number. 

1 =D¡ - D12n-1_1D2D'f"-1-1D2 

- Dic2n-l_3 D2D1D2 
= D12"-3D2D1D2 
= D!3D2D1D2 
= D!1 D22+i D1D2 

.·.D2D1 = D1D2 

Proposition 6. G1 has a presentation of the [orm 

\ 
D2n+i ­ n2"+1 - n2" ­ D2 ­ 1 ) . 1 - 2 - 3 - 4- ' 

D1, D2, Ds, D4 . D1D2D3D4 = 1, DiD22 = 1, D'f"-1-2 D31 = 1 ' 
(3.1) 
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We call D1 , D2 , D3 the elements associated respectively to Tf, T2, T'f. 
From the picture we conclude the relationships 

D? D22 = 1, green 
D{D31 = 1, yellow 

The reader should keep in mind that we are in the case where e is an odd 
number and 2n-1c = 2a + 2. It is not difficult to verify that j = 3 · 2n-1c- 2, 
for n > 3, in fact 

J ·a 3 · 2n-1ca - 2a 
3ca2n-l - 2n-lc + 2 

= 2n-1c(3a - 1) + 2 
2n-1c(3a + 3 - 4) + 2 
2n-1c(32n-2c - 4) + 2 

= 3c22n+l2n-4 + 2 mod 2n+l 
= 2 mod 2n+i 

is a generating vector. As befare, using the polygon method [1], according to 
geometric data, we find a presentation for G2. We thus obtain the polygon 

acts on 82 with signature (O; 2n+1, 2n+1, 2n, 2). For this action, we have that 
the 4-tuple 

Also we have showed that, for each S2 E 62, the group 

G2 = Z/2n+1z ~h Z/2Z 
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Then we have the following isomorphism 

but as e is an odd number we have 

o 

1 - D1D2D3D1D2Da 

= n~·2"-1c-1 D2D~·2"-1c-1 D2 

= D~·2"-1c-3 D2D1D2 

:. D2D1 = D3-3·2"c o:' _ nt-3·2"c D 
l 2 - 1 2 

First we will see that D2D1 = nr+i D2, in fact as D4 has order 2, 
D D D D d D D3·2"-1c-2 D2 D2 h 4 = 1 2 3 an 3 = 1 y 1 = 2 we ave 

\ 
or" ­ D2n+l - D2" - D2 - 1 ) - 1 - 2 - 3 - 4-' 

G2 = D1, D2, Da, D4 : D D D D _ l D2D­2 _ l D3.2n-1c-2n-1 _ l · 
1 2 3 4- , l 2 - , l 3 - 

Proof. Let 

Proposition 7. For n > 3, G2 has a presentation of the form 

For n = 3 we have a = 1 hence j = 2. 
The following is a consecuence. 
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We may choose 

P1,i = [O, O, lJ, P2,i = r2{P1,i), P3,i = [1, O, 1], P4,i = [..\,O, 1), 
thus according to the tables of the previous section we have 

Ó P1,; ( 81,i( X1,i)) - W2n+1 
Óp2,, (81,i(x2,i)) = W2n+1 
Óp3,; ( 01,i(X3,i)) = W2n 
Óp4,i ( B1,i(X4,i)) = W2n 

fh,i : I' 1,i -----? H1 
Xj,i ~ 81,i{Xj,i) 

Further we recall that there exists isomorphisms ÍI,i : 6/ K1,i---+ Si, where 
K1,i = ker(01,i). 

We call P;,i = Ji,i(K1,iz;,i) then we have 

B1,i(x1,i) = rf 
(1¡,i(x2,i) -3a-4 T¡ 
B1,i(x3,i) = r'fª 
B1,i(x4,i) = r't 
81,i(xs,i) = 72 

1 

Hence we have 

where we may choose far each j = 1, 2, 3, 4, Xj,i as counterclockwise rotation 
27í about Zji through angle -, far 

1 ffij 

In this section we will study the epimorphisms associated to the actions 
defined in the previous section. 
From now on we consider the notations as in Theorem 7. 
We recall that in any case (abelian and no abelian) H1 =< r1 >is a subgroup 
of Aut(Si) far i = 1, 2, and acts with signature (O; 2n+i, 2n+i, 2n, 2n, 2n), then 
we have, according to the Theorem 7, epimorphisms 01,i associated to the 
action. 
By the Theorem 7, there exists a Fuchsian group I' 1,i with signature 
(0 ·2n+1 2n+1 2n 2n 2n) then 

' ' ' ' ' l 

3.4 Classification of actions on 61 and 62 
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2. If e is an odd number, then 

B2,2(Y1,2) = r; 
B2,2(Y2,2) = a(2"+1) 

T2 

02,2(Y3,2) = riª 
02,2(Y4,2) = 1"i 
02,2(Ys,2) = r.2 2 

We remark that since 4a + 4 = 2nc and e is an even number, then 
4a + 4 ::::: O mod 2n+I, therefore 

l. If e is an even number, then 

€12,1 (Y1,1) = r.ª 2 
02,1(Y2,i) = r; 
€12,1 (Ya,1) = r.2ª 2 
€12,1 (y4,1) = ri 
82,1 (Ys,1) r:} 

We call QJ,i = ÍZ,i(Kz,iWJ,i), and may choose 

Q1,i = [1, O, 1], Q2,i = [-1, O, 1], Qa,i =[O, 0, 1], Q4,i =[>.,O, 1]. 
According to the tables of the preceding section, we have 

Further we have the isomorphism associated Í2,i : ~/ K2,i --+ Si,>. where 
K2,i = ker(82,i). 

where we may choose far each j = 1, 2, 3, 4, YJ,i as counterclockwise rota- 
tion about WJ,i through angle :. , with m1 as befare. 

J 

Hence we have epimorphisms 

We may do the same process for H2 =< r2 >. 
H2 is a subgroup of Aut(Si) and acts on Si with the same signature that H1. 
By Theorem 7 there exists a Fuchsian group r2,i with signature (O; 2n+1, 2n+1, 2n, 2n, 2n), 
then 
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­3a ­ 4 = a mod 2nH 

( a a 2a 2 2) 
72 1 72 , 72 '72 i 72 · 

Sin ce e is an even number, we have 

and to 82,1 

( a -3a-4 2a 2 2) 7¡ , 7¡ , 7¡ , 7¡ , 7¡ i 

We now prove this claim. 
When e is an even number, we have the following generating vectors associ- 
ated to 81,l 

where <P is the isomorphism given by 

Since Xj,i and Yi,i satisfy the same relations, it is clear that x is an isomor- 
phism. 
Then we have the following diagram: 

. 61. r., ~ H1 

X: r., 
Xj,i 

Using the previous computatíons, we may define an isomorphism between 
r1,i and r2,i> by 

Theorem 20. Assume that 2n - 3a ­ 5 #­ O anda > l. Then the actions 
induced by H1 and H2 on Si E Si for each i = 1, 21 are topologically, but not 
conformally, equivalent, excepi for Si defined by >i = ±1 ± V2. 
Proo]. By Theorem 8 it is enough to prove thaf there exists a commutative 
diagram for the corresponding epimorphisms. 

We remark that since 4a+4+a2n = 2nc+2na = 2n(a+c) and c,a are 
odd number, then 4a + 4 + a2n = O mod 2n+i, therefore 
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Now we will prove that far Si defined by A# ±1 ± y'2 the actions on Si 
are not conformally equivalent. 

By Theorem 13 we have in these cases s = 1, then the actions are directly 
topologically equivalent. 

• If e is an odd number, then 

(a, a(2n + 1), 2a, 2, 2) = (a, ­3a ­ 4, 2a, 2, 2) mod 2n+l. 

• If e is an even number, then 

(a, a, 2a, 2, 2) =(a, ­3a ­ 4, 2a, 2, 2) mod 2n+l. 

With this isomorphism we may associate to each generating vector a 5- 
tuple of elements in z;2n+1z. 
Thus we have 

Altemative proof for topological equivalence. 
We consider the isomorphism between Hi and 'll/2n+iz given by 

­3a ­ 4 = a(2n + 1) mod 2n+I, 

in fact since 4a + 4 = 2nc and a, e are odd number then 

a2n + 4a + 4 = 2n(a +e)= O mod 2n+l. 

Therefore we have the commutative diagram (3.3). 

Now we have 

( a -3a-4 2a 2 2) 
71 t 71 , 71 ' 71 ' 7¡ , 

When e is an odd number, we have the following generating vectors as- 
sociated to f/i,1 

(recall that 4a + 4 = 2nc). 
Therefore we have the commutative diagram (3.3). 
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We have that T is a holornorphic map, because u is holomorphic. 

Sin ce lTT¡ = r4 a, then 
2 2' 

7r<TT1 (x, y)= 1íT23u(x, y)= 7ra(x, y), 
and T is well defined. 

T(x) := 7r (a(x, y)) , 
for X E C, where (x,y) E 7r-1(x). 

where T is given by , 

....._ T ....._ 
S¡/H3 =C <C = Si/H3 

si u si 

·I I· 

,since Tf(x,y) = (x,w2nY) then for P = (xo,Yo), 

H3(P) = {r(P): TE H3} = {(xo,w4 .. Yo): O :S j < 2n}. 

Hence we have the following diagram 

7r : 

[X,Y,ZJ 

Now we consider the holomorphic branched covering associated to the 
action of Ha =< Tf > on si, this is 

where j is an odd number. 

aT1 = -r4a, 

2n ­3a­4 >O 
2n - 3a­4 <O 

For P1 = [O, O, 1] let 

P. (p ) { 
[1, O, O) 

4 = T2 1 = [O, 1, O] 
N ow we have the following properties 

We will follow the idea of the proof given by G.González-Diez and R.Hidalgo 
[8] in the case n = 2 with a = 1 and e = 2. 
By contradiction we suppose that are conformally equivalent; that is, there 
exists a on Aut(Si) such that 
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Now consider the coverings associated to the subgroups H1 and H2• 

Let 11'i : C -----+ C be coverings, for i = 1, 2, given by 

3. T is a Móbius transformation, since T is a bijective and holomorphic 
map of C. 

11'0"( X¡' Y1) mr(x2, Y2) 
<1(X1' Y1) 2· 

= rla(x2, Y2) 
a(x1, Y1) 2k( ) - O'T¡ X2, Y2 

:. (xi,y1) rfk(x2,Y2) 
.'.X¡ = X2 

2. T is a bijective function: 
Since 7r is surjective then T is surjective. 
If T(x1) = T(x2) we have 

= x2 
1 

= x+- 
X 

T (7r(B)) = 7í(B). 

Furthermore T(O), T(oo) E {1, -1}, because if r1(P) = P, then 

a(P) = a(r1(P)) = r¿(<1(P)); 

therefore <1(P) E {[1, O, 1], [-1, O, 1]}, and 7r(P) E {O, co }. 

It is easy to verify that 

7í(B) = {O, oo, ±1, ±,\, ±.x-1}; 

since a(B) = B then 

<1(P) = <1(rf(P)) = r~i(a(P)) = rfi(<1(P)), 
and therefore <1( P) E B. 

Each point Pin B, is a fixed point of r'f (Theorems 18,19), hence we 
have 

B = { P1, P4, [±1, O, lj, [±,\,O, 1], (.x-1, O, lJ} . 

l. Consider the set of fixed points of H3: 
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T(­x) = T7t;(­x, y) 
= 1ícr(­x,y) 
= 7rcr¡T1 (x, y') 

'· = 1f~O'(x, y') 
= T2~cr(x, y') 
= T2'.f(x) 

1 = T(~) 

Now we have 

1j1í = 1fTj ,1j = 1, 2. 

Further it is easy to check that for each j we have T} = Ti. 

then we have 

= -x 
1 

= 
X 

Let us verify that R is well defined. . 
First we remark that if we consider Ti: C ~ C for j = 1, 2, given by 

where R(x) = 7r2T(x0), with 7f1(xo) = x. 

si ­­­ª­­ si 

·I l· 
C T C 

., j j ., 

Then we have the following commutative diagram 
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3. We recall that a Móbius transformation is determined by its values at 
3 points. First we suppose R(O) = 2 and R(oc) = -2, 

R ({O, oc, 1, >.2, .x-2}) =i'{ oc, ±2, ± (>. + _x-1)}, 
1: 

and R(O), R(oc) E {2, -2}. 

Then we have 

2. We recall that 

T(n(B)) = 1í(B) =1:{0, oc, 1, >.2, >,-2}. 

and T({O,oc}) = {1,-1}. 

R has the following properties: 

l. R is a Móbius transformation, in f~t 
R is a holomorphic map beca use T lis a holomorphic map. 
Further since 7f1 and 1í2 are surjective, then R is surjective. 
Now if R(x) = R(z), for x5 = x and z~ = z we have 

1 1 
T(xo) + T(xo) = T(zo) + T(zo) 

{:} (T(xo) -T(zo)) ('.f,(xo)T(zo) -1) =O 

=:> T(zo) E { T1~xo), T(~o)} 

zo E {~o, -xo} 
Z ­z2.!...x2­x - o - o - 

We remark that for each i, 7rj is the cóvering associated to the action T; .. 

1 
7r2(T(xi)) = T(xi) + T(xi) = 7í(T(x2)), 

and therefore R is well defined. 

then 

Using the previous calculations we h8¡ye 
1 

T(x2) E { T(x1)Í,T(~i)} , 
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A E {l±v'2,~1±R}. 

Therefore the Móbius transformation R exists if only if 

In the other case, when R(O) = -2 and R(oo) = 2, we obtain the same 
results. 

R(l) - .X+.\-1{:}.\=-l±v'2, or 
R(I) -.X-A-1{:}.\=l±v'2 

then 

(e) If R(.X-2) = oc, we have 

R(z) = 2>.2z + 2_x2 
­.\2z + 1 

o 

R(I) = .X+.\-1{:}.\=l±v'2, ar 
R(l) = -A-A-1{:}.\=-l±v'2 

thus 

(b) If R(>.2) = oo, we have 

R(z) = 2z + 2_x2 
-z+>.2 

R(>.2) - >. + >.-1 {:} .\ = -1 ± v'2, ar 
R(>.2) = -.\ - ,,\-1{:}.\=1 ± v'2 

2(>.2+1) ' 
thus R(>.2) = 1 _ ).2 , and then 

R(z) = 2z + 2 
-z+l 

(a) If R(l) = co, we have 
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Since c(A;) satisfy the same relations as Aj, we have e is a monomor- 
phism. 
Now using the Eichler trace formula, seeTheorem 11, we may calculate the 
character associated to the Analytic representation induced by e, and we 
obtain the following table 

We may define an action for G on SA, by 

«.c ~ Aut(SA) 
A1 - r1 
A2 - r2 
A3 '2 - 71 

A4 '3 - 7¡ 72 

Remark 21. Now we will see sEme examples in the casen= 3, a= l. 
We consider for n = 3 a group G as in Proposition 7; that is, 

G = \ A1,A2,A3,A4: 

"" Z/16Z ~ Z/2Z 

H2: (rz ,ri ,ri ,ri ,r?) 
Now by Theorem 13 we have that the actions H1 and H2 are directly 

topologically equivalents, we take s = l. 
The proof that the actions are not conforrnally equivalent is the same as that 
for Theorem 20. D 

Proof. Using remark 19, the generating+vectors associated to the epimor- 
phisms ej,2 are: 

Theorem 21. For n = 3, a = 1 ande = 1, the actions induced by H1 

and H2 are directly topologically, but noi conformally, equivalent, ezcept far 
,\ = ±1 ± v'2. 
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N ow we consider the irreducible représentations for G according to sec- 
tion 1 of this chapter. !i 
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elements Character of analytíc Representation 
1 : 21 

A1 ­ws i': w~ ­ w~ 
A2 ­ws f-wg -wg 1 

A2 -3 - 4w8 - 4wg - 4wg l A4 ­~ ­4W4 1 
A~ ,-3 
A~A2 1; 1 
A;j ­Ws if­wi ­wg 1 
Ay Ws -i! w~ +w~ 
A~ ­ws ¡tw~ ­wg 
A~ Ws ­];wg +wg 
A~ -3 - 4w8 + 4wg - 4w~ 
Atu -3 +4ws -4w8 +4w8 
A12 -3+ 4w4 1 

Ai1A2 1, -3 
Af3A2 1 
AI w8 -ff w8 + w8 
A~ ws­lJ:w8 +w8 
At4 -3 + 4w8 + 4wg + 4w8 

Ai5A2 11 1 



If we call L: the Analytic Representation induced by E, we have 

Consider e:(Aj1), far each i. then we 4ave the following 4-tuple 

( 15 15 14 ' 3 ) í¡ , 72 , 7¡ , í¡ T2 . 

ªº·º: A1 --t 1 a1,o: A1 --t 1 
A2 --t 1 A2 --t -1 

ao,2: A1 --t Wg 1; ª1,2: A1 --t Wg 1• 

A2 --t ­ws 1' A2 --t Wg 11 

ao,4 : 7¡ --t W4 
11 

ll'l,4 : A1 --t W4 

72 --t W4 ¡, A2 --t ­W4 

ao,6: A1 --t w: 
11 

a1,e: A1 --t w: 
A2 --t w: ¡; A2 --t ­w: u 

ªº·ª: A1 --t -1 ,, 
a1,s: A1 --t -1 1: 

A2 --t -1 :: A2 --t 1 
ao,10: A1-> -Wg ¡: a1,10: A1 --t ­ws 

A2-> ­ws •· A2-+ Wg 

ao,12: A1 --t ­W4 
¡; a1,12: A1 --t ­W4 1 

A2 --t ­W4 
¡, A2-+ W4 ,, 

ao,14: A1-+ ­wg a1,14: A1-+ ­wg 
A2-+ ­w: A2-+ w~ 

/31 : A1 --t [ W~6 
-~16] 

/J' . A1 --t [ WJ6 
-~re] 

3. 

A2 --t [ wt -~re] A2 --t [ O 7 -~ie] 
-W¡e 

1· 

/3s : A1 --t [ ~' _:¡,] f]¡: A --t [ wie 
-~re J 1 o 

A2 --t 
[ -~16 W~e] 

A2­+ [ ~ -~r6] 
W15 
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. ( 6) ( 6) 1 • no,10 = -1+2 1- 16 + 1 - 8 . + 2 = 1 

• n1,10 = -1 + (1- 166) + ( 1- ~: )¡ + ( 1 - ~) =O 

• n1,4 = -1 + ( 1 - ~~) + ( 1 - 1~) + ~ + ~ = 1 

• no6 = -1+2 (1- 10) 
+ (1- ~)1.+ ! = 1 ' 16 8 2 

• n1,6 = -1 + ( 1- 126) + ( 1 - ~~) + ( 1- ~) = 1 

• no,s = -1 + 2 ( 1 - 186) = O 

• n1 s = -1 + (1 - ~) + ! = O ' 16 2 

( 12) 1 • no4=-1+2 1-- +-=O ' 16 2 

• no,o =O 

Now using Chevalley Weil formula, for this tuple, we may compute, the de- 
composition for the analytic representation in to irreducible representations, 
where denote by ni.i the multiplicity associated to ai,j and by ni the multi- 
plicity associated to the representations {ji 
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Then the decomposition coincides witli'. our previous calculations in (3.4). 

11 7 1 
• n7 = -2 + - + - + - = 3 4 4 2 

9 5 1 • ns = -2 + - + -4 + - = 2 4 2 

7 3 1 
• n3 = -2 + - + - + - = 1 4 4 2 

• n1,14 = -1 + (1- ~) + (1- 10): + (1- ~) = 1 16 16 ,, 8 

5 1 1 
• n1 = -2 + ¡ + ¡ + 2 =O 

• ni 12 = -1 + (1- ..±_) + (1- 12) + ~ + ~ = 1 ' 16 16 ' 2 2 

• no 14 = -1 + 2 (1 - ~) + (1 - ~): + ~ = 2 ' 16 8 2 
' 

CHAPTER 3. FAMILIES OF RIEMAN!'{ SURFACES WITH EQUIVALENT ACTIONS10l 



c­­T­· e !· 

R(x) = 2x +2 
1­x 

T(x) = 1­.x 
l+x 

In the proof we had the following commutative diagram 

Proof. We recall the proof of Theorem 20. We had Móbius transformation 
R and T; now using -X0 = 1 + ../2 we may explicitely calculate R and T: 

o --t 'll../4'll.. --t Go,2 --t z¡2nz X 'll/2'll.. --to. 
Furthermore, G2 = z¡2n+iz ~h Z/2Z is a subgroup of G0,2• 

Go,1 = 'll/4'll ~ho 'll/2n+iz 

where ho : Z/2n+iz ---* Aut(Z/ 4Z). 
Furthermore, G1 = z¡2n+iz X Z/2'll is a subgroup of Go,l· 

2. If i = 2, then the group, say G0,2, is an extension of z¡2nz x 'll../2'll.. by 
a group Z/4Z, that is, 

Theorem 22. Far >.0 = 1 + ,/2, consider Si,>.o the Riemann surface in Si 
determined by >.0, with i = 1, 2. Then. [or each i = 1, 2, there exists a finite 
group of order 2n+3 which acts on Si,>.o with signature (O; 2n+i, 2n+t, 4). We 
licue the following two possibilities: 

1. If i = 1, then the group is 

3.4.1 Especial case .X = 1 + VQ 
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Further we have ar1 = T20": 

Note that 

o­(a(x,y)) = u (1­x ..,/2cw2n+1y) 
l+x' (x+l)c 

(
X ­ 1-1 +X X+ 1 ffcw~n+1Y (x + l)c ) 

X+ 1 X+ 1+1- X' (x + l)c (1 - X+ X+ l)c 
= (x,W2ny) 
= rl(x, y) 

and therefore o­ has order 2n+l. 

thus far (x, y) E Si,>.o we have 

O= f(a(x, y)) f (T(x), a2(x, y)) 
= ar(x, y) ­T(xr (T(x)2 - i)" (T(x)2 - ,\5) (T(x)2 - ,\02) 

2,. ) 22ª+2(x -11)ª ª( 2 )( 2 ) 
ª2 (x,y + (x+l)ªª'H X X +2x-l x -2x-l 

22a+2 
= 2"( )+ ' ª( 2 1)ª( 2 ,\2) ( 2 ,\-2) ª2 x,y (x+I)4a+;4x X ­ x ­ o X ­ o 

22a+2y2" 
= ar (x, y)+ (x + 1)4a+:4 

22a+2y2" 
Now choosing a root of (x + l)4ª+4 we have 

( ) _ ( 1 - X ifc'w2n+iy) 
o­ x,y ­ l+x' (x+l)c 
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K=< 72 > H -1 =< 71 a>, 

where h0 defined below. 
We consider the following subgroups of G0,1 

We will prove that 

( 
A2n+1 ::::; B2n+i = 02n+1 = l, ) 

Go,1~ A,B,C: A2=B2=C~! BA=AB AG=CB . ,, ' 

• When e is an even number, case i = 1, it is easy to verify that 

elements exponent number this type 
TÍ Ü S j S 2n+i -1 2n+l 
~ j is odd numer 

1, 
2n 

7Íí2 j is odd numbef 2n 
(j'J j is odd number' 2n 

Tf o j is odd numbeq 2n 
O'Tf j is odd numberj 2n 

í2Tf a j is odd number] 2n 
2n+3 elements 

Thus we have the following elements in the group G0• 

e i:~ an even number ( . z 2 '+1 a­rf = 713 72 

e is an odd number 

We have 

Structure Description 
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We will prove that G0,2 is an extenston of a group z¡2nz x Z/27l by a 
group 7l/47l, this is 

• When e is an odd number, case i = ;~, it is easy to verify that 
1: ¡ A2n+l ::::: B2n+l = 02n+l = l ) 

Go,2 ~ \ A,B,C: A2 = B2 = 02, :: BA = A2"+1B, A.o= CB . 

IH ><lho KIJ= 2n+3' 

therefore H ><1 ho K = Go,1 · 

then H ><1 ho K is a subgroup of Go,1. 
Since the arder of H is 4 and the arder of K is 2n+i the 

•: 

ho : K --t AutGH) 
T2 -+ ho(T~) : T1­l0'......, O"T¡-l ,, 

Is clear that H n K = {1}. 
We may define 

( we recall that far e an even number we have T1 T2 = T2T1.) 

I! r 
I! 

We have H is a normal cyclic sub~pup of arder 4, in fact 
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1 --t Z/4'11., --t Go,2 ¡1z;2nz x Z/2Z --t 1. 

Now we consider a subgroup of G0 2~ given by 

H 2n-l { ' ll 2n-l 2n -1 } =< T1 T2 >= 1,iT¡ T2, T¡ , T¡ T2 • 

1 

1 
! 
1 



il 

= 1, 2, the group j!Go,i acts on Si,>.o with signature 
l. 

Theorem 23. For i 
(O; 2n+i, 2n+1, 4). 

D 

11 

where we consider for z¡2nz x Z/2Z the presentation given by Propo- 
11 sition 3. Therefore we have: i; 

Go,2/H 
[r1] 
[a) 

Since lnl [a] = [o-] [r1], Go,2/ H is an abelian group of order 2n+i, and its 
elements has order at most 2n, then ire have the following isomorphism 

lí 
-t ~;2nz X Z/2Z 

- ~1 •· 
- B.1 1 

2n+i classes 

2n-l 

number of classes 

Now we consider the quotient grouJ Go,2/H. Since H has order 4 then 
Go,2/ H has order 2n+i. 11 

We may write the elements in Go,2f¡¡H 

class in Go,2/ H 11 

CHAPTER 3. FAMILIES OF RIEMANiy SURFACES WITH EQUIVALENT ACTIONS106 

,------------------------·------------------~--~--·--~---- 



therefore j = 2n + 2n-2c - l. 

r2 _ T2j+l,.. 
... - l •2. 

If e; = r{ u, then by the previous tables 

Then the on1y possibility is e; = r{ u of e; = o­r{. 

and the power this elements are conjugate to o­ or power of r{. 

We will see that e; # r2r{ O". We have 

_j j+2 -1 
T27j O" = T20" T2 , 

or 

• When e is an odd number (case i = 2), then 

Now we will find elements e; E Go,i, such that 

• When e is an even number (case i ::::!:: 1), then 

It is easy to verify that [->.o, O, l], [>.¡rl, O, lJ are fixed points for a. 
Furthermore [>.0,0, 1), [->.01, O, I] are fíxed point for r2ur;1 = r2r¡1o-: 

Proo]. If P is a fixed point for sorne element in Go,i, say e, then for any j, 
c;i(P) =P. 
By the previous tables c;2 E Gi, then Pis a fixed point for the action of Gi. 
Therefore the fixed points for the action of Go,i are the same that for the 
action of Gi. 
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~ D 
'I 

Remark 22. In the case when n = 3, a =111ande=1, we have the following 
table associated to the action of G0 2 on 82 "º: . !I' 

1 ¡, 

3(2n - 1) = 2n+3(¡- 1) + 1 + 2(4(2n+ll! - 1) + 4(2n+l - 1) + 2n+l(4 - 1)) 
= o ! :. 'Y 

!= 

Therefore the signature for this action is ji ,, 
:i 

(O· 2n+l 2n+,:1 4) 
' l 11, 

we have 

I' 
1 

Using the Riemann Hurwitz formula for the branched covering 
11 
I[ 

S ­­­'t S/Go i , 11' 
1! 

1 
3 · 2n-lc - 1=2j¡+1 mod 2n+I, 

therefore j = 2n + 3 · 2n-2c - l. !t 

11 
With these calculations we prove that there exist elements e; E Go,i such 

that they have fixed points of type 11 

{[i,p,lJ,[-i,q,fJ :p,q}, 
1 ,. 

and as c;2 has arder 2 then e; has arder 114. Further we recall these points 
belongs to the same orbit. 1' 

'1 I• 

Now we remark that since u[O, O, 1] =11[1, O, 1] then the points 
:¡ 

{[O, O, 1}, r2[0, O, 1], [±1, O, l]} 
1: 

are in the same orbit under Go,i· 11 

11 

11 
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auto. order fixed point . Go,2-orbit 
T1 16 {[1, O, Oj, [O, O,~]} { [1, O, O), [O, O, lj, [±1, O, 11} 
72 16 {[!,O, lj, [-1, o,¡11]} {[1, O, O], [0,0, 1), [±1, O, 1]} 
a 16 {[->.,o, 1}, p. 1,Q, 1]} {[±>.,o, 1}, [±>.-\o, 11} 

T2T¡(J' 16 {[>.,o, 1], [->.-1,Q, 1]} {[±>.,O, 1], [±>.-1, O, 1]} 
7f 8 - - 

T1T2 8 - ' - 
r{1u 8 " - - 
r{'u 8 - - 
Tt 4 - - 

710' 4 - - 
(J'T1 4 I' - 1: - 
75<7 4 {[i,p, 1] : p8 = -2i(l + >.~)(l + >. -2)} {[i, p, ll} u {[-i, q, 1]} 1 
urf 4 {[-i, q, l] : q8 = 2i(l + >.r,)(1 + >.-2)} {[i,p, 1]} u {[-i, q, 1]} 
r{r2 4 - - 
rf 2 - - 

rfr2 2 - - 
r{1r2 2 - l. - 
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