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Abstract

Looking for ways to quantify political polarization on parliaments, we have built a

statistical mechanics model for the specific case of a legislative networks from roll-call

votes. For this we have considered a network of legislators that is fully connected

and whose links have assigned values of 1 or -1 accordingly if a pair representatives

have vote the same or not. Then, we have taken links a triangles in the networks as

spins, and from there we developed a mathematical formalism which led us to derive

expression for magnetizations, entropies, energy and temperature for the system.

Resumen

En busca de cuantificar la polarización poĺıtica en parlamentos, hemos construido un

modelo de mecánica estad́ıstica para el caso espećıfico de una red legislativa creada

a partir de votos en sala. Para esto hemos considerado una red the parlamentarios

completamente conectada, a cuyas conexiones se les han asignado los valores de 1 o

-1 según cada par de parlamentarios votó lo mismo o no. Luego, he considerado las

conexiones y triángulos presentes en la red como espines, y a partir de esto hemos

elaborado un formalismo matemático que nos condujo a obtener expresiones para

magnetizaciones, entropies, enerǵıa y temperatura del sistema.
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Chapter 1

Introduction

As the lector may expect given the title, this thesis is about an statistical mechanical

model on the legislative process, for the sake of redundancy, on legislative institutions

or parliaments. Specifically, the work present in the following chapters addresses the

vote process and how the legislators can agree or disagree between themselves on it.

Given that, assuming the lector might come from a physics background, in the rest

of this chapter I am going to give some context about how we ended up studying

topics that are often seen very far from theoretical physics, with physics tools. I am

also going to introduce fundamental topics for this work. Specifically, about graph

theory and complex networks, about using signed links on them, and about similar

studies that have analysed relations inside legislative institutions that motivated this

work.

1.1 Statistical mechanics of social systems

In the last decades there has been an increasing trend to tackle social phenomena with

statistical physics, usually, taking social interactions as interactions between agents

that may have different states [1]. The states may be political opinions, cultural or
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linguistic traits, for example. Some examples are works on opinion dynamics [2–8],

cultural dissemination [9, 10], language dynamics [10, 11].

Although, despite these works may model different social phenomena, if we sim-

plify the majority of them for a moment, we can summarize them all by saying in

these models the agents interact between themselves —assuming that these interac-

tion mean some sort of opinion, cultural or language exchange— and update their

states according to some predefined rules, iteratively. That way, usually, the sys-

tems evolve to whether an ordered or unordered situation, with order representing

consensus, agreement, or uniformity, while disorder standing for fragmentation or

disagreement [1].

These processes actually occur on real social systems. Social sciences have al-

ready studied it, having, for example, scholars from those areas naming “social pres-

sure” [12] to the phenomena that would explain why interacting people become more

alike. And with the same purpose, from physics we can also came up with analogies,

like ferromagnetic interaction on magnets for agents becoming more similar if they

interact, and anti-ferromagnetic for agents becoming more different.

Given this background, we are encouraged to keep employing statistical mechan-

ics tools for this purpose. In our case, while our subject of study are the legislators

and how the vote, we clarify that our approach is different from the mentioned exam-

ples. The model we propose is not going to be about simulations of how a parliament

would evolve from vote to vote. But, it is going to be about the statistics of all pos-

sible interactions between legislators given a particular vote. If wanted, it is going

to be a micro-canonical formalism rather than a canonical one.
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1.2 Graph theory and complex networks

Graph theory is a fundamental area of mathematics and computer science that has

found applications in various disciplines. It deals with the study of graphs, which are

mathematical structures used to model pairwise relations between objects through

nodes connected with links, which can also have a defined orientations, with a source

and a destination node.

It started on 1741 with Euler’s work on the problem known as “Seven Bridges

of Königsberg”, which consisted on determine a path to walk over the city crossing

seven bridges that connected the two mainlands and two islands, without passing

more than once through each bridge. Euler treated each patch of land as different

nodes connected with links that represented the bridges, and analyzing the result-

ing graph he proved —mathematically— that there was no possible path for that

task (and constraints) [13]. Nowadays the relevance of graph theory extends beyond

mathematics, having found applications in diverse fields such as neuroscience [14],

ecology [15], epidemiology [16], psychology [17, 18], geography [19, 20], and studying

real-life and online social networks [21, 22], for instance.

Complex network analysis, on the other hand, employs graph theory for represent-

ing real-world complex systems as complex networks. These are usually character-

ized by non-trivial topological features such as small-world properties [23], scale-free

degree distributions [24], and community structures [25–27]. They have also been

used in different areas, as the study of social networks [28, 29], networks on inter-

net [28], biological networks [28, 30]; on epidemiology [31], more recently identifying

spreader agents of COVID-19 [32]; and also on the categorization of magnetospheric

storms [33], to mention a few examples.
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The development of both graph theory and complex networks has been marked

by the study of different subtopics as generative models, specially since the late 50’s

until the end of the millennia, and the development of different major techniques for

community detection, since early 2000’s until present day. On 1959 Erdős and Rényi

proposed a model [34] for random graphs given raise to other studies on generative

models decades later as, for example, the Watts-Strogatz model for small-world net-

works [23] and Barabási-Albert model for scale-free networks [24]. Later, despite

there had been different tries on standardize how to detect communities on networks

by the end of the 1900’s, was not until 2004 a method started to be establish itself in

the area. Concretely, Newman & Girvan [25] proposed modularity as a measure for

quantifying how much fragmented a network was, and stated the best partition of

communities was the one that maximises modularity. They proposed an algorithm

for this task, but in the following years plenty of works dedicated to address modu-

larity maximization as a goal, looking for improving and optimize the process —due

the NP complexity of the problem itself. A few of them are Clauset et al. [35], Duch

& Arenas [36], and Blondel et al. [37]. At that time Reichardt & Bornholdt [38]

proposed an algorithm for detect communities based on statistical mechanics. They

proposed a hamiltonian whose minimization conducted to the best community parti-

tion and also they proved that under some consideration for some parameters fo the

model, that minimization was equivalent to modularity maximization. Finally, since

early 2010’s until present day we can see how Stochastic Block Model [39–41] has

been taking its place among community detection paradigms, employing Bayesian

inference and establishing itself as the go-to way to infer communities or “block”

structures from connections.

Although they are related, graph theory and complex networks analysis (CNA)

are not necessarily the same. We are going to refer as graph theory to the analysis
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of more geometrical and topological properties of small graphs, while as complex

network to the modeling of real systems with networks or graphs with high number

of nodes and/or links, often involving the analysis of real data. If wanted, graph

theory may lean to be more theoretical and abstract, while CNA to be much more

specific and concrete, regarding the studied system.

Finally, we say in advance the work in this thesis is in between these two already-

related topics. The motivation for our work comes from the branch of complex

networks dedicated to legislative network (more about this on Section 1.3), but the

theoretical development we propose in Chapter 2 is going to be closer to graph theory.

However, in Chapter 4 we will briefly analyze a real-world dataset of vote records.

1.3 Legislative networks

An area where without a doubt complex networks have had great impact, are social

sciences —sociology, anthropology or behaviour science and psychology, to mention

a few. Networks allow us to study relations between people (or groups of people) as

connections between nodes. This is easy to see on online social networks, where there

are explicit interaction users may have. Follows, likes, mentions and replies are, for

instance, social interactions nowadays are common to be seen on the online world.

But, letting the internet apart, real world social interaction can also be taken into

account. Friendship, partnership, sexual relations, work relations, and even political

relations can be subject of study [42].

A particular social relation is the political relation legislators may have between

each other due the legislative process. This relation is indeed one of the main corner-

stones of this thesis since our subject of study are posible underlying relation between

parliamentarians as result of their behaviour while voting. Works that address this
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relations with a network approach are often called to be about “legislative network”

in the literature. So, in this section we give the lector some background about this

topic.

As context, most works on legislative networks [43–56] are characterized by an-

alyze underlying interaction or relations between legislators to get a picture of non-

explicit alliances or fractures in the legislative process. Means relationships between

parliamentarians are inferred from vary from work to work. Most commons are

bill co-sponsorship [43, 50, 54, 55], co-assistance to legislative committees or press

events [51], and coordination on roll-call votes [44–46, 52, 57].

Usually, the network construction is followed with community detection and a

comparison between the resulted partition with the partition derived from political

parties. Also, many works look up for ways to quantify political polarization, com-

monly, evaluating how much “polarized” is the community partition resulted from

the community detection process with different metrics —such as modularity [26,

27, 43].

In this thesis we opted by model a network constructed from the agreement

parliamentarians may have when they vote. But, how do we map a vote into a

network? We found that even within the subgroup of legislative network studies

that consider roll-call votes as a mean to relate legislators from, there is no unique

way to do it. Different works connect the legislators in different ways, since each

work may have different goals.

For instance, Waugh et al. [57] connected a pair of legislators if they voted the

same, and if they did not, simply there is no link between them. But, in order to

study the polarization in the U.S. Congress through the years (decades, actually),

the authors actually consider roll-call data from an entire legislatures to build a

single network. Their work’s methodology consists on build a sequence of networks
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whose polarization can be measure to obtain a polarization time-series later. Each

network is made from all votes made on a two-year span of legislative activity. So,

actually, since they consider multiple votes to build one network, they put the number

of votes in which a pair of parliamentarians have agreed as the weight of the link

between each pair of representatives. On the other side, other works have proposed

more elaborated process from which infer relations between members of parliaments

(MP). Andris et al. [52] also studied the U.S. Congress taking each legislature as

a network, but they built the networks differently. For each legislative term they

estimate a threshold of amount of coordinated votes a pair of parliamentarians must

surpass in order to be taken as connected. Marenco et al. [44] used roll-call votes of

the Brazilian Chamber of Deputies for a period running from 2003 to 2018. Authors

assign different scores to each vote options and build yearly sequences of roll-call

options scores, for each MP. Later, they build up a correlation distance from those

sequences which is taken as the links distance. Finally, Intal & Yasseri [45] analyzed

the 57th UK Parliament and focused principally on Brexit discussions. For each MP,

the authors built a sequence of their votes with its entries 1 or -1 if they voted for

or against. Then, they computed the cosine similarity between every legislator votes

sequences, which was later used to derived the links between parliamentarians, and

their respective weights.

In this work, in contrast to these works, we will limit ourselves to analyze (theo-

retically) one single vote rather than taking multiple ones into account. As we will

see later we will connect all legislators between each other, and the links between

them are going to get values of 1 or -1 assigned accordingly if the vote options for

each pair matched or not. This sign assignment to the links has been inspired by [43],

work that will be discussed below.
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Polarization in legislative networks

In order to study how polarized a legislative network is, detecting communities on

it is needed. Commonly polarization is referred when the network has two main

communities, while if there are more that two relevant communities is often called

fragmentation. Now, leaving that semantic distinction aside and sticking with polar-

ization, it is considered that legislative networks are polarized when legislators that

belong to the same community have stronger interaction within themselves, while

weaker (or non existent) with legislators of different communities. Neal [43] take this

conception of polarization as weak polarization an then proceeds to defined strong

polarization. This one, in addition to taking into account intense links between nodes

from the same group, is characterized by considering that nodes from different com-

munities should also have links that join them, but this time with weights whose

signs will be negative. A possible way to think of this is to take positive sign links

as attractive forces, while negative counterparts as repulsive ones. All this is only

applicable in a network that have signed links. For this, the author uses a data set of

bills co-sponsorship and employs the Stochastic Degree Sequence Model algorithm

[58] on it to infer the positive and negative links. Instead, we will not consider

co-sponsorship relations but vote options agreements. More details on how we will

construct the network in our model will be on Chapter 2.

Regarding the quantification of strong polarization, instead of using modularity

as a proxy for it —since the network have links with negative values—, in [43] the

author propose the triangle-index for that purpose [59]. This metric comes from

balance theory, and it tells how much balanced the network is. Now, what does it

mean by balanced? For this we are going to introduce what is balance theory, briefly.

Balance theory established in psychology as itself with the Cartwright & Harary
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[60] formulation of Heider [61] theory. It started as way to characterize transitive

relations between people or objects, but the most common example to understand

the idea behind “balance” comes from considering a system of three people: If all

of them are getting along there is no problem. But, if two of them get into a fight,

probably each of them are going to ask the third to take side, and if the third does

not want to, the system it is going to be unstable. In this context it is going to be

called unbalanced. The balance —in this example— it would mean there is no pair

of people that share how they feel about the third one. This triadic relationship can

be mapped into a graph of three nodes connected with each other, and with links

weight values equal to positive or negative whether the relationship are good or not,

respectively. Then, a more concrete definition for balancedness in triangles will be

to take the triangle as balanced if the product of the link signs is positive one, and

as unbalanced otherwise.

At some point this also will be analogous to the frustration problem in a system

constituted by three spins where there is at least one antiferromagnetic interaction.

For that system will the minimum energy will be degenerated and the system itself

will be prone to switch or cycle through different configurations with the same energy.

Starting from that notion with three nodes, balance theory then will also study

the balance in bigger cycles. Different metrics have been developed to quantify bal-

ance [59, 62], but in this work we will limit ourselves to consider triadic relationships

(or triangles) since they are the most basic cycle we can measure the balance of.
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Chapter 2

Model

In this chapter we are going to explain the proposed model. Summarizing, it consists

on statistical mechanical formalism for the specific case of agreement networks on

parliaments. The model consider a single vote session in which each legislator

chose one of k vote options. Usually, k is three since most common vote options

are for, against, and abstain, but we developed the mathematical formalism for an

arbitrary number of votes options.

The network consists onN nodes —each one representing on legislator— and they

are all connected with each other. We assume parliamentarians develop likeliness

toward others that vote the same and enmity to those who do it differently. Thus,

the links between each pair have a weight or value equal to +1 if they voted the

same and -1 otherwise. The statistical mechanics instead of being focused on the

legislators it will be focused on pairs or triads of them. In other words, we are going

to develop the physics for this network from its links and triangles.
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2.1 The configuration space

We are interested on study all possible configurations the network could be in. We

consider the nodes indistinguishable so we do not care of who voted this or that op-

tion, but how many parliamentarians voted for each one. In other terms, the amount

of MP’s that backed each vote option are our generalized variables, since knowing

them we can completely describe our system. For now on we are going to denote a

general configuration the network could be in as the vector n⃗ = (n2,n2, . . . ,nk), with

its entries ni being the number of legislators (nodes) that chose the i-th vote option.

Noticing that the sum of all of its entries equals the total number of nodes legis-

lators N , we get

n1 + n2 + . . . + nk = N . (2.1)

which completely describes our configuration space. For lower, say k = 2, this space

is going to be a straight line in a two-dimensional space, while for k = 3 it would

describe a plane on a three-dimensional space. This last case can be plotted and will

be presented on following chapters.

Hereinafter, we are going to refer to some specific vote scenarios or network

configurations as follows.

• Unanimity. When a vote has all the votes, or in other words when for some

vote option a, na = N and nb = 0 and ∀ b ≠ a.

• Split in half. When a vote is equally disputed between two options, which is

equivalent to say when na = nb =
N
2 and nc = 0,∀c ≠ a ≠ b.

• Center of the configuration space. The scenario when na = N/k,∀a ∈ {1, . . . ,k}.

For the specific case of k = 3, will also be referred as split in third.
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2.2 Spins system

Inspired in the Ising model we decided to also interpret own quantities from the

network in a similar way as spins on the Ising model. We chose the links signs and

triangles balances since these tell us the agreement between parliamentarians and if

the triads are balanced or not. Also, both can only have values of +1 or -1, which

coincides with the Ising framework.

It can be seen easily signed network can only have four types of possible differ-

ent triangles. Two balanced ([+ + +], [+ − −]) and two unbalanced ([− − −], [+ + −]).

Instead, in this model we are only going to have just three of them. By following

the construction rule of the network we imposed (which consisted on assigning links

values of +1 between legislators that voted the same, and -1 otherwise) it is impos-

sible that triangles of type [+ + −] appear, leaving us with two balanced and one

unbalanced triangles. The possible triangles are shown in Figure 2.1.

1 1

1

(a) [+ + +]

1 1

2

(b) [− − +]

1 2

3

(c) [− − −]

Figure 2.1: Three possible triangles. Nodes (legislators) are represented as circles, and
the number inside each of them correspond to the chosen vote option. Blue lines are
positive links, and occur when two MP’s voted the same. Red lines are the negative
ones, which are present between nodes with different votes.

2.3 Counting links and triangles

As we said in the previous section, links and triangles are considered as spins or spin-

like quantities in our proposed model. A central part of it consist on counting these

amounts. At first, knowing them can allow us to measure the probability of choosing
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a negative sign link or a balanced triangle randomly in a given network. But also, as

we are going to show in following sections, it will let us construct physical quantities.

Since the network in model is fully connected, is easy to see it will have

L = (
N

2
) =

N(N − 1)

2
(2.2)

links and

C = (
N

3
) =

N(N − 1)(N − 2)

6
(2.3)

triangles. Now, we also want to count the number of positive and negative links, and

the amount of each type of triangle ([+ + +], [+ − −], and [− − −] ).

Although we could have expressed these for the specific case of k = 3, as we men-

tioned above, we wanted to express these quantities in a generalized enough form

not to rely on a particular number of options. For now on, we are going to refer to

the vote options as partitions (or groups) because legislators can be said to to be

gathered on groups according to what they voted.

In a similar way as for L and C, we are going to use combinatorics for counting

the number of edges of different signs and triangles of different balance (and type).

For each of the following quantities, we are going to show first a conceptualization of

how we can count them. As we will see, the these raw counts will involve summations

across independent and non overlapping indexes, which would translate on for loops

when it came to count these amounts on a computer. This has the problem of being

bad when scaling, meaning for high values of k the algorithms would perform ineffi-

ciently. To address this, we will work on the resulting expressions to get equivalent

but cleaner forms, avoiding summations if possible.
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Links

. . .

viv1 vk

. . .⋮n1 ⋮ni ⋮nk

Links: (
n1

2
) (

ni

2
) (

nk

2
)+ +. . . + +. . .

∑
k
i ni(ni − 1)/2

Figure 2.2: Counting links within each partition.

It is easy to see that the number of unsigned links is going to be the sum of

the number of links within every partition. It can be denoted as ∑
k
i ni(ni − 1)/2,

whose numerator can be expanded and their sum split to get ∑
k
i n

2
i /2 − ∑

k
i ni/2.

From equation (2.1) and noting ∑
k
i n

2
i is the euclidean norm of n⃗, squared, we get

the amount of positive links is

L+ =
1

2

k

∑
i

n2
i −

1

2

k

∑
i

ni

=
1

2
∥n⃗∥2 −

N

2
. (2.4)

Signed links, on the other hand, are going to be the result of taking each pair of

groups, multiply the number of nodes inside each of them, and finally adding all

those products. As is shown on Figure 2.3, L− results in ∑
k
i<j ninj. Notice this sum

is equivalent to sum all the entries of the matrix n⃗⊗ n⃗ above its diagonal, which can

also be expressed as the sum of all of the entries of that matrix minus the diagonal

elements, divided by 2, since it is symmetric. All this can be pictured in Figure 2.4.
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. . .

viv1 vk

. . .
⋯

n1 ni

⋯

nk

⋯

n1ni +⋯ + n1nk +⋯ + nink

∑i<j ninj

Figure 2.3: Counting links between different groups. Here v’s are vote options.

The advantage of summing all the entries of such matrix is that we can write that

as ∑
k
i ∑

k
j ninj = ∑

k
i ni∑

k
j nj, what then, from equation (2.1), results on N2. Finally,

the number of negative links will be

L− =
N2

2
−
1

2
∥n⃗∥2 (2.5)

Triangles

Counting the triangles takes a bit more work. Similar as for positive links, the

number of triangles of type [+++] is going to be equal to the sum of triangles inside

each group, ∑
k
a na(na − 1)(na − 2)/6. If we expand and split the sum, there are going

to arise terms with N and ∥n⃗∥2 again, but this time we are also going to have a

new term with ∑
k
a n

3
a on it. That part of such term will be noted as ∥n⃗∥33, since it is

indeed the 3-norm of n⃗, cubed. Hence, the network will have

C+++ =
1

6
[∥n⃗∥33 − 3∥n⃗∥

2 + 2N], (2.6)

triangles of this type.

Now, for the [−−−] triangles we have to consider that all the three nodes on each of

these triangles must be on different groups. Then, there are going to be ∑
k
a<b<c nanbnc
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→ n⃗⊗ n⃗

→ ∑
i≠j

ninj = N2 −∑
i
n2
i

→ ∑
i<j

ninj =
1
2 ∑
i≠j

ninj

→ ∑
i, j

ninj = ∑
i
∑
j
nini = ∑

i
ni∑

j
nj = N2

Figure 2.4: Summing entries of n⃗⊗n⃗. Greyed out entries are taken into account
for the sums.

of them, which can be simplified similarly as we did for ∑
k
i<j ninj above. In this case,

instead of using the n⃗⊗ n⃗ matrix, we will use the n⃗⊗ n⃗⊗ n⃗ cube. A representation

of it is shown on Figure 2.5.

Summing all this cube’s entries can be represented as ∑
k
a,b,c nanbnc and also is

equal to N3. Since we are looking for ∑
k
a<b<c nanbnc, we consider C−−− as N3 minus all

the terms that are not the product of three different components of n⃗. But, by doing

that we would be overcounting what we are looking for. As shown on Figure 2.6,

each of these wanted terms appear six times, so, we have to divide the count by six

to avoid this redundancy.
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Figure 2.5: A representation of the n⃗⊗n⃗⊗n⃗ cube. Only three layers are drawn,
but they represent a k amount of them.

Figure 2.6: Products of three different components of n⃗ highlighted on the
n⃗⊗ n⃗⊗ n⃗ cube.

Noting the sum of all these “not-wanted” terms we just said we have to subtract

as NWT, we can summarize that —at this point— the amount of [− − −] triangles

is 1
6[N

3 −NWT].

Now, we will show that

NWT =∑
a

n3
a + 3∑

a≠b
n2
anb. (2.7)

Here, the first sum can be recognized as the diagonal of the cube (Figure 2.7), which

for now on we will note as ∥n⃗∥33.
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Figure 2.7: Diagonal of the cube n⃗⊗ n⃗⊗ n⃗.

About the second sum on equation (2.7), if we take a look on the terms where

two indexes coincide we get that for distinct pairs a, b, each n2nb term appears three

times, being this the reason for the factor before the summation. This is pictured on

Figure 2.8, and can also be noted considering that a term n2
anb could be the result

of nananb,nanbna, and nbnana. Now, leaving the factor of 3 aside for a moment,

Figure 2.8: Terms with the form n2
anb, for a = 1 and b ∈ {1, . . . ,k}, highlighted

in the n⃗ ⊗ n⃗ ⊗ n⃗ cube. Terms for b = 1 are highlighted in circles, while in
rectangles for b = k. It can be seen that each of them appear three times.

from what is shown next to the third matrix on Figure 2.4, we can realize that

∑
k
i≠j◯ij = ∑

k
i ∑

k
j ◯ij −∑

k
i ◯ii. Applying this to ∑a≠b n2

anb would yield us this sum is

equal to ∑
k
a∑

k
b n

2
anb −∑

k
a n

3
a = N∥n⃗∥

2 − ∥n⃗∥33.

23



Considering all this, we have that

C−−− =
k

∑
a<b<c

nanbnc

= N3 − ∥n⃗∥33 − 3 (N∥n⃗∥
2 − ∥n⃗∥33) ,

which results on

C−−− =
1

6
[N3 + 2∥n⃗∥33 − 3N∥n⃗∥

2]. (2.8)

Finally, for the [+ − −] type triangles, we compute the amount of possible com-

binations of three nodes with two of them being in the same group while the third

belongs to another.

vjvi

⋮ ⋮

ninj(nj − 1)

Figure 2.9: Counting triangles with two nodes being in the same group while
the third belongs to another.

As can be seen on Figure 2.9, it gives us ninj(nj − 1), but we also have to

consider the other way around, where the two nodes are in the i-labeled group and

the remaining one is in the j-labeled group, which in this case is njni(ni − 1). We

want to sum this over all distinct pair of vote options vi and vj, so the summation

goes like ∑
k
i<j ninj(nj−1)+njni(n1−1), but we also have to divide this by 2 for taking

the permutations the two nodes that belong to the same group have into account.

Note that, if we distribute the sum and interchange the index labels for the second
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term, we get

k

∑
i<j

ninj(nj − 1) + njni(n1 − 1)

2
=
1

2
[

k

∑
i<j

ninj(nj − 1) +
k

∑
j<i

ninj(nj − 1)]

=
1

2

k

∑
i≠j

ninj(nj − 1)

=
1

2
[

k

∑
i

k

∑
j

ninj(nj − 1) −
k

∑
i

(n3
i − n

2
i )]

=
1

2
[N(∥n⃗∥2 −N) − ∥n⃗∥33 + ∥n⃗∥

2] .

Here we have used the fact that a sum like ∑i<j◯ij plus a sum ∑j<i◯ij is equal to

∑
k
i≠j◯ij or ∑

k
i ∑

k
j ◯ij −∑

k
i ◯ii. This can also be observed in Figure 2.4. Then, we

got

C+−− =
1

2
[(N + 1)∥n⃗∥2 − ∥n⃗∥33 −N

2] (2.9)

is the amount of triangles of this type in the network.

It can be seen that the number of balanced triangles is going to be C+++ plus

C+−−, so, hereafter, we are going to denote this as C+, whose value is going to be

C+ =
1

6
[∥n⃗∥33 − 3∥n⃗∥

2 + 2N] +
1

2
[(N + 1)∥n⃗∥2 − ∥n⃗∥33 −N

2]

=
1

6
[∥n⃗∥33−3∥n⃗∥

2 + 2N + 3N∥n⃗∥2+3∥n⃗∥2 − 3∥n⃗∥33 − 3N
2]

=
1

6
[2(N − ∥n⃗∥33) + 3N(∥n⃗∥

2 −N)] =
1

6
[N(2 + 3(∥n⃗∥2 −N)) − 2∥n⃗∥33] (2.10)

Also, we will refer as C− to the amount of [−−−] triangles (C−−−) as well, since those

are the only triangles that are unbalanced.
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2.4 Magnetizations and energy

In this section we are going to define what we are going to consider as magnetizations.

First of all, we are going to define two of them. One for the links (Mℓ) and another

for the triangles (Mt). Both will have similar definitions, varying almost only on their

dependence on the amount of (un)signed links or (un)balanced triangles, accordingly.

Finally, an energy function or Hamiltonian will be proposed, while assuring its

minimization makes sense for our system, in the context of social fragmentation or

polarization.

Magnetization

Magnetizations are going to be treated similar to average magnetization in the Ising

model. They will be the number of positive sign spins minus the number of negative

sign spins, over the total number of spins. We are going to note them with lowercase

“m”. But, for the sake of a good and clear presentation of these, let us define first

the un-normalized magnetizations as follows. These last will be noted with upper

M .

For links we have that

Mℓ = L
+ −L−, (2.11)

and for triangles that

Mt = C
+ −C−. (2.12)

Given we already have expressions for L+,L−,C+, and C− from equations (2.4), (2.5),

(2.8) and (2.10), we evaluate them on equations (2.11) and (2.12). Then, the first
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results on

Mℓ = (
1

2
∥n⃗∥2 −

N

2
) − (

N2

2
−
1

2
∥n⃗∥2)

= ∥n⃗∥2 −
N(N + 1)

2
, (2.13)

while the latter on

Mt = C
+ −C−

=
1

6
[2(N − ∥n⃗∥33) + 3N(∥n⃗∥

2 −N)] −
1

6
[N3 + 2∥n⃗∥33 − 3N∥n⃗∥

2]

=
1

6
[2N − 4∥n⃗∥33 + 6N∥n⃗∥

2 − 3N2 −N3] . (2.14)

Finally, their average magnetizations (or magnetizations per spins) are going to be

mℓ =Mℓ/L and mt =Mt/C.

Both quantities expressed on equations (2.13) and (2.14) would communicate

(indirectly) how much are legislators agreeing with each other. The closer the average

magnetizations (mℓ and mt) get to 0, the more disagreement or frustration will be

on the system. If they lean toward 1 it would mean there are more positive links or

balanced triangles than their oposite counterparts. Naturally, if the average tend to

-1 it would be the oposite.

Hamiltonian

Putting the magnetizations aside, now we are going to define our energy function.

We want this to be an extensive quantity, meaning the global energy of the system

should be equal to the sum of the system elements energies. Ideally, the energy of

elements of different type should differ. Finally, as we mentioned earlier, we want
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the minimization of this to mean something appropriate.

Specifically, we want the energy of the system be minimum when everyone agrees

with each other i.e. what it is called utopia by Heider [61]. In other terms, in this

scenario the network would have all its links with +1 on their values, thus, all its

triangles will be balanced. Also, the average link and triangle magnetizations mℓ

and mt will be 1.

For this, for a single triangle t we have defined the energy function h as

h(t) = −∑
sides of t

sign of the side (2.15)

which is the negative sum of their sides. This would lead us to

h(+ + +) = −3, h(+ − −) = −1, h(− − −) = 3, (2.16)

for each triangle type.

Then, the energy function for the whole system, or Hamiltonian, would be

H = ∑
t ∈ triangles

h(t)

= −∑
t∈

triangles

∑
s∈

sides of t

sign of s.
(2.17)

It is clear that with equation (2.16) we achieve that each triangle type have its own

“energy”, allowing us to distinguish them. Also, in equation (2.17) our energy min-

imization goal is fulfilled. When all the triangles are balanced H is on its minimum

value.
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Alternative form for the energy

Now we are going to show that the Hamiltonian we just presented can also be

expressed in a different but equivalent way.

Since the outer sum on equation (2.17) is along all triangles, the whole expression

its equivalent to count the number of triangles of each type and pondered them by

their respective energy. All this times -1.

H = −[h(+ + +)C+++ + h(+ − −)C+−− + h(− − −)C−−−] (2.18)

Hereunder we are going to develop equation (2.18) using the amount of each triangle

type and their associated energies, from equations (2.6), (2.8), (2.9) and (2.16).

H = −

⎡
⎢
⎢
⎢
⎢
⎣

(3)
1

6
[∥n⃗∥33 − 3∥n⃗∥

2 + 2N]

+(−1)
1

2
[(N + 1)∥n⃗∥2−∥n⃗∥33 −N

2]

+(−3)
1

6
[N3+2∥n⃗∥33 − 3N∥n⃗∥

2]

⎤
⎥
⎥
⎥
⎥
⎦

,

is what we got. Note the ∥n⃗∥33 terms (in red) cancel out. Then, we get

H = −

⎡
⎢
⎢
⎢
⎢
⎣

(3)
1

6
[−3∥n⃗∥2 + 2N]

+(−1)
1

2
[(N + 1)∥n⃗∥2 −N2]

+(−3)
1

6
[N3−3N∥n⃗∥2]

⎤
⎥
⎥
⎥
⎥
⎦
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where we can factorize the ∥n⃗∥2 terms (in blue) and rearange as follows:

H = −

⎡
⎢
⎢
⎢
⎢
⎣

∥n⃗∥2
⎛

⎝
−
3

2
−
1

2
(N + 1) −

3

2
N
⎞

⎠
+N +

N2

2
−
N3

2

⎤
⎥
⎥
⎥
⎥
⎦

,

= −

⎡
⎢
⎢
⎢
⎢
⎣

∥n⃗∥2
1

2
(N − 2) −

N

2
(N2 −N − 2)

⎤
⎥
⎥
⎥
⎥
⎦

,

= −

⎡
⎢
⎢
⎢
⎢
⎣

∥n⃗∥2
1

2
(N − 2) −

N

2
(N − 2)(N + 1)

⎤
⎥
⎥
⎥
⎥
⎦

.

Finally, we get

H = −(N − 2)
1

2
[2∥n⃗∥2 −N(N + 1)]. (2.19)

Note that, from equations (2.4), (2.5) and (2.11), in equation (2.19), every factor

but −(N − 2) is equal to Mℓ. So, the whole expression results

H = −(N − 2)Mℓ. (2.20)

Another way to obtain this expression is noting that in equation (2.17), apart from

multiplying everything by −1, we are summing each link value N − 2 times, since

that is the amount of triangles each link is in —in our fully-connected network.

Considering this, we could write the Hamiltonian as

H = −(N − 2)∑
ℓ∈

links

ℓ, (2.21)

and since links values are just 1 or −1, that sum is equivalent to count the difference

between the (1)-valued and (-1)-valued links i.e. the magnetization Mℓ. Doing this,

as expected, we recover equation (2.20).
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2.5 Entropies

In this section we present two entropies. One for links and one for triangles. Both are

defined almost identically, with minor difference on their dependence of the amount

of each type of links or triangle, accordingly. Following, we are going to derived the

expressions in two different ways, starting with Boltzmann and Shannon definitions

of entropy, which also are going to hint us different interpretations these entropies

can have.

Using Boltzmann entropy

Lets recall we are proposing a framework using the microcanonical ensamble, so,

for a fixed network configuration n⃗, all microstates must have the same probability.

Here, the microstates are going to be possible internal configurations the network

could be in order to have k groups with their size described by n⃗.

If the number of microstates is Ωn⃗ for a specific configuration n⃗, then the prob-

ability of occurrence for each one is 1/Ωn⃗. But, it is important to note that the

amount of microstates is going to be different whether we take links or triangles as

spins. To distinguish these quantities we are going to note with ℓ or t as super-index,

when regarding to links or triangles, respectively.

While treating links as spins, this amount will be

Ωℓ
n⃗ =

L!

L+!L−!
, (2.22)

where only L+ and L− depend on n⃗. Now we evaluate the Boltzmann entropy

S = kB ln(Ω) (2.23)
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with Ω = Ωℓ
n⃗. This results on

Sℓ = −kB ln(
L+!L−!

L!
) ,

where we use the Stirling approximation for the logarithm of factorials. Then, it

leads us to

Sℓ = −kB [L
+ ln(L+) +L− ln(L−) −L ln(L) −L+ −L+ +L]

= −kB [p
+
ℓL ln(p+ℓL) + p

−
ℓL ln(p−ℓL) −L ln(L)] ,

where the terms in red cancel out, yielding us

Sℓ = −kBL[p
+
ℓ ln(p

+
ℓ ) + p

−
ℓ ln(p

−
ℓ )], (2.24)

with p+ℓ = L
+/L and p−ℓ = L

−/L the probabilities of a link of being unsigned or signed,

respectively. Following the same line of thought, for triangles we would have

St = −kBC [p
+
t ln(p

+
t ) + p

−
t ln(p

−
t )] , (2.25)

now, with p+t = C+/C and p−t = C−/C the probabilities of a triangle of being balanced

or not.

Please note that, in equations (2.24) and (2.25), the probabilities p+ℓ ,p
−
ℓ ,p

+
t , and

p−t will have different values for different vote scenarios/network configurations (n⃗).

In other words, these are not constant across the configuration space.

Using Shannon entropy

Employing Shannon’s definition of entropy it is more direct in this case. First, we

recall that the definition is

S = −kBD ∑
s ∈ states

ps lnps, (2.26)

32



where D is the total number of spins and ps are the probabilities of finding a spin

on a state s.

So, if we take the case of links, they have only two possible states. Unsigned

and signed, which correspond to values 1 or -1. Then, we are only going to have

the probabilities p+ℓ and p−ℓ . Consequently, if we take this, and also replace D with

L, into equation (2.26), we would get that the link entropy will be equal to Sℓ in

equation (2.24) as well.

In the case of triangles, if we consider as the states as being balanced or unbal-

anced, the mathematical development is going to be the same as for links (but with

pt instead of pℓ, and C instead L), obtaining also St as in equation (2.25).

However, for triangles there is another entropy we could build from this definition

of entropy. If we take the triangle types for states rather than the balancedness, then

triangles would have three states rather than just two. The resulting entropy is going

to be

S̃t = −kBC[p
+++
t ln(p+++t ) + p

+−−
t ln(p+−−t ) + p

−−−
t ln(p−−−t )], (2.27)

where p+++t , p+−−t and p−−−t are going to be the probabilities of finding a triangle

of each type in a given network. As it was expressed on equation (2.27), we are

going to refer to this variant entropy for triangles as S̃t, to distinguish it from the

already-mentioned entropy St.

Entropy in terms of magnetization

In this section we show that it is possible to write the entropies Sℓ and St in terms

of the magnetizations. For this, we just need to express the probabilities p+ℓ ,p
−
ℓ ,p

+
t ,

and p−t in term of their respective magnetizations mℓ and mt, and put them on equa-

tions (2.24) and (2.25).
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Let’s start with the fact that the normalized link magnetization is

mℓ =
L+ −L−

L
=
L+

L
−
L−

L
= p+ℓ − p

−
ℓ .

Now, if we also take that p+ℓ + p
−
ℓ = 1, we can add or subtract this 1 to mℓ, to isolate

p+ℓ or p−ℓ . That way, it yield us that the links probabilities are

p+ℓ =
1

2
(1 +mℓ), (2.28)

and

p−ℓ =
1

2
(1 −mℓ). (2.29)

For the triangle probabilities is going to be analogous:

p+t =
1

2
(1 +mt), (2.30)

p−t =
1

2
(1 −mt). (2.31)

Thus, replacing equations (2.28) and (2.29) on equation (2.24), and equations (2.30)

and (2.31) on equation (2.25), the entropies result

Sℓ = −LkB

⎡
⎢
⎢
⎢
⎢
⎣

(
1 +mℓ

2
) ln(

1 +mℓ

2
) + (

1 −mℓ

2
) ln(

1 −mℓ

2
)

⎤
⎥
⎥
⎥
⎥
⎦

(2.32)

and

St = −C kB

⎡
⎢
⎢
⎢
⎢
⎣

(
1 +mt

2
) ln(

1 +mt

2
) + (

1 −mt

2
) ln(

1 −mt

2
)

⎤
⎥
⎥
⎥
⎥
⎦

, (2.33)

for links and triangles, respectively.

Hereinafter, we are going to refer as entropies as the normalized entropies or

average entropy per amount of spins, and we are going to note them with lowercase
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“s”. These will be

sℓ =
Sℓ

L
, st =

St

C
, s̃t =

S̃t

C
. (2.34)

2.6 Temperature

In this section we define a temperature for the system, whose interpretation is going

to be rooted on the thermodynamic definition of temperature

1

T
= (

∂S

∂U
)
N

(2.35)

where T is the temperature, S the entropy, N the number of particles, and U the

internal energy. In this definition we have omitted the constrain of fixed volume

because as we deal with a spins system, it does not apply.

Note we already have and expression for Sℓ in terms of mℓ on equation (2.32). In

addition, from equation (2.20), we can write mℓ in terms of H, as mℓ =
−H

L(N−2) . So,

we can say equation (2.35), for the entropy Sℓ, follows as

1

T
=

∂Sℓ

∂mℓ

∂mℓ

∂H
, (2.36)

where we have considered the internal energy U as H. Then, evaluating the partial

derivative ∂mℓ

∂H , it goes as

1

T
=

−1

L(N − 2)

∂Sℓ

∂mℓ

. (2.37)

Meanwhile, to compute the remaining partial derivate we differentiate equation (2.32)

with respect to mℓ. This results on

∂Sℓ

∂mℓ

= −
1

2
ln(

1 +mℓ

1 −mℓ

)LkB. (2.38)
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Finally, using this on equation (2.37) yields

∂H

∂Sℓ

= (N − 2)L [
1

2
ln(

1 +mℓ

1 −mℓ

)LkB]
−1
,

where the L factors (in red) simplify, thus, the temperature results in

T = (N − 2)
2

kB
[ln(

1 +mℓ

1 −mℓ

)]
−1
. (2.39)

Additional relations with temperature

With the expression for T itself we can start expressing other quantities in terms of

T . Specifically, we want to write the magnetization and the Hamiltonian in terms of

it for a later analysis on these relations.

To get mℓ on terms of T we need to isolate it from equation (2.39). On that

expression, accommodating T and the logarithm, we get that

ln(
1 +mℓ

1 −mℓ

) = (N − 2)
2

TkB
.

Now we apply the exponential function on each side and rearrange the terms and

factors as follows.

1 +mℓ

1 −mℓ

= e
2(N−2)
TkB ,

1 +mℓ = (1 −mℓ)e
2(N−2)
TkB ,

mℓ (1 + e
2(N−2)
TkB ) = e

2(N−2)
TkB − 1,

mℓ =
1 − (e−

1
T )

2(N−2)
kB

(e−
1
T )

2(N−2)
kB + 1

.

If we look carefully we can note this have the form of an hyperbolic tangent of 1
T .

36



Concretely, this equals

mℓ = tanh(
N − 2

kBT
) . (2.40)

Finally, recalling that Mℓ = Lmℓ and using equation (2.40) on equation (2.20),

the Hamiltoninan yield us

H = −(N − 2)L tanh(
N − 2

kBT
) . (2.41)

With this we end the presentation of the model. Summarizing, we have successfully

derived a microcanonical formalism for a signed agreement network of legislators.

Our network is fully-connected and each link value takes relation with whether both

parliamentarians voted the same or not. We based on balanced theory for focusing

on triangle balance and taking them as spins, while at the same time we also did

that for the links signs.

Four major physical magnitudes have been derived for this system. We started

with magnetizations for links and triangles, which were followed by entropies for

those spin types as well. For this, we counted the amount of links and triangles

of each kind, exactly, taking advantage of the network being completely connected

while deriving mathematical expressions for these cardinalities.

We also introduced a Hamiltonian looking its minimization would mean the com-

plete agreement between the politicians, deriving two different approaches to obtain

our final expression for it. Later, having this magnitud gave us rise to derive an

expression for the temperature of the system, hanging on its thermodynamical def-

inition, which relate the change on energy with the change on entropy. Finally, we

also were able to express the Hamiltonian in terms of the temperature.

In the next chapter we are going to analyze the expressions we have derived on
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this chapter, and will see how they behave analytically and when they are computed

for a specific value of k and N .
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Chapter 3

Model analysis

We have successfully derived a microcanonical formalism for the system at stake.

Now, we are going to take a dive into the behaviour of the mathematical expressions

presented in the previous chapter. For simplicity, on most of the following analysis

we are going to assume k = 3, that is to say, we are going to consider that each

vote only have three options: for, against, and abstain. We are also going to assume

N = 155, in order to ease the later evaluation of the model with data that will be

done in Chapter 4.

3.1 Configuration space for k = 3 and N = 155

In this case, the equation that fully describe this system is

n1 + n2 + n3 = 155, (3.1)

which actually is the equation (2.1) but with k = 3 and N = 155. This is plotted

Figure 3.1 to take a picture of the phase space. Please note that, despite it looks

like there is a continuous triangle, there is no such thing. If the reader look carefully
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Figure 3.1: 3D representation of the phase space. Each black dot on this
plane represent a possible vote scenario. Also, some specific vote scenarios are
highlighted with bigger and coloured points.

the figure will see that the “triangle” is actually formed by tiny black dots, which

are apart from each other i.e. we have plotted all solutions for for discrete values of

n1,n2 and n3, in the range [0, 155].

3.2 Magnetizations and entropies

The next thing we are going to show is that we can plot most of the physical mag-

nitudes from the previous section in on top of the configuration space. We can color

the dots of Figure 3.1 according the values of theses quantities. For instance, on

Figures 3.2 to 3.5 we have plotted the magnetizations and entropies, respectively.
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Figure 3.2: Link magnetization across different configurations on the configu-
ration space.
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Figure 3.3: Triangle magnetization across different configurations on the con-
figuration space.
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At first glance, we can see that link magnetization leans higher values to (more)

unanimous votes, towards the corners of the configuration space triangle. The tri-

angle counterpart seems to not being able to distinguish between an unanimous

agreement and votes mainly divided between two options —both cases where this

has its maximum value mt = 1.

On the other side, entropies seem the oposite of magnetizations. For example,

maximums of Figure 3.3 correspond to minimums on Figure 3.5, and viceversa.

n1

0
20

40
60

80
100

120
140

160n2

0
20

40
60

80
100

120
140

160

n3

0

20

40

60

80

100

120

140

160

0.0

0.1

0.2

0.3

0.4

0.5

0.6

s`

Figure 3.4: Link entropy across different configurations on the configuration
space.

Nevertheless, while the minimum of the link magnetization (on Figure 3.2) is on

the center of the configuration space, the maximum link entropy is not there. A more

detained look up will show us that the center (of the configuration space) actually

is a local minimum, and therefore it is surrounded by a neighbourhood of maximum

entropy configurations. This can be better seen in Figure 3.6, where sℓ has been

plotted on the vertical axis.
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Figure 3.5: Triangle entropy across different configurations on the configura-
tion space.
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Figure 3.6: Link entropy plotted against how many legislator have chosen each
of two vote options. The third options is derived from equation (2.1).
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On Figure 3.7 we also plot the alternative triangle entropy S̃t presented on equa-

tion (2.34), which, as it can be seen, present three areas of high entropy where there

is a maximum.
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Figure 3.7: Alternative triangle entropy where the triangles types are the
states rather than balancedness.

Minimum of mℓ and maximum of sℓ

Now we will solve analytically where are the minimum of mℓ and maximum of sℓ, for

k amount of vote options, hoping to get expressions compatible with what we have

just seen on Figures 3.2, 3.4 and 3.6.

We are going to start proving mℓ has its minimum of the center of the configu-

ration space differentiating Mℓ with respect to our generalized variables and stating

that derivative is equal to zero. We use the value for Mℓ we got from equation (2.13)

and differentiate it with respect to each ni, with i ∈ {1, . . . ,k}. While doing that,

since Mℓ =
1
2[2∥n⃗∥

2 −N(N − 1)], it can bee seen that −N(N − 1) remains constant,
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so, our derivative will end up being just ∂Mℓ

∂ni
=

∂∥n⃗∥2
∂ni

, leaving us with

∂

∂ni

∥n⃗∥2 = 0 (3.2)

at the end. Here we have written a derivative of ∥n⃗∥2 with respect to the number of

any general vote option i, but it is important to remember that in order to identify

a minimum taking the partial derivate with respect to all vote options —and equal

them to zero— is needed. So, really, we will have to solve a system of equations.

Also, it is important to consider equation (2.1) before differentiating because we only

have k − 1 independent variables. In other words, any of them can be expressed in

terms of the others.

For the purpose of this computation, we are going to say the last dimension i.e.

nk is going to be N −∑
k−1
i=1 ni. Putting this into equation (3.2) gives us

0 =
∂

∂ni

⎡
⎢
⎢
⎢
⎢
⎣

(
k−1
∑
j=1

n2
j) + (N −

k−1
∑
j=1

nj)

2⎤
⎥
⎥
⎥
⎥
⎦

.

Now, for the sake of order, in the following steps we are going to rewrite this expres-

sion with Einstein notation. We will drop each sum symbol and take each pair of

repeated indexes as an implicit sum along them, from 1 to k − 1. In order to accom-

plish this, the sum ∑
k−1
j=1 nj will be noted as njσj, with σj being the j-th component

of the vector 1 = {1, 1, . . . , 1} of dimension k − 1. Then, the expression from above

turns

0 =
∂

∂ni

[njnj + (N − njσj)
2
]

=
∂

∂ni

[njnj +N
2 − 2Nnjσj + (njσj)

2] . (3.3)
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Differentiating this, it yields

0 = 2δijnj − 2Nσjδij + 2(njσj)σℓδiℓ

= 2δijnj − 2Nσjδij + 2njσjσi,

where dni

dnj
= δij has been evaluated. Then, we can isolate the term with N to the

LHS, getting

Nσi = δijnj + njσjσi

= (δij + σjσi)nj. (3.4)

Since σi represents a vector full of ones on its entries, Nσi will represent a vector with

N on each entry. Also, it can be noticed that σiσj will represents a (k − 1) × (k − 1)

matrix whose entries are all equal to 1, so, equation (3.4) can be interpreted as the

following matricial expression

(3.5)

which describes the system of equations we foresaw we were going to have. To solve it

we are going to write the system as an augmented matrix, and apply row operations

on it.

As we can see on Figure 3.8, the solution for equation (3.5) is where all ni are

equal to N
k . At first this system tell us this is true for all ni from n1 until nk−1, but,
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The first row is

subtracted to all

other rows

All rows, from the

second row onwards,

are substracted to

the first one

Every row is

divided by k

All rows are summed

into the first row

The rows from the

second row onwards

are multiplied by k

Figure 3.8: Steps for solving the system of equations of equation (3.5).

with equation (2.1) we also get that nk is N
k . In other words

min(mℓ) =mℓ∣
n⃗=(N

k
,...,N

k
)
. (3.6)

At this point someone could ask if this is really a minimum, because strictly

speaking, the system we have solved so far only tell us the obtained configuration is

a critical point in the configuration space. But this could also be a saddle point, or a
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maximum. Well, for this, the fact that the squared matrix on equation (3.2) has its

diagonal full of two’s —which is positive—, means the partial derivative ∂2Mℓ/∂2ni

is going to be positive for any i, proving then this scenario is indeed a minimum ofmℓ.

Another —much quicker, actually— way of proving this configurations posses

the minimum mℓ value, is realizing that ∥n⃗∥ is the module of the vector n⃗ on the

configuration space. And due our constraint of ∑
k
i=1 ni = N , the minimum does not

have other possibility rather than to be on the center of the space. Any leaning from

that point toward any direction would increase the module of the vector, approaching

to N for the extremest case. At low dimensions this is clearer to see. For instance

with two vote options the minimum is at ni =
N
2 for i ∈ {1, 2}, as can be seen on

Figure 3.9.

n1

n2 n2 = N − n1

a⃗

b⃗

Figure 3.9: Unidimensional configuration space conformed by two vote options,
described by the red line. a⃗ is a random configuration while b⃗ = (N/2,N/2).

Now, we look up for the maximum of sℓ. First, we are going to consider the

entropy as sℓ = −kB [p+ ln(p+) + p− ln(p−)] differentiate sℓ with respect to ni using

the chain rule as follows.

∂sℓ
∂ni

=
∂sℓ
∂p+

∂p+

∂ni

. (3.7)
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The first partial derivative is going to be

∂sℓ
∂p+
= −kB [(1 + ln(p

+)) + (1 + ln(p−)) (
∂p−

∂p+
)] .

Noting p− = 1 − p+ will give us the partial derivate of the negative-link probability

with respect to the positive-link one is just -1. Then, we get

∂sℓ
∂p+
= −kB [(1 + ln(p

+)) − (1 + ln(p−))] = −kB [ln(p+) − ln(p−)] . (3.8)

While, the pending partial derivative is given by

∂p+

∂ni

=
1

L

∂L+

∂ni

=
1

L

∂

∂ni

(
1

2
∥n⃗∥2 −

N

2
)

=
∥n⃗∥

L

∂

∂ni

∥n⃗∥ (3.9)

Then, from putting equations (3.8) and (3.9) into equation (3.7), we get

∂sℓ
∂ni

= −kB [ln(p
+) − ln(p−)] [

∥n⃗∥

L

∂

∂ni

∥n⃗∥] (3.10)

If we equate equation (3.10) to zero, we will have that each of its two bracket

terms could be zero. If the second is the one that becomes null, we would get

that ∂∥n⃗∥/∂ni = 0, which we already solved from equation (3.2) to equation (3.6). It

would yields us to the center of the configurations space. The first bracket, on the
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other side, is zero when L+ = L−. This results on

0 = L+ −L−

=
1

2
[∥n⃗∥2 −N] −

1

2
[N2 − ∥n⃗∥2]

=
1

2
[2∥n⃗∥2 −N(N + 1)]

= 2 [
k−1
∑
i=1

n2
i + n

2
k] −N(N + 1)

= 2

⎡
⎢
⎢
⎢
⎢
⎣

k−1
∑
i=1

n2
i + (N −

k−1
∑
i=1

ni)

2⎤
⎥
⎥
⎥
⎥
⎦

−N(N + 1). (3.11)

Then, equation (3.11) describes the configurations that are critical points of sℓ , aside

of the center of the configuration space. Since we are interested in the case of three

vote options, we evaluate k = 3 in the mentioned equation, getting

N(N + 1)

2
= n2

1 + n
2
2 + (N − n1 − n2)

2

= N2 + (n1 + n2)
2 − 2N(n1 + n2) + n

2
1 + n

2
2.

which yield us

N (N − 1)

4
= N (n1 + n2) − n

2
1 − n1n2 − n

2
2. (3.12)

This is plotted in Figure 3.10, where can be seen how these configurations form an

elipse while viewing the configuration space from above. Clearly, these would look

as a circle if they were looked from a tridimensional perspective, as the previous

configuration space figures. This is consistent with what can be observed on Fig-

ure 3.4, where the high entropy zone presents small depression right in the center of

the configuration space.

We found this quite interesting because from the principle of maximum entropy

we could lean to think that at some point there may be a tendency of the system

toward these specific configurations, which are —at first glance— non trivial, far
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Figure 3.10: Subspace of the configuration space where link entropy is maxi-
mum. This view is from above with respect to previous plots of the configu-
ration space, thus showing only two vote options, while the third is implicitly
defined by equation (2.1).

from scenarios like unanimity or the center of the configuration space. Even though,

the regions of the configuration space when a vote is disputed by two options in

similar amounts is more closer to the described path on Figure 3.10. In fact, it

seems the curve touches the axes around N
2 .

Relationship between magnetizations and entropies

In respect to magnetizations and entropies we plot the relation between sℓ and mℓ

on Figure 3.11 while in Figure 3.12 we show st versus mt. On them, continuous

orange lines are plotted representing equations (2.32) and (2.33), but normalized by

L and C, as in equation (2.34), respectively. Also, blue dots on top of the orange

lines represent possible configurations for N = 155.

As both equations (2.32) and (2.33) have the same structure, varying only on the

magnetization that acts as independent variable, it is expected that both Figures 3.11
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Figure 3.11: Link entropy against link magnetization. Orange line is sℓ from
equation (2.34) while blue dots represent configurations from Figure 3.1
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Figure 3.12: Triangle entropy against triangle magnetization. Orange line is st
from equation (2.34) while blue dots represent configurations from Figure 3.1

and 3.12 behave the same. However, in these figures we do appreciate how both kind

of magnetization do differ in domain. We know that the maximum of mℓ is 1, while
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its minimum is defined by equation (3.6), which is

minmℓ =
N

2k
[N(2 − k) − k] . (3.13)

On the other side, triangle magnetization also has a maximum value of 1, and its

minimum is on equation (2.14) at (Nk , . . . ,
N
k ) as well. This give us

minmt =
N

6
[2 − 2N2(2/k + 3) −N(3 +N)] . (3.14)

Relation between mℓ and mt

Following, we are going to dive into the relationship between the two magnetizations

we have constructed. Since we do not have an analytical relation for this, on Fig-

ure 3.13 we show the relation between them from the magnetization values for the

configuration space with k = 3 and N = 155. On the figure we appreciate a collection

of straight lines that vary their slope and behave as an envelope of a curve similar

to a parabola.

In an attempt of finding an analytical expression for this relation, we first try to

parametrize the paths between the marked position. We have drawn the paths in

Figure 3.14 for picture them better. Now we are going to parametrize the paths as

follows, speaking in terms of part of the configuration space triangle. We encourage

the reader to check Figure 3.14 to identify the path without problems.

• From the center to a corner. We start on the point (N3 ,
N
3 ,

N
3 ). We have to

borrow a node from two groups, and give them to the third. Then, the path is

described by

A(t) = (
N

3
− t,

N

3
− t,

N

3
+ t) , (3.15)

with t for us to move across the path.
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Figure 3.13: Triangle magnetization with respect to link magnetization. We
have used the same label style for the relevant vote scenarios as in Figure 3.1,
to illustrate the map between the configuration space and the mt −mℓ space.
Values were computed for N = 155.

• From the center to the middle of a side. We also start on the same point as

before, but now we borrow two nodes from an option, and the give one to each

of them two the remaining options. Then, the path is described by

B(t) = (
N

3
− 2t,

N

3
+ t,

N

3
+ t) . (3.16)

• From the middle of a side to a corner. We now start on the middle of a side,

which we are going to note as (0, N2 ,
N
2 ). Now we just to borrow one node from

one of the two competing options, and the give the other. Then, the path is

described by

C(t) = (0,
N

2
− t,

N

2
+ t) . (3.17)

• Path parallel to C. In an attempt to express the path C in a more general

fashion, we define D similarly, but depending also on a new parameter α,
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Figure 3.14: Configuration space with the same colored circles as in Figure 3.1,
and with paths between these drawn. Only 1/6 of the triangle was marked up,
to avoid redundancy due to the symmetry across the triangle. Paths A,B,C
and D are defined in equations (3.15) to (3.18). The path D was drawn with
α = 5.

which is going to be the number of nodes the option that in C had no votes

now is going to have. This number will be constant through the whole path.

D(t,α) = (α,
N

2
−
α

2
− t,

N

2
−
α

2
+ t) . (3.18)

With these definitions for the paths we try to calculate mℓ and mT values for any

point on a path by evaluating the paths equations into equations (2.11) and (2.12)

(and then, normalizing by L or T , accordingly). For each path we obtained the

following expressions for mℓ and mt, in terms of the parameter t (and α for D):
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● Path A:

mℓ =
−N2 −N + 2(N−3t)2

3

N(N − 1)
,

mt =
−N3 −N (3N − 2 (N − 3t)

2
) + 2N − 4(N−3t)3

9

N (N − 2) (N − 1)
.

(3.19)

● Path B:

mℓ =
−N2

3 −N + 12t
2

N (N − 1)
,

mt =
5N3 − 27N2 + 108Nt2 + 18N + 216t3

9N (N2 − 3N + 2)
.

(3.20)

● Path C:

mℓ =
−N + 4t2

N (N − 1)
,

mt = 1.

(3.21)

● Path D:

mℓ =
−2Nα −N + 3α2 + 4t2

N (N − 1)
,

mt =
N3 +N2 (−3α − 3) +N (6α2 + 2) − 3α3 + 12αt2

N (N2 − 3N + 2)
.

(3.22)

At this point we tried to work with these parametrical descriptions for the paths

to find analytical expressions that could describe the relation we are interested in.

In this process, almost none of the pairs of equations we have just presented were

useful for this purpose, mainly due the complexity of the resulting mathematical

expressions. Nevertheless, they were useful for plotting the paths, since —for each

path— only plugging different values for t were needed. This led us to Figure 3.15

Now, the expression that were indeed useful for deriving analytical expressions were

the ones of equation (3.22), which are the parametrized expression for the path D.

With these two, first, we isolated the parameter t in terms of mℓ, and then put it in

the expression for mt(t). Thus, we got that mt in terms of mℓ is described by

mt =
3αmℓ

N − 2
+
3α[N(1 −N) + 4α(N − α)]

N(N − 1)(N − 2)
+ 1. (3.23)
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Figure 3.15: Paths A,B and C in the mℓ −mt space. They were drawn from
their parametrical descriptions on equations (3.19) to (3.21).

We can appreciate how equation (3.23) still depends on the parameter α, and will

see this in fact let us distinguish between each straight line on the mℓ −mt space. In

other words, for different values of α we will expressions for different straight lines.

So, these equation describes the whole family of lines in this space.

Here, on Figure 3.16, we plot the paths A,B and C as before, but now on top

of the rest of points of the mℓ −mt space. In addition, we plotted path D using

equation (3.23) we just derived, with α = 5.

Finally, we calculated an analytical expression for path A. We accomplished this

taking the set of straight lines defined by equation (3.23) as the envelope for that

path.

Deriving the expression for an enveloped curve takes the following steps. We

differentiate the family curves equation with respect of the parameter that distinguish

each curve. In this case this α. Then, we equate the resulting expression to zero and

solve for the independent variable —mℓ in this case— in terms of the parameter (α).

Finally, the main equation for the family of curves is evaluated with the obtained
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Figure 3.16: Same as in Figure 3.13, with paths A,B,C and D marked up on
it. We followed the same graphic style for paths from Figure 3.14 for easier
comparison. Path D was drawn with α = 5.

expression for α(mℓ) —in this case. Doing this we obtained

f(mℓ) = 8N
2 − 9(N − 1)(Nmℓ − 2) − (3mℓ(N − 1) + 3 +N)

3/2 (3.24)

as the expression for path A. When plotted the path matches with the paths A

drawn on the previous figures (actually, in Figure 3.16 path A was drawn using this

equation).

3.3 Temperature

In this section we analyze the behaviour of the Temperature, which was defined in

chapter 2.
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Looking the analytical expressions

First, we are going to take a look into its definition on equation (2.39), given by

T = (N − 2)
2

kB
[ln(

1 +mℓ

1 −mℓ

)]
−1
.

Here we see the temperature may not be defined for every magnetization values.

Checking where the logarithm is zero we got the temperature is undefined when

mℓ = 0. which is also when L+ = L− —and when the entropy sℓ is maximum, recalling

what we got in Section 3.2.1.

We also took the opportunity to check when the temperature is zero. For that

we need the logarithm to diverge, which needs mℓ = 1 or mℓ = −1. Considering the

minimum of mℓ is greater than −1, with stick with the case when mℓ = 1. So, The

unanimity scenario is the one with T = 0.

To get an idea of rest of domain for the temperature we look at Figure 3.11, where

we have plotted the link entropy against the link magnetization. Since T = ∂H
∂Sℓ

and

H is proportional to mℓ, we know the slope on that curve will be proportional to the

temperature. From the change in this slope we can anticipate we are going to have

two regions. One where the temperature will be positive, and other where it will be

negative.

Now we are going to look at the relation between temperature and energy. For

this we have plotted equation (2.41) on Figure 3.17 with N = 155 and kB = 1. In

order to get a better picture of the behaviour of the equation we used a temperature

range of [−1e4, 1e4], but at this point we are yet to find if T will really fill this

interval for our particular case of interest with N = 155.

There, a discontinuity ofH is noticeable, specifically when T is zero. First, around

the discontinuity H is bounded by N
2 (N − 2)(N − 1), as is stated on equation (2.41).
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Figure 3.17: Hamiltonian against temperature, from equation (2.41) with N =
155 and kB = 1. H is not defined of for T = 0, but in the plot it was considered
as zero for looking purposes.

Then, if we recall —according to equation (2.41)—, for magnetization values slightly

greater than zero the argument of the hyperbolic tangent goes to positive infinity

and then the tangent goes to positive one. If now a slightly lesser than zero value

were put into the equation, the opposite would occurs, with the tangent going to -1.

Summarizing, H is undefined at T = 0 since crossing that point makes the energy flip

its sign. The same is applicable the other way. If —for a moment— we think in the

T as function of H, it also will be undefined, since over that point the temperature

goes from negative infinity to positive infinity.

Temperature in the configuration space

If we plot the temperature values on the configuration space, we get the drawing

of Figure 3.18. We can appreciate how the temperature values look almost entirely

uniform across the plane. Also, there are noticeable points that have the greatest and

lowest values of temperature. It is important to notice that the apparent uniformity
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Figure 3.18: Temperature on top of the configuration space.

on the temperature values is caused by the wide range of temperature values we are

coloring. Please recall for mℓ near to zero the temperature diverges whether toward

positive or negative infinity. So, any configuration with mℓ close enough to zero will

return us temperature values with high absolute values.

Since we still want to look how T behaves in the space that look homogeneous in

Figure 3.18, we will plot the logarithm of temperature to reduce the scale. But, let us

plot which parts of the configuration space have positive and negative temperature

first. We do this on Figure 3.19.

The boundary between T > 0 and T < 0 looks very clear, and notice it matches

the ring on Figure 3.4 with max mℓ, as expected. Now, we show the logarithm of

temperature’s absolute value on Figure 3.20. There, the ring of maximum sℓ is even

clearer. Also, it can be seen how toward unanimity the temperature’s absolute value

approaches to zero.
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Figure 3.19: Sign of temperature on top of configuration space.

With this, we have ended our model analysis. In this chapter we focused on

computing the magnetizations, the entropies and the temperature on top of the

configuration space. In that process we found the link entropy does not have its

maximum in the center of the configuration space, but in a ring surrounding it. We

confirmed this by studying the minimum of mℓ and maximum of sℓ analytically, with

consistent results. Later, we jumped into understanding the relation between mℓ and

mt. For that we parametrized different paths on the configuration space and mapped

them into the mℓ −mt space, and in doing that we could derive an expression that

completely describe the relation between these two magnetizations.

Finally, we analyzed the defined temperature in terms of mℓ, and looked for

posible configuration where it could be undefined or zero. Also, the dependency of

the hamiltonian on temperature was studied and how the temperature is spread in

the configuration space, identifying the regions where it positive and negative.
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Figure 3.20: Logarithm of temperature’s absolute value on top of the config-
uration space.
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Chapter 4

Evaluation of the model with data

In this chapter we present how we evaluate some of the already presented physical

magnitudes of the model with real-world data. For this we chose the Chilean Cham-

ber of Deputies and the roll-call votes that took place on it. Specifically we will have

all roll-call votes of the 2018-2022 legislative term.

4.1 About the Chilean Chamber of Deputies

In the Chilean legislative power, on each vote session, legislator can choose between

three options: for, against, and abstain. Beside that, there are also another few

situations in which a legislator can be. First of all, they can be absent. Second,

the regulation let them to establish a pareo, in which a pair of legislators of oppo-

site parties agree not to vote if one of them is absent at the time of voting. And

finally, when there are direct conflict of interest between a legislator (or one of their

relatives) and the matter at stake, their vote is said to be dispensed. In practice, is

another way to say the person is disqualified to vote. For simplicity of the analysis,

these last three situations where treated as abstain, to deal only with with the three

main vote options.
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4.2 Gathering data

The Chilean Chamber of Deputies have a transparency policy that have it make its

data available for everyone. In this case, they provide an API for retrieving different

type of records about their legislative activity. All the available API methods are

listed on [63].

Using the retornarVotacionesXAnno method, we could get records listing all

the votes from 2018 until 2022. From all those votes, we filtered them keeping only

the ones that had occurred between March 11th of 2018 and March 10th of 2022

(beginning and end of the legislative term). This vote list also contained metadata

each vote session had, which included an internal vote id, the number of for, against,

and abstain votes, and the amount of votes that were considered as dispensados.

These vote ids where used for calling the API method retornarVotacionDetalle

which ask for a vote id and returns the vote roll-call detail i.e. how each present

legislator voted. The data contained a list of the parlamentarias present at the time

of voting, next to the option they voted.

No further filter was done to the dataset, so it contained multiple kind of votes,

from each bill article approval to procedural votes of low relevance. Note we are

looking for a rough quantitative analysis to evaluate our model, and, although we

could have cherry-picked high relevant bills or split the records analysis by bill topics,

this was not our purpose.

All the procedures mentioned in this section, from communicating with the API

to retrieve the vote records, to writing the data and filtering it according to the

mentioned dates, were handled with developed Python scripts.
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4.3 Vote records analysis

First, we plot the vote records on top of the configuration space. On Figure 4.1 we

have plot them as a red dots.
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Figure 4.1: Roll-call records of the 2018-2022 term of the Chilean Chamber
of Deputies, in the configuration space, represented red dots. The axes n1,n2

and n3 represent the options for, against, and abstain, respectively.

Analyzing the data we found that the part of the phase space with more points is

around the lower half of the left edge of the phase-space triangle, which indeed looks

like a thick stripe of dots on Figure 4.1. Now, paying attention on the axes, this

tells us votes are mainly in dispute between for and abstain options. This do not

necessarily says that there are more real-abstain votes than against ones, because we

must recall our assumptions for abstention also included the absence (where most

high abstain values might come from) and the situations of pareos and dispensed

votes (which should conform just a tiny part of abstain votes, since these occur at

small scale).
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We also computed the mean position of the roll-call records and plot it on Fig-

ure 4.2. There we included the region where L+ = L− to show that, although this

point its not in that region it is very close. Moreover, we calculate basic statistics
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Region where s` is maximum

Figure 4.2: Configuration space with the mean position of roll-call records of
the 2018-2022 term of the Chilean Chamber of Deputies, painted as a red dot
on top of it. In addition the ring of maximum sℓ was drawn for reference. The
axes n1,n2 and n3 represent the same as in Figure 4.1.

for the physical properties of the dataset and show them on Table 4.1. It can be

seen that average values for this quantities may not represent the dataset the best

due the high values for the standard deviations, specially the ones that are bigger

than the absolute value of their associated mean, like for mℓ,H and T .

Finally, in the following figures (Figures 4.3 and 4.5 to 4.7) we show the fluctu-

ations of these quantities. In these the horizontal axis represent the vote number,

starting with 0. Since the frequency of votes it is not constant, drawing the votes in

chronological order is got-to way of plotting them across a temporal-like dimension.
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Table 4.1: Statistical measure for the physical properties of the vote records.

Mean Standard deviation
mℓ 0.116 0.343
mt 0.855 0.154
sℓ 0.622 0.099
st 0.210 0.199
H 6.028e2 4.571e4
T −2.125e5 6.266e5

Also, in all of them we have plot the raw series on the top panel, while in the lower

panel we have plotted the series taking the average value for windows of 50 points.

In addition we have marked the average of each plot as a red line.
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Figure 4.3: Fluctuation of the link magnetization. Top panel: raw series; lower
panel: average every 50 consecutive data points. Red lines represent the mean
value for each plot.
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Figure 4.4: Fluctuation of the triangle magnetization. Top panel: raw series;
lower panel: average every 50 consecutive data points. Red lines represent the
mean value for each plot.
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Figure 4.5: Fluctuation of the link entropy (computed with kB = 1). Top
panel: raw series; lower panel: average every 50 consecutive data points. Red
lines represent the mean value for each plot.
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Figure 4.6: Fluctuation of the triangle magnetization (computed with kB = 1).
Top panel: raw series; lower panel: average every 50 consecutive data points.
Red lines represent the mean value for each plot.
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Figure 4.7: Fluctuation of the T (computed with kB = 1). Top panel: raw
series; lower panel: average every 50 consecutive data points. Red lines repre-
sent the mean value for each plot.

71



72



Chapter 5

Discussion and conclusions

In this last chapter we are going to review the major insights that we got from the

presented work, and their implications.

5.1 About related work

We want to compare our model with the one that has been presented on Belaza et al.

[64]. This work is the most similar to ours we could find, so we considered important

to discuss the similarities and differences. In that article Belaza et al. also present

a statistical mechanics model for balance theory with focus on political networks. A

clear similarity come from the Hamiltoninan they proposed, which is

H = ∑
i<j<k

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−αsijsjkski
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
three-body

−γ (sijsjk + sijski + sjkski)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

two-body

+ω (sij + sjk + ski)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

one-body

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

with sij being 1 or −1 if there were a link between nodes i and j with that sign,

or 0 otherwise; also, the sum indexes i < j < k go through every single triad of

nodes. Here, we can note that the “one-body” term coincides with the definition

of our Hamiltonian (leaving the ω factor aside). That term is summing the sides of
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each triangle, so basically is the same we showed on Section 2.4. Also, the “three-

body” term is summing each triangle balances, so at the end it would be something

proportional to Mt.

Despite that, the general structure of the work is pretty different than our. They

assume a random network where all four types of triangles are possible with addition

of the possibility that may be triads of nodes that end up not begin connected, this

marking a huge difference between the approaches. Instead we start from a fully

connected network —throwing out the situation of a triad not being connected—

and our criteria for assigning positive or negative sign to the links make impossible

to have the triangle of type [+ + −].

Another big difference was the chosen ensamble to work in. The developed model

in this thesis took the microcanonical ensamble as a framework. This choice is jus-

tified by the fact we wanted to assume that each microstate would have the same

probability and to have a constant energy. Also we were looking to derive the temper-

ature for the system rather than taking it as an external parameter for the system.

On the other side, [64] used the canonical ensamble, which gave probabilities for

each configuration of the system in terms of the temperature. We did not derived

probabilities that could tell us which vote scenario is more probable than the rest,

but we think this might be possible if we extend our formalism toward a canonical

formulation. In that scenario, we think the configuration space we presented —for

the microcanonical ensamble— would turn into a phase space —for the canonical

ensamble.
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5.2 About strong polarization

As we mentioned in Section 1.3, this work was motivated by the work present on

Neal [43] where strong polarization is introduced. There, the author stated this new

type of polarization could be quantified via the triangle-index, which is defined as the

proportion of balanced triangles between the total number of triangles. We note this

metric is equal to the probability of finding a balanced triangle among all triangles,

which we have noted as p+t in Section 3.2. If we recall equation (2.30), we would note

that it has a direct relation with the triangle magnetization (mt). Nevertheless, high

mt does not imply high strong polarization.

We have to remember that [43] considered multiple bill’s data for building the

network, so we can not hang on exactly the same interpretation of that metric.

Since our model took relations between legislators from a single vote session during

its formulation, it may not be appropriate to talk about polarization as such while

evaluating it with particular vote configurations. A political system is not going to be

polarized by just one vote session, but the outcomes of multiple votes through time

may indeed be an indicator if a parliament has been more polarized or not. Following

the same line, a single value of energy or temperature for a given vote outcome it is

not going to tell us much more about a system, but we think a collection of physical

properties for a large dataset of roll-call vote records will do. However, we recognized

the presented work does not aboard this.

The model we have presented offers a physical formalism to quantify disagreement

from roll-call votes outcomes. This goes in the direction of understanding what strong

polarization, but by itself it is not enough. In order to accomplish it, we think an

analysis for the physical properties (mℓ,mt, sℓ, st,H,T ) of a set of multiple votes

might be needed. For this, comparing the model with a larger dataset could be

useful, and extending the formalising toward a canonical ensamble may help as well.
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5.3 About the physical magnitudes

Magnetizations and energy

In the analysis of the model we showed the magnetizations on top of the configuration

space, specifically on Figures 3.2 and 3.3. From there we notice mℓ has its maximum

values toward the corners of the configuration space triangles. In some extent, this is

expected. Due the way we assign the link signs in the network, toward the unanimity

configurations we will have mostly positive links, so the magnetization tends to 1.

Then we could say mℓ represent how close or far a vote is from unanimity.

The behaviour for mt —the subtraction of balanced triangles minus the unbal-

anced ones— is a bit different. Seems it can not distinguish between a unanimous

vote and a vote disputed between two options. This is can be explained recalling

the only unbalanced triangles in our network are of type [− − −] and that with two

vote option we are not going to have those. Around legislators that vote different

there are only going to be [+−−] triangles, which are balanced. Thus mt will be an

indicator of how much close a vote is of having at least one option without votes,

with its value being equal to 1 when at leas one option already have no support.

Regarding the energy, we clarify we did not plotted the Hamiltonian on Sec-

tion 3.2 because —since is proportional to the link magnetization —all that can be

inferred from the mℓ plot is equivalent for the energy (but with opposite sign due the

negative sign on equation (2.20)). Then, its meaning would be the same as mℓ i.e.

how much far from unanimity a vote is. And actually, if we remember, in Section 2.4

we choose the Hamiltonian looking its minimization would occur for the unanimity

scenario, so in some way this is expected.

Potential works could be testing this thesis’s model with a different Hamiltonian

or modifying the current one, adding new terms to it similarly as in [64]. This may be
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helpful if we wanted to give more relevance to mt or to triangles balance in general.

In that scenario relations between magnetizations we have derived on Section 3.2.3

could be essential for linking potential analysis with the one we presented in this

thesis.

Entropies

For the entropies we can hang on the interpretation for entropy as a measure of

“surprise” or uncertainty for a given configuration. For example we notice sℓ has

its minimum on the corners of the configuration space triangle. In those unanimous

cases we know there will be positive links only, if we were picking a random link from

the network there would be no doubt that it would be positive. Thus, zero entropy.

Again, if we moved away from the corner we would note a growth on the entropy.

As we mentioned earlier, the maximum of sℓ surround the center of the configu-

ration space in a region described by L+ = L−. So, in this case we have fifty percent

chance of drawing a positive or negative link from the network, then this the most

uncertain situation.

Regarding this entropy, in Chapter 4 we showed that the average position for

votes of the Chilean Chamber Deputies in the configuration space was close the

region with maximum sℓ. This may suggest that the system —in average— actually

tends toward these configurations. Nevertheless, the used dataset may be not large

enough to be statistically representative. Records of votes from multiple legislative

terms may help to test this.

The triangle entropy on the other side, does not express much more than the

triangle magnetization. The behaviour is practically analogous but upside-down.

We could think this as the uncertainty of having at least one option without votes.

On the sides, as we mentioned above, we know for sure one option has no support.

Thus, zero entropy. Then, the closer to the center the higher the entropy.

77



Finally, about the variant triangle entropy s̃t on Figure 3.7 it can be seen that it

has three maximums. Despite we did not analyze the behaviour of this quantity, we

guess these could be where C+++ = C+−− = C−−− so the uncertainty is maximum. Due

this entropy does not have a magnetization counterpart, a more detained on it was

left for future works.

Temperature

The temperature resulted in a quantity that may summarize what the other physical

magnitudes tell us. This is equal to zero at unanimity and from there toward the

center the configuration space starts growing, but the closer to the region L+ = L− a

vote gets the higher the temperature, diverging exactly in this boundary. All this can

be observed in Figures 3.18 and 3.20. Crossing it the temperature presents negative

values, meaning there there is high energy but no much entropy. This region (T < 0)

also represent where the energy is negative, meaning there are more negative than

positive relations in the network.

What happens on that boundary can also be studied analyzing the divergence

on the H − T plot of Figure 3.17. There we may notice that looking the picture

the other way —like temperature in function of energy—, passing from positive to

negative energy, the temperature flips from minus infinity to positive infinity, being

this discontinuity on the temperature another way to interpret the maximum link

entropy.

5.4 Final conclusions

Looking for a physical way to describe strong polarization [43] we constructed a

statistical mechanics model for a specific case of legislative networks from roll-call
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votes, choosing the sign for the links between legislators according the agreement

(or not) in the options they voted. Although at first our idea was to focus on

the triangles and their balance, we recognize most of our analysis ended up being

more about the links and about the link magnetization and entropy, where we found

interesting phenomena.

Part of this is caused by the fact our Hamiltonian ended up depending on the

link magnetization only, but in the larger picture —we think— this was highly in-

fluenced by the way we build our network and how we assigned the link signs. For

example, this also caused the triangle-index to lose its interpretation from [43], so it

got harder to keep track of what strong polarization was.

Despite that, we can say we were able to successfully build a model where links

and triangles in the network were treated as spins. There, spins states were given

by the sign or the balance of links and triangles, and therefrom we derived different

physical magnitudes such as magnetizations, entropies and temperature. All this

was done analytically considering an arbitrary amount of options k, although later

we fixed this to 3 on some calculations for simplification purposes. This last based

on that most commonly vote have three options: for, against, and abstain.

Finally, the model we have presented offers a physical formalism to quantify

disagreement from roll-call votes outcomes, and although it cannot told us about

polarization yet, goes in that direction, paving the way for potential works that may

extend it.
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