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Un estudio emṕırico del efecto de los codificadores de

v́ıdeo en la Localización Temporal de Vı́deo

El núcleo de computer vision (CV) reside en la comprensión e interpretación de v́ıdeos largos
e inéditos, una tarea dificultada por el esfuerzo manual necesario para analizar la ingente
cantidad de contenidos de v́ıdeo que se generan diariamente. La tarea de Temporal Video
Grounding (TVG) se perfila como una solución clave en este ámbito, con el objetivo de
desarrollar modelos que identifiquen y marquen los ĺımites temporales de las acciones en los
v́ıdeos mediante el lenguaje natural. El campo ha evolucionado significativamente, pasando
de modelos basados en sugerencias a técnicas avanzadas que utilizan modelos basados en
transformadores, mejorando notablemente la precisión y la eficiencia.

A pesar de estos avances, sigue habiendo una brecha en la exploración de la representación
de v́ıdeos en la TVG. La dependencia de caracteŕısticas espećıficas de los modelos de clasifi-
cación tradicionales puede conducir a un ajuste excesivo y a una generalización limitada. Para
abordar esta cuestión, esta tesis propone un estudio emṕırico detallado en el que se analizan
diferentes representaciones de v́ıdeo en conjuntos de datos de referencia como Charades-
STA, ActivityNet Captions y YouCookII. Se desarrolla un marco exhaustivo para aislar el
efecto de las distintas representaciones de v́ıdeo, utilizando un conjunto diverso de más de
10 tipos de modelos preentrenados, centrados en clasificadores de acción basados en CNN y
transformadores.

Los resultados de este estudio son reveladores. Demuestran que la optimización de la
selección de estas representaciones de v́ıdeo puede mejorar significativamente el rendimiento
del modelo, lo que se logra preservando las estructuras del modelo y modificando al mismo
tiempo el codificador de v́ıdeo. Los resultados también indican complementariedad entre
las representaciones de v́ıdeo, sugiriendo que explotar esta complementariedad podŕıa abrir
nuevas v́ıas de investigación y perfeccionamiento en TVG.

El estudio también revela diferencias significativas en el rendimiento del modelo con solo
cambiar el codificador de v́ıdeo. Descubre patrones y errores claros derivados del uso de
determinadas caracteŕısticas, lo que indica una posible complementariedad entre ellas. Esto
sugiere que una selección cuidadosa de caracteŕısticas puede conducir a modelos más robustos
y generalizables en TVG.

En conclusión, este trabajo subraya la relevancia de las representaciones de v́ıdeo en las
tareas de TVG. Aporta al campo de CV proveyendo un framework para la extracción de
representaciones de v́ıdeos, aśı como ideas y métodos fundamentales que podŕıan orientar el
desarrollo de modelos multimodales más robustos en TVG.
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Abstract

The core of computer vision (CV) lies in the understanding and interpretation of long and
unprecedented videos, a task made difficult by the manual effort required to analyze the
vast amount of video content generated daily. The task of Temporal Video Grounding
(TVG) is emerging as a key solution in this field, aiming to develop models that identify
and mark the temporal boundaries of actions in videos using natural language. The field has
evolved significantly, moving from models based on suggestions to advanced techniques using
transformer-based models, notably improving accuracy and efficiency.

Despite these advances, there remains a gap in exploring video representation in TVG.
The reliance on specific features of traditional classification models can lead to overfitting
and limited generalization. To address this issue, this thesis proposes a detailed empirical
study analyzing different video representations in benchmark datasets such as Charades-STA,
ActivityNet Captions, and YouCookII. An exhaustive framework is developed to isolate the
effect of different video representations, using a diverse set of more than 10 types of pre-
trained models, focusing on CNN and transformer-based action classifiers.

The results of this study are revealing. They demonstrate that optimizing the selection
of these video representations can significantly improve model performance, achieved by
preserving the model structures and modifying the video encoder simultaneously. The results
also indicate complementarity among video representations, suggesting that exploiting this
complementarity could open new avenues for research and refinement in TVG.

The study also reveals significant differences in model performance with just a change
in the video encoder. It uncovers clear patterns and errors derived from the use of certain
features, indicating possible complementarity among them. This suggests that a careful
selection of features can lead to more robust and generalizable models in TVG.

In conclusion, this work underscores the importance of video representations in TVG
tasks. It contributes to the field of CV by providing a framework for the extraction of video
representations, as well as fundamental ideas and methods that could guide the development
of more robust multimodal models in TVG.
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y quien iba a pensar que en las vueltas de la vida me gustaŕıa tanto lo que estudio.
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Chapter 1

Introduction

Understanding and reasoning about long, untrimmed videos is at the core of Computer
Vision (CV). As humans have the ability to intuitively identify relevant moments within
videos. However, manual search in large videos or a continuous review of multiple videos
can cause errors and demand considerable time in locating events of our interest. For these
reasons, providing an effective solution to the challenging problem of The task of Temporal
Video Grounding (TVG) is essential for this and several problems in the field of computer
vision. The task of TVG appears as a fundamental effort in CV, aiming to develop models
that recognize and determine temporal boundaries of action instances in videos [44, 18, 15]
using natural language queries [11, 19].

The task of temporal localization specifically aims to pinpoint a moment of relevance
within a video, striving to provide the precise timestamp at which the queried event occurs.
In this context, TVG operates with two inputs: the first is an untrimmed video, and the
second is a natural language query detailing the search parameters that a machine learning
framework is tasked to locate. An illustrative example can be seen in Figure 1.1, where the
natural language query requests the identification of the exact moment a basketball player
scores. In such a scenario, an end-to-end TVG architecture should have the capability to
accurately determine and deliver the timestamp marking the beginning and end of the action
queried by the user.

As such, work on the TVG task is extensive and includes a wide variety of approaches and
techniques. While the original models were mostly suggestion-based, more recent techniques
have aimed at predicting the start and end temporal positions directly, or by regressing them
from the input video. The recent advent of transformer-based models [50] has also brought
new developments, where the integration of pre-training stages or the direct addition of
pre-trained vision and speech models has led to significant performance improvements.

In early developments, proposal-based models are responsible for generating a ranking
of predefined candidate frames for the localization of relevant moments, while proposal-
free models suggest that through multimodal representations it is possible to predict the
probability that a time interval contains the relevant moment sought. Although contributions
in this field are still limited, models using reinforcement learning for the localization of
relevant moments and weakly supervised methods, which focus on generating models that

1



10 [s] 12 [s]

TVG 
architecture

Query: exact 
moment where a 
player scores 

Figure 1.1: Representation of a general temporary video grounding framework.

mitigate the difficulty and cost associated with data annotation, stand out.

Despite the variety of methodologies employed in TVG tasks, there is a common element
in the majority of studies: the use of vector representations to process both video and textual
information integrated into the model. For textual representations, embeddings generated
by word embedding algorithms or transformers like BERT are commonly used. Thanks
to the standardization in the processes of extracting textual features, this step tends to be
straightforward, easing the implementation of various variants without difficulty. In contrast,
generating video representations often involves the use of video classifiers to create features.
This process is considerably more challenging than handling text due to the absence of stan-
dardized frameworks for video feature extraction. Consequently, researchers are compelled
to develop their own extraction pipelines, relying on pre-trained networks for video action
classification.

Despite the large amount of prior work in the TVG task, we find that the role of the
video representation has not been consistently investigated so far. Specifically, we observe
that prior work has relied on features derived from action classification models such as C3D
[48] or I3D [2], with alternatives remaining relatively unexplored. We speculate that this
selection bias may lead to model designs that overfit or exploit spurious patterns in these
features, without generalising in the long run. We suggest that the increased complexity of
recent approaches in search of improved performance can be seen as indirect evidence of this
point. This factor leads to two issues in the task of temporal localization: first, network
overfitting to only one feature, and second, the potential selection of suboptimal features
for problem resolution. This may result in the construction of overly complex networks to
address the task when a more optimal solution could be achieved through feature permutation

In light of this issue, in this work we propose a comprehensive empirical study to shed light
on the role of video representation in the TVG task. We consider three relevant benchmark
datasets, Charades-STA, ActivityNet Captions, and YoucookII, and design a comprehensive
framework that allows us to isolate the effect of different video representations by introducing
minimal changes in the model architecture. We use a wide variety of pre-trained models to
extract video representations, including more than 10 different types of models, resulting in
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more than 30 sets of extracted features for our data. These include, but are not limited to,
well-known CNN and Transformer-based action classifiers.

Our results show that changes in the video representation can lead to substantial per-
formance improvements by keeping the models as is, allowing a “classical” approach [41]
to perform better by a large margin by simply changing the video encoder, findings that
are consistent with similar observations recently made in the context of query representa-
tions [24]. Our experiments reveal clear pitfalls in the use of certain features and uncover
complementarity between features, which could lead to further performance improvements if
exploited. We hope that our work will provide the scientific community with additional tools
to further improve performance on this task, and help to eliminate model biases towards the
features that dominate today.

1.1 Research Problem

The field of temporal localization in video has received considerable attention in recent years,
resulting in a number of diverse studies [60, 47, 59, 41, 42, 14, 58, 35, 30]. These investigations
are characterized by the use of different techniques that aim to accurately identify specific
events or actions within video timelines, while achieving efficient results in terms of storage
and processing.

However, a common thread among these methodologies is their reliance on inputs to the
end-to-end architecture that are dependent on both video and textual features. This critical
reliance underscores the critical role of multimodal data in determining model performance,
and highlights the indispensable synergy between visual content and linguistic information
as the cornerstone of temporal localization efforts.

Despite the central role of video features in model input, the complexity of extraction and
the lack of a standardized framework make video feature extraction difficult. This challenge,
as shown in Table 1.1, leads several studies to prefer features extracted from the I3D model
to feed the visual component of their models. This preference overlooks the importance
of comparative analysis with alternative features and thus disregards the ”no free lunch”
theorem, which states that ”there is no single model that fits all problems”.

In addition, a common practice in the TVG community is to pretrain video encoders
on datasets identical to those on which they will be applied. This approach runs the risk
of overfitting the model to the performance observed during training, potentially leading to
overly optimistic results during testing phases. Such results, while initially promising, can
be significantly degraded when the model is applied to samples from outside the training
distribution, highlighting a critical area for improvement in the search for more robust and
generalizable temporal localization models.

The highlighted issues pose significant challenges to progress in the TVG task, leading to
stagnation in the field. This situation results in a constrained experimental scope, limited
to a narrow set of traditional features and neglecting the potential of using state-of-the-art
action classifiers for feature extraction. Such limitations not only stifle innovation, but also
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pave the way for suboptimal research practices, such as the development of overfitted models,
thereby undermining the pursuit of more effective and robust TVG methodologies.

Table 1.1: Performance evaluation of different TVG architectures and the corresponding
features used for the Charades dataset.

Model Feature Year 0.3 0.5 0.7 mIoU

PEARL [60] I3D 2020 70.46 54.19 35.22 50.02
LOCFORMER [43] I3D 2020 65.10 44.10 22.60 -
ACRMdt [47] C3D/I3D 2020 - 53.09 31.75 -
VSLNet [59] I3D 2020 72.96 59.46 35.48 51.38
TMLGA [41] I3D 2020 67.53 52.02 33.74 -
DORi [42] I3D 2020 79.25 68.41 50.56 60.29
ExCL [14] I3D 2021 71.9 53.5 35.4 51.2
DRN [58] I3D 2022 71.88 58.52 38.51 51.76
LGVI [35] I3D 2022 73.47 57.53 38.33 53.01
UniVTG [30] SlowFast 2023 72.63 60.19 38.55 52.17

1.2 Research Hypothesis

The success of Temporal Video Grounding (TVG) in Computer Vision is fundamentally
influenced by video representation choices. Limited diversity in video features often leads
to stagnation in performance and a lack of generalizability in TVG tasks. Addressing this,
a diversified selection of video features is proposed to significantly boost the efficacy and
flexibility of TVG models in varied real-world applications.

Research Questions

• Is the selection of video features beneficial for improving the performance of the task
of temporally localizing a relevant moment?

• Is it possible to visualize the prediction biases inherent in the features used to train a
TVG model?

• Is it feasible to observe performance benefits across various localization architectures
without identifying specific effects attributable to a single network?

• Does training temporal localization models with different video features show a com-
plementary component between the models?
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1.3 Objectives

1.3.1 General Objective

This thesis focuses on the detailed analysis and comparison of various video features, ex-
tracted from a variety of action classifiers, with the goal of evaluating how the variation of
these features affects the performance of temporal localization models. Inspired by method-
ologies from previous research, our study advances by proposing the use of features obtained
from pretrained video classifiers. Additionally, it proposes the development of a framework
designed to facilitate the efficient and user-friendly extraction of video features from an ex-
tensive range of pretrained action classifiers, currently considered state of the art.

Using the acquired feature set, we performed a thorough analysis that includes a perfor-
mance comparison on temporal localization tasks between two different TVG models using
different feature sets. The goal of this analysis is to uncover the effects of training models
with different feature configurations. Consequently, this study aims to elucidate the impact
of the selection of certain features on the performance of temporal localization tasks. In
addition, it aims to determine whether there is complementarity in the video classification
results derived from these features.

Through this proposal, the thesis aspires to offer significant contributions to the prevail-
ing methodology in the design of temporal localization models, highlighting the importance
of an appropriate selection of features and examining the potential complementarity and
orthogonality among them to improve accuracy in temporal localization.

1.3.2 Specific Objectives

• Create a standardized framework for extracting video features using different types of
action classifiers (based on temporality, convolutional networks, and transformers).

• To measure the performance impact of features obtained from action classifiers on the
temporal localization task.

• Examine the potential bias introduced by using diverse features for training within the
predictions generated by TVG models.

• Explore the consistency of the impact that variations in video features have on the
performance of two models for temporal localization tasks.

• Determine whether there is complementarity in the predictions made by different Tem-
poral Video Grounding models.
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1.4 Results and Contributions

Our work introduces an innovative framework designed to streamline video feature extraction.
Additionally, we conduct a comprehensive study showcasing the influence of diverse video
features on TVG tasks and the orthogonal performance of these features. The contributions
of this research are twofold:

1. Development of a Versatile Feature Extraction Framework: We propose
a framework for effortlessly extracting a wide range of video features, parameterized by
cutting-edge architectures in action classification. Built on the pyslowfast meta library, this
framework simplifies generating feature vectors from videos and adapts to various hardware
environments, allowing offline feature extraction for a multitude of video types.

2. Benchmarking Feature Performance in TVG: This contribution entails a thor-
ough evaluation of features in TVG tasks across three major datasets. By training and
comparing TVG models using these features, we uncover the distinct influences and biases
introduced by varying the input features, highlighting their independent predictive capabili-
ties.

In essence, this research offers a streamlined framework for video feature extraction and
emphasizes the critical role of feature selection in temporal localization. A key recommen-
dation is the exploration of feature orthogonality within the field, given their demonstrated
independent predictive strengths.

1.5 Research Outcome

As a result of this work, we have published a paper in the workshop of the International
Conference in Computer Vision (ICCV 2023), where part of the results shown in this docu-
ment are exposed. On the other hand, the code of the framework built for the extraction of
features is released 1, so that it can be used by anyone interested in extracting features from
videos.

1.6 Thesis Structure

The development of this thesis is organized into four chapters, each addressing the following
topics:

Chapter 2 aims to provide the reader with foundational concepts for a better understand-
ing of the thesis development. It begins by explaining the knowledge areas involved in the
task of temporal localization (Section 2.1). Subsequently, it delves into the Video Action
Classifier (VAC) task (Section 2.3), outlining the objectives of VAC and introducing theo-
retical concepts defining some state-of-the-art networks. Finally, the chapter covers the task

1https://github.com/Mezosky/VideoFeatures_TVG
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of temporal localization (Section 2.2), highlighting the two most famous methodologies to
solve this problem, the metric used to measure performance, and key characteristics of three
prominent datasets.

In Chapter 3, various experimental steps for developing this work are detailed. It begins
by explaining how the data used in the study is preprocessed (Section 3.1), emphasizing
the advantages of this preprocessing for subsequent processes. Next, it defines and delves
into the framework constructed for feature extraction from Video Action Classifiers (Section
3.2). Subsequently, considerations for training two Temporal Video Grounding networks are
discussed, along with the modifications required in annotations to ensure consistency with
the extracted features (Section 3.3). The chapter concludes with the definition of experiments
conducted with the features and their evaluation (Section 3.4).

Chapter 4 presents the results of each of the experiments described in section 3.4. Each
experiment is accompanied by a comparative analysis, highlighting the differences between
the features and TVG models used. Finally, Chapter 5 summarizes the conclusions derived
from the work (Section 5.1) and provides a comprehensive list of topics for future research
(Section 5.2).
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Chapter 2

Background and Related work

To advance knowledge and enrich academic dialogue on the task of temporal video local-
ization, it is essential to delve deeper into the topics involved in this task. For this reason,
this chapter aims to immerse into the fundamental elements that underpin current research,
exploring the background that characterizes it from the field of computer vision to the most
specific details. Specifically, we will examine some of the main theoretical issues and empirical
studies that form the backdrop against which this study is developed.

Firstly, in the opening section, we will briefly review definitions related to the areas of
knowledge involved in this research: for this reason, definitions of computer vision, deep
learning, and natural language processing are examined, in order to understand the purpose
of these areas and comprehend how they relate to the task investigated in this work. Fur-
thermore, due to the combination of visual and textual components presented in this work,
the concept of multimodal tasks in machine learning is introduced. For this, an introduction
to what the concept of multimodality refers to is provided, with the aim of understanding
how the integration of these modalities can enhance the models’ ability to tackle complex
tasks involving information from multiple sources such as text, images, videos, or others.

Subsequently, the concepts that define the task of temporal localization are explored. To
this end, a formal definition of the problem addressed by temporal video grounding archi-
tectures is provided, specifying the general structure of these networks and explaining how
vector representations of text and videos form a crucial part within these architectures. An-
other aspect reviewed includes some of the most utilized approaches to address the problem.
To understand how performance in temporal localization is measured, the metrics applied
to evaluate the performance of TVG architectures are pointed out, specifying different defi-
nitions found in the literature. Finally, the inherent characteristics of the datasets used for
both training and evaluation of the models are detailed. This multifaceted analysis aims to
provide a comprehensive understanding of the methodologies that shape the landscape of
temporal localization.

Finally, given the focus of this work on studying the impact of different video features
on the task of temporal localization, we delve deeper into the element that enables feature
extraction from videos: video action classifiers. Therefore, in this section, we formally de-
fine what constitutes the task of action classification, review the characteristics of the most
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commonly used datasets in this task, and deepen our exploration of the literature on action
classifiers used in this research. The main focus is on explaining how these algorithms per-
form action recognition, how their structures can be advantageous for the task of temporal
localization, and highlighting the differences between the different types of classifiers.

2.1 Scientific Disciplines

2.1.1 Machine Learning

Machine learning (ML) sits at the intersection of computational intelligence and computer
science, dedicated to empowering computers to automatically acquire and learn meaningful
patterns from data. In his seminal definition, Tom Mitchell succinctly captures the essence
of this domain:

“A computer program is said to learn from experience E with respect to some
task T and some performance measure P, if its performance on T, as measured
by P, improves with experience E.”

– Tom Mitchell, 1997

The remarkable strength of ML algorithms lies in their ability to generate robust math-
ematical models that automatically extract and abstract relevant information from data,
eliminating the need for explicit manual modeling. This stands in stark contrast to tradi-
tional rule-based programming, allowing the discovery of hidden, meaningful features from
data and leading to the development of algorithms with far superior generalization capabili-
ties.

During the training process, these models optimize internal parameters through sophis-
ticated optimization algorithms to effectively solve the desired problem. The specific pa-
rameters chosen for optimization depend on the chosen ML model and the type of training
employed.

A Landscape of Learning: Exploring Training Paradigms

ML techniques are categorized based on various factors, including the amount of data avail-
able and the level of supervision provided during training. Four main training paradigms
dominate the landscape:

• Supervised Learning: Here, the model is trained on labeled data, meaning each data
point has a known outcome. The model learns the relationship between the input fea-
tures and the associated labels, enabling it to predict the outcome of unseen data. Ex-
amples include linear regression, support vector machines (SVMs), and decision trees.
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• Unsupervised Learning: In contrast, unsupervised learning tackles unlabeled data,
where no explicit outcomes exist. The model instead focuses on discovering hidden
patterns and structures within the data, leading to applications like clustering, dimen-
sionality reduction, and anomaly detection.

• Reinforcement Learning: This paradigm focuses on training an agent to learn by in-
teracting with its environment. The agent receives rewards for desirable behavior and
penalties for undesirable actions, allowing it to gradually learn optimal strategies for
achieving its goals. Examples include deep Q-networks and policy gradient methods.

• Semi-supervised Learning: This hybrid approach utilizes a small set of labeled data
alongside a larger set of unlabeled data during training. This framework leverages the
informative power of labeled data while simultaneously exploiting the abundance of
unlabeled data, leading to improved model performance.

The choice of training paradigm depends on the specific problem at hand and the available
resources. Each paradigm offers unique capabilities and advantages, making ML a versatile
and powerful tool for tackling a wide range of challenges across diverse domains.

Table 2.1: Comparison of Training Paradigms in Machine Learning

Paradigm Description Examples Application Ar-
eas

Supervised
Learning

Learns from labeled
data to predict out-
comes

Linear regression,
SVMs, Decision
trees

Classification,
Regression, Predic-
tion

Unsupervised
Learning

Discovers hidden
patterns in unla-
beled data

Clustering, Dimen-
sionality reduction,
Anomaly detection

Data exploration,
Customer seg-
mentation, Fraud
detection

Reinforcement
Learning

Trains agents to
learn through in-
teraction with their
environment

Deep Q-networks,
Policy gradient
methods

Robotics, Game
playing, Au-
tonomous vehicles

Semi-
supervised
Learning

Combines labeled
and unlabeled
data for improved
performance

Co-training, Self-
training, Label
propagation

Text classification,
Image segmen-
tation, Natural
language process-
ing

2.1.2 Deep Learning

According to Kelleher [23], deep learning constitutes a subfield of artificial intelligence ded-
icated to crafting expansive neural network models capable of making precise, data-driven
decisions. This approach proves particularly effective in scenarios characterized by intricate
and unstructured data, leveraging the abundance of large datasets.
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Deep learning addresses the challenge of extracting complex and abstract features from
raw data, but the interesting thing is when variation factors such as a speaker’s accent
or the interpretation of an image require sophisticated understanding at an almost human
level. If obtaining a representation is as difficult as solving the original problem, learning
representations may not initially seem beneficial. However, deep learning overcomes this
obstacle by introducing representations that are expressed in terms of simpler ones. It allows
computers to build complex concepts by combining simpler elements.

The figure 2.1 shows how a deep learning system represents the concept of an image of
a person by combining simpler concepts such as corners and contours, which are in turn
defined in terms of edges. The example shows how the computer manages to understand
the meaning of raw sensory input data, taking as input an image represented by a set of
pixels. The complex mapping of functions from a set of pixels to the identity of an object
is the challenge that deep learning addresses by decomposing the complex mapping into a
sequence of simple nested mappings, each articulated by a different layer of the model. The
visible layer, containing observable variables, receives the input, and a sequence of hidden
layers extracts increasingly abstract features from the image. Called ’hidden’ because their
values do not appear in the data, these layers force the model to recognise which concepts
are relevant to explain relationships in the observed data. The visualisations presented here
show the types of features represented by each hidden layer. The first layer easily identifies
edges based on the brightness of neighbouring pixels. Building on this edge description, the
second hidden layer detects corners and extended contours. The third hidden layer uses the
image description in terms of corners and contours to detect whole parts of specific objects.
Ultimately, this description of the object parts of the image facilitates the recognition of the
objects present in the image.

Figure 2.1: Representation of a deep learning model as shown in [16]. The figure illustrates the
process of extracting features from a set of pixels, highlighting how each layer systematically
extracts new features from the data, ultimately leading to the classification achieved in the
final layer.

The classic example of a deep learning model is the feedforward deep network or mul-
tilayer perceptron (MLP). Operating as a mathematical function, a multilayer perceptron
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maps a set of input values to corresponding output values by composing many simpler func-
tions. Each application of a different mathematical function serves as a transformative step,
representing a new representation of the input. The notion of learning an optimal repre-
sentation for the data provides one perspective on deep learning. Alternatively, the depth
of deep learning enables the computer to acquire a multilevel computer program. Thinking
of each layer of the representation as the state of the computer’s memory after executing
a parallel set of instructions illustrates this perspective. Deeper networks can execute more
instructions in sequence, exploiting the power of sequential instructions that allow later steps
to reference earlier results. In this deep learning paradigm, not all of the information in a
layer’s activations encodes factors that explain the input. The representation also contains
state information, similar to a counter or pointer in a traditional computer program, that
facilitates the execution of a program that understands the input. This state information,
although unrelated to the content of the input, helps the model to structure its processing.

Today, deep learning, the engine of AI, powers a wide range of everyday services, from
digital assistants and voice-enabled devices to fraud detection and self-driving cars. This
transformative technology is improving healthcare through early disease detection, personal-
ising online experiences, and making robots and industries more accurate and efficient. From
language translation to environmental monitoring, deep learning is shaping the future of AI
and impacting nearly every aspect of our lives.

2.1.3 Computer Vision

Computer vision is a multidisciplinary field that enables machines to interpret and understand
visual information from the world, much like human vision. It involves developing algorithms
and systems that allow computers to gain high-level understanding from digital images or
videos. The ultimate goal of computer vision is to enable machines to perform tasks that
typically require human visual abilities, such as object recognition, scene understanding,
image and video analysis, and more. Actually this field, fueled by advancements in deep
learning and artificial neural networks, has revolutionized various domains, from self-driving
cars to medical imaging.

At its core, computer vision strives to bridge the gap between the digital realm and
the physical world, enabling computers to extract meaningful information from images and
videos. It encompasses a wide spectrum of tasks, including image and video classification,
object detection, semantic segmentation, and instance segmentation.

2.1.4 Natural Language Processing

One of the great advantages we possess as human beings is language. The ability to com-
municate provided our ancestors with competitive advantages in hunting, gathering, and
community building compared to other species. Nowadays, humans have developed ma-
chines that use their own languages and can process vast amounts of information in a matter
of seconds. This capability creates the need to develop methods to make human language
accessible and/or understandable to computers, leveraging their computing power to solve
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language-related problems.

Natural Language Processing (NLP) is an interdisciplinary field that employs computa-
tional intelligence to address tasks involving human language in the form of text or speech.
These tasks are well-defined and have knowledge of the expected output, including examples
such as text translation, speech recognition software, etc. On the other hand, NLP should
not be confused with Computational Linguistics, which seeks to understand human language
through computation, posing deeper and more scientific questions about language. In other
words, language is the subject of study for Computational Linguistics.

While NLP proves to be an interesting task, it is by no means a simple one. Despite
humans being adept at learning languages, there is a poverty in understanding and describing
the rules governing these systems. Therefore, working with human language becomes an
ambiguous task, as changing a single word in a sentence can significantly alter its semantics.
Another challenge is the dynamism of language, which undergoes a gradual evolution, causing
variations in how we communicate our ideas based on factors such as culture, era, age range,
etc.

2.1.5 Multimodal-Task

Figure 2.2: Example of a multimodal application in machine learning. For instance, the
application enables image generation by simply providing a prompt that describes what one
wishes to draw. In this case, the prompt is ”a flying cow,” and the result is the image created
by a machine learning algorithm.

Humans utilize multiple stimuli to navigate the world and engage in various activities.
The diverse sensory modalities we receive play a crucial role in identifying our environment
in a multidimensional way. Among these, information from senses such as hearing and vision
complements each other, enabling us to have a better understanding and perception of our
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surroundings.

The development of our brain has allowed us to establish optimal interaction between the
different modalities we receive. This ability allows us to associate a sound with an animal
or, conversely, associate an image with a sound, smell, or texture that we might experience
upon interacting with the object in the image. This simultaneous interaction resulting from
the combination of different channels is known as a ”multimodal” process.

In light of this, Multimodal Machine Learning is defined as the study of computational
algorithms that incorporate multiple modalities within their architectures. In this context,
multimodal tasks are often associated with the use of unstructured data such as images and
text to solve a task collectively. A typical task is image generation, where the user inputs a
query describing what they want to create, and a machine learning algorithm generates an im-
age based on the provided prompt. Due to the utilization of multiple modalities, multimodal
machine learning algorithms primarily require two aspects: effective representations for the
input modalities and robust architectures that facilitate the correlation and comprehension
of these representations during training.

Currently, multimodal models typically rely on deep neural networks due to their strong
performance on unstructured data. In the realm of multimodal deep learning, the predom-
inant modalities encompass inputs such as images, videos, text, and auditory elements like
voice, sounds, and music. Nevertheless, less conventional modalities involve 3D visual data,
LiDAR data, and depth sensor data.

2.2 Temporal Video Grounding

Temporal Video Grounding (TVG) presents a challenging task of aligning specific segments
in a video with natural language queries. For instance, given the query ”persona take out a
vacuum,” the objective is to identify the start and end times in the video where this moment
occurs, as illustrated in Figure 2.3 (timestamps 24.9s and 42.4s).

Figure 2.3: Illustration of Temporal Video Grounding Task

TVG presents a notable challenge as it requires not only the understanding but also the
semantic alignment of video and language modalities. Additionally, TVG entails processing
untrimmed videos, which often include irrelevant or noisy segments, adding complexity to the
task. Despite these challenges, TVG offers tremendous potential for a variety of applications,
including video summarization, editing, question answering, and captioning, making it a
valuable asset in the field of multimedia analysis.
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TVG Pipeline

Supervised learning in Temporal Video Grounding (TVG) requires a significant number of
annotated samples, which presents challenges in terms of both the difficulty and cost associ-
ated with data annotation. To mitigate these challenges, recent research has been exploring
weakly-supervised learning approaches, which learn from video-query pairs without needing
detailed temporal event annotations. The traditional binary classification of TVG methods
into proposal-based and proposal-free is increasingly seen as overly simplistic, prompting the
need for a more nuanced taxonomy based on method architecture and learning algorithms.

In the realm of TVG, there is a lack of theoretical frameworks that delineate a standard
structure or pipeline for TVG methods. Despite the presence of diverse and sophisticated
architectures across various approaches, a TVG method conceptually typically comprises six
key components, as depicted in Figure 2.4. It’s important to note, as indicated by the dashed
line in the figure, that the proposal generator is an optional component within these systems
and its integration can vary in different stages of the methodology.

Figure 2.4: Temporal video grounding pipeline.

A TVG method takes a video-query pair as input, where the video, denoted as V , is
a collection of consecutive image frames, and the query, denoted as Q, is a sequence of
words. The preprocessor prepares inputs for feature extraction, such as downsampling and
resizing image frames in the video and tokenizing words in the query sentence. The feature
extractor converts the video frames and query words into their corresponding vector feature
representations. The encoder module then maps the video and query features to the same
dimension and aggregates contextual information to enhance the feature representation.

The interactor module, an essential component in TVG, learns multimodal representa-
tions by modeling the cross-modal interaction between video and query. Finally, the answer
predictor generates moment predictions based on the learned multimodal representations.
For proposal-based methods, the answer predictor makes predictions based on the propos-
als generated by the proposal generator. A proposal can be considered a candidate answer
moment, generated at different stages. An example proposal is a video segment sampled
from the input video. Proposal-free methods predict answers directly without the need for
generating candidate answers.
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2.2.1 Temporal Video Grounding Methods

The primary focus of solutions for Temporal Video Grounding (TVG) lies within the domain
of supervised learning. In the early stages, methods relied on techniques such as sliding
windows or segment proposal networks to pre-sample candidates. These candidates were then
paired with queries, and answers were generated through cross-modal matching. However,
the conventional ”propose-and-rank” pipeline has been identified as inefficient due to the
need for densely sampling candidates with overlap, resulting in redundant computations and
reduced efficiency.

In response to these challenges, alternative approaches like anchor-based and proposal-
free methods have emerged, embracing an ”end-to-end” philosophy. These innovative meth-
ods encode the entire video sequence, preserving all relevant information within the model,
progressively establishing themselves as the dominant solutions for TVG. Acknowledging the
hurdles posed by supervised learning, recent studies have ventured into solving TVG through
weakly-supervised learning. These approaches aim to alleviate the annotation burden by
learning from video-query pairs without requiring detailed temporal event annotations.

Proposal-based Method

Proposal-based methods tackle the task of localizing a specific action instance in an untrimmed
video by generating a set of candidate temporal segments, also known as proposals, and sub-
sequently ranking these proposals to identify the one that best matches the target action.
These methods offer a structured approach to TVG by explicitly identifying potential action
instances before refining their temporal boundaries.

• Sliding Window-Based Methods: These methods employ a fixed-size window that slides
across the video, generating proposals at each window position. This approach is simple
and efficient but may miss subtle temporal cues beyond the window size.

• Proposal-Generated Methods: These methods utilize external modules or neural net-
works to generate proposal candidates based on the video content and query informa-
tion. This approach offers more flexibility in capturing diverse temporal patterns but
may introduce additional computational overhead.

• Anchor-Based Methods: These methods incorporate proposal generation directly into
the model architecture, treating it as an integral part of the learning process. This
approach achieves end-to-end learning and can dynamically adapt proposal generation
based on the video and query.

Proposal-free Method

Proposal-free methods operate by directly predicting the start and end boundaries of the tar-
get moment within fine-grained video snippet sequences. Unlike their counterparts, proposal-
free methods do not involve ranking an extensive array of proposal candidates. This stream-
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lined approach not only enhances efficiency but also holds the potential to capture more
nuanced temporal cues when contrasted with proposal-based methods.

Depending on the format of moment boundaries, proposal-free methods are categorized
into two main types:

• Regression-based methods: These methods directly predict the start and end times of
the target moment as continuous values. This approach is straightforward and can
handle moments of varying lengths.

• Span-based methods: These methods predict the start and end indices of the target
moment within the video snippet sequence. This approach is more flexible as it can
handle overlapping or discontiguous moments.

2.2.2 Evaluation Metrics

Temporal Over Union

Figure 2.5: Example of how the interval is calculated over the union.

Temporal Interval Over Union (tIoU) is a widely used metric for evaluating the perfor-
mance of temporal video grounding models. It measures the overlap between the predicted
and ground-truth temporal extents of an action instance in a video. The metric takes values
between 0 and 1, where 1 indicates perfect overlap and 0 indicates no overlap between the
prediction and ground-truth. The equation is defined as following:

tIoU =
IntersectedDuration

UnionDuration

In addition to the standard tIoU metric, various variants cater to specific contexts. For
instance, the tIoU@0.5 metric employs a threshold of 0.5, considering only predictions with
a tIoU score of 0.5 or higher as correct. Similarly, the tIoU@0.7 metric uses a threshold of
0.7.

The mIoU metric quantifies the average temporal Intersection over Union (IoU) across
all annotations in the test set. Mathematically, it is expressed as:
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mIoU =
1

Nq

Nq∑
i=1

tIoUi

An alternative method for computing mIoU involves not relying solely on a single pre-
diction for each query. It’s crucial to recognize that the top-ranked prediction from a TVG
model may not consistently align with the ground truth for a given query. A more flexible
evaluation approach is to consider the top-n retrieved moments for each query, denoted as
R@n, IoU@m. Here, R@n signifies the number of top predictions considered, and IoU@m
represents the threshold of IoU required to deem a prediction as correct.

Advantages of tIoU

The tIoU metric has several advantages for evaluating TVG models:

• It is a simple and intuitive metric that is easy to understand and interpret.

• It is a robust metric that is not sensitive to small changes in the predicted or ground-
truth action extents.

• It is a versatile metric that can be used to evaluate the performance of TVG models
on a variety of datasets and tasks.

Limitations of tIoU

The tIoU metric also has some limitations:

• It does not take into account the temporal ordering of action instances.

• It does not take into account the spatial location of action instances.

• It is not a fully normalized metric, as it can take on values greater than 1 for certain
cases.

• Despite these limitations, tIoU is a valuable metric for evaluating TVG models and is
widely used in the research community.

2.2.3 Dataset

A temporal video grounding dataset is a collection of videos and natural language descriptions
that are used to train and evaluate models for the task of temporal video grounding. Temporal
video grounding is the task of linking spoken language descriptions to specific video segments.
In temporal video grounding, the model is given a video and a natural language description,
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such as a sentence or a caption, and its goal is to identify the specific segment of the video
that corresponds to the description. This can involve tasks such as localizing the objects or
actions mentioned in the description within the video, or associating a specific time interval
with the description1.

Before explain in details some of relevant dataset, we define the following notations. Given
a TVG dataset, we can denote its video corpus as V = {V1, V2, . . . , VN} and its query set as
Q = {Q1, Q2, . . . , QM}, where N and M are the number of videos and queries, respectively.
Note that multiple queries can be posed on the same video with different moments as answers,
typically M ≥ N in TVG datasets. Given a video-query pair, a video V contains T frames
V = [f1, f2, . . . , fT ], and a query Q has m words Q = [q1, q2, . . . , qm], where the start and end
times of the ground truth moment are denoted by τs and τe, 1 ≤ τs < τe ≤ T . Here, we use
the frame index to represent time points, based on a fixed frame rate or fps. Mathematically,
TVG aims to retrieve the target moment starting from τs and ending at τe given a video V
and query Q, i.e., FTTV G : (V,Q) 7→ (τs, τe).

In summary, a temporal video grounding dataset should have the following characteristics
to be relevant for the task:

• It should contain diverse and realistic videos that cover various domains, scenarios, and
events.

• It should provide accurate and comprehensive annotations for the video segments and
the natural language descriptions, such as the start and end time of the segments, the
bounding boxes of the objects, and the semantic relations between the objects and the
descriptions.

• It should have a sufficient number of videos and descriptions to enable effective learning
and generalization of the models.

• It should have a balanced distribution of the video lengths, the segment durations, and
the description complexities, to avoid biases and overfitting.

Charades-STA

Figure 2.6: Example of the Charades-Sta dataset, in which you can see a video and the
annotation associated with a moment.
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Built upon the Charades dataset [46], which offers time-based annotations using a pre-
defined set of activity classes and general video descriptions, Gao et al. [12] further enhanced
the dataset by semiautomatically decomposing sentences describing the videos into smaller
chunks and aligning them with the corresponding activity classes. These alignments were
subsequently verified by human annotators, resulting in the effective association of original
class-based activity annotations with their respective natural language descriptions, yielding
a total of 13,898 pairs. Utilizing the predefined train and test splits, comprising 12,408 and
3,720 moment-query pairs, respectively, the videos in Charades-STA have an average duration
of 31 seconds, containing an average of 2.4 moments, each spanning approximately 8.2 seconds
on average. Charades-STA serves as a dataset for video moment retrieval, focusing on the
task of locating a specific segment in a video that corresponds to a given natural language
query. This dataset adds sentence-level temporal annotations to select videos from Charades,
indicating the start and end times of the query segments. With queries ranging from simple
to complex sentences with at least two clauses, the query segments cover less than half of the
video length. Comprising 13,898 training samples and 4,233 test samples, including 1,378
complex sentences, Charades-STA presents a challenging dataset that demands proficiency
in both natural language understanding and temporal activity localization.

ActivityNet Caption

Figure 2.7: Example of the ActivityNet dataset, where you can see that a video can contain
multiple different annotations.

The ActivityNet Captions dataset extends the existing ActivityNet v1.3 by incorporating
human-annotated captions for video segments, offering a rich resource for various video un-
derstanding tasks. These 100k captions, averaging 3.65 sentences per video and 13.48 words
per sentence, provide precise temporal context and detailed descriptions of events, signifi-
cantly enhancing model performance. Compared to Charades-STA, ActivityNet Captions
boasts richer vocabulary, longer segments (36 seconds vs. 23 seconds), and more diverse
content (200+ activity classes vs. 157). Notably, ActivityNet includes captions for the entire
video, unlike Charades, providing comprehensive coverage for tasks like summarization and
retrieval. These unique features make ActivityNet Captions invaluable for researchers and
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developers working on video captioning, retrieval, dense captioning, activity recognition, and
other video understanding applications.

YourCook II

YouCookII encompasses 2000 extended, unedited videos featuring 89 distinct cooking recipes.
Each video includes meticulously annotated temporal boundaries and imperative English sen-
tences describing the procedural steps, as illustrated in Figure 2.8. These videos, sourced
from YouTube and adopting a third-person viewpoint, are unconstrained and suitable for
individual preparation at home with unfixed cameras. Offering an extensive array of recipe
types and diverse cooking styles worldwide, YouCookII distinguishes itself with several key
features. It constitutes a large-scale cooking dataset with 2000 annotated videos, allowing for
unconstrained scenarios in individual home settings with unfixed cameras. The dataset com-
prises lengthy untrimmed videos lasting up to 10 minutes, providing an in-depth exploration
of the cooking process. Notably, YouCookII temporally localizes procedure steps, describing
them through English sentences, setting it apart from existing instructional video datasets.

Figure 2.8: Visual representation of the YouCookII dataset, where you can see the presence
of longer videos and that multiple actions can appear in the dataset.

2.3 Video Action Classifiers (VAC)

The video action classifier task involves the application of computer vision and machine
learning techniques to analyze and categorize human actions within video sequences. The
primary objective is to develop algorithms that can automatically recognize, understand, and
classify different types of actions performed by individuals or objects captured in a video.
With this, there are three main approaches to video action classification:

• Holistic CNNs: These advanced networks leverage a unified 3D Convolutional Neu-
ral Network framework to meticulously process video data. By integrating three-
dimensional convolutions, the holistic CNNs are specifically engineered to extract both
spatial and temporal features directly from video frames, offering a nuanced under-
standing of the actions depicted. This method allows for a comprehensive analysis of
the video content by learning feature representations that are inherently relevant to
the dynamics and characteristics of the action being analyzed, thereby enhancing the
accuracy and efficiency of video action classification tasks.
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• Holistic Temporal Models: Characterized by their approach to mimic the three-dimensional
convolutions used by holistic CNNs, these models aim to achieve a similar processing
objective. However, they focus on minimizing memory consumption that is typically as-
sociated with 3D convolutions, by performing more efficient operations that still deliver
comparable performance levels.

• Holistic Transformers: Following the emergence of transformer architectures, numerous
studies have sought to incorporate this foundational model into action classification.
These networks convert video frames into sequences of tokens and employ self-attention
techniques to maximize the utilization of sequential content present in the frames.
Distinguished by their ability to deeply integrate temporal components and establish
meaningful relationships, holistic transformer models excel in capturing both spatial
and temporal nuances, often resulting in enhanced performance.

This task plays a central role in a variety of applications such as video surveillance, human-
computer interaction, content indexing, and automated video analysis, providing critical
insights for a wide range of fields.

The journey begins with the collection of labeled video datasets that represent a wide
variety of human actions. This diversity ensures that the classifier can accurately identify
and distinguish between numerous activities by generalizing from the examples provided. It
analyzes the video frames to extract key features, including spatial and temporal patterns,
and uses these as the basis for its action predictions.

The pursuit of video action classification is not without its hurdles. It faces challenges
such as lighting variations, background clutter, and the complex nature of human motion.
To overcome these obstacles, a mix of strategies are employed, ranging from sophisticated
deep learning models to temporal analysis to attention mechanisms, all aimed at increasing
the accuracy of classifications.

At its core, the goal of video action classification is to provide automated, accurate, and
instantaneous analysis of video content. This capability enables a wide range of applications,
from enhancing security measures to deepening our understanding of human behavior, thus
meeting the needs of various industries.

2.3.1 Dataset in VAC

Within a Video Action Classification (VAC) dataset, videos may encapsulate either a singu-
lar action or multiple actions. In the case of a single action, the video is tagged to denote
the specific action that encompasses the entirety of the trimmed footage. For videos por-
traying multiple actions, meticulous annotations become imperative to specify the action
occurring within each segment or frame. Take, for instance, a video depicting a person play-
ing football, engaging in actions such as kicking the ball, running, jumping, and spinning.
The corresponding annotations might detail that the segments from 0 to 5 seconds represent
the action of kicking the ball, segments from 5 to 10 seconds embody the action of running,
segments from 10 to 15 seconds capture the action of jumping, and segments from 15 to
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20 seconds depict the action of turning. This level of granularity in annotations not only
enhances the dataset’s informational richness but also provides a nuanced understanding of
actions within the temporal context of the video.

Concerning datasets, another pivotal aspect lies in their recording perspective, which
can be categorized as either third person or egocentric. Third-person datasets are captured
through external cameras, providing an external viewpoint, whereas egocentric datasets offer
a first-person perspective, recorded from the viewpoint of the person engaging in the activity.

Some of the most relevant datasets include the following:

• Kinetics: kinetics is a large-scale dataset of 600 human action classes, with over
250,000 video clips. It is one of the most widely used VAC datasets due to its large
size and diverse range of action classes. The dataset covers a wide variety of everyday
activities, sports, and extreme sports.

• AVA: AVA is a dataset of 20 action classes, with over 16,000 video clips. It is a
smaller dataset than Kinetics, but it contains more complex action classes that are
more difficult to distinguish from each other. The actions in the AVA dataset are more
intricate and require a more sophisticated understanding of motion to recognize.

• Something-Something V2: Something-Something V2 is an improved version of the
original Something-Something dataset, addressing its limitations in terms of action
diversity, annotation quality, and video length. It consists of 174,940 short videos of
everyday actions, with each video approximately 3 to 7 seconds long. The dataset
covers a broader range of action classes, including more subtle and nuanced actions,
and features enhanced annotation quality and consistency.

• Charades: Charades is a dataset of 9,848 short videos of people acting out words
and phrases. Each video is about 30 seconds long, and it is labeled with one of 157
words or phrases. The words and phrases in the Charades dataset are quite diverse,
encompassing actions, emotions, and abstract concepts.

• ActivityNet: ActivityNet is a dataset of 16,000 long videos of human activities. Each
video is about 1 to 5 minutes long, and it is labeled with one of 200 action classes. The
action classes in the ActivityNet dataset are comprehensive, covering a wide range of
everyday activities, sports, and social interactions.

2.3.2 Methodologies

Temporal Shift Module (TSM)

TSM stands out as a novel and efficient approach to temporal modeling for video understand-
ing, seamlessly integrating into any two-dimensional convolutional neural network (CNN)
architecture without introducing additional parameters or computational overhead. Its core
mechanism involves shifting a portion of the channels along the temporal dimension, effec-
tively facilitating information exchange between neighboring frames and enabling the network
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to capture temporal dependencies without the need for further convolutions or recurrent con-
nections. TSM’s operation entails dividing the input feature maps into two distinct parts:

• Base Feature Maps: These maps remain unaltered and undergo processing by the
original 2D CNN architecture.

• Shifted Feature Maps: These maps undergo a temporal shift operation, where a speci-
fied portion of the channels is shifted along the temporal dimension by a predetermined
offset. The resulting shifted feature maps are then concatenated with the base feature
maps, providing the network with enriched temporal information.

TSM’s compelling advantages over traditional temporal modeling methods include its
remarkable parameter efficiency, maintaining the original 2D CNN architecture’s parameter
count. Its computational efficiency is also noteworthy, as TSM’s operation involves sim-
ple shifting and concatenation operations, significantly reducing the computational cost of
temporal modeling compared to 3D convolutions or recurrent neural networks (RNNs).

The Temporal Shift Module (TSM) represents a groundbreaking advancement in tempo-
ral modeling for video analysis. At its core, TSM introduces a dynamic temporal shifting
mechanism that deviates from conventional temporal convolutions, aiming to enhance the
model’s ability to capture intricate temporal dependencies within video sequences.

The primary innovation of TSM lies in its integration of learnable temporal offsets into
the convolutional operations. This introduces a dynamic temporal shift (∆t) to each spatial
position (x, y) across the temporal dimension, facilitating adaptability to evolving temporal
patterns. The mechanism is mathematically expressed as follows:

X ′
i,j,t = Xi,j,t+∆t,

where Xi,j,t represents the input feature map at spatial position (i, j) and time step t,
and X ′

i,j,t denotes the output feature map after the temporal shift.

The temporal shift (∆t) is learned during training and provides a mechanism for the
model to dynamically adjust its temporal context for each spatial position. This adaptability
is particularly valuable in scenarios where actions unfold over varying time scales within a
video clip.

The Temporal Shift Module has demonstrated its efficacy in numerous applications, show-
casing improved performance in tasks such as action recognition and temporal localization.
By introducing dynamic temporal shifts, TSM offers a powerful tool for enhancing the tem-
poral modeling capabilities of video analysis models, contributing to their accuracy and
robustness.
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I3D

The Inflated 3D ConvNet (I3D) represents a major advancement in video understanding,
combining the benefits of 2D and 3D convolutions within a spatiotemporal architecture.
This approach has led to state-of-the-art results in action recognition and detection tasks in
video analysis.

I3D transforms 2D pre-trained convolutional networks into 3D by expanding the convo-
lutional kernels through the temporal dimension, effectively ’inflating’ them. This process
involves replicating the 2D weights along the time axis, enabling the network to process
spatial and temporal information simultaneously. The mathematical representation of this
process is:

Yi,j,k,t =
D∑

d=1

H∑
h=1

W∑
w=1

Xi+d−1,j+h−1,k+w−1,t ·Wd,h,w,

where Yi,j,k,t is the output at spatial position (i, j, k) and time t, Xi,j,k,t is the input feature
map, and Wd,h,w are the weights of the 3D convolution.

This inflation technique significantly boosts the model’s capability to capture spatiotem-
poral features, enabling it to simultaneously learn about motion and visual appearance. I3D
effectively maintains the computational efficiency of 2D convolutions while gaining the tem-
poral insights provided by 3D convolutions.

The success of I3D is largely attributed to its ability to leverage knowledge from extensive
2D datasets and apply it to video content, creating a robust model for spatiotemporal feature
extraction in video analysis. This amalgamation of 2D and 3D convolutional techniques
makes I3D a highly effective and efficient tool for video understanding tasks.

X3D

X3D is a family of efficient video architectures that progressively expands a tiny 2D image
classification architecture along multiple network axes, in space, time, width, and depth.
This progressive expansion allows the model to achieve state-of-the-art performance while
requiring significantly fewer multiply-adds and parameters compared to previous work.

• Progressive Expansion: X3D expands the network architecture gradually, starting
with a small 2D image classification architecture and progressively increasing its com-
plexity. This approach ensures that the network learns the most important features
first, while also keeping the computational cost manageable.

• Multi-Axis Expansion: X3D expands the network along multiple axes, including spa-
tial dimensions (height and width), temporal dimension (frame number), and network
depth (number of layers). This multi-axis expansion allows the network to effectively
capture information from both spatial and temporal patterns in videos.
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• Efficient Design: X3D employs several design choices to further enhance its efficiency,
such as using lightweight convolutions, reducing the number of parameters, and using
efficient activation functions.

The spatial encoder extracts spatial features from the input video frames, while the
temporal encoder extracts temporal features from the video frames. The two encoders are
stacked to allow the network to learn both spatial and temporal dependencies in the videos.

Figure 2.9: X3D architecture with the different gamma parameters to be learned: Temporal
duration γt, frame rate γτ , spatial resolution γs, width γw, bottleneck width γb, and depth
γd.

The temporal encoder is a novel component of the X3D architecture. It is designed
to extract temporal features from the video frames. The temporal encoder consists of a
series of temporal blocks. Each temporal block consists of a residual connection and a
temporal attention mechanism. The residual connection allows the network to learn long-
range temporal dependencies in the videos. The temporal attention mechanism allows the
network to focus on the most important temporal features.

The output of the stacked spatial and temporal encoders is a set of feature maps that
contain both spatial and temporal information about the video. These feature maps are then
fed to the core encoder, which combines the spatial and temporal features to produce a final
representation of the video.

The expansion of intermediate parameters in X3D results in different types of expanded
networks, categorized as XS, S, M, L, and XL. Each expansion level introduces a specific
increase in the network’s capacity, corresponding to different levels of complexity and resource
requirements.

XS and S networks represent the smallest and least complex configurations, suitable for
resource-constrained devices or real-time applications. M and L networks provide a balance
between performance and efficiency, making them suitable for a wider range of applications.
XL networks represent the largest and most complex configurations, achieving the highest
performance but requiring more computational resources.

The choice of expansion level depends on the specific application requirements and re-
source constraints. For instance, a mobile application might prioritize an XS or S network
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for real-time performance, while a high-performance video analysis system might utilize an
L or XL network for maximum accuracy.

SlowFast

SlowFast is a novel architecture for video understanding that effectively integrates fast and
slow pathways for temporal feature extraction, enabling accurate and efficient video analysis.
The architecture employs a dual-stream architecture, consisting of a fast pathway and a slow
pathway, to capture both rapid motion cues and detailed contextual information from video
sequences.

Figure 2.10: SlowFast network architecture. At the top is the slow path of the network, while
below is the fast path.

The fast pathway processes video frames at a high frame rate, typically 64 frames per
second (FPS), to capture rapid motion changes and temporal dependencies. It utilizes
lightweight convolutional neural networks (CNNs) to extract low-resolution features effi-
ciently, reducing computational cost while maintaining adequate temporal information.

In contrast, the slow pathway processes video frames at a lower frame rate, typically 8
FPS, to capture detailed contextual information and global relationships within the video. It
employs more complex CNNs to extract high-resolution features, providing a comprehensive
understanding of the video content.

To further enhance efficiency, SlowFast employs efficient temporal modeling techniques
in both pathways. The fast pathway utilizes temporal convolutions with small kernel sizes to
effectively capture short-term temporal dependencies while minimizing computational over-
head. The slow pathway employs a temporal subsampling mechanism to reduce the number
of frames processed, focusing on key frames that contain significant information. This reduces
the computational burden while maintaining adequate temporal context.

The features extracted from both the fast and slow pathways are then fused together using
an aggregation mechanism, enabling the network to combine the benefits of both temporal
information sources.

A common aggregation approach is to concatenate the features along the feature dimen-
sion, creating a more comprehensive representation of the video’s temporal dynamics. This
allows the network to learn relationships between fast and slow temporal cues, leading to
improved recognition and understanding.
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Multiscale Vision Transformers - MViT

MViT is the first network that effectively integrates multi-scale feature extraction and trans-
former based temporal modeling to achieve state-of-the-art performance in video understand-
ing tasks while maintaining computational efficiency.

Figure 2.11: Multiscale Vision Transformers learn a hierarchy from dense (in space) and
simple (in channels) to coarse and complex features. Several resolution-channel scale stages
progressively increase the channel capacity of the intermediate latent sequence while reducing
its length and thereby spatial resolution.

The network employs a hierarchical encoder-decoder architecture to extract features at
multiple scales. This multi-scale approach enables MViT to capture both fine-grained details
and global contextual information from video sequences.

The encoder consists of multiple stages, each with a different spatial resolution. At
each stage, the video frames are passed through a series of convolutional layers to extract
features. The features from each stage are then concatenated together to create a multi-scale
feature representation. The decoder takes the multi-scale feature representation as input
and reconstructs the video frames. The decoder also consists of multiple stages, each with
a different spatial resolution. At each stage, the features are passed through a series of
convolutional layers to upsample the resolution and predict the video frames.

MViT utilizes transformer blocks, inspired by natural language processing, to model
temporal dependencies within videos. Transformers excel at capturing long-range temporal
relationships and context, which is crucial for understanding video content.

The transformer blocks are applied to the multi-scale feature representation to capture
temporal relationships between the features at different scales. This allows MViT to under-
stand the overall temporal structure of the video and how the individual parts of the video
relate to each other. MViT incorporates several design choices to enhance its efficiency,
including:

• Using lightweight convolutions for feature extraction: Lightweight convolutions are
used to extract features at each stage of the encoder and decoder. Lightweight convo-
lutions have fewer parameters and FLOPs than standard convolutions, which reduces
the computational cost of the network.

• Employing early fusion of multi-scale features: Early fusion of multi-scale features
allows MViT to capture both fine-grained details and global context early in the pro-
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cessing pipeline. This reduces the computational cost of the network, as it does not
need to process the features at each scale independently.

• Utilizing efficient transformer architectures: Efficient transformer architectures are used
to model temporal dependencies within videos. Efficient transformer architectures have
lower memory and computational requirements than standard transformer architec-
tures.

Rev-MViT

Figure 2.12: Representation of the blocks that make up Rev-MViT. In them, there is an at-
tempt to simulate the operations performed in a traditional ViT block, but taking advantage
of the use of inverse operations with I1,2.

The Rev-MViT architecture represents a breakthrough in the evolution of vision trans-
formers, addressing one of the most pressing challenges in deep learning: the high memory
consumption of conventional transformers. By introducing a reversible mechanism, Rev-
MViT allows for significant memory savings during the training process, enabling the deploy-
ment of deeper and more complex neural networks even on hardware with limited memory
resources. This innovation not only makes advanced computer vision models more accessi-
ble, but also improves their performance in a variety of tasks, including image classification,
object detection, and action recognition. Rev-MViT’s design, which emphasizes memory effi-
ciency without sacrificing accuracy, underscores its potential as a robust backbone for future
vision-based applications.

The Reversible Vision Transformer (ViT) adopts a unique design that splits the model’s
operation into two parallel pathways, processing input data through a series of specialized
blocks known as Reversible ViT blocks. These blocks maintain the core principles of the
Vision Transformer architecture, yet modify them to allow for the backward calculation of
gradients in a memory-efficient manner. Essentially, this setup manipulates two sets of input
data, enabling the network to conserve memory by cleverly reusing computational steps when
updating model weights during backpropagation.

In more detail, referring to Figure 2.12, the Reversible MViT framework employs block (a)
for concurrently managing two distinct data streams, I1 and I2, leveraging Vision Transformer
(ViT) principles but engineered for bidirectional transformation flow. This innovative setup
capitalizes on a dual-pathway strategy, segmented into two primary blocks: Stage-Transition
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Blocks (b): These components strategically connect the dual pathways, skillfully modulat-
ing data across dimensions by adjusting channel counts and image resolution. They act as
dynamic conduits, facilitating seamless integration and transition of information between dif-
ferent processing stages. Stage-Preserving Blocks (c): As the architectural backbone, these
blocks are pivotal for the continuity of the network’s function, safeguarding the fidelity of
input features’ dimensions throughout their journey. They underscore the architecture’s com-
mitment to preserving data integrity while ensuring comprehensive processing and synthesis
of information.

MViT-V2

Figure 2.13: Visualization of the Enhanced Pooling Attention Mechanism: Integration of
Decomposed Relative Position Embedding and Residual Pooling connection modules within
the Attention Block.

The Multiscale Vision Transformers Version 2 (MViT-V2) represents a remarkable leap
forward in the field of Vision Transformers, meticulously crafted to address the intricate
challenges that its predecessors faced, especially in the nuanced realm of processing and
deciphering visual data across a multitude of scales. This iteration heralds significant en-
hancements that considerably bolster its efficacy in various applications, notably in the realm
of video action classification. Through its refined processing of multiscale representations,
MViT-V2 achieves a more nuanced and efficient extraction of features at different resolu-
tions. This nuanced capability is instrumental in capturing the intricate visual patterns and
dynamics that pervade video content, offering a deeper understanding of the actions and
interactions within.

At the heart of MViT-V2’s innovations are its advanced self-attention mechanisms, which
have been optimized not just for greater computational efficiency but also for a heightened
ability to discern the long-range dependencies woven within the visual data. This evolution
results in a pronounced improvement in the model’s ability to recognize complex actions
by keenly capturing both the minute details and the broader contextual strokes present
in video sequences. Moreover, MViT-V2 is designed with an eye towards computational
economy, maintaining a judicious balance between model complexity and operational perfor-
mance. This strategic balance ensures that MViT-V2 is exceptionally suited for extensive
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video analysis tasks, delivering high levels of accuracy without placing undue demands on
computational resources.

A noteworthy feature of MViT-V2 is its innovative implementation of decomposed relative
positional embeddings. This approach intricately encodes the positional relationships of each
patch in the input, segregating the embedding into horizontal and vertical offsets and scales.
This method allows MViT-V2 to capture more refined spatial information and adapt more
seamlessly to various input resolutions, enhancing its ability to understand and interpret
visual content from diverse perspectives.

Additionally, MViT-V2 introduces residual pooling connections, which significantly enrich
the flow of information across different scales of the transformer. This innovative approach,
diverging from the singular pooling layer of its predecessor, integrates residual links between
pooled and original patches. Such an integration preserves high-resolution details more ef-
fectively, enriching the feature representation of the transformer and thereby augmenting its
analytical capabilities.

In comparative performance benchmarks, MViT-V2 has consistently demonstrated supe-
rior results, outpacing earlier models in terms of both accuracy and efficiency across a spec-
trum of tasks, including video action classification. Its robust and adaptable performance
across a wide array of datasets highlights its potential as a powerful tool in the arsenal of
computer vision technology. The development of MViT-V2 significantly contributes to the
ongoing advancements in leveraging transformer architectures for visual data processing, rep-
resenting a profound step forward in our quest to achieve a more nuanced understanding of
visual content through the lens of machine intelligence. This enhancement in the technolog-
ical landscape not only broadens the horizons of what’s achievable within computer vision
but also paves the way for future innovations in the field.
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Chapter 3

Methodology

This chapter is dedicated to detailing the various processes applied to videos, elucidating
the design of our feature extraction framework, and describing the experimental approaches
undertaken on diverse datasets. The organization of this chapter unfolds as follows:

Initially, we introduce the video preprocessing steps designed to mitigate the compu-
tational demands in later phases. Following this foundational groundwork, we delve into
the heart of our research—the development of a feature extraction framework. This section
clarifies the framework’s significance and its influence on the task of temporal localization.
Subsequently, we discuss dataset annotation considerations and detail the training processes
for the 11 features across various datasets. The chapter culminates with a comprehensive
overview of the experimental setup, aimed at evaluating the effect of these features on the
efficiency of temporal localization tasks.

3.1 Data Preprocessing

The preprocessing phase aims to adapt the data to a format compatible with subsequent
processes. This stage consists of three fundamental steps: reducing the frames per second in
the videos, decreasing dimensionality, and transforming the videos into the MP4 format.

To carry out these activities, the ffmpeg software (available at https://ffmpeg.org/)
is employed to perform the necessary transformations on each of the datasets being worked
on. Relevant considerations in these transformations include:

Reduction to 24 frames per second per video: This step aims to standardize the
videos to a common framerate of 24 frames per second, enhancing coherence in subsequent
processing phases. It is essential to note that, in the case of videos with less than 24 fps,
ffmpeg performs frame interpolation to compensate for the difference. This can result in
two situations: loss of information and/or generation of redundant information in sampling.
However, the magnitude of these issues should be limited, as the eliminated information is
in the order of milliseconds, and actions in the videos are defined in the range of seconds.
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Cropping to 320x240 pixels in the videos: The purpose of this stage is to reduce the
resolution of images in the videos to 320x240 pixels, aiming to obtain a standardized input in
later processing stages and lighten the video load. Although this reduction in dimensionality
implies a decrease in the quality of spatial information visualized in the videos, the level of
compression should not be detrimental, as the nature of the datasets used does not require
precise localization of small objects.

Transformation to the MP4 format: The format is standardized to ensure that
reading and obtaining videos occur in a uniform context.

It is important to emphasize that the execution of this stage involves a reduction in
the original features of the videos. Although this results in a decrease in quality and part
of the information represented in the videos, it allows for a significant reduction in the
computational resources required for generating features in videos. Among the benefited
aspects are the lower amount of RAM needed to load videos into memory, and, on the other
hand, a higher number of processes can be executed in parallel, thereby increasing the speed
of the processes.

The reduction in the final weight of the datasets provides a clear example of the benefits
of this reduction:

Dataset Original Weight (GB) Reduced Weight (GB) Reduction (%)

Charades 55 9.5 82.72
ActivityNet 337 107 68.24
YouCookII 152 26 82.89

Table 3.1: Reduction in dataset weight.

The table demonstrates a reduction of over 80% in the original size of some datasets,
implying a substantial decrease in computational resources for processing.

3.2 Feature Extraction

In the realm of computer vision, the practice of employing a pre-trained neural network
initially designed for task X to extract features for addressing a different task Y is a well-
established strategy. This concept, particularly the notion of a ”backbone” as a feature
extractor in deep learning, has been extensively deliberated and integrated into the fabric of
contemporary research within the field. The inception of this idea can be traced back to the
exploration of deep convolutional neural networks (CNNs) and the remarkable efficacy they
demonstrated in learning hierarchical representations of data.

During the nascent stages, several early deep CNN models, such as AlexNet (2012) and
VGGNet (2014), showcased the prowess of CNNs in feature extraction, particularly in tasks
like image classification. Trained on extensive datasets of labeled images, these models
adeptly learned to extract increasingly intricate features as they traversed from lower to
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higher layers of the network. This early success laid the foundation for the paradigm of
employing pre-trained CNNs as feature extractors for a diverse array of downstream tasks.

The term ”backbone” gained prominence concurrently with the evolution of transfer learn-
ing techniques. Researchers discerned that the knowledge acquired by a CNN on a substan-
tial dataset could be effectively transferred to other tasks by repurposing its early layers as
a feature extractor. This innovative approach empowered them to capitalize on pre-trained
weights, circumventing the need to train the entire network anew. This not only significantly
reduced training time but also contributed to enhanced overall performance.

In the work presented at [6], the term ”backbone” gained prominence in tandem with the
evolution of transfer learning techniques. Researchers astutely recognized that the knowledge
acquired by a Convolutional Neural Network (CNN) on a large dataset could be effectively
transferred to other tasks by repurposing its early layers as a feature extractor. This strategic
approach empowered them to harness the benefits of pre-trained weights, circumventing the
necessity to train the entire network from the ground up. The result was a substantial
reduction in training time and a marked improvement in overall performance.

Given an untrimmed video V ∈ V that can be characterized as a sequence of frames such
that V = vt with t = 1, . . . , l. Each video of V is annotated with a natural language sentence
S ∈ S, where S is a sequence of words S = sj with j = 1, ....,m, describing what happens
in a certain time interval. Formally, this interval is defined by a time in seconds that marks
the start ts and end te of the annotation.

Following previous work, our pivot TMLGA model uses pre-trained action classification
models to obtain a sequence of vectors to represent a given video. Critically, these input
vectors are just passed through one projection layer before being fed into the localization
module, which ensures that the amount of changes introduced to the model is minimized
for our experiments. Although the original implementation relies on I3D [2] we instead
consider a wide selection of pre-trained models for feature extraction, which we propose to
group into three main categories. First, we test CNN-based video classification approaches,
including C2D [48], I3D, SlowFast [10], X3D [9] and Non-Local variations in one classifier
[53]. For these models, we modify the classification head of the last ResNet or ConvNet used,
extracting the representation generated before dropout, final projections and classification
layer of the network. Secondly, we look at Transformer-based action classification models,
including MViT [8], MViT2 [27], and Rev-MViT [33]. Similarly to thee CNN-based case,
for these models we represent the video using the vectors of the last layer of the transformer
before the linear classifier. Finally, we study temporal reasoning models such as TSM [28],
which provide a different angle in tackling the action classification task. In this model, the
video data is divided into segments, each containing 8 buckets, where each bucket consists
of 8 consecutive frames. This segmentation approach creates smaller video subsequences,
allowing the temporal network to effectively permute frames and capture their temporal
dependencies. Similarly to the other cases, the last projections of the temporal network are
discarded to obtain the video feature representation.

To illustrate the generalised feature extraction process, Figure 3.1 shows the procedure
used. The figure shows the creation of a bypass in the networks, omitting the neck and
head layers. As mentioned earlier, this omission is mainly because the neck layers tend to
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introduce upscaling or concatenation of previously obtained features, and the head layers
generate predictions using these features. Consequently, the outputs do not preserve the
features in a raw format, but rather in a processed form. Each of the modified networks
produces an output vector, the dimensions of which vary according to the features of the
network and the video. It’s important to note that, in practice, the bypass occurs before the
application of dropout, MLP projections and/or softmax-like functions.

BackBone Neck Head

Bypass

Vectorial Representation

0.12 0.47 ... 0.67

Input

Figure 3.1: Representation of a video action classifier and the different blocks that make up
an architecture.

We assume the existence of a video feature extractor FV , capable of generating features
from multiple encoders based on pre-trained action models. The feature extractor is re-
sponsible for mapping l frames of a video to l/s features, where s is the sampling rate of the
pre-trained video model used for feature extraction. From the above, given a video V , FV (V )
generates a set of vectors G = gi ∈ Rl/s×f , where l/s represents the temporal dimension of
the video and f represents the width of the information contained in the generated vector
for a specific time slice is the dimenstionality of the space where the features lived.

Specifically, we adapted the forward process of each architecture used, incorporating small
modifications depending on the requirements of the architectures. For the architectures C2D
[48], I3D [2], SlowFast [10], MViT [8] (based on ViT [5]), MViT2 [27], and Rev-MViT [33],
we modified the classification head of the last ResNet used, capturing the representation
generated before dropout and final projections of the network in classification. As for X3D
[9], a similar process was followed, with the main difference being that this architecture does
not utilize a ResNet-based head but possesses its own distinctive characteristics.

For feature extraction, two action classification projects are used: one proposed by the
meta research team [7], and the second developed by Lin et al. [28]. The choice of the meta
team’s project is based on their extensive development of action classifiers, which maintain
similar logic in terms of feature extraction. This simplifies the coding of a general wrapper
that can adapt to multiple architectures and their variations. As for the Lin et al. project,
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it is selected because it presents two features based on temporal reasoning and because they
are built on the same architecture, it facilitates the creation of a wrapper that can span both
architectures.

Following Rodriguez et al. [41], the video encoding procedure is done offline, performing
rescaling to 320x240 when necessary, and sampling at 25 fps. Our implementation is based
on decord1, pyslowfast2 and the official code release for TSM [28] 3. Each video is sequentially
traversed in buckets of a size given by the frame rate of the backbone model. In cases where
the total number of extracted frames is not divisible by this number, we fill the last bucket
by repeating the last frame.

s s− δs s s ss s

Original frames

Sampled frames

Figure 3.2: Preprocessing applied to videos with a frame count that is not a multiple of the
target model’s framerate.

Once the frames are loaded into memory, each video is sequentially traversed in buckets
of the length of the frame rate, denoted as s, which is accepted by the different models. This
procedure, employing the video encoder FV , generates l/s buckets from which the features
are extracted. However, an issue that may arise with videos is the lack of multiplicity with
the frame rate s utilized by the pretrained networks from which features are extracted. To
address this edge case, we propose extending the original video by filling the missing δ frames
with a repetition of the last frame δ times, thus achieving the desired extension of s required
by the utilized models.

Due to the potentially prolonged duration of a video, loading each frame into RAM
could be highly resource-intensive, even after preprocessing the input video. An illustrative
example is found in the case of , the longest video in the YouCookII dataset, consisting of
approximately frames. Loading this video into RAM would surpass 120 GB, and even
with sufficient memory, a substantial portion of the data would remain unused, adversely
affecting overall code performance.

To address this challenge during video loading, a batch loading approach is proposed.
Taking into account a video’s framerate s, symmetric batches are generated to load into
memory only the necessary s×N frames for a total of N features. This mitigates the strain
on memory resources and enhances the overall efficiency of the code.

As previously mentioned, for the feature extraction, we utilized the architectures proposed
in the works of Fan et al. [7] and Lin et al. [29]. Our approach involves leveraging the
backbone of these architectures for action detection, and modifying the classification head

1https://github.com/dmlc/decord
2https://github.com/facebookresearch/SlowFast
3https://github.com/mit-han-lab/temporal-shift-module#pretrained-models
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of each architecture to generate features that capture temporal information rather than
performing classification.

s

...

t0
t1
t2

s

tl−2
tl−1

tl

...FV (· )

τ0 τ1 τn−1 τn

Figure 3.3: Temporal transformation obtained by applying an encoder on a video.

As illustrated in Figure 3.3, encoding a video introduces a change in temporal represen-
tation due to the processing in buckets of size s. Therefore, it is necessary to establish a
mapping that enables the identification of which features correspond to natural language
queries present in the datasets.

τ = (t · n · fps)/l (3.1)

We employed the mapping 3.1 to convert the frame/feature index to time. Specifically,
an annotation starting at ts and ending at te is converted to τs and τe, representing specific
positions within the features such that τs, τe ∈ [1, . . . , n].

While we have released the extracted features for benchmarking purposes, we also provide
the extraction framework for readers to facilitate feature extraction for different datasets not
included in this work.

3.3 Temporal Video Grounding

At the core of our experimental framework lies the TVG model, serving as a central element
for evaluating video features. While various approaches exist for our task, not all are suitable,
given that substituting video representations can often result in significant alterations to
the model architecture and/or training dynamics. Following a thorough examination, we
opted for the proposal-free approach introduced by Rodriguez et al. [41] (TMLGA) and
the regression-based proposal-free method proposed by Jonghwan et al. [35] (LGVI). These
selected methodologies align well with our experimental objectives and constraints, allowing
us to test different features without applying drastic changes to the original networks.

TMLGA can be summarized in three parts: 1) a text encoder based on GloVe [37] em-
beddings on top of an LSTM [20], 2) a video encoder, which we discuss in detail below, and,
3) a localization module that combines information from both modalities using a dynamic
filter [21] and predicts the start and end points of the segment. We consider this model to be
a “classic” approach, as it has been widely adopted as a baseline by recent work, allowing for
meaningful comparisons with a wide variety of approaches. We also note that TMLGA relies
on a rather simple approach to query representation, which we believe allows for a cleaner re-
sult in terms of the contribution of the language encoder. Finally, we point out that TMLGA
has an official implementation that has been publicly released, which we believe is essential
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to facilitate the replication of the original results and ultimately ensure the reproducibility
of our experiments.

Much like TMLGA, LGVI introduces a nuanced approach to training temporal video
grounding models. In this method, the authors introduce a function fe designed to generate
semantic phrases, acting as cues to identify relevant moments:

argmax
θ

E[logpθ(C|V,Q)] → argmax
θ

E[logpθ(C|V, fe(Q))]

To articulate the network specification, it is organized into four integral components.
The initial segment pertains to the text and video encoders, while the second focuses on the
query attention network, wherein the system establishes auxiliary constructs to enhance the
identification of pertinent moments. The third component revolves around the local-global
video-text interaction, and the fourth entails the temporal attention-based regression.

It’s noteworthy that this method, distinct from TMLGA, employs a regression approach
in the output. Specifically, it generates predicted timestamps for both the start and end,
deviating from a distributional output that signifies the most probable prediction. We opt
for LGVI due to its training simplicity and to demonstrate that potential behaviors observed
in experiments with TMLGA are not exclusive to a specific architecture. The goal is to show
that similar results can be achieved using a different model structure.

Regarding the utilization of architectures, as previously mentioned, our intention is to
make modifications that do not alter the essence of the models. Since our objective revolves
around comparing features, only the modules related to the use of video features in the em-
ployed models are adjusted. It is crucial to note that, in this study, the text features are not
manipulated in any of the architectures. Therefore, the text features remain frozen through-
out both training and inference, utilizing the representations generated in their respective
original works.

3.3.1 Annotation Modification

From the preceding step, it is apparent that the size of each generated feature is contingent
upon the sampling rate s and the architecture employed in the backbone. Variability in
vector representations introduces a challenge related to annotations, where features extracted
from different architectures create differences in the interpretation of temporal reference, thus
marking each feature uniquely. Consequently, prior to training with any temporal localization
network, it becomes imperative to modify the original annotations and establish coherent
references for each dataset with respect to the features to be utilized.

This process is iteratively applied to each dataset, leveraging metadata from the videos
such as duration, frames, and timestamps of annotation start and end. Subsequently, Equa-
tion 3.1 is employed to map the new annotation reference in the dataset. Ultimately, a
comprehensive dataset is obtained, capturing a unified temporal context for further analysis.
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3.4 Temporal Video Grounding Experiments

After training the TVG models with the diverse features obtained through our framework,
the subsequent section proposes the execution of various experiments to examine the impact
of these features on the specific task at hand. These experiments are primarily designed to
scrutinize differences in performance, bias, and explore potential relationships between text
and video embeddings.

Note that the experiment starts by replicating the original results of the TMLGA and
LGVI networks. This serves two purposes: firstly, to compare the results obtained with the
original results from the papers, and secondly, to set the hyperparameters of the network with
a baseline configuration. Based on this configuration, the 13 features obtained for different
data sets are then trained. It’s worth noting that if replicating the original results proves
difficult, efforts are made to achieve comparable values.

3.4.1 Features Performance Benchmark

In order to perform a comprehensive feature comparison, we have developed an extrinsic
evaluation across the three proposed datasets. Our primary objective is to visualise the per-
formance differences between the different features and highlight the variations in predictions
based on the datasets and features employed. This experiment is expected to serve as a guide
to how encoder characteristics can influence prediction generation, providing insight into the
application of features in temporal tasks. In addition, the observed variation in predictions
with different features underscores the importance of features and highlights the need for
coherent feature extraction that is aligned with the temporal localisation model used.

The evaluation covers each of the proposed datasets and uses the TMLGA and LGVI
architectures. For comparison, the tIoU metric is used, taking into account the best prediction
made by the networks and incorporating IoU thresholds of 0.3, 0.5 and 0.7 (commonly used
thresholds in the literature). In addition, the mIoU calculation is included to illustrate the
general performance trends of the predictions.

3.4.2 Bias associated with predictions

To delve into potential differences arising from the use of different video classifiers in the
task of temporal localization, we propose examining how predictions vary across various
backbones. The objective is to observe distinct trends for each employed backbone, hypoth-
esizing that certain backbones may perform better on specific video segments or types of
datasets.

To facilitate this exploration, we propose creating distribution graphs similar to those
presented in https://arxiv.org/pdf/2101.09028.pdf. Through these visualizations, we aim to
illustrate how the normalized concentrations of the start (X-axis) and end (Y-axis) points of
predictions made by the TMLGA model with different backbones vary across each dataset.
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The intention is to highlight how backbone variation alone can lead to diverse predictions in
the task of temporal localization.

To assess the correctness of predictions, various threshold levels of the interval over union
metric will be employed. Similar to the performance benchmark, thresholds of 0.3, 0.5, and
0.7 will be used. This approach allows us to observe how different feature concentrations align
with varying stringencies in the intersection of predictions with the ground truth, providing
nuanced insights into the classifier’s performance.

3.4.3 Orthogonality of predictions

Finally, we explore the orthogonality of features. The objective here is to visualize whether
predictions made with different features are mutually exclusive or if they represent a subset
of another feature derived from a more complex backbone. In essence, we aim to determine
if one feature can accurately predict a relevant moment in a video that another feature fails
to identify, or if the predictions made with one set of features are encompassed within the
predictions of another feature with a similar architecture.

Similar to previous processes, various prediction thresholds are examined to define a
correct video prediction. However, in contrast to prior cases, the analysis of thresholds
involves comparing each prediction made by each feature, grouping them based on their
associated nature. Subsequently, we assess whether the predictions made for each grouping
are mutually exclusive or intersect. This approach generates Venn diagrams to identify
congruencies among the features.

3.4.4 Relationship between predictions and annotations

Due to the utilization of diverse datasets for both training and evaluation, TVG models
are tasked with identifying moments characterized by varying temporal aspects and spatial
information. Consequently, an intriguing analysis involves exploring the relationship between
created features and the detection of actions or moments associated with specific categories.
For example, it would be interesting to examine scenarios where a CNN might excel in
identifying relevant moments related to sports activities, while other features may enhance
the detection of significant moments associated with cooking.

To execute this task, the primary action described in each annotation will be identified.
Once the predominant action is determined, embeddings are generated to vectorially repre-
sent the video annotations. These embeddings are then projected onto a two-dimensional
graph, enabling the visualization of potential groupings. Each representation is plotted in a
two-dimensional graph, associating each point with the features that accurately classified the
corresponding actions. The aim is to discern whether certain features demonstrate superior
predictive capabilities for a set of actions compared to others.

For the purposes of this study, the analysis will commence with smaller datasets, starting
with Charades.
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Chapter 4

Results and Analysis

This chapter delves into an extensive comparative study conducted to assess various features
in the task of temporal grounding, a crucial undertaking for enhancing video comprehension
and retrieval efficiency in numerous practical applications.

The primary aim of this benchmark study is to systematically evaluate and compare the
performance of different features in temporal grounding tasks. Through this, we strive to
gain a clear understanding of the current state of the art in this field and identify potential
improvements achievable by experimenting with features beyond those traditionally used.

Employing a robust and diverse dataset, our methodology encompassed rigorous testing,
where we examined the impact of TVG models with different features using metrics, embed-
dings, bias analyses, and Venn diagrams. This approach was designed to offer a holistic view
of the performance landscape in temporal video grounding tasks.

Our findings highlight performance improvements achieved solely by altering features,
shedding light on the strengths and limitations of current methodologies. These insights are
pivotal in guiding future research and enhancing practical applications in video analysis.

In this chapter, we present these findings in detail, starting with an exhaustive analysis
of the comparative test results, followed by discussions on their implications and potential
avenues for future research. Please note that the various results presented in this chapter
were validated through publication at an ICCV 2023 workshop [4].

4.1 Features Performance Benchmark

The first experiment we conducted involved comparing the performance of Temporal Video
Grounding models using different features. For this purpose, we tested two architectures: a
classic architecture named TMLGA and a second architecture called LGI, which incorporates
language guides to enhance predictions. The aim of this section is to determine, through these
two architectures, whether varying features impacts the performance in temporal localization
tasks. This could be a crucial factor for future research, as comparing and utilizing the most
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effective features might significantly improve the outcomes achieved.

Model Charades ActivityNet YouCookII
Encoder f Pretrain 0.5 0.7 0.5 0.7 0.5 0.7

MViT 8 K400 50.27 31.32 30.64 17.50 27.78 15.21
MViT-v2 16 K400 48.17 30.27 23.80 11.87 25.40 13.95
Rev-MViT 16 K400 49.89 32.31 28.94 15.97 23.71 13.00
X3D M 16 K400 43.60 27.96 26.39 14.14 22.97 12.80
X3D S 13 K400 41.37 25.16 30.23 17.54 23.00 12.60
SlowFast 8 K400 38.82 24.22 23.34 11.70 21.39 11.57
SlowFast 16 SS V.2 39.76 23.90 30.15 17.51 21.16 11.05
SlowOnly 8 K400 36.16 20.19 23.92 12.11 11.31 6.24
I3D NLN 8 K400 38.63 24.33 24.04 12.28 20.76 11.60
C2D 8 K400 02.63 00.97 24.33 12.39 08.85 03.92
TSM 8 K400 45.35 23.20 31.81 18.06 24.74 13.29

Mean - - 39.51 23.98 27.37 14.90 21.01 11.38
STD - - 13.41 06.65 07.04 05.46 06.76 03.37

I3D [42] 8 Charades 52.02 33.74 - - - -
I3D [42] 8 K400 - - 33.04 19.26 20.65 10.94

Table 4.1: Summary of our experimental results with TMLGA, where f denotes the frame
rate used to extract features, while K400 and SS V.2 stand for the Kinetics-400 and
Something-Something V.2 datasets, respectively. In the table, the best results for each
dataset are indicated in bold, while the worst results are underlined.

Table 4.1 presents a summary of our experimental results, highlighting the performance
variations of the TMLGA model with different feature sets. In the Charades-STA dataset,
Transformer-based features demonstrate promising outcomes, notably outperforming our I3D
features. This contrasts with the original results where I3D features surpassed ours by only
2.45 points. We attribute this discrepancy to the pre-training dataset: the original features,
pre-trained on Charades, may have caused overfitting. Conversely, our features pre-trained
on the K400 dataset show competitive performance, allowing for an unbiased selection and
reducing the need for extensive training on task-specific datasets.

In the ActivityNet dataset, two key observations emerge. First, certain CNN-based fea-
tures unexpectedly outperform newer Transformer-based models, with up to a 7-point differ-
ence in the 0.7 tIoU threshold. Second, the performance variance among features is smaller,
suggesting a higher relevance of query representation. This aligns with data showing that
ActivityNet queries are more complex in terms of vocabulary size and length compared to
other datasets.

On the YouCookII dataset, the high visual complexity is evident, likely due to the longer
average video length of about 5 minutes. Here, Transformer-based models excel, paralleling
the performance of sophisticated architectures like DORi, which leverage spatial information.
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These results underscore the critical role of feature selection in TVG tasks, demonstrating
that strategic changes can yield performance improvements of up to 5 points. This highlights
the risk of stagnation and suboptimal results when features are selected without fully under-
standing their impact on the dataset. Future research should focus on exploring the effects
of diverse features and their broader applicability in video and speech tasks.

Model Charades ActivityNet
Encoder f Pretrain 0.5-iid 0.7-iid 0.5-ood 0.7-ood 0.5-iid 0.7-idd 0.5-ood 0.7-ood

MViT 8 K400 27.34 11.91 18.99 0.07 45.33 27.51 23.04 10.62
MViT-v2 16 K400 58.32 32.69 45.10 21.93 44.30 27.28 22.15 9.95
Rev-MViT 16 K400 49.21 26.37 38.73 18.10 43.00 25.54 22.95 10.35
X3D M 16 K400 52.73 29.65 43.35 20.09 44.07 27.75 22.58 10.28
X3D S 13 K400 49.21 27.83 40.00 19.13 45.17 28.10 23.22 10.48
SlowFast 8 K400 54.68 32.71 46.55 23.91 43.48 27.87 22.01 9.97
SlowFast 16 SS V.2 55.16 31.83 45.90 23.56 43.91 25.38 21.79 9,97
SlowOnly 8 K400 48.36 27.83 39.61 18.61 43.75 26.09 22.56 10.31
I3D NLN 8 K400 52.49 30.98 43.59 21.84 44.19 27.16 22.86 10.66
C2D 8 K400 34.02 17.13 27.35 11.47 42.81 26.25 21.32 9.41
TSM 8 K400 45.39 24.54 35.08 13.57 42.69 26.85 22.74 10.36

Mean - - 47.95 26.68 42.29 38.57 43.88 26.85 22.74 10.36
STD - - 9.35 6.66 6.79 8.56 0.87 0.95 0.59 0.36

Table 4.2: Summary of our experimental results with LGI, where f denotes the frame rate
used to extract features, while K400 and SS V.2 stand for the Kinetics-400 and Something-
Something V.2 datasets, respectively. In the table, the best results for each dataset are
indicated in bold, while the worst results are underlined.

In the case of the LGVI network 4.2, we observe a distinct grouping of results. Here,
”iid” denotes the testing set with independent and identically distributed data compared to
the training set, while ”ood” refers to the out-of-distribution data relative to the training
dataset. Simply put, the ”iid” set represents videos with content similar to that of the
training material, whereas the ”ood” set includes content that significantly differs from the
training set, for instance, if the training set contained only adults running, the ”ood” set
might feature children running.

Regarding the results, Table 4.2 indicates that for Charades, the network’s performance
varies with different features, similar to the patterns observed with TMLGA. The network
achieves varying levels of performance, with differences of up to 5 points between the best
and worst cases in the ”iid” segment. For the ”ood” sample, changing features also impacts
predictions, suggesting an improvement in the generalization of the prediction problem.

An intriguing scenario arises with ActivityNet Captions, where no substantial improve-
ment in performance is noted across all features. Furthermore, the examination of standard
deviations and means suggests that the observed differences could be due to randomness in
training. This lack of differentiation between features could imply that the network is not
effectively utilizing video feature information for decision-making and may be influenced by
biases in the training annotations.

To test whether the model’s predictions are inherently linked to the input features, a
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testing replica of the RevMViT model was created using random features based on the
dimensions of the original features. This experiment aimed to determine whether the network
could make similar decisions with random features. The results are as follows:

Table 4.3: The results obtained in testing when applying a random feature to the LGVI
model, using the network trained with RevMViT as a reference.

0.5 iid 0.7 iid 0.5 ood 0.7 ood

Random Feature 38.86 21.52 17.24 6.38

Table 4.4: The results obtained in testing when applying a random feature to the TMLGA
model, using the network trained with RevMViT as a reference.

0.5 0.7

Random Feature 8.62 4.28

The results indicate minimal deterioration in the LGVI models despite the use of com-
pletely random features. This suggests that the network has a limited capacity to assimilate
information from video features and tends to rely on predictions derived from annotations.
Therefore, the minimal variation in predictive capability observed among different features
could be attributed to the network’s inability to effectively process the information contained
in the features and its reliance on shortcuts to predict outcomes that maximize the metric.

Conversely, in the case of TMLGA, we do not observe the same behavior, as there is a
significant deterioration in the model when random features are introduced. This finding
suggests that the problem lies with the LGVI network during training, where it fails to
effectively absorb information from the features.

In summary, it is generally observed that features have a direct impact on TVG networks,
creating significant differences between one feature and another. However, training issues
in TVG networks are also evident, where the networks are not addressing a multimodal
problem but are instead heavily biased towards the annotations they encountered during
training. This point is crucial, as it suggests the importance of verifying TVG networks with
the randomness of features to ensure they are truly learning from them.
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4.2 Bias associated with predictions

This section examines in detail how biases manifest themselves in TMLGA and LGVI mod-
els, affecting their ability to accurately interpret and respond to dynamic video content.
As TVG algorithms increasingly rely on complex datasets and advanced neural networks,
the tendency of these systems to inherit and enhance biases present in their training data
emerges as a crucial challenge. Understanding and mitigating these biases is vital to ensure
effective and equitable learning in TVG models. Thus, we can confirm that the network is
not only assimilating biases from the data, but also learning differentially with variation in
the features applied, which is a fundamental step towards developing more robust and fair
artificial intelligence systems.

To better understand how different features influence our model’s output, we visualized
the 0-1 normalized predicted time intervals for each query, drawing inspiration from Otani
et al. [34]. For this, we generated two sets of plots: one for correctly predicted intervals and
another for incorrect predictions, both evaluated at a 0.7 tIoU threshold. In the figures 4.1,
4.2, 4.3 and 4.4, the colors represent the concentration of predictions across different start
and end intervals. Herein, a darker color indicates a higher accumulation of predictions, while
a lighter color signifies a lower concentration.

Starting with the analysis of the results obtained for the TMLGA network, in Figure 4.1,
our findings on the Charades-STA dataset reveal two distinct clusters of correct predictions,
located in the lower-left and upper-right sections of the plot. A notable observation is the
model’s propensity to predict intervals spanning the entire length of the video, a pattern
not reflected in the training data. Additionally, the variation in prediction patterns across
different features, evident in distinct accumulation zones, underscores the significant disparity
in positive and negative predictions among models, suggesting an orthogonality in feature
behavior.

In contrast, on the ActivityNet dataset, the model consistently defaults to degenerate
solutions across all feature sets, often predicting intervals covering the full video duration.
This could be attributed to the presence of similar patterns in the training data. However,
similar to Charades-STA, we observe different accumulation points in the model’s predictions,
again indicating potential orthogonality between features.

Regarding the YouCookII dataset, similar to the other two datasets, different concentra-
tions of predictions for each feature are observed. This analysis also reveals that YouCookII
exhibits a unique behavior, with predictions clustered along the diagonal of the graph. An
interesting aspect of this plot is that the more dispersed the concentrations are from the
diagonal, the higher the error rate and lower the performance of the features. This is evident
when comparing models such as MViT and I3D, where MViT shows less dispersion and thus
potentially better performance than I3D. This observation underscores the importance of
feature selection in model performance, particularly in the context of diverse datasets like
YouCookII.

To further enhance the analysis, plots of the normalized duration distributions of the
predictions for each feature are added 4.2. It is observed that for Charades, there is no single
pattern in either the correct or incorrect predictions across the different features; in fact, each
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feature exhibits its own unique distribution. On the other hand, the situation changes with
Activity-Net Captions. While variations are observed, particularly in the 0 - 0.5 range, a
common trend across all features is the high concentration of errors in generating predictions
throughout the same video. This pattern suggests that the network tends to predict the length
of the video when unsure of the answer. This could be because the Temporal Intersection
over Union (tIoU) metric still yields high values despite the error, potentially caused by
the prevalent presence of 0-1 annotations in the dataset. Finally, with YouCook, while all
distributions appear similar, this is likely due to the annotations of Activity-Net Captions
falling within that range. However, this should not be considered a problem similar to what
is observed with Activity-Net Captions. In the case of YouCook, the networks at least
attempt to generate timestamps that are coherent with the problem and span the duration
of the video. This nuanced understanding of the networks’ behavior across different datasets
highlights the complexity of temporal video grounding and the need for tailored approaches
to different types of video content.

These observations highlight the complex interplay between feature selection and model
performance. The varying accumulation points suggest distinct predictive behaviors, offer-
ing insights into the dataset-specific challenges and the potential for enhanced predictions
through feature optimization.
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Figure 4.1: Normalized temporal prediction distributions across three datasets for TMLGA.
Each row shows data for the Charades, ActivityNet, and YouCook II datasets (from top to
bottom) comparing feature extraction methods: MViT, I3D, and TSM (from left to right).
The x-axis denotes the start time of the prediction, and the y-axis denotes the end time,
illustrating the spread and concentration of predictions within the datasets.

As observed in the previous experiment, there is a qualitatively low variation in predictions
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Figure 4.2: Comparison of normalized temporal prediction distributions across datasets for
TMLGA. Each row visualizes the predictions for the Charades, ActivityNet, and YouCook II
datasets (top to bottom), comparing the feature extraction methods MViT, I3D NLN, and
TSM (left to right). The x-axis indicates the prediction density, and the y-axis marks the
prediction end time, showcasing the variance in prediction patterns among the methods and
datasets.

regardless of the features used. This reaffirms the outcomes obtained with the LGVI network
in the plot 4.3, suggesting that regardless of the choice of features, there is minimal to no
variation in the network’s ability to assimilate information from the features, as evidenced
by the similarity in the outputs. This reinforces the observation that the LGVI network,
particularly for the Activity-Net dataset, appears to generate predictions based primarily
on data biases, thereby overlooking the resolution of the intended multimodal task. This
pattern indicates a potential limitation in the network’s design or training process, where it
fails to effectively leverage the diverse information that different features might offer, instead
defaulting to pattern recognition based on training biases.

Finally, examining the distribution graphs for both the iid and ood testing sets of LGI 4.4,
we notice distinct patterns. Unlike what was observed with TMLGA, Activity-Net exhibits a
different behavior where the network does not saturate predictions at the length of the video
when it is uncertain about the location of the relevant moment. Nevertheless, the curves,
similar to the previous distributions, appear alike, indicating that the networks tend to yield
similar predictions despite changes in features. This is in stark contrast to TMLGA, where
greater variations were evident. This observation suggests a certain level of consistency in
the predictive mechanisms of the networks across various features, highlighting a potential
area of improvement in terms of feature sensitivity.
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Figure 4.3: Distribution of normalized temporal predictions across the YouCook II dataset
for LGVI, comparing feature extraction methods. From left to right: MViT, I3D NLN, and
TSM. The x-axis shows the start time of predictions, and the y-axis shows the end time,
illustrating how predictions are distributed temporally.
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Figure 4.4: Normalized temporal prediction density for the YouCook II dataset for LGVI.
The distribution compares the effectiveness of MViT, I3D NLN, and TSM (left to right)
in predicting the end times of events, with the x-axis indicating prediction density and the
y-axis indicating prediction end time.
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Figure 4.5: Distribution of normalized temporal predictions for out-of-distribution (OOD)
samples in the YouCook II dataset for LGVI, using features from MViT, I3D NLN, and TSM.
The x-axis shows prediction start time, while the y-axis shows the end time, highlighting the
temporal prediction spread.
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Figure 4.6: Normalized prediction density for out-of-distribution (OOD) events in the
YouCook II dataset for LGVI. Comparing methods: MViT, I3D NLN, and TSM, the x-
axis measures the density of predictions, and the y-axis measures the prediction end time.
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4.3 Orthogonality of predictions

4.3.1 Venn diagrams on predictions

To demonstrate that the predictions are complementary, Venn diagrams of the predictions
made by different features are plotted. Initially, features are categorized based on their
nature: Temporal, CNN, and Transformer. After grouping the predictions, the correct ones
made at different temporal interval over union thresholds are separated, allowing us to assess
the predictive accuracy of each extracted feature.

To fully grasp these graphs, it’s important to understand the following: each color rep-
resents a set of predictions. For video features of the transformer type, blue is used; for
CNN features, green; and for temporal features, red. Additionally, the intersections between
these different groups create new colors. Specifically, the intersection of all three feature sub-
sets produces gray, indicating that all types of features are capable of making the specified
predictions. This color-coding system is essential for interpreting the graphs, as it visually
distinguishes between the predictive capabilities of different feature types and their combi-
nations.

The first cases examined are the Venn diagrams for the TMLGA network. From these
diagrams, it’s observed that for each threshold, there are groups of videos that can only be
predicted by specific types of features. This indicates that the features may capture different
abstractions of information from the videos, leading to varied predictions in the final temporal
model.

A closer look at the TMLGA results reveals that as the temporal threshold becomes more
stringent, there is a smaller set of commonly predicted videos across the datasets (indicated
by the grey segment in the Venn diagram). Moreover, it’s noted that CNN features can
predict the most videos independently, with temporal features predicting the least. This
phenomenon might be due to the quantity and diversity of features available, with CNNs
having the most.

For the LGVI network, results are similar to those observed with TMLGA in the indepen-
dent and identically distributed (iid) sample. It’s seen that the more stringent the threshold,
the fewer the number of videos intersecting in the predictions. Additionally, the small differ-
ence in predictions for different thresholds in the ActivityNet dataset compared to TMLGA
is notable, indicating a lower variance within the iid data analyzed. This could be attributed
to the limited effectiveness of the features for this dataset with the LGVI network and the
low variability in the iid data.

In the case of the out-of-distribution (ood) sample, greater differences among the features
are observed, with a significant number of videos predicted only by CNN features. This
observation aligns with the previously noted behavior where a higher threshold results in
fewer intersecting predictions among different features.

In summary, the Venn diagrams for TMLGA and LGVI networks highlight two key points:
(1) They underscore the significance of feature selection in localization tasks, emphasizing the

49



importance of choosing the right features for optimal performance. (2) Secondly, they suggest
the potential for a complementary use of features, which could lead to the development of
more robust models in temporal localization tasks.
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Figure 4.7: Overlap of the correct predictions, in terms of query-video pairs for α = 0.7,
in Charades-STA (left), ActivityNet (center) and YoucookII (right) benchmarks. We group
features based on their nature.
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4.3.2 Post-training Metamodel

To supplement and delve deeper into the potential completeness seen in the different features
visualized in Venn diagrams; this subsection proposes selecting post-training models and
generating an oracle, where we retain the best prediction made for a specific video among all
the predictions made by the different features.

The goal of this task is to demonstrate that if we can identify the feature that best
classifies a given video, we can achieve superior results compared to those currently obtained
by TVG networks. Thus, our proposal does not seek to create a model, but rather a test
with which we suggest a new direction for the task of temporal localization, where the focus
should be on combining features to achieve better performance.

Table 4.5: Enhanced Performances Achieved by Merging Models with Various Features,
Utilizing the Highest IoU Scores from the Training Set of TMLGA Models. The findings
suggest that if we can adeptly select the appropriate features for prediction, the efficiency of
TVG models can increase significantly (see 4.1).

Dataset tIoU - 0.5 tIoU - 0.7 mIoU

Charades 84.46 65.40 74.63
ActivityNet 50.05 32.37 51.22
YouCookII 60.86 41.48 58.93

Table 4.6: Performance results from merging models with different features using the highest
IoU scores achieved in the test set by LGVI models for both IID and OOD datasets. The
results show significant improvements on both datasets compared to 4.2.

Dataset Data tIoU - 0.5 tIoU - 0.7 mIoU

Charades iid 91.49 75.82 77.01
ActivityNet iid 70.36 57.47 65.87
Charades ood 84.53 62.55 70.66

ActivityNet ood 49.7 31.7 50.36

From the results in 4.5 and , it is observable that for both TMLGA and LGI, improvements
are seen in all thresholds and average performances that the networks possess. This indicates
that each of the models trained with different features provides different information to the
models, resulting in varied performances on different videos. A potential reason for this is
the nature of the features, which encode different spatio-temporal information depending on
the video being analyzed. This suggests that more modern models like transformers, while
achieving better performance, do not capture all the information contained in videos that
older networks might capture.

Finally, while the results are encouraging to declare that there is a potential complemen-
tarity among features, the question arises: is this completeness of the features a random
factor in machine learning models? To answer this question, in section 4.3.3 we will explore
the variation in the combinations of features and tests with different seeds in the TMLGA
model.
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4.3.3 Analyzing the Impact of Feature Combination and Random-
ness in Temporal Video Grounding Models

After presenting the potential for completeness in using multiple features when training a
temporal video grounding model, the next step is to verify whether the construction of the
proposed oracle could be due to randomness generated by the training itself. This will be
tested through multiple seeds to see if this behavior persists or disappears when varying the
random factor in the models.

The experiment conducted involves training models using the TMLGA network with four
different features, each trained with four distinct seeds, resulting in a total of 16 models for
experimentation. The features chosen are those with the highest performance in the Charades
dataset: MViT, Rev MViT, MViT v2, and X3D M. Due to computational constraints and
execution time, the experiment is only carried out for the TMLGA network and uses the
Charades dataset, as it is the smallest dataset used.

The first task involves creating meta-models by combining each of the models with the
same features but different training seeds. Our goal is to demonstrate that the randomness
of the training does not contribute significantly, as seen when combining features of different
natures. The following results were obtained:

Table 4.7: Results from Combining TMLGAModels with Identical Features but Four Distinct
Seeds. The table shows improvements in outcomes compared to those achieved without
combining models with different seeds, and a similar performance increase is noted across all
four features.

Model tIoU - 0.5 tIoU - 0.7 mtIoU

MViT 66.45 44.92 58.65
Rev-MViT 64.54 44.35 58.41
MViT-v2 64.87 45.46 58.93
X3D M 62.93 43.06 58.18

Mean 64.70 44.45 58.54
Std 1.44 1.03 0.32

From the table, it can be observed that combining models with the same features results
in a slight improvement in performance compared to the results shown in 4.5, showing a
similar contribution for the four combined features.

The second experiment consists of combining models with different features but the same
seed. The aim is to verify that the improvement is greater than that seen by combining
models trained with the same features, suggesting that the information in the features is
different and can create a complementary behavior between them for final decision-making.
The results of this experiment are as follows:

The results show a considerable improvement when combining models with different fea-
tures. There is an average increase of 10 points by combining the same number of models,
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Table 4.8: Enhanced Outcomes from Integrating Diverse Features: Mvit, X3D M, ReV-
MViT, and MViT-v2 with Varied Seeds from 2012, 2015, 2017, and 2022. The observed
performance metrics exceed the results in Table 4.7, indicating a more comprehensive and
effective combination of features.

Seed tIoU - 0.5 tIoU - 0.7 mIoU

2012 78.41 56.75 68.59
2015 78.23 55.99 68.64
2017 79.22 58.36 69.03
2022 78.49 57.58 68.73

Mean 78.58 57.17 68.75
Std 0.44 1,03 0,20

and it is observed that despite different seeds, the selections are stable, indicating that the
increase is not related to a random factor that could have occurred in a particular training
of the networks.

The outcomes of this experiment intrinsically demonstrate that there is a complementary
contribution between the features. Although we have not been able to construct an automatic
selector capable of effectively selecting features, it is evident that the behavior indicated by
the oracle is not merely due to randomness present in deep learning models.

4.4 Relationship between predictions and annotations

In order to see if there’s a tendency for certain groups of queries/annotations to be predicted
more accurately in videos with different features, we propose to examine how predictions
from the Charades meta-model cluster with TMLGA and determine if certain verbs are more
effectively predicted by features of a particular type than others. It is important to note
that the use of the metamodel is primarily because it identifies the most effective features
for different examples in the test

To perform this experiment, we first identify the features and queries. Given the com-
plexity of the content of a query to make comparisons, we simplify the text component to the
verbs present in the queries associated with the videos. Specifically, to extract the verbs, we
use SentenceTransformer, applying part-of-speech tagging to the queries to identify the pre-
dominant verb in the queries made to the videos. From the results, we obtain the following
distribution for the 10 most frequent verbs in the queries:

From the graph 4.10 we can see that out of a total of 87 verbs identified with part-of-speech
tagging in the test set, the majority of queries are concentrated around the actions: ”open”,
”put”, ”continue” and ”play”, showing a significant difference compared to other verbs. This
indicates a significant imbalance in the dataset, which could affect the performance of videos
with actions that occur only once.
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Figure 4.10: Distribution of the Top 10 Most Frequently Occurring Verbs in the Queries from
the Charades Testing Dataset.

Having identified the verbs and the embeddings representing the queries, we project the
queries into a two-dimensional space using T-sne. Our goal is to see if it’s possible to observe
clusters that group the verbs according to the embeddings of the most similar sentences,
thereby identifying possible trends in the predictions made by the features (for example, we
hope to see that some clusters have a predominance of one feature over another). A second
point to consider in this experiment is that we only use predictions from the Charades
metamodel of TMLGA that achieve performances in tIoU above 0.9, as this more demanding
threshold should be able to highlight the true trends present in the features and queries.

Figure 4.11: Projection of video queries from the Charades testing set with an IoU Exceeding
0.9. In the plot, each point represents a specific query, and the colors associated with each
point indicate the features with the best performance for that particular case.

Looking at the graph 4.11, we can see that there are about 9 large clusters of queries within
the projection. A closer look at each of these clusters reveals that they are all composed of
the same verbs. A notable aspect of the graph is the presence of different colours on the
dots, representing each of the features that achieved the best results on certain videos. This
shows that there is no clear trend in the prediction of clusters, indicating random behaviour
in the data cloud. In order to reduce the noise in the information projected by the features, a
second graph 4.12 is presented where each feature is categorised according to its type: CNN,
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Temporal or Transformer. This approach aims to simplify the visual content and assess
whether a trend can be more clearly identified.

Figure 4.12: Projection of Video Queries from the Charades Testing Set with an IoU Exceed-
ing 0.9. In the graph, each point symbolizes a distinct query, and the colors assigned to each
point represent the nature of the features with the best performance for that specific case.

In 4.12, it is now possible to see just three types of colors that represent the features by
their nature. Although this significantly reduces visual clutter, the pattern of randomness
seen in 4.11 persists, making it impossible to discern any clear trend in the predictions made.
Further analysis involves zooming in on the cluster that contains the verb ’play’ (see image
4.13). Within this cluster, no discernible trend is observed in the predominance of one type
of feature over another, merely highlighting the random behavior of the features.

Figure 4.13: The image depicts a zoomed-in view of one of the clusters formed by the queries.
Despite grouping by the nature of the features, it is impossible to identify a type of feature
that predominates over others in this cluster, highlighting the absence of a discernible pattern
associated with the predictions in this cluster.

In summary, from the projections and comparisons of video features with their respective
queries, it is not possible to establish a clear trend between them, with only random patterns
observed in the meta-model’s predictions. This lack of a discernible pattern suggests that the
difference in features is dictated by more complex behaviors than just accurately predicting
a subset of actions in the dataset.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we have embarked on a comprehensive analysis of video features in the context
of the video grounding task, leading to the development of a novel framework for video
feature extraction. Our research has illuminated that using features with pre-trained encoders
from datasets different from the target application can produce results comparable to those
using finely-tuned, application-specific encoders. This approach effectively counters potential
network overfitting and biases related to task proficiency.

The development of our video feature extraction framework serves as a practical ap-
plication, offering a robust tool for researchers and professionals in the field of temporal
localization. This work aims to provide the scientific community with new ideas and tools to
enhance the performance of TVG models and reduce the reliance on dominant and potentially
biased features in their selection.

However, while our framework allows for easy extraction of video features, its architecture
is not easily compatible with developments outside of the Meta team and requires constant
updating to incorporate new models. This means that maintenance is needed; otherwise,
some of the backbones will become outdated compared to the state of the art.

Regarding our findings, we observed a substantial performance increase by altering video
representations, significantly improving model performance even without modifying the un-
derlying architecture. Our research also identified specific weaknesses in certain classical
features, while discovering synergies between different features. This aspect of our research
suggests potential pathways for optimization and performance improvement in temporal lo-
calization networks.

On the other hand, when comparing features with different TVG models, we encountered
problems during network training. For instance, in the ActivityNet dataset, the LGVI net-
work tends to learn annotation characteristics to optimize performance, neglecting the visual
information provided through video features. This is concerning as it indicates a lack of rigor
in the TVG task that could lead to models blind to the problem’s multimodality due to the
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current approach and potential dataset inadequacies.

Another relevant aspect of our study is the revelation of unique prediction patterns among
video features, suggesting that integrating these diverse characteristics into a unified network
could lead to more accurate predictions. The variation of features has shown to have a pro-
found impact on localization, leading to improvements comparable to those of more complex
networks that consider spatial components.

Finally, this work provides an exhaustive demonstration of the complementary power of
features. Using a meta-model and Venn diagrams, it is shown that different models trained
with different features can generate exclusive predictions. This indicates that if we can
automatically identify when to use certain features based on the input video, it suggests
significant leaps in performance in temporal localization networks.

Regarding the limitations reflected in the study of feature completeness, the study is
limited to the extrinsic verification of the contribution of features through the temporal
localization task, due to the complexity of intrinsically comparing the information represented
in the videos.

Looking to the future, applying these discoveries to modern architectural models opens
exciting opportunities for advancement in temporal localization. The inherent orthogonality
of the features we have explored is expected to promote the development of sophisticated and
customized solutions in this dynamic field. With this thesis, we have not only shed light on
the current state of video feature analysis but also laid the groundwork for future advances
in this area.

5.2 Future Work

The exploratory and analytical work presented in this thesis opens several avenues for future
research. Building upon the findings and methodologies employed, we propose the following
directions for advancing the field of Temporal Video Grounding (TVG) and related areas:

Testing Features Across Diverse Architectures

• Future studies should focus on extending the current research by incorporating more
modern and varied architectural frameworks. This will enable a comprehensive under-
standing of how different architectures influence feature performance in TVG models.

• A systematic assessment of feature performance across a spectrum of architectures,
including both established and emerging models, is crucial. This approach will shed
light on the adaptability and efficiency of features in diverse environments, providing
insights into optimal model design.

Exploring Text and Video Encoder Variations in TVG
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• An in-depth investigation into the impact of varying text and video encoders on TVG
task performance is warranted. This research should aim to understand how encoder
variations affect model accuracy and efficiency.

• A comparative analysis of different encoder architectures and their influence on TVG
outcomes will provide valuable guidelines for selecting appropriate encoders for specific
applications.

Enhancing TVG Models through Feature Combination

• Building on the foundation of this thesis, further research should delve into combining
multiple features to boost TVG model generalization. This entails identifying and
testing synergistic feature combinations that enhance overall model robustness.

• The focus should be on exploring combinations that not only improve accuracy but also
contribute to the scalability and practical applicability of TVG models in real-world
scenarios.
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