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Resumen

Estructuras espaciales inducidas en una celda fotosensi-

ble de cristal liquido nematico dopado con colorante.

El objetivo principal de esta tesis es investigar el efecto de un dopante fotosensible en una
mezcla de cristal ĺıquido, particularmente en el acoplamiento que ocurre durante variaciones
térmicas o inyección de luz a una frecuencia definida en el material, lo que lleva a la formación
de estructuras espaciales. Se realizaron experimentos utilizando microscoṕıa óptica y técnicas
láser para inducir las estructuras, y los resultados se compararon con modelos prototipo y
universales asociados con cristales ĺıquidos, obteniendo acuerdos cualitativos y cuantitativos
con las observaciones experimentales. Se caracterizó la dinámica de las soluciones utilizando
herramientas de la f́ısica no lineal y simulaciones numéricas.

En el caso de los fenómenos observados bajo interacción con la luz, se diseñó un montaje
experimental con láseres. Además, se derivó un sistema de ecuaciones diferenciales parciales
basado en los principios fundamentales de los cristales ĺıquidos, incorporando efectos de
disipación y absorción de enerǵıa para las moléculas del dopante. Posteriormente, se realizó
una eliminación adiabática de este sistema acoplado para obtener una ecuación reducida. Se
caracterizaron y simularon las bifurcaciones y la estabilidad de las soluciones para el modelo
reducido. Esta ecuación ilustra cómo la enerǵıa inyectada en el sistema con un haz gaussiano
conduce a la generación de patrones anulares a baja potencia de luz y patrones complejos para
potencias más altas. También se proporciona una caracterización universal para entender los
ingredientes principales para la emergencia y propagación de patrones anulares en un modelo
no lineal prototipo.

Para efectos térmicos, la mezcla exhibe separación de fases cerca de la transición de fase,
revelando, en el caso del dopante, una segunda fase nemática. El mismo experimento se re-
alizó con una celda de cristal ĺıquido puro, demostrando que también se generan estructuras
debido a una dinámica de separación de fases, que conduce a inhomogeneidades en la con-
centración de moléculas en la mezcla. En este escenario, se derivó un modelo que incorpora
los principios de los cristales ĺıquidos y se acopla con una ecuación tipo Cahn-Hilliard que
tiene en cuenta cómo se redistribuye la concentración de la mezcla sin un cambio en la masa
total con el tiempo. Los resultados experimentales se comparan con el modelo propuesto,
obteniendo acuerdos cualitativos y cuantitativos con las observaciones experimentales.
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Abstract

Spatial Structures Induced in a Photosensitive Dye-Doped

Nematic Liquid Crystal Cell

The main objective of this dissertation is to investigate the effect of a photosensitive dopant
on a liquid crystal mixture, particularly in the coupling that occurs during thermal variations
or light injection at a defined frequency into the material, leading to the formation of spatial
structures. Experiments were conducted using optical microscopy and laser techniques to
induce the structures, and the results were compared with prototype and universal models
associated with liquid crystals, obtaining qualitative and quantitative agreements with the
experimental observations. The dynamics of the solutions were characterized using tools from
nonlinear physics and numerical simulations.

In the case of phenomena observed under light interaction, an experimental setup with
lasers was designed. Additionally, a system of partial differential equations was derived based
on first principles of liquid crystals, incorporating dissipation and energy absorption effects
for the dopant molecules. Subsequently, an adiabatic elimination of this coupled system was
performed to obtain a reduced equation. The bifurcation and stability of solutions for the
reduced model were characterized and simulated. This equation illustrates how the injection
energy into the system with a Gaussian beam leads to the generation of ring-like patterns at
low light power, and complex pattern for higher powers. Also an universal characterization is
given to understand the main ingredients to get emergence and propagation of ring patterns
in an prototype nonlinear model.

For thermal effects, the mixture exhibits phase separation near the phase transition,
revealing, in the case of the dopant, a second nematic phase. The same experiment was con-
ducted with a pure liquid crystal cell, demonstrating that structures are also generated due
to a phase separation dynamics, leading to inhomogeneities in the concentration of molecules
in the mixture. In this scenario, a model was derived that incorporates the principles of
liquid crystals and is coupled with a Cahn-Hilliard-type equation accounting for how the
mixture concentration redistributes without a change in total mass over time. The experi-
mental results are compared with the proposed model, obtaining qualitative and quantitative
agreements with the experimental observations.
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bifurcation parameter Ã. In this diagram, S0 (black line), S` (red line), and
S´ (green line) represent the isotropic liquid and nematic phases, respectively.
Continuous and dashed lines correspond to stable and unstable states, respec-
tively. The critical points Asn and AM denote the emergence of the nematic
phase and the Maxwell point respectively. Additionally, Asp, A

`
sp, and A´

sp

account for the spatial instabilities of the homogeneous phases. . . . . . . . . 42

3.11 Simulation results of the effective model 3.6: (a) Visualization of the S2 field
exhibiting a ring pattern structure, (b) Horizontal cross-section of the struc-
ture, and (c) Spatial density representation of the cis state molecules C0. . . 43

3.12 Steady state representing different values of light pumping (I0) in the simula-
tion, changing the effective linear parameter. . . . . . . . . . . . . . . . . . . 44

3.13 Simulation (temporal evolution) illustrating the competition between instabil-
ities of S0 and S´ in the range maxpÃ P rA´
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Chapter 1

Introduction

Throughout human history, our relentless curiosity has driven us to unravel the complex
workings of the world around us. At the scale is possible to perceive, various elements come
together to form systems constantly exchanging energy. This dynamic interplay gives rise to
a multitude of phenomena, such as the orchestrated movements of marine and atmospheric
currents influenced by the sun, nurturing the diverse tapestry of vegetation and fauna. In-
stead of adhering to the limitations of thermodynamic equilibrium, these systems follow the
nuanced principles of out-of-equilibrium physics [1, 2, 3]. This dissertation is anchored in the
exploration of these intricate dynamics, with a specific focus on the realm of liquid crystal
physics [4, 5, 6, 7].

Nature exhibits diverse macroscopic phenomena when systems depart from thermody-
namic equilibrium, driven by continuous energy injection and dissipation. These include
self-organization examples like ring patterns in bacterial biofilms, wood, spirals in vegetables
(e.g., cabbage), and phase separation in liquids with differing densities [8, 9, 10, 11]. Explore
these phenomena in Figure 1.1.

(a) (b)
6 mm 40 cm 30 cm

(c) (d)

1 cm

Figure 1.1: Illustrative Macroscopic Self-Organization Phenomena: (a) Bacterial biofilm ring
pattern [12], (b) Wood cross-section ring structure, (c) Cabbage cross-section with multiple
Fibonacci spirals, (d) Oil and vinegar phase separation.
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Many of the aforementioned phenomena can be mathematically described using amplitude
equations that transcend specific physical systems [13]. This characteristic defines them as
robust phenomena, allowing for their replication, observation, and study in the laboratory.
The robustness of these phenomena facilitates careful characterization of their dynamical
behaviors.

This dissertation delves into two key phenomena: the propagation of ring patterns and
phase separation [12, 14, 15, 16, 17, 18]. Recognized as propagative radial waves in optics,
vegetation, biological systems, and chemical reactions, these patterns, though previously
studied, still harbor unexplored aspects in their emergence and stabilization. Understanding
these mechanisms is crucial for effective control in various observed phenomena. Additionally,
the phenomenon of phase separation extends from the mixing of polymers and magnetic
materials to biological membranes, cellular processes, and colloidal systems, playing a pivotal
role across scientific and industrial domains and significantly impacting system stability and
properties [19, 20, 21, 22, 23, 24]. This exploration contributes to a broader interdisciplinary
understanding of fundamental principles governing diverse systems.

In this dissertation, the investigation focused on the formation of ring patterns and phase
separation within the framework of nematic liquid crystals. Nematic liquid crystals represent
a unique state of matter that shows characteristics of both liquids and crystals [4, 5, 6].
Notably, these materials exhibit a strong interaction with electromagnetic fields, a property
that renders them suitable for the advancement of technological devices, particularly in the
development of displays. The exploration of structures in nonlinear media, with a specific
emphasis on the context of liquid crystals, holds significant implications for the evolution of
technologies in optics and photonics, where liquid crystal devices play a relevant role.

1.1 Dissertation Structure

The present document comprises four chapters and a general conclusion section.
The second and third chapters are based on previously published papers, these
chapter offers a more detailed and nuanced exploration of the underlying physical
phenomena (Appendix A and Appendix B).

The dissertation structure, beginning with Chapter 2, unfolds by thoroughly reviewing
fundamental concepts. This chapter delves into theoretical foundations and the establishment
of an experimental context. The focus lies on enhancing comprehension within the intricate
domains of liquid crystals and nonlinear physics, specifically focused in give enough tools to
understand ring patterns and phase separation observations.

Advancing to Chapter 3, presents the examination of two distinct azo-dopant molecules
within a Dye-Doped liquid crystal subjected to monochromatic light excitation. This process
initiates the formation of radial structures, specifically materializing as ring patterns through
photoisomerization phenomena. Furthermore, the chapter seamlessly integrates a theoretical
model aimed at deepening the understanding of the observed behavior, drawing insightful
comparisons with simulations.
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Chapter 4 study the essential components required for emergence and propagation of
rings patterns within a nonlinear system. Here, a prototype model is employed, alongside
theoretical tools derived from nonlinear physics. The veracity of these findings is validated
through simulations, ensuring robustness and reliability in the obtained results.

In Chapter 5, the dynamic closure of the nematic transition in a mixture of liquid crystals
is studied. This investigation specifically observes the effect of Dye-dopants in proximity
to the transition, and also the dynamics in a Nematic liquid crystal mixture. Notably, two
coexisting mechanisms: phase separation and phase transition are identified and meticulously
compared with a proposed model.

Finally Chapter 6 encapsulates the main results of the dissertation, presenting the main
conclusions drawn from the comprehensive exploration of the aforementioned topics.

1.2 Objectives

The objective of this dissertation is the study and mainly experimental characterization,
complemented by theory and simulations, of the photoisomerization phenomena in liquid
crystals for different cells and dopants, under the monochromatic light pump and thermal
control.

1.2.1 Specific Objectives

The specific objectives of this dissertation were carefully selected to align seamlessly with
the main objective, encompassing the following aims:

1. Design experiments to showcase and characterize the formation of patterns, along with
spatial and/or temporal effects resulting from photoisomerization induced by light and
temperature.

2. Experimentally and theoretically, study the emergence of spatial structures, specifically
ring patterns, induced by photoisomerization effects.

3. Check the stability of the experimentally observed ring patterns.

4. Explore, experimentally and theoretically, the equilibria resulting from the interaction
between liquid crystal molecules and the dopant.

5. Provide a universal explanation for the occurrence of ring patterns in nonlinear systems.

6. Examine the organization of liquid crystal mixtures when exposed to critical tempera-
tures, and give a theoretical description for this observations..
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1.3 Referring and abbreviations

To refer a figure or an equation, in this dissertation, is denoted as:

Fig. or Eq. Chapter.Number,

where Chapter is the number of the rescpetive chapter and Number is the number of the
figure/equation in the chapter, for example, Fig. 3.1 refer to the first figure in the chapter 3.

Is important to clarify the abbreviations used in this dissertation are:

1. LC: Liquid Crystal.

2. NLC: Nematic Liquid Crystal.

3. DDLCC: Dye-Doped Liquid Crystal Cell.

4. NI: Nematic-Isotropic.

5. DSC: Differential Scanning Calorimetry.

6. DM: Dichroic Mirror.

7. CCD: Charge-Coupled Device.

8. SH: Swift-Hohenberg.

9. CH: Cahn-Hilliard.

10. SP: Spatial Pattern.

11. PDE: Partial Differential Equation.

12. FEA: Finite Element Analysis.

13. RK4: Runge-Kutta Order 4 Method.
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Chapter 2

Conceptual Framework

In this chapter main concepts and tools needed are introduced to discuss the topics covered
in this dissertation.

2.1 Equilibrium and Stability

Is possible to comprehend the equilibrium of a dynamic system [25], described by the equation

du

dt
“ F pu; tσiuq. (2.1)

Where F puq is a well defined function of u and σi are the parameters of the system. An
equilibrium point u0 (or steady) is given by

du

dt
|u0 “ 0 ùñ F pu0; tσuq “ 0. (2.2)

This equilibrium point is not necessarily unique, and the points u0 can be divided into
two categories: stable or unstable. The point u0 can be considered asymptotically stable if,
for any solution uptq that starts sufficiently close to u0, it converges to u0 as t ÝÑ 8. The
point u0 is unstable if the solution u0 does not converge.
The stability of this solution can be studied by a linear stability analysis around u0, giving
the ansatz

uptq “ u0 ` εptq. (2.3)

where εptq ăă 1, at first order, using this ansatz in Eq. 2.1, having for εptq

dε

dt
“ ε

dF

du
pu0q. (2.4)

and the solution to this equation is εptq “ εp0qeλt with the eigenvalue λptσuq “ pdF {duqpu0q.
With this, it is easy to see that stability can be defined solely by the sign of the eigenvalue,
where if λ ą 0, the solution repels trajectories from the equilibrium point, making it unstable;
and conversely, if λ ă 0, it converges to the equilibrium point, making it stable. In the case
λ “ 0, stability cannot be directly defined, and nonlinear analysis is necessary to study the
dynamics at the equilibrium point.
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To generalize this concept in multidimensional systems, examining the case of a system
of n equations

dui

dt
“ fipu⃗q, (2.5)

where u⃗ “ u⃗ptq is a n´dimensional vector where each component ui is a function of time and
f is a n´dimensional vector containing functions of u⃗. An equilibrium point, or steady state
u⃗0, satisfies fipu⃗0q “ 0 for i “ 1, ..., n. Similarly to the previous case, is possible to perform

a linear stability analisis around u⃗0 by writing u⃗ptq “ u⃗0 ` δ ⃗uptq. The functions δu⃗ptq obeys,
at first order the equation

dδui

dt
“ Jikδuk, (2.6)

where the term Jik “ pdfi{dukqpu⃗0q is the ik–th element of the Jacobian matrix J. Here,
assuming the Einstein notation convention, which is that summation over a index is implicit
whenever the index appears twice in a single term. To solve equation postulating that
δu⃗ptq “ v⃗eλt. It follows that λ satisfies

pλI ´ Jqv⃗ “ 0. (2.7)

where I is the identity matrix. The equation as nontrivial solutions only when

detpλI ´ Jq “ 0. (2.8)

This equation leads to find the zeros of a polynomial function in λ, which is called the
characteristic polynomial of the system. This problem has n complex solutions for λ which
can be degenerated or not. Each eigenvalue λl has its own associated eigenvector v⃗l which
satisfies 2.7. The set tλunl“1 is commonly known as the spectrum of the state which can be
represented in the complex plane. Then, the perturbations near the state evolve as

δu⃗ptq “

n
ÿ

l“1

Repale
λltv⃗lq, (2.9)

where talu
m
k“1 are constants that must be fixed by the initial condition δu⃗p0q. The information

about the stability of a state is contained in the real part of its spectrum, which is related
to the temporal growth of the perturbations. Instead, the imaginary part of the spectrum
is related with temporal oscillations of the solution. In the case that all eigenvalues have
negative real parts, then the steady state is stable and the perturbations decay. If there is an
eigenvalue with positive real part, then, the state is unstable and the perturbations diverges
exponentially in the direction defined by its respective eigenvector.
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2.2 Bifurcations

Bifurcation is a concept in dynamical systems theory that refers to a qualitative change in the
behavior of a system as a parameter is varied. In simpler terms, it describes the occurrence
of distinct and often dramatic changes in the system’s behavior or structure [11].

When a system undergoes bifurcation, it may transition from one stable state to multiple
stable states, or it may exhibit chaotic behavior, depending on the specific type of bifurcation
that occurs. Bifurcation points are often associated with the emergence of new patterns,
oscillations, or equilibrium states in the system[26].

2.2.1 Saddle-node bifurcation

To introduce the concept of bifurcation in a way that is closer to our context, considering a
system for a single variable u and parameter r:

du

dt
“ r ` u2. (2.10)

This system represents a simple example of a saddle-node bifurcation. Now, analyzing
the equilibrium points of the system where du

dt
“ 0 [27]:

r ` u2
“ 0 (2.11)

Solving this equation yields two solutions us “ ´
?

´r and uu “
?

´r. Here, us and uu

are the solutions corresponding to the and unstable equilibrium points, respectively.

Figure 2.1: Saddle-node Bifurcation: Solid lines represent stable solutions, while dashed lines
signify unstable solutions.
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Now, examining how these equilibria change as is varied the parameter r. For r ą 0,
the solutions us and uu are complex imaginary numbers, resulting in the absence of real
equilibrium points. As r decreases and approaches zero, the solutions us and uu move towards
zero.

When r “ 0, the solutions us and uu coincide at u “ 0, creating a bifurcation point. This
is an example of a saddle-node bifurcation. For r ă 0, the solutions us and uu become real
and opposite. There are now two real equilibrium points: one stable (us) and one unstable
(uu).

This scenario represents a saddle-node bifurcation, where the two equilibrium points
annihilate at r “ 0 and then separate in opposite directions as r changes sign as shown in
the figure 2.1. This type of bifurcation is characteristic of a saddle-node.

2.2.2 Transcritical Bifurcation

A transcritical bifurcation is a type of phenomenon in the theory of nonlinear dynamical
systems, which is a Key component in this dissertation, where the qualitative behavior of
the system changes significantly as a parameter varies [11].

In a transcritical bifurcation, two equilibrium points (or stationary solutions) of a system
approach each other and exchange stability as the controlling parameter changes.

To better understand this, considering the following simple differential equation that
models a transcritical bifurcation, now using u as the variable and parameter r:

du

dt
“ ru ´ u2. (2.12)

The equilibrium points of the equation are u1 “ r and u2 “ 0. When r is negative, the
equilibrium point at u1 “ r is unstable, and the system tends to converge towards that point.
When r is positive, the equilibrium point at u1 “ r becomes stable, and the system tends to
move away from that point.

In the context of a transcritical bifurcation, a noteworthy phenomenon unfolds as the
parameter r goes to r “ 0. The two equilibrium points u1 “ r and u2 “ 0 dynamically
converge, ultimately undergoing a switch in their stability characteristics, illustrated in Figure
2.2. Post-bifurcation, the equilibrium point the stable solution change into an unstable state,
while the other solution experiences a reciprocal alteration.

The implications of this bifurcation type resonate deeply within the realm of dynami-
cal systems, imparting a profound impact on diverse natural phenomena and mathematical
models. The intricate dance of stability exchange showcased in transcritical bifurcation adds
a layer of complexity and richness to our understanding of dynamic systems.
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Figure 2.2: Transcritical Bifurcation: Solid lines represent stable solutions, while dashed lines
signify unstable solutions.

2.2.3 Pitchfork Bifurcation

A Pitchfork bifurcation involves an instability of a equilibrium while a pair of states is created
or destroyed. There are two cases of Pitchfork bifurcation, supercritical and subcritical case
[11].

Supercritical Bifurcation

As a simple example of a supercritical bifurcation is the following differential equation.

du

dt
“ ru ´ u3. (2.13)

Here, u is the state variable, and r is a parameter. This equation represents a simplified
model that exhibits a supercritical bifurcation. When r ă 0, the only solution to this equation
is u0 “ 0, which is a stable equilibrium point. However, as r “ 0, a bifurcation occurs.

The supercritical bifurcation manifests because, after crossing the bifurcation point, the
stable equilibrium at u0 “ 0 loses stability in a smooth manner. The differential equation
can be rewritten as:

du

dt
“ pr ´ u2

qu. (2.14)

Now, there are two possible equilibria: u0 “ 0 (unstable) and u˘ “ ˘
?
r (stable for

r ą 0. This smooth transition from a single stable equilibrium to two stable equilibria is
characteristic of a supercritical bifurcation.
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Figure 2.3: Supercritical Bifurcation: Solid lines represent stable solutions, while dashed
lines signify unstable solutions.

In a nutshell, a supercritical bifurcation in physics denotes a smooth and significant
transition within a system. When the linear parameter r change, the system shifts from a
state of stable equilibrium to a configuration showing multiple stable equilibria.

Subcritical Bifurcation

Contrary to supercritical bifurcation, subcritical bifurcation involves a different dynamic
transition in a system. The following differential equation serves as an illustration of a
subcritical bifurcation:

du

dt
“ ru ` u3. (2.15)

Similar to the supercritical example, here, u is the state variable, and r is a parameter. In
this subcritical case, when r ă 0, the only stable solution to the equation is u0 “ 0. However,
the behavior changes significantly as r becomes positive.

After crossing the bifurcation point at r “ 0, a subcritical bifurcation results in the
destabilization of the previously stable equilibrium at u0 “ 0. The differential equation can
be reformulated as:

du

dt
“ pr ` u2

qu. (2.16)

Now, the equilibrium at u0 “ 0 becomes unstable, and two new stable equilibria emerge
at u˘ “ ˘

?
´r for r ą 0. This transition from a single stable equilibrium to two stable

equilibria characterizes a subcritical bifurcation.
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Figure 2.4: Sub Bifurcation: Solid lines represent stable solutions, while dashed lines signify
unstable solutions.

In summary, a subcritical bifurcation in physics signifies a sudden and significant trans-
formation within a system as a parameter is adjusted. This adjustment leads the system from
a state of stable equilibrium to a configuration with multiple stable equilibria, distinguishing
it from the smooth transition observed in a supercritical bifurcation.

This phenomenon is discernible through the gradual evolution of the system’s behavior.
As the relevant parameter undergoes systematic changes, the system smoothly traverses
various states, each characterized by distinct and stable equilibria.
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2.3 Spatial Instabilities in Homogeneous Phases

In order to understand complex system, is necessary to use partial differential equations
(PDEs), this equations let study nth dimensional systems. In this systems spatial instabil-
ities within homogeneous phases shows complex phenomena where uniformity gives way to
the emergence of intricate patterns or structures [11]. This section delves into a rigorous
exploration of spatial instabilities, with a primary focus on the Swift-Hohenberg equation as
an analytical tool [28, 29]. This equation is a fourth-order partial differential equation:

Bu

Bt
“ ru ´ p1 ` ν∇2

q
2u ´ βu3. (2.17)

Here, u represents the scalar field denoting deviations from the homogeneous state, r is
a linear parameter, and ν is associated to the diffusion, is possible to notice that u “ 0 is
solution. Assuming a small perturbation u “ εeipkx´ωtq around the solution u “ 0, where the
amplitude ε ăă 1 allows to avoid the non-linear terms. Substituting the perturbation into
the Swift-Hohenberg equation and linearizing, is obtained a dispersion relation in terms of ε
and ω:

ω “ r ´ p1 ` νk2
q
2. (2.18)

This represents the growth rate of the perturbation when Repωq ą 0. Instability arises
from the condition dω{dkpkcq “ 0 that gives the critical values kc “ ˘

?
ν. Replacing the kc

in the condition ωpkcq “ 0 the dispersion relation provides insights into the critical values
of rc where instability initiates, in particular if the system have a intrinsic wavelength, this
spatial instability is called Turing instability [30]). Determining the critical value rc “ 0
involves finding the threshold where the dispersion relation becomes positive. This threshold
signifies the transition from a stable to an unstable homogeneous state.

0

k0

r<rc

r=rc

r>rc

kc kc

Figure 2.5: Dispersion relation for Swift-Hohenberg model around rc.

12



2.4 Pattern Formation & Amplitude equation

To comprehend the mechanism of pattern formation, modal theory is employed when a
spatial instability (specifically, Turing instability) emerges [10]. This discussion utilizes the
Swift-Hohenberg equation (Equation 2.17). Notably, considering that rc “ 0 represents an
instability, it becomes possible to derive an amplitude equation around this critical point.
For simplicity, assuming only a single mode with wave number is kc “ 1 (calculated in the
previous section), and employ the following ansatz:

u « ApT q eix ` c.c. ` h.o.t. (2.19)

Here, A is a complex variable, and T “ |r|t represents the slow variable, where dT
dt

“ |r|.
Applying this ansatz to the Swift-Hohenberg equation and taking the dominant order eix

while uncoupling A and its complex conjugate, is obtained the following amplitude equation:

dA

dt
“ r A ´ 3β A |A|

2 (2.20)

This amplitude equation exhibits two distinct behaviors based on the sign of the linear
parameter, which is binary in the context of the amplitude equation (although continuous in
the original equation). Specifically, The solutions of this amplitude equation for any value of
r follows:

A˘ “ ˘

c

r

3β
& A0 “ 0 (2.21)

If r “ 0, the system undergoes a supercritical bifurcation (or subcritical if β ă 0). For r ą 0
the stable solutions are A˘, while A0 is unstable. On the other hand, if r ă 0, A˘ disappear,
and A0 becomes the stable solution (the stability exchange if β ă 0).

It is crucial to note that the instability of a single mode does not necessarily imply the
absence of pattern formation. Even when individual modes are unstable, the emergence of
stable multimode patterns is a possibility. These multimode patterns can effectively connect
and stabilize the individual mode solutions, contributing to the overall pattern formation
process.

This analysis provides insights into the bifurcation behavior of the system, offering a
deeper understanding of the pattern formation.
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2.5 Maxwell Point

The study of free energy is used understand some variational systems [31]. To comprehend
the Maxwell point, it becomes imperative to employ a representative model, encapsulated by
the following differential equation:

du

dt
“

d2u

dx2
´

δV

δu
. (2.22)

In this context, the Maxwell point materializes through the qualitative change of the
potential energy function V pu; tλuq along with its parameters. An example of such a model
is given by:

V puq “ ´εu ´
u2

2
`

u4

4
. (2.23)

Here, the free energy assumes the form of a fourth-order polynomial, leading to a transi-
tion at the Maxwell point characterized by a shift between the value of two local minimum
potential . The critical value marking this transition in the presented example is calculated
when V pu1q “ V pu2q where u1 and u2 are potential minimum, giving the Maxwell point :

εM “ 0 (2.24)

To visualize this intriguing transition, Figure 2.6 depicts the Maxwell point with this
fourh-order potential example.

Figure 2.6: Maxwell point transition for a fourth order potential.

As illustrated in Figure 2.6, the free energy landscape surrounding the Maxwell point
showcases the coexistence of competing non-symmetric stable solutions and the shift in the
global minimum potential. This dynamic interplay underscores the intricate behavior inher-
ent in variational systems.
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2.6 Liquid Crystals

Liquid crystals (LC) is an interesting state of matter. In addition to the solid crystalline
and liquid phases, liquid crystals exhibit intermediate phases where they flow like liquids,
yet posses some heritage properties from crystal structures [4, 5]. In a LC, molecules have a
tendency to align in ordered directions, forming regions or domains where molecular orien-
tation is relatively uniform.
In particular in this dissertation is studyied phenomena related to Nematic Liquid Crystals
(NLC). As a matter of fact, NLC is the best example of dual nature when is refering to LC.

2.6.1 Order Parameter

The physics of LC can be described in terms of the order parameter. Using the main axis of
the molecule (considering a preferential direction in the molecular structure) as a reference
and denote it as k̂ (Fig. 2.7), the microscopic scalar order parameter S is defined as follows:

S “
1

2

〈
3pk̂ ¨ n̂qpk̂ ¨ n̂q ´ 1

〉
“

1

2

〈
3cos2θ ´ 1

〉
. (2.25)

Figure 2.7: Coordinate system for a LC Molecule

The order parameter can be translated into expressions of the energy in terms of the
anisotropies in the physical parameters such as magnetic, electric, and optical susceptibili-
ties.
This parameter is an average over a considerable region and provides a measure of the long-
range orientation order. The smaller fluctuation of the molecular axis from the director,
means that S represent a well aligned LC, that means S “ 1; on the other hand, in a perfect
isotropic system (for example as a liquid), the alignment is expected to be random for the
molecules, so the order parameter value is S “ 0.
An important characteristic of this parameter is that show critical dependences as the tem-
perature approaches the phase transition temperature Tc from the respective directions [4, 5].
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2.6.2 Planar Anchoring

A relevant concept employed in the experimental setup of this research is planar anchoring,
where the molecules of a liquid crystal exhibit a preferential alignment parallel or tangential
to a substrate or surface. This alignment direction is typically established through specific
treatments applied to the substrate, such as rubbing or coating with alignment layers, and
is referred to as the rubbing direction.

}h<< 1

x

yz

Figure 2.8: Diagram illustrating Planar Anchoring in a sample with a width smaller than
the dimensions of the surface [32].

The preferred alignment direction, often referred to as the rubbing direction, is induced
by treatments applied to the substrate. For instance, rubbing the substrate in a specific
direction imparts a preferred alignment to the liquid crystal molecules. Additionally, coatings
or alignment layers deposited on the substrate contribute to the anchoring effect.

The anchoring of liquid crystal molecules at the substrate surface holds critical signifi-
cance for the effective operation of liquid crystal devices, notably in applications like liquid
crystal displays (LCDs). The orientation of liquid crystal molecules significantly influences
the optical properties of the material, and precise control over this alignment allows for the
attainment of specific optical effects.

It is noteworthy that various anchoring conditions exist, with planar anchoring being
just one of them. Other anchoring conditions, such as homeotropic anchoring, or twisted
anchoring, contribute to the diverse ways in which liquid crystal materials can be manipulated
to achieve desired functionalities in different applications.
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2.6.3 NLC & Isotropic Phases

To understand the behavior of a NLC system is necessary to observe the different configura-
tions of molecules.
When is studied the order parameter in each phase, how was mentioned in the previous
subsection, the order parameter change when the distribution of the direction change, being
S “ 1 when is perfectly aligned and S « 0 for a random distribution. In order to this is pos-
sible to represent the isotropic phase when having a disordered system (random directions)
and a NLC phase when S « 1, i.e. the system presents some directional order

S=S0
S=0

Figure 2.9: Alignment for NLC and Isotropic Phases; S0 ą 0 indicates a preferential orien-
tation order in the NLC phase.

To elucidate the phase transition between these two states and the order parameter’s
behavior in proximity to Tc (this is a first order transition), physical models have been em-
ployed. In these models, Liquid Crystal (LC) molecules are treated as rigid rods, exhibiting
correlation through electrical interactions. This approach facilitates a comprehensive under-
standing of the intricate behaviors exhibited by the system near the critical temperature
(Tc).

2.6.4 E7 Liquid Crystal

The E7 nematic liquid crystal mixture, employed as the matrix in the presented experiments,
is composed of cyanobiphenyl and cyanoterphenol components in a specific composition (Fig-
ure 2.10). This formulation imparts notable characteristics to the liquid crystal, as high
birefringence and positive dielectric anisotropy .

As previously mentioned, liquid crystals undergo a Nematic-Isotropic transition. In the
case of E7, this transition occurs at a temperature of 63.30C, while the isotropic-nematic
transition takes place at 61.00C [33, 34]. Notably, there is a hysteresis with respect to the
critical temperature, a phenomenon quantified through Differential Scanning Calorimetry
(DSC) as depicted in Figure 2.11.
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Figure 2.10: Molecular structure of the components of E7 liquid crystal from Merck [33, 34].

Figure 2.11: Differential Scanning Calorimetry of E7 liquid crystal [33, 34, 35].

This DSC analysis provides valuable insights into the thermal behavior of E7, specifically
highlighting the temperature range associated with phase transitions. The hysteresis ob-
served in the DSC curve underscores the significance of carefully characterizing the thermal
properties of liquid crystals..

2.6.5 Landau-DeGennes Model

To study the transition from a nematic to an isotropic phase, it is imperative to analyze the
free energy within the continuum Landau-de Gennes theory. The free energy is expressed as
a series expansion in powers of the nematic order parameter S “ Spx, y, tq, as outlined by
deGennes [4]:

F1 “ AS2
´ BS3

` S4. (2.26)

Here, the parameters A and B play a crucial role in characterizing the transition, where
A9pT ´ Tcq. Additionally, a component accounting for the interaction between molecules is
introduced to the energy:
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F2 “ p∇2Sq
2. (2.27)

Consequently, the total energy is described as the sum of these contributions:

F “ AS2
´ BS3

` S4
` p∇2Sq

2. (2.28)

In the context of a dynamic system, the following variational equation describe the tem-
poral evolution of the order parameter:

dS

dt
“ ´

ż

V

BF

BS
dV. (2.29)

Here, the continuous order parameter is considered over a substantial volume, facilitating
the exploration of local dynamics in space. This variational equation yields the following
expression:

dS

dt
“ ´AS ` BS2

´ S3
` ∇2S. (2.30)

It is noteworthy that this model predicts the nematic-isotropic transition as a subcritical
bifurcation. Furthermore, the last term in the equation accounts for the diffusion process.

B2/4

0

B/2

S+
S-
S0

S

A
Figure 2.12: Bifurcation Diagram illustrating solution stability: Continuous lines denote
stability, while dashed lines indicate instability. S “ 0 corresponds to the isotropic solution,
while S` and S´ represent the nematic phases.

The solutions presented in Figure 2.12 have been described in prior studies, providing
insights into the stability of isotropic and nematic states within a typical nematic liquid
crystal system [4, 5]. This diagram illustrates the general stability of a nematic liquid crystal
(NLC) system, revealing a subcritical transition defined by the parameter B. The solutions
S` and S´ exist only when A ă B2{4 showing a saddle-node bifurcation, while the transition
between S “ 0 and S´ corresponds to a subcritical transition.
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2.7 Photoisomerizable Dopant

A important topic in this dissertation is about the use of a photoisomerizable molecule, that
refers to a substance or material that can undergo isomerization (a change in its molecular
structure) when exposed to light [36]. In the context provided earlier, a ”photoisomerization”
involves a change in molecular structure induced by light, typically leading to observable
effects in a liquid crystal system [5].
Two different azo molecules were studied, Methyl-Red (Sigma-Aldrich Inc., St. Louis, MO,
USA), and Methyl-Red-Methyl-Ester (synthesized by Paulina Hidalgo and Jorge Vergara,
University of Concepcion, Chile) [37, 38].
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Figure 2.13: Dopant molecules configuration and absorbance spectrum methyl-red-methyl-
ester (a),(b) and methyl-red (c),(d).

In Figure 2.13 is illustrated a representation of the molecular configuration of each dopant
in (a) and (c), where is showed the Cis and Trans states (left and right respectively). Also
is showed the absorbance spectrum for each one (b) and (d), noticing that the maximum
absorption is at 420 nm for methyl-red-methyl-ester and 494 nm for methyl-red.
It is crucial to emphasize that the transition between both states is reversible. This implies
that, through heat fluctuations, molecules have the capability to revert to the original trans
state [36].
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2.7.1 Dopant transition model

The azo-dopants in general are the main ingredient in this experiment, because the trans
state is possible to be miscible in the mixture, that allow to conserve the NLC..

As depicted in Figure 2.13(a)(c), azo-dopants exhibit two distinct states, namely trans
and cis states. Understanding the role of these dye-dopants necessitates delving into the
concentration of molecules in the cis state, denoted as Cpx, y, tq. This emphasis on the cis
state stems from the observation that the trans state molecule shares a structural similarity
with the nematic liquid crystal form, contributing to a lack of disorder. In the other hand, the
cis state, characterized by its boomerang form, induces disorder in the surrounding molecular
environment as result of molecular interaction.

The concentration Cpx, y, tq satisfies a relaxation and diffusion equation, capturing the
intricate dynamics of the system. This equation takes the form [36]

dC

dt
“ ´λrC ´ C0pIqs ` δ∇2C. (2.31)

In the context of the transition from the trans to cis state, the parameter λ characterizes
the decay rate. The steady state concentration C0 “ C0pT, Iq of the cis state is dependent
of temperature and intensity of the incident beam, denoted as I. The diffusion coefficient of
the concentration of molecules in the cis state is represented by δ. The model for the steady
concentration is [36].

C0 “ CT `
γI

1 ` ηI
. (2.32)

Here, γ and η are dimensional parameters, and CT signifies the equilibrium concentration
of molecules in the cis state at temperature T . Notably, the concentration C0 exhibits linear
growth with light intensity for small intensities. However, it saturates at CT ` γ{η for higher
intensities, revealing an intriguing behavior in response to varying light conditions.
The inclusion of dye-dopants increases the nonlinear response of liquid crystals under the
excitation of external fields [36, 39, 40, 41, 42, 43].

In general the I shape, for a laser is a Gaussian beam, that means:

Iprq “ I0e
´r2{w2

. (2.33)

Where I0 is the laser intensity in the central part, and w is the laser weist.
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2.8 Onsager Reciprocal Relations

Onsager reciprocal relations [44] emerge from the fundamental principle that the equations
governing irreversible processes should remain unchanged under time reversal. In a system
featuring two conserved quantities, namely x1 and x2, with associated fluxes denoted as J1
and J2, the reciprocal relations take the form:

J1 “ L11∇x1 ` L12∇x2,

J2 “ L21∇x1 ` L22∇x2.
(2.34)

Here, Lij signifies the coefficients of interaction between the two systems. When each system
manifests its distinct dynamics, the interaction between them can be articulated through the
following expressions (i P t1, 2u):

dx1

dt
“ ´

δF

δx1

pxi,∇xiq ` ∇J1,

dx2

dt
“ ´

δF

δx2

pxi,∇xiq ` ∇J2.

(2.35)

Where F represent the free energy of the system, and L11 and L22 stand for self-interaction
terms. In scenarios involving reciprocal interaction between the systems (characterized by
L12 “ L21 “ D) and the absence of self-interaction within each system (L11 “ L22 “ 0), the
equations can be recast as, replacing 2.34 in 2.35 :

dx1

dt
“ ´

δF

δx1

pxi,∇xiq ` D∇2x2,

dx2

dt
“ ´

δF

δx2

pxi,∇xiq ` D∇2x1.

(2.36)

These relations not only provide insights into the dynamics of interacting systems but
also underscore the elegance of Onsager’s reciprocal principles in understanding the behavior
of conserved quantities and associated fluxes.
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2.9 Adiabatic Elimination

Adiabatic elimination serves as an efficient method for simplifying complex systems, offering
researchers a valuable tool to focus on the most relevant dynamics [45]. However, ensur-
ing the fidelity of the approximation is paramount. Rigorous assessment of the validity of
the approximation is necessary to ascertain that the simplified model accurately represents
the intricate behavior of the original system within the specified timescales. This involves
meticulous consideration of the chosen small parameter ε and a thorough examination of the
separation of timescales to guarantee the reliability of the adiabatic approximation. Only
through this careful evaluation can researchers confidently proceed with the simplified model,
confident that it faithfully captures the essential features of the original system.

To delve into this concept, consider a system of equations featuring a fast variable x and
a slow variable y:

dx

dt
“ ´εpx ` sinptqq,

dy

dt
“ x2

´ y.

(2.37)

Here, ε ąą 1 serves as a large parameter, signifying the separation of timescales. Notably,
x slow responds to the term ´εx, while y evolves faster.

To apply adiabatic elimination, it is imperative to first identify fast and slow variables.
In this case, x is the slow variable, and y is the fast variable. Subsequently, assuming ε is
sufficiently large to warrant a distinct separation of timescales, leading to x “ ´ sinptq.

Upon substituting this adiabatic approximation into the equation for y, the resulting
reduced equation takes the form:

dy

dt
“ sin2

ptq ´ y.

The adiabatic elimination remains valid when ε is large, justifying the separation of
timescales.

In summary, the application of adiabatic elimination empowers the elimination of the
slow variable x, yielding a simplified equation for the fast variable y. This technique proves
particularly valuable in systems marked by distinct timescales.

23



2.10 Phase Separation

In the materials science, phase separation stands out as a captivating phenomenon that
unfolds when a system experiences shifts in its environmental conditions, be it alterations in
temperature, pressure, or composition. This dynamic process gives rise to the spontaneous
coexistence of distinct regions or phases within the material, each characterized by its physical
properties or molecular arrangements [19].

Figure 2.14: Phase separation of oil-water system, the red represents the oil and the blue is
water. Oil droplets in pure water and oil droplets in water containing surfactant (left and
right respectively) [46].

The nature of phase separation exhibits variability, presenting different types based on
the characteristics of the separating phases. In certain instances, the separation may result in
the creation of distinct layers, while in others, the phases may coexist in a dispersed manner
throughout the material. A nuanced understanding of these variations becomes imperative
for predicting and interpreting the behavior of materials under different conditions.

As phase separation progresses, it often culminates in the formation of intricate patterns
and structures within the material. These patterns, ranging from simple domain forma-
tions to complex configurations, depend on the specific properties of the material and the
conditions dictating the phase separation process. The observation and characterization of
these patterns yield valuable insights into the underlying material dynamics. A prototype
model to understand this behaviour is the Cahn-Hilliard equation (CH) [47], this explain the
coexistence of two domains.
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2.11 Cahn-Hilliard Equation

The Cahn–Hilliard equation, introduced by Cahn and Hilliard in 1958 [47], serves as a fun-
damental model for understanding phase separation dynamics, revealing distinct domains
within a fluid. If N denotes the concentration of the metal alloy, the equation is expressed
as:

dN

dt
“ D∇2µpNq “ ´D∇2 δF

δN
, (2.38)

where D is the diffusion coefficient and µpNq represents the chemical potential defined
by the variation of free energy:

µpNq “ ´
δF

δN
“ ´N ` N3

´ γ2∇2N, (2.39)

Here, the parameter γ delineates the length of transition regions between domains. The
evolution of the concentration field N over time is governed by the partial differential equa-
tion:

dN

dt
“ ´D∇2

`

N ´ N3
` γ2∇2N

˘

. (2.40)

The Cahn–Hilliard equation adopts a conservation law form, with J the energy flux,
signifying the preservation of total concentration:

dN

dt
“ ´∇ ¨ J with J “ D∇µ. (2.41)

This conservation law implies the constant total concentration N0, defined as:

N0 “

ż

V

Npr⃗, tq dV. (2.42)

In scenarios where one phase dominates, the Cahn–Hilliard equation may exhibit Ostwald
ripening, a phenomenon where the minority phase forms spherical droplets. These smaller
droplets undergo absorption through diffusion into the larger ones, resulting in distinctive
morphological changes in the system [48, 49].

An intriguing observation associated with the Cahn–Hilliard equation is the growth of
segregated domains over time, following the Lifshitz–Slyozov law [48, 50]. If Lptq represents
a typical domain size at time t, then the relationship Lptq9t1{3 characterizes the evolution of
these domains. This power-law growth provides valuable insights into the temporal behavior
of phase separation in systems described by the Cahn–Hilliard equation.
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2.12 Finite Element Analysis

This section aims to elucidate the algorithm employed in the FlexPDE program, which serves
as the simulation tool in this research [51].

Fundamental concept behind finite element analysis (FEA) involves partitioning the do-
main of interest into sub-regions or cells of simple shapes and solving the equations concur-
rently within each of these regions. In the adaptive method, the domain is subdivided into
triangles or prisms with triangular cross-sections adjusting the nodes each iteration to im-
prove the calculus. Notably, cells in contact with the boundary might feature slightly curved
outer sides, and the cells displayed on the screen represent projections of the prisms onto the
viewing plane.

The simulation aims to solve partial differential equations (PDEs) by determining the
values of dependent variables at discrete points or nodes—specifically, at the corners of the
triangles and the midpoints between corners. The solution process results in a record of
values exclusively at these nodes. To extrapolate function values and derivatives at other
points within a triangular cell, the program employs an interpolation algorithm [52].

2.12.1 Interpolating to Obtain a Solution

Once the simulation has produced a solution, it stores it in a table where the values of the
dependent variable (or variables) are given for each node point. To compute the solution
at any point in space the program interpolates this table by a quadratic algorithm. The
procedure involved in this interpolation is simple. For each triangular region the program
uses a polynomial of the following form

P px, yq “ a0 ` a1x ` a2y ` a3xy ` a4x
2

` a5y
2. (2.43)

Function values are known at three corners and three midpoints, a total of six points,
corresponding exactly to the number of coefficients in P px, yq. In order to determine the
coefficients a ai the method just solves a system of six linear equations.

2.12.2 Nodes values

In FEA, knowing the node values of the dependent variables is equivalent to having a solution
to the problem. If the dependent variables are known at all the nodes of the grid, interpolating
to obtain values at any point of the solution domain and also differen- tiate the polynomials
to obtain derivatives of first and second order. The crucial task of calculating the values
pertaining to the nodes is much more difficult than to interpolate the results. A general,
linear PDE of second order reads.
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Eq “
B2u

Bx2
` f1

B2u

BxBy
` f2

B2u

By2
` f3

Bu

Bx
` f4

Bu

By
` f5u ` f6 “ 0. (2.44)

where fk are functions of x, y.If upx, yq is an exact solution to the PDE, then Eq remains zero
over all of the solution domain D. Integrating over this domain also having:

ĳ

D

Eqdxdy “ 0. (2.45)

It is not true, however, that a function upx, yq that satisfies this relation must be a solution:
Eq might take positive as well as negative values, which could cancel in the integral. If, on
the other hand, taking the square of the PDE, the condition

ĳ

D

E2
qdxdy “ 0, (2.46)

it implies that upx, yq is a solution. In fact, it is possible to use this relation for solving
the equation numerically. For a given PDE, the above integral of E2

q may be regarded as a
function of the node values.

Ipu1, u2, ..., unq “

ĳ

D

E2
qdxdy “ 0. (2.47)

Of course, in view of the limited accuracy of numerical computation could never hope to
find a set of node values ui which makes the integral Ipu1, u2, ..., unq exactly equal to zero, so
contenting with a set that minimizes the integral. This is equivalent to finding the minimum
of a function of many variables, and there are standard methods available for solving this
type of problem. The effect of taking the square of Eq , however, is to make the integrand
more complicated and also non-linear.

An alternative method, which only involves linear analysis, as long as the PDE itself and
its boundary values are linear, proceeds as follows. Instead of condensing the problem into a
single integral expression as in the scheme above, now introducing a whole set of equations
of the same type (numbered j “ 1, 2, ...,m):

Ijpu1, u2, ..., unq “

ĳ

D

Wjpx, yqEqdxdy “ 0. (2.48)

The equations involved are no longer squared. The weight function, denoted as Wjpx, yq,
plays a crucial role in emphasizing specific sub-domains (cells) within the overall solution
domain, D. The choice of weight functions is flexible, and a straightforward strategy often
involves assigning either 0 or 1 as weights. For instance, unit weight might be applied within
one triangular cell and zero in all others in the first equation. This approach aims to enforce
the trial function, and eventually the solution, to satisfy the partial differential equation
(PDE) across every cell.
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A common application of the method is to use unit weight in cell number j and zero
elsewhere, resulting in m equations for various parts of the solution domain. However, a
challenge arises as the number of cells (m) is typically much smaller than the number of
nodes (n). Assuming a single dependent variable (u) and boundary conditions specified by
values around the boundary, is necessary to solve for interior node values, which are generally
more numerous than the cells. To address this, sophisticated weighting schemes are required,
particularly in cases involving multiple dependent variables.

Several rules guide the choice of weight functions. If a node (j) is a midpoint, Wj is set
to 1 for the two cells sharing this point and 0 elsewhere. For a corner node, Wj is set to 1
for the cells sharing that corner and 0 elsewhere. On the boundary, only one cell is used.
This method ensures the correct number of equations and yields independent equations by
treating all sub-domains for integration as distinct.

In scenarios where the PDE and boundary conditions are linear, the analysis results in a
system of linear equations. For non-linear cases, a more general system of algebraic equations
is obtained. The simulation addresses non-linear systems using iterative methods, although
these methods may take longer and exhibit capricious behavior.

2.12.3 Natural Boundary Conditions

So far assuming that the values of the solution are given on the entire boundary. If the
problem involves natural conditions over the entire boundary or part of it, this information
must be incorporated by special means. A well-known theorem that connects the integral of
a PDE with the outward normal component of a field F is:

¡

∇2UdV “

¡

∇ ¨ p∇UqdV “

¡

∇ ¨ FV “

£

F ¨ dS. (2.49)

When integrating the PDE over a sub-domain, incorporating the Laplacian’s volume inte-
gral entails replacing it with a surface integral that involves the natural boundary condition.
The remaining two surfaces of the cell necessitate integrals that should align with those
from adjacent cells. In the presence of natural boundary conditions, it becomes crucial to ac-
knowledge that multiplying the PDE by a specific factor inevitably alters the volume integral,
thereby impacting the surface integral over the boundary. Consequently, when multiplying
the PDE by a factor ff, it is imperative to apply the same factor to the corresponding natural
boundary condition.
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2.13 Runge-Kutta 4th Order Method for 2D PDEs

The Runge-Kutta method, typically used for ordinary differential equations (ODEs), can
also be extended to solve partial differential equations (PDEs) [53]. When dealing with 2D
PDEs, such as those involving two spatial dimensions, the method becomes more involved but
follows the same fundamental principles. Let’s explore the basic concept of the Runge-Kutta
method for 2D PDEs.

Consider a 2D PDE of the form:

Bu

Bt
“ F pt, x, y, u,

Bu

Bx
,

Bu

By
q

Here, upt, x, yq represents the solution field, and F is a given function describing the evo-
lution of u with respect to time t and the spatial variables (x and y). The partial derivatives
Bu
Bx

and Bu
By

represent the spatial gradients of u.

Now, to apply the Runge-Kutta method to solve this 2D PDE, discretizing the spatial
and temporal dimensions. Let tn be the current time, xi and yj be spatial grid points, and
un
ij be the approximate solution at time tn and position pxi, yjq.

The general form of the Runge-Kutta method for 2D PDEs can be expressed as follows:

un`1
ij “ un

ij `
1

6
pk1 ` 2k2 ` 2k3 ` k4q. (2.50)

Where

k1 “ ∆t ¨ F ptn, xi, yj, u
n
ij,

Bun
ij

Bx
,

Bun
ij

By
q

k2 “ ∆t ¨ F ptn `
∆t

2
, xi `

∆x

2
, yj `

∆y

2
, un

ij `
k1
2
,

Bun
ij

Bx
,

Bun
ij

By
q

k3 “ ∆t ¨ F ptn `
∆t

2
, xi `

∆x

2
, yj `

∆y

2
, un

ij `
k2
2
,

Bun
ij

Bx
,

Bun
ij

By
q

k4 “ ∆t ¨ F ptn ` ∆t, xi ` ∆x, yj ` ∆y, un
ij ` k3,

Bun
ij

Bx
,

Bun
ij

By
q

In this expression:

k1, k2, k3, and k4 are intermediate values calculated using the function F and the current
state of the solution. ∆t is the time step, and ∆x and ∆y are the spatial step sizes. The
term un`1

ij is a weighted average of these intermediate values.

This process is repeated for each grid point pxi, yjq and each time step to evolve the
solution over time. It’s important to note that the specific details may vary based on the
nature of the PDE and the discretization scheme used. The above formulation provides a
general idea of how the Runge-Kutta method can be adapted for 2D PDEs.
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2.14 Spectral Method for 2D PDEs

The spectral method excels in solving 2D partial differential equations by efficiently decom-
posing solutions with orthogonal basis functions, like trigonometric or polynomial functions.
Utilizing fast transforms such as the 2D Fourier Transform enhances computational efficiency,
enabling rapid convergence with fewer modes for smooth solutions. Success hinges on careful
consideration of tailored basis functions for specific boundary conditions [54].

2.14.1 Example of Spectral Method Implementation

Consider the generic 2D advection-diffusion equation given by:

Bu

Bt
` v ¨ ∇u “ D∇2u

Here, upx, y, tq represents the unknown quantity, v “ pvx, vyq is the advection velocity
vector, and D is the diffusion coefficient. The specifications for the considered problem are
outlined in this section. The spatial and temporal domains, denoted by x, y, and t, are
defined within the intervals r0, Ls and r0, T s respectively. The initial condition

upx, y, 0q “ sinpπxq cospπyq,

Characterizing the initial state of the system illustrates a specific distribution of the
unknown quantity u across the spatial domain. These specifications set the context for
implementing the spectral method, which utilizes 2D Fourier modes as basis functions:

ϕm,npx, yq “ eip2πmx{L`2πny{Lq.

Discretize the spatial domain with grid points, express the initial condition in the spectral
domain using Fourier series, and calculate Fourier coefficients ûm,n. Apply a time-stepping
method like the Runge-Kutta method to evolve the solution in time. Leverage the 2D Fourier
Transform for efficient computation in the spectral domain, obtaining ûm,n.

ûm,n “ Frupx, yqs “

ż

S

upx, yqϕm,npx, yqdS and upx, yq “ F´1
rûm,ns.

It is also necessary to implement periodic boundary conditions in both x and y directions.

In summary, the spectral method proves its efficacy through the application to a 2D
diffusion equation, showcasing its ability to accurately capture complex spatiotemporal dy-
namics.
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Chapter 3

Light-Induced Ring Pattern

This chapter presents the experimental behavior of a dye-doped liquid crystal cell (DDLCC)
when subjected to a Gaussian-light pump. Additionally, a numerical model is provided from
first principles. The study of this model aims to enhance our understanding of the system.
To understand this system, is important to notice that the utilization of a DDLCC enables the
amplification of the coupling between light and liquid crystals, a coupling that is considerably
low in a typical NLC. Light has the capability to induce self-organization in the molecular
order.
This coupling between light and liquid crystal gives rise to the emergence of spatial patterns
that reach an equilibrium. In this experiment, the primary outcome is the presence of ring
patterns. This phenomenon was observed with two different photosensitive dopants and was
subsequently compared with numerical simulations of a proposed model.

The phenomena observed in this chapter is based in prior investigations [17, 41] focusing
on the emergence and propagation of specific structures. However, these earlier studies faced
limitations as they employed a single pump laser for both inducing and observing effects.

Figure 3.1: Experimental setup for photo-isomerization featuring a single-beam configura-
tion [17]. Lenses L1 and L2 function as a telescope, fine-tuning the beam waist. The sample,
DDLC, undergoes photo-isomerization. A polarizer beam splitter (PBS) minimizes the in-
tensity directed towards the camera. Lens L3 is strategically positioned to capture the entire
beam on the camera’s CCD.
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The experimental setup depicted in Figure 3.1 illustrates a single-beam configuration,
as described in [17]. Lenses L1 and L2 act as a telescope, adjusting the beam waist, while
the sample, DDLC, undergoes photo-isomerization process. A polarizer beam splitter (PBS)
reduces the intensity directed towards the camera, and lens L3 is strategically placed to
capture the entire beam on the CCD.

Nevertheless, this setup has drawbacks. It primarily showcases the effect at the pump
location, limiting the observation of the entire sample. Additionally, the intensity recorded
by the CCD camera varies with the pumping intensity. This variability poses challenges
in comparing transmittance across different pump intensities, and certain structures may
become saturated, leading to a loss of dynamic information.

3.1 Experimental Ring Pattern

3.1.1 Experimental Setup

Employing a planar anchoring DDLCC in the experimental setup (Figure 3.2). These cells
consist of a mixture of nematic E7 liquid crystal and an azo-dye dopant, (methyl-red or
methyl-red-methyl-ester which have different absorbance curves) between two glass plates
with a thickness of 25 µm. The dopant molecules are introduced to enhance the coupling
between the liquid crystal and light within the absorption curve of the photoisomerization
transition of the dopant. Consequently, the addition of the dopant reduces the required in-
put light to induce a phase transition of the liquid crystal. The weight concentration of the
dopant in the liquid crystal ranges from 0.25 % to 1 %.
In the typical way of detecting phototropic transitions, is common to use a method involving
a laser beam and special microscopy. This method loses information about how the liquid
crystal behaves outside of the central illuminated area. This makes it hard to tell the differ-
ence between changes in the light that the microscope filters out and the light absorbed by
the sample.
To solve these problems, a new setup is designed using two parallel laser beams on the
DDLCC sample. The sample only reacts to one beam (the pumping one), and the other
beam (the probing one) does not affect it, because choosing the wavelength of each one due
to the absorption curve (Fig. 2.13). This way, is possible to study the sample behavior more
effectively.
It is important to note that the wavelengths of the probe and pump lasers depend signifi-
cantly on the absorbance spectrum of the dopant. In this case, it is essential that the probe
laser exhibits low absorbance for the dopant, and its power should be kept low to prevent
secondary photoisomerization effects. On the other hand, the pump laser needs to have a
substantial absorbance and sufficient power to initiate dynamics in the system.
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Figure 3.2: (a) Experimental setup diagram for DDLCC sample photoisomerization involves
simultaneous irradiation with a pump laser and illumination by a probe laser. A Kepler
telescope configuration (K1, K2) of lenses expands and collimates the laser beams, both
exhibiting vertical polarization. Long-wave pass dichroic mirrors (DM) align and filter the
beams, and an analyzer (A) in a crossed orientation allows observation on a CCD camera,
ensuring precise control of the photoisomerization process. (b) Snapshot of the experimental
setup.

Analyzing Figure 3.3, it is evident that methyl-red-methyl-ester exhibits peak absorbance
at 420 nm. Consequently, a blue laser source (445 nm) is suitable as a pump, and a green laser
(532 nm) can serve as a probe due to the absorbance in that wavelength being lower than 0.1
(ensuring the output power is set to a minimum). A similar analysis can be conducted for
methyl-red, wherein the absorbance peak occurs at 494 nm. In this case, either laser can be
employed as a pump or probe. However, it is crucial to consider the maximum output power
of each laser. The green laser (Verdi V-2) boasts a maximum power of 2.2 W, while the blue
laser (Cobolt 04) has a maximum power of only 100 mW. To achieve a broader measurement
range, the green laser is setted as the pump and the blue laser as the probe for methyl-red.
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Figure 3.3: Absorbance spectrum of each dopant: (a) methyl-red-methyl-ester and (b)
methyl-red. Pump and probe wavelength is marked as solid lines, and showing the max-
imum absorbance as dashed line.
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3.1.2 Methyl-red-methyl-ester dopant observations

Using the configuration showed in figure 3.2 for each DDLCC, it is possible to explore a range
of powers (from 0 mW to the maximum pump laser power). Therefore, in the first instance,
the setup was prepared for the DDLCC with 1 % of methyl-red-methyl-ester (blue laser as a
pump). Studying the effect of different light intensities, it is possible to observe some stable
spatial structures.

10mW 20mW 30mW 40mW 50mW

60mW 70mW 80mW 90mW

300μm

Figure 3.4: Stable spatial structures induced in a DDLCC with Methyl-red-methyl-ester

Injecting pump light into the DDLCC with methyl-red-methyl-ester, three distinct regimes
can be identified in figure 3.4. Below 30 mW, the system exhibits solely a modulation of
the Gaussian beam. Between 40 mW and 50 mW, the emergence of a localized spot in the
center is observed. Subsequently, in the range of 60 mW to 90 mW, a radial modulation is
emerged (ring pattern). It is essential to note that technical limitations impose a maximum
power constraint on the pump laser, restricting observations to a narrow range of light power,
particularly when compared to the broader range of green laser power.

In this experiment, a important behavior is the emergence and stabilization of ring pat-
terns. To comprehensively study these structures, it is necessary to investigate the charac-
teristic time for these patterns to reach stability. Figure 3.5 presents the results of the 90
mW experiment.
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Figure 3.5: Experimental emergence and evolution of ring patterns induced by blue light
applied to a DDLCC with methyl-red-methyl-ester.(a) illustrates the evolution of the quotient
between the intensity of green light transmitted and the initially transmitted green light with
no blue light. The fitted curve Tfit “ Ap1´et{τ q is included, where A “ 2.79 and τ “ 55.71 s
are computed (τ represents the time taken to reach equilibrium). The shaded areas I and II
correspond to the growth and saturation regions, respectively. (b) Snapshots from temporal
evolution, (c) spatiotemporal diagram of a cut in a diameter of the ring pattern.

To understand the process of spot emergence and ring propagation, analyzing the spa-
tiotemporal evolution of a diameter cut section. Figure 3.5(c) illustrates the observed spa-
tiotemporal diagram evolution, providing insights into how the dark rings emerge, propagate,
and eventually come to a halt.

300μm 300μm300μm

Figure 3.6: Waist comparison between pump and probe laser (removing the second DM from
the experimental setup)
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Upon exposure to blue light, a light green region with a dark spot in the center emerges.
Subsequently, the initial dark spot evolving into an expanding ring. Notably, the illuminated
area continued to grow, surpassing even the waist of the blue laser (Fig.3.6).

Figure 3.6 provides a visual comparison between the light green region and the waist size
of the blue laser. Over time, the dark ring gradually propagates outward from the center,
giving rise to a new dark spot in the center. This newly formed spot then evolves into another
dark ring. This sequence is depicted in Figure 3.5(b).

3.1.3 Methyl-red dopant observations

As outlined in this chapter, there has been a switch in the configuration of the pump and
probe lasers for the methyl-red dopant compared to the previous configuration of the setup.
In this instance, a blue laser is employed for observation, while a green laser is utilized to
induce the phenomena. This configuration adjustment enables the observation of a broader
power range for in-depth study.

In this scenario, the sample is a planar anchoring DDLCC with a 1 % concentration of
methyl-red. As depicted in Figure 3.3(b), the absorbance peak occurs at 494nm. Therefore,
employing blue light as the probe and green light as the pump enables the exploration of
structure emergence in this particular sample.

(a) (a)
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Figure 3.7: Experimental emergence and evolution of ring patterns induced by green light
applied (0.67 W ) to a DDLCC with methyl-red: (a) Snapshots from temporal evolution, (b)
evolution of transmitted blue light and saturation, (c) spatiotemporal diagram of a cut in a
diameter of the ring pattern.
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Comparing both dopants, noticing that at lower power, particularly at 0.67 W , the structures
display essentially the same behavior as Methyl-red-methyl-ester. Notable differences are
evident; for instance, as illustrated in Figure 3.7(b), the model Tfit “ Ap1 ´ et{τ q with
A “ 0.98 τ “ 14.74 s indicates that the equilibrium is achieved around 60 s, representing
a faster stabilization compared to the previous case. Also is are identified the growth and
saturation (I & II in Fig. 3.7(b)) evolution in the transmitted light. The possibility to reach
higher powers enables the observation of a greater quantity of rings.

Rings instability.

As previously mentioned, the behavior from 0 W to 0.68 W aligns with the observed in
methyl-red-methyl-ester. However, reaching higher powers a new dynamic—the instability
of the ring patterns.

5s 10s 15s 25s

30s 50s 100s 250s

Figure 3.8: Snapshots of experimental evolution that shows instability of rings at 0.69 W for
DDLCC mixture of E7 with 1 % of methyl-red.

Figure 3.8 reveals a notable transition occurring at a power level of 0.69 W . Beyond this
critical power threshold, the previously observable ring pattern dynamics abruptly cease.
Previous observations have explored the unstable front associated with this transition [17], it
primarily represents the initial instability of the rings. The unexplored realm beyond 1 W
remains a significant gap in current research. As illustrated in Figure 3.9, the structures
observed at higher power levels exhibit increased interaction, suggesting a promising avenue
for future research endeavors.

0.69W 1.20W 1.70W

Figure 3.9: Snapshots of different behavior induced by High power of pump laser.
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3.2 Dye-Doped Liquid Crystal Model

To elucidate the dynamical behavior stemming from the photoisomerization process within a
DDLCC, is introduced a comprehensive model coupling the concentration of molecules in the
cis state (equations 2.30 and 2.31) also considering a reciprocal interaction relation between
both of them [44] (introducing equations 2.36 to the model), denoted as Cpx, y, tq, and the
scalar order parameter Spx, y, tq. This model is expressed as follows:

dC

dt
“ ´λrC ´ C0pIq ` αSs ` δ∇2C ` D∇2S,

dS

dt
“ ´pA ` βCqS ` BS2

´ S3
` ∇2S ` D∇2C.

(3.1)

In this model, the boundary condition is determined by the non-homogeneous pump waist.
If the simulation is far from it, the effect is negligible, allowing the boundary condition to be
defined as upr “ 5ω, 0q “ 0, where ω denotes the Gaussian waist. The parameter α captures
the reduction in Cpx, y, tq due to increased alignment in the liquid crystal molecules (larger
S), influenced by the transition from cis to trans [36]. The diffusion coefficients δ represent
dopant concentration dispersion in parallel and orthogonal directions to the incident light’s
electric field. The entropic effect of photoisomerization, denoted by β, indicates that a higher
concentration of cis molecules favors a disordered state. The parameter D accounts for
mutual transport processes within the system, embodying the dynamic interplay of various
contributing factors.
In the regime of temporal scale separation between the order parameter, denoted as S, and
the concentration of the cis-state pλ " 1q, with small α and intensity I as implicated in
explaining the observed emergence and propagation of rings in the previous section, the
cis-state concentration is:

C « C0pIq « γI, (3.2)

This manifestation arises from the intricate interplay of large-scale separation, modest
α, and the incident light intensity I. Concurrently, the light’s intensity follows a spatial
distribution governed by:

I “ I0e
´ r2

w2 , (3.3)

Here, w and I0 represent the light beam’s waist and intensity at its center, respectively.
Consequently, the cis-state concentration assumes a Gaussian profile. Substituting this ex-
pression into the order parameter equation, S adheres to the Landau–De-Gennes model for
the nematic to isotropic transition induced by photoisomerization. Notably, the bifurcation
parameter ApIq ” A ` βγI is modulated by the spatial profile of light intensity. In the
absence of illumination, the system resides in a NLC phase. Conversely, when subjected to
light, the induced front propagation triggers a transition from the isotropic to the nematic
phase.
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3.2.1 Adiabatic Elimination and Reduced Model

To study the dynamics in Equation 3.1, is possible to employ adiabatic elimination to compre-
hend the effect of cis-state concentration [45, 55]. This approach assumes that the temporal
evolution of the cis-state concentration is significantly faster compared to the dynamics of
the order parameter, denoted as λ " 1. By applying Neumann series in cis-concentration
equation (Eq. 3.1), is possible to express the cis concentration in a dominant order as:

C « C0pIq ´ αS `
D ´ αδ

λ
∇2S. (3.4)

Substituting this expression into the equation governing the order parameter S (Eq. 3.1),
is obtained, at a dominant order:

dS

dt
“ ´rA ` βC0pIqsS ` pB ´ αβqS2

´ S3
` p1 ´ Dαq∇2S

`
DpD ´ αδq

λ
∇4S `

βpD ´ δαq

λ
S∇2S ` D∇2C0pIq.

(3.5)

It is possible to re-normalize the space using r⃗ “ r⃗1rλ{pδαD´D2qs, leading to the reduced
model:

dS

dt
“ ´ÃS ` B̃S2

´ S3
` ν∇2S ` ∇4S ` bS∇2S ` η. (3.6)

Introducing the re-normalized coordinate, are obtained the following relations:

Ãpr⃗1q ” A ` βC0pIpr⃗1qq, B̃ ” B ´ αβ,

ν ” Dα ´

b

λ
Dpδα´Dq

, b ” β D´δα?
λDpδα´Dq

,

ηpr⃗1q ”

b

Dλ
pδα´Dq

∇2C0pIpr⃗1qq .

These relations express the modified parameters in terms of the original variables. It is
crucial to emphasize that ηpr⃗1q is contingent upon the specific shape of the Gaussian beam;
however, it remains temporally constant when the beam remains with the same intensity.

The equation presented in 3.6 characterizes a non-variational Swift–Hohenberg-type model
[56, 57, 29, 58]. This mathematical representation has proven instrumental in the exploration
of various phenomena, including patterns [59, 60], localized and stationary structures [56, 61],
propagative formations [62], as well as spatiotemporal chaotic extended and localized struc-
tures [60, 62]. These investigations span multiple disciplines, from physics and chemistry to
biology.
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The emergence of spatial structures in this model is attributed to the presence of an anti-
diffusion coefficient pν ą 0q. This coefficient encapsulates the distinct scales of transport
processes for the cis order and state parameter, introducing an inherent characteristic scale
known as the Turing mechanism [30]. Essentially, the system, governed by two transport
processes with differing scales, undergoes self-organization, preventing homogeneous propa-
gation of the order parameter and the cis-state. This interplay results in the formation of
the mentioned patterns.

3.2.2 Stability Analysis of Non-Variational Swift-Hohenberg Model.

To investigate the behavior of this model, it is crucial to examine various characteristics.
Beginning by consider the impact of homogeneous illumination, denoted as C0pIpx, yqq “ C0,
implying ∇2C0 “ 0. The resulting effective model is expressed as:

dS

dt
“ ´ÃS ` B̃S2

´ S3
` ν∇2S ` ∇4S ` bS∇2S, (3.7)

Analyzing the homogeneous solution, following equation for the order parameter is de-
rived:

0 “ ´ÃS ` B̃S2
´ S3. (3.8)

This equation yields three solutions for S, S0 “ 0 representing the isotropic state, and
two phases corresponding to nematic states:

S˘ “
B̃ ˘

a

B̃2 ´ 4Ã

2
. (3.9)

Nematic solutions exhibit a real part when Ã ă ASN “ B̃2{4. To initiate the study of
the dynamical properties of this model, is possible to determine the Maxwell point AM [31]
by analyzing the free energy:

F pSq “ ´
Ã

2
S2

`
B̃

3
S3

´
1

4
S4. (3.10)

Upon inspection, it becomes apparent that S “ 0 is a solution with multiplicity two, and

two real solutions exist, given by S “

´

2B̃ ˘
?
2
a

2B̃2 ´ 9Ã
¯

{3. The Maxwell point occurs

when the discriminant is ∆ “ 0, resulting in:

AM “
2

9
B̃2. (3.11)
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To further explore relevant points for the linear parameter, it is necessary to calculate the
Turing instability of each solution [30]. The instabilities are study by linearizing the equation

3.7 around the solutions. For S0 “ 0, using the ansatz Spr⃗, tq “ S 1eir⃗¨⃗k`σ0t, the growth rate
equation replacing this in 3.7, and linearizing

σ0 “ ´Ã ` νk⃗2
´ k⃗4, (3.12)

The condition for instability is given by dσ0pkcq{dk “ 0, where σ0pkcq provides the value of
the Turing instability parameter Asp for the isotropic solution. The first condition determines
the critical length, and the second defines the critical parameter relationship for spatial
instability.

dσ0

dk
“ 2νk⃗ ´ 4k⃗3

“ 0 , i.e., kc “

c

ν

2
, (3.13)

σ0pk⃗cq “ ´Ã `
ν2

2
´

ν2

4
, i.e., Ãsp “

ν2

4
. (3.14)

A weakly nonlinear analysis reveals that this instability is of a supercritical nature for
small B̃, which is easily observed as the solutions exhibit pitchfork bistability in the case
when B̃ “ 0. Thus, despite the fact that the linear term is positive, 0 ă Ã ă Asp, the
isotropic liquid state is unstable. For Ã “ 0, the system presents a transcritical bifurcation
between unstable states.

For the nematic solutions, considering a small perturbation around the solutions Spr⃗, tq “

S˘ ` εeir⃗¨⃗k`σ˘t, where 0 ă ε ăă 1. Substituting this ansatz into Eq. 3.7, the growth rate is
given by:

σ˘ “ ´Ã ` 2B̃ ´ 3S2
˘ ` pν ` bS˘qk⃗2

´ k⃗4. (3.15)

By imposing the spatial instability conditions, as in the previous case:

kc “

c

ν ` bS˘

2
(3.16)

With the second condition, the spatial instability A˘
sp is given by:

2Ã˘
sp ` B̃S˘ “ ´

pν ` bS˘q2

4
(3.17)

It is important to note that the solutions S˘ are dependent on Ã and B̃. Obtaining an
explicit value for A˘

sp can be challenging, and a numerical Newton method is required for this
purpose [63]. A importan issue of this model is that the non symmetry of A˘

sp is produced
by the presence of the non variational term bS∇2S.

41



This critical point allows us to construct a comprehensive understanding of the behavior
of this effective model. Such insight is crucial for conducting numerical simulations, as it
enables the study of particular parameter values that exhibit bistability and a characteristic
wavelength (gven by the wave number) that can produce the desired structures.

~

Figure 3.10: Bifurcation diagram of the effective model given by Equation 3.7 with constant
coefficients. The plot illustrates the order parameter S as a function of the bifurcation
parameter Ã. In this diagram, S0 (black line), S` (red line), and S´ (green line) represent the
isotropic liquid and nematic phases, respectively. Continuous and dashed lines correspond to
stable and unstable states, respectively. The critical points Asn and AM denote the emergence
of the nematic phase and the Maxwell point respectively. Additionally, Asp, A

`
sp, and A´

sp

account for the spatial instabilities of the homogeneous phases.

3.2.3 Light-Induced Ring Pattern Simulations

The model representing the system exhibits a coexistence region between the nematic state
and a pattern, as revealed in the prior analysis. This pattern alternates between areas of
higher and lower orientation order [18]. The presence of this pattern has a notable impact
on the sample’s refractive index. Consequently, when a light beam traverses the sample in a
patterned state, interference fringes are expected to manifest.

As the light intensity increases, the bifurcation parameter Ã also grows. Considering a
light intensity with a Gaussian profile, the parameter ÃpIq “ A ` βC0pIq becomes inho-
mogeneous, resembling a bell-shaped curve. Consequently, if the cell is in a nematic phase
during illumination, the central part of the light beam can induce the cell to move out the
coexistence region, stabilizing only the pattern. In such scenarios, one anticipates observing
patterns in the illuminated area due to the circular central region of the light beam. For
a small-waist beam, ring-like patterns are expected. Figure 3.11 illustrates a ring pattern
equilibrium observed numerically for the model given by Equation 3.6.

All numerical simulations presented here are conducted using finite differences and the
RK4 algorithm [53].
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To facilitate a meaningful comparison between the model simulation and the experiments
illustrated in 3.5 and 3.7, it is crucial to recognize the indistinguishability of the nematic
phases in the experimental data. Therefore, for a relevant simulation, the observed field is
set to S2.
As an example figure 3.11 is obtained from the following parameters: A “ ´0.5, B̃ “ 0.3,
ν “ 1.05, b “ 0.1, β “ 1. The cis-state concentration is determined by C0pIq “ γI0e

´r2{ω2
,

with γ “ 1, the intensity I0 “ 1.45, and the waist of the beam ω “ 4.

1.1

0.0

S2

1 2

0
0

1.5

X

C0

1 2

0
0

1.0

X

S2

(a) (b) (c)

Figure 3.11: Simulation results of the effective model 3.6: (a) Visualization of the S2 field
exhibiting a ring pattern structure, (b) Horizontal cross-section of the structure, and (c)
Spatial density representation of the cis state molecules C0.

If the system is not illuminated (I0 “ 0), the equilibrium state is a uniform nematic
phase, and settting Ã ă Asp to ensure the instability of the isotropic state. Upon illumi-
nating the system with low intensity, numerical simulations revealed a slight reduction in
the reorientation order and an increase in the cis concentration in the central part of the
Gaussian.

As the intensity I0 increased, the central spot exhibited greater orientation disorder;
specifically, the order parameter S decreased in the central zone with increasing I0. Notably,
the region of orientational disorder remained smaller than the waist of the Gaussian forcing;
this occurs when A ` βC0pI0q ă A´

sp.

However, when I0 is controlled, it becomes feasible to explore other regions. If Asp ă

A ` βC0pI0q ă A`
sp, rings connecting the isotropic and one nematic phase can be observed,

as illustrated in Figure 3.11. These rings are also modulated by the Gaussian form. A
crucial observation regarding Figure 3.11 is that the presence of modulated rings by the
inhomogeneous parameter could be attributed to the non-variational term bS∇2S. Without
this term, the instability of S` would not manifest, and the solution would remain stable
until reaching Asn. Beyond this point, without the non-variational term, the system would
directly transition to the isotropic state, and the observed modulated ring patterns would
not occur.

If A`
sp ă A ` βC0pI0q, the only stable state is S0 “ 0. In this case, the region where the

spatial inhomogeneity is effective should eventually converge to zero.
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Figure 3.12: Steady state representing different values of light pumping (I0) in the simulation,
changing the effective linear parameter.

In the range A´
sp ă A ` βC0pI0q ă Asp, the system exhibits the presence of permanently

propagating rings, which is dissimilar to the experiment where the rings saturate (Figure
3.13). Unlike Figure 3.11, these rings have the same amplitude and are not modulated by
the Gaussian inhomogeneity. Importantly, this is the only scenario where structures evolve
beyond the Gaussian inhomogeneity, and the rings start to deform when approaching the
boundaries.

t=18 t=39 t=45 t=59 S2

1

0

Figure 3.13: Simulation (temporal evolution) illustrating the competition between instabili-
ties of S0 and S´ in the range maxpÃ P rA´

sp, Aspsq.

In Summary, the model described by Equation 3.6 adeptly captures the qualitative dy-
namics of the light-induced ring pattern in a dye-doped nematic liquid crystal, especially
within the range Asp ă Ã ă A`

sp. In the regime A´
sp ă Ã ă Asp, the ring propagates over

a greater distance than r “ 5ω, resulting in destabilization attributed to boundary effects
(3.13). For higher values of Ã, the isotropic state becomes the sole stable configuration, while
for Ã ă A´

sp, it is modulated by the Gaussian.
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Chapter 4

Universal Description of Rings
Patterns in Dynamical Systems

This chapter offers a comprehensive exploration of ring patterns in nonlinear systems. The
previous chapter, discuss about the observation of emergence, and stabilization of ring pat-
terns within a DDLCC experiment. To elucidate this phenomenon, a theoretical model is
proposed and studied. However, it is important to note that ring patterns extend beyond
the discussed experiment and manifest in various nonequilibrium systems.

Nonlinear systems undergoing nonequilibrium processes often manifest dissipative struc-
tures in nature [2, 1, 64, 10]. Throughout history, pattern formation is observed in diverse
natural phenomena, including the creation of mountains, dunes, plants, clouds, snowflakes,
stalactites, and the distinctive skin patterns of mammals, insects, fish, and seashells [64, 10,
9, 65, 66].

Patterns, in a general sense, are dominated by a characteristic wavelength. This wave-
length is often shaped by two primary mechanisms: external factors, such as the geometric
properties of the system (width, thickness, etc.), and internal factors, like transport, diffu-
sion, and diffraction. Notably, the intrinsic length associated with the latter mechanism,
proposed by Turing [30], significantly contributes to shaping patterns.

Concentric ring patterns, observed across various contexts, serve as an illustrative example
in the DDLCC experiment. Despite their prevalence in physical systems, concentric ring
patterns are commonly considered unstable from the perspective of amplitude equations
[17, 67]. Consequently, the precise mechanisms governing the origin and properties of these
patterns were not completely understood.

In summary, this chapter demonstrate that concentric ring patterns exhibit stability be-
yond the Turing instability. Specifically, this phenomenon occurs either after or before a
Turing instability, rather than precisely at its onset. Employing a prototype mathematical
model for pattern formation, we provide evidence that these solutions can indeed be stable.
Additionally, we identify the crucial ingredients necessary for their stability.
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4.1 2D Swift-Hohenberg prototype model

The Swift-Hohenberg equation [28, 29, 58] serves as a prototype model for pattern forma-
tion [18]. This isotropic and reflection symmetric nonlinear equation features a real order
parameter. Applicable to a large variety of systems experiencing spatial symmetry-breaking
instability—commonly known as Turing instability [1, 64, 10] it becomes particularly rele-
vant in proximity to a second-order critical point, demarcating the initiation of a hysteresis
loop denoted as a Lifshitz point [10, 48]. The formulation of the Swift-Hohenberg equation
follows:

du

dt
“ εu ´ u3

´ ν∇2u ´ ∇4u, (4.1)

In the given equation u “ upx, y, tq, where u represents a real scalar field, x and y denote
spatial coordinates, and t signifies time. The interpretation of the scalar field u “ upx, y, tq
varies depending on the specific context in which this equation has been derived. It could rep-
resent the electric field, molecular orientations, phytomass density, chemical concentration,
or other physical quantities.

The parameter ε serves as a control or bifurcation parameter, measuring the input field
amplitude, aridity parameter, or chemical concentration depending of the context. Cubic
term account for nonlinear saturation or response. Additionally, the parameter ν corresponds
to the diffusion coefficient, where ν ă 0. When ν ą 0, it induces an antidiffusion process,
characterized by the emergence of patterns with a characteristic wavelength [11]. Finally the
last term, accounts the hyper-diffusion of the system.

4.1.1 Stability Analysis and Amplitude Equation

To analyze this model, it is necessary to calculate its solutions and check their stability. The
homogeneous solutions are u “ 0 and u˘ “ ˘

?
ε. Stability can be investigated through a

linear analysis.

For u “ 0, assuming a small perturbation u “ u0e
ik⃗¨r⃗`σt with u0 ăă 1, the dispersion

relation is given by:

σ “ ε ` νk2
´ k4, (4.2)

where k “ |⃗k|. Utilizing relations that account for the critical length dσ{dk|kc “ 0 and
spatial instability σpkcq “ 0, we obtain:

kc “

c

ν

2
and εc0 “ ´

ν2

4
, (4.3)

indicating that for ε ą εc0 , a spatial instability (Turing instability) emerges from this
point generating a stripe pattern solution with a wave number

a

ν{2.
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To gain a deeper understanding, it is necessary to employ a single-mode ansatz, particu-
larly when ring patterns are expected. The 2D ansatz takes the form [10]:

upr, tq « A

ˆ
ˇ

ˇ

ˇ

ˇ

ε `
ν2

4

ˇ

ˇ

ˇ

ˇ

t

˙

eikrr ` c.c. ` h.o.t. (4.4)

It’s important to highlight that this ansatz is valid only in the vicinity of the Turing instability.
This leads to the result for the two-dimensional amplitude equation calculating at dominant
order eikrr:

dA

dt
“

ˆ

ε `
ν2

4

˙

A ´ 3A|A|
2. (4.5)

Given that the Turing point is εc0 “ ´ν2{4 ă 0. The amplitude equation reveals a super-
critical bifurcation for εc “ ´ν2{4 and this equation have as solution :

A˘ “ ˘

c

ε

3
`

ν2

12
, A0 “ 0., (4.6)

In this context, A˘ only exist as a real solution for ε ą εc0 “ ´ν2{4. This is illustrated
in Fig. 4.1(a). Close to the Turing instability, the concentric rings are unstable due to the
interaction of spatial modes. It’s noteworthy that a ring pattern structure lacks stability in
radius, as observed in Fig. 4.2.

It is crucial to emphasize that, despite the unstability of mono-modal solutions, patterns
can still emerge due to multi-modal interactions [10].far from the instability, the modal theory
can not explain the observed evidence of stable ring patterns for ε ą 0.

In order to continue with the positive ε region, considering the solutions ˘
?
ε, as this

model lacks any non-variational term, it becomes evident that both solutions exhibit sym-
metry with respect to the x-axis. Consequently, the stability analysis can be conducted for
one of these solutions, allowing to draw conclusions that apply to the other solution as well.

For
?
ε, introducing a small perturbation into the equation u “

?
ε ` eik⃗¨r⃗`σt yields the

following dispersion relation:

σ “ ´2ε ` νk2
´ k4. (4.7)
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Applying the same relations to determine the critical values are obtained:

kc “

c

ν

2
and εc1 “

ν2

8
, (4.8)

Signifying that the solution u “
?
ε is stable for ε ą ν2{8, similarly, u “ ´

?
ε demon-

strates analogous stability. Additionally, the system exhibits bistability between the uniform
solutions and the pattern states. This analysis is depicted in Figure 4.1(a) showing the
bifurcation diagram.

(d)
0.8-0.8

(a)

(b)
-0.8 0.8 0.6-0.6

0

0

0

±
Outside 
ringing

Inside
ringing

Inflation Stable LS

(c) (e)

Figure 4.1: (a) Bifurcation diagram of the Swift-Hohenberg Equation: Maximum value of u
versus ε. The green line corresponds to ˘

?
ε states, the blue curve represents a single-mode

pattern (SP), and the black line signifies the zero solution. Dashed and solid lines indicate
that the corresponding state is unstable and stable, respectively. Simulations shows different
stable structures when the homogeneous solution exist with ν “ 1: (b) Outside ringing, (c)
Inside ringing, (d) Inflation, (e) Stable localized structure (LS).

Numerically, is considered the uniform state ´
?
ε, and perturbing it locally with a Gaus-

sian function as initial condition(with a width of the pattern wavelength, see Fig. 4.1(e)), in
this case this perturbation just can be implemented when ε ą 0, where is possible to connect
two homogeneous state. Depending on ε, are observed different behaviors.
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In the region where uniform states doe not exist (εc0 ď ε ď 0), is observed the propagation
of unstable concentric rings . This propagation is distinguished by the emergence of outer
rings that become attached. Concurrently, concentric rings begin to destabilize (Fig. 4.2).
To ensure that this destabilization is not a boundary effect, the boundaries are set as free
conditions for r “ R.

0.2

-0.2

Figure 4.2: Unstable ring pattern simulation for ε P rεc0 , 0s and ν “ 1

As ε increases, the dynamics change. Initially, observing a propagation similar to the
previously described scenario, featuring stable concentric ring patterns (for 0 ă ε ă εc1 , Fig.
4.1(b)). The parameter ε in Fig. 4.1(a) characterizes the spatial region where this behavior
is observed, termed ”outside ringing.” With further increments in ε and the system residing
in the bistability region, the propagation takes on a distinct form. Rings emerge from the
center, displacing the concentric ring structure (Fig. 4.1(c)), occurring for εc1 ă ε. This
region is labeled ”inside ringing.”

Upon further increases in ε, the system no longer exhibits the formation of a concentric
ring pattern. Instead, there is a propagation of one homogeneous state over the other,
denoted as the ”inflation” region (Fig. 4.1(d)). As ε continues to rise, the initial perturbation
stabilizes into a localized structure (Fig. 4.1(e)). Additionally, numerical simulations consider
a circular geometry to mitigate edge effects and investigate the stability of concentric ring
patterns.

It is noteworthy that stable concentric ring patterns are observed beyond Turing instabil-
ity ε ą εc1 ąą εc0). This observation may be associated with a shift in the Turing boundary
resulting from the axisymmetric (radial) constraint on the initial condition. Numerical sim-
ulations were performed using the RK4 algorithm for time integration and a finite-difference
scheme for spatial discretization.
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4.2 1D Model Reduction

To gain insight into concentric ring patterns, a one-dimensional model that incorporates
essential elements—curvature, bistability, and a characteristic wavelength—to observe these
patterns and their dynamics is deduced from the rotation invariance of patterns, proposing
the ansatz upx, y, tq “ upr, tq, where r is the radial coordinate. Consequently, Eq. 4.1 can be
re-expressed as

du

dt
“ εu ´ u3

´ ν

ˆ

1

r

d

dr
`

d2

dr2

˙

u ´

ˆ

1

r3
d

dr
´

2

r2
d2

dr2
`

2

r

d3

dr3
`

d4

dr4

˙

u. (4.9)

The Eq. 4.9 is an one-dimensional Swift-Hohenberg model with curvature. The pres-
ence of terms 1{rn are corrections due to the dimension reduction. Within this model,
the impact of curvature is regulated by terms that are inversely proportional to powers of
r. This formulation offers solutions comprising uniform states µ “ t0,˘

?
εu and distinct

one-dimensional patterns, specifically manifesting as concentric ring states. The meaning of
the critical value ε “ εc0 “ ´ν2{4 becomes evident, representing the threshold for Turing
instability—signifying a supercritical spatial instability within the context of Eq. 4.9 [64, 10].

This model, incorporating curvature, captures the essence of ring pattern formation to
trying to explain the previous observed behaviours. The critical value εc0 serves as a trigger
of the phenomena, indicating the onset of Turing instability and the evolution of distinct
patterns. This comprehensive understanding set the first step to explore the dynamics of
concentric ring patterns in one-dimensional systems, offering valuable insights about mecha-
nisms that drive spatial instabilities.

For our simulations, the initial conditions are carefully chosen to capture the dynamics
of the concentric ring patterns. The characteristic wavelength, denoted by λc and defined
as twice the characteristic wave number, is expressed as λc “ 2π{kc “ π

?
8{

?
ν with ν “ 1.

This ensures that the simulations encompass the relevant spatial scales for the system under
consideration. The chosen initial conditions involve a Gaussian perturbation (uGp0, rq) and
a domain wall (uDW p0, rq), both of which are set to connect the homogeneous solutions ´

?
ε

and
?
ε:

uGp0, rq “ ´
?
ε ` 2

?
εe

´r2

32π2 , (4.10)

uDW p0, rq “ ´
?
ε ` 2

?
εHprq. (4.11)

Here, Hprq denotes the Heaviside function, defined as Hpr ă 0q “ 0 and Hpr ě 0q “ 1.
These initial conditions serve to initiate the simulation with a Gaussian perturbation and a
domain wall, respectively, providing insight into how the system evolves from these distinct
starting configurations. The careful selection of initial conditions enhances the capability of
our simulations to capture and elucidate the dynamics of the equations.
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4.2.1 No Curvature Dynamics

If the curvature terms are neglected, the equations follows the typical one dimensional Swift-
Hohenberg equation, and scenarios where curvature effects are disregarded, patterns propa-
gate by giving rise to spatial oscillations at the end of the pattern.

du

dt
“ εu ´ u3

´ ν
d2u

dr2
´

d4u

dr4
(4.12)

(b)(b)(a)

(c) (d)

Figure 4.3: Domain walls and localized structures of the one-dimensional Swift-Hohenberg
Eq. 4.12 for ν “ 1, without curvature corrections. (a) Domain wall profile and spatiotemporal
evolution between symmetrical uniform states u “ ˘

?
ε for ε “ t0.2, 0.3u. (b) Profiles of

localized structures and spatiotemporal evolution (ε “ 0.2). (c) Pattern propagation from
a domain wall solution (ε “ 0.15) or a (d) localized structure (ε “ 0.15). The red lines on
the spatiotemporal diagram show the instant where the profiles are obtained. The dashed
horizontal lines account for the homogeneous equilibria.

Figure 4.3 illustrates pattern propagation in the absence of curvature by integrating Eq.
4.12 across the entire spatial range (negative and positive values of r). This behavior re-
sembles that observed in concentric ring patterns in two dimensions in the outside ringing
region, as depicted in Fig. 4.1(a).
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For ε within the bistability region between uniform and pattern states, the system exhibits
a domain wall solution connecting two symmetric states (Fig. 4.3(a)). The amplitudes of
damped spatial oscillations increase with ε.

Additionally, the model Eq. 4.12, without curvature effects, produces localized structures
for higher values of ε, supported by homogeneous states (Fig. 4.3(b)). As ε decreases, the
pattern state becomes more stable than the homogeneous one, initiating pattern propagation
from the center of the domain wall or the localized structure (bottom panels of Fig. 4.3(c)
and 4.3(d), respectively).

Noteworthy that the existence of the concentric pattern persists, independent if the initial
condition is a Gaussian or any other form. However, when the parameter ε is in the localized
structures region, the evolution of the pattern is characterized by does not change the shape
of the initial condition.

4.2.2 Curvature Effect

The dynamic behavior shows a significant change when curvature effects exist. Is possible to
observe a localized structure with a pattern propagation is characterized by the emergence of
spatial oscillations outside the pattern, for ε in the outside ringing region, comparing with the
case without curvature effects (Fig. 4.4(a)). However, as ε increases, transitioning to inside
ringing region, the propagation dynamics change dramatically. Spatial oscillations initiated
at the center of the perturbation, subsequently giving rise to new oscillations at the center
(Fig. 4.4(b)). Upon further increasing ε, the curvature-induced effect becomes evident as
one homogeneous state invades the other, as illustrated in Fig. 4.4(c).

The observed dynamic behavior aligns with the characteristics of the inflation region
depicted in Fig. 4.1(a). With a further increase in ε, stable localized structures emerge,
and propagation of patterns or homogeneous states is no longer observed (Fig. 4.4(d)). The
solutions shown in Fig. 4.3 were obtained through numerical integration for r ą 0, with
reflection at r “ 0 (RK4).

The interplay between curvature and bistability, involving uniform and pattern states,
lets the stabilization of propagating concentric ring patterns. Transitioning from the inflation
mode to a stationary localized structure, as previously reported [29], elucidates the role of
curvature in phase domain dynamics within the context of a Swift-Hohenberg model. It is
crucial to note that in scenarios characterized by inside and outside ringing (Fig. 4.1(a)), the
local approximation using amplitude equation becomes invalid. Consequently, the dynamics
of concentric ring patterns depends on nonlocal interactions, showing the complexity of their
behavior.

This study demonstrates the stability of concentric ring patterns beyond the Turing in-
stability. The essential prerequisite for the manifestation of these patterns is the bistability
between patterns and homogeneous states. Utilizing the Swift-Hohenberg equation as a pro-
totype model, the stability of these solutions is established, identifying the main ingredients
for their existence. Close to the Turing instability, the concentric rings experience instability
due to the interaction of spatial modes.
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However, beyond the Turing instability, these patterns can be stabilized and showing
a characteristic wavelength induced by the spatial instability. The proposed mechanism of
pattern formation, namely inside ringing, is triggered by curvature effects. This mechanism is
supported by theoretical findings, affirming the emergence of stable concentric ring patterns
in the inside ringing region.

Figure 4.4: Pattern propagation and profiles from a localized structure of the one-dimensional
Swift-Hohenberg model Eq. (2) for ν “ 1. (a) Depicts pattern propagation for ε “ 0.1 with
spatial oscillations in the outer part of the pattern. (b) Illustrates pattern propagation for
ε “ 0.2 characterized by spatial oscillations emerging from the center and pushing the pattern
structure outward. (c) Shows front propagation of one homogeneous state over the other,
for ε “ 0.5. (d) Presents stable localized structures for ε “ 0.9. The red lines on the
spatiotemporal diagrams indicate the instant when the profiles are obtained. The dashed
horizontal lines represent the homogeneous equilibria. The domain of integration is from
r “ 0 to r “ 25, reflected at r “ 0.
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4.2.3 N th Dimensional Ring Patterns

In the previous sections, the emergence and propagation for a two-dimensional system were
discussed. It is possible to generalize this explanation to an N -dimensional system using
the same idea. Consider a prototype model in N dimensions, and impose N ´ 1 constraints
related to angular symmetries. The model simplifies to a one-dimensional equation, as shown
before. Let’s analyze this in the same way, using an n-coordinates system [68]:

x1 “ r cospφ1q,

x2 “ r sinpφ1q cospφ2q,

x3 “ r sinpφ1q sinpφ2q cospφ3q,

...

xn´1 “ r sinpφ1q ¨ ¨ ¨ sinpφn´2q cospφn´1q,

xn “ r sinpφ1q ¨ ¨ ¨ sinpφn´2q sinpφn´1q.

This case is described by the inverse transformation:

r “

b

x2
n ` x2

n´1 ` ¨ ¨ ¨ ` x2
2 ` x2

1,

φ1 “ atan2

ˆ

b

x2
n ` x2

n´1 ` ¨ ¨ ¨ ` x2
2, x1

˙

,

φ2 “ atan2

ˆ

b

x2
n ` x2

n´1 ` ¨ ¨ ¨ ` x2
3, x2

˙

,

...

φn´2 “ atan2

ˆ

b

x2
n ` x2

n´1, xn´2

˙

,

φn´1 “ atan2 pxn, xn´1q .

Where atan2 is the two-argument arctangent function. There the inverse transform is
not unique; φk for any k will be ambiguous whenever all of xk, xk`1, . . . , xn are zero; in this
case, φk may be chosen to be zero. The ∇N should be determined for N´spherical system
to obtain the curvature corrections (91{rn) for each N´dimensional system.

It is important to note that the homogeneous solutions and the mono-modal pattern, along
with their calculated stabilities as discussed earlier, do not depend on curvature effects, this
just affect the angular constrain. This observation validates the reduction of the model to
one dimension (1D) for N th ring patterns if system presents bistability, curvature effects, and
a characteristic wavelength, the 1D model remains a valid representation of the system.

The process of dimension reduction opens avenues for studying various systems. In the
context of LC systems, this reduction holds promise for creating some optical devices like
adaptive irises. Here, parameters can be controlled both during manufacturing and through
external pumping mechanisms, as was discussed in Chapter 3.
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Chapter 5

Phase Separation Close to NI
Transition.

This chapter delves into the experimental observations and numerical modeling of a Dye-
Doped Liquid Crystal Cell (DDLCC) under temperature control. In contrast to Chapter
3, where the DDLCC was examined without temperature variations, this study introduces
a controlled temperature element to the experimental setup, not considering a light pump
on the cell. Furthermore, a detailed phenomenological model is developed based on first
principles, aiming to comprehend the physical system.

This configuration introduces a new molecular component, leading to distinct behaviors,
particularly close to the nematic-isotropic transition (NI). This experiment draws a com-
parison between a DDLCC and a typical Nematic Liquid Crystal (NLC), unveiling intricate
behaviors during the transition—specifically, a phenomenon called phase separation [24].
Phase separation manifests in the form of two spatial inhomogeneities: bubbles or spinodal
decomposition, indicating the coexistence of different molecular concentrations within the
system.

To elucidate this intricate behavior, employing a coupled model between Landau-deGennes
and Cahn-Hilliard equations to add mass conservation in the system. This modeling approach
offers valuable insights into the mechanisms governing the observed phase separation phe-
nomena.

5.1 Experimental observations

5.1.1 Experimental Setup

Employing a planar anchoring cell with either an E7 nematic liquid crystal (NLC) or the
previously introduced DDLC (discussed in preceding chapters) between two glass plates,
each with a thickness of 25 µm. A typical approach for studying the NI transition involves
the use of optical microscopy, thermal control, and cross-polarization, as illustrated in Fig.
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Figure 5.1: Experimental setup for phase separation, illustrating the following components:
(a) CCD camera, (b) 10x optical objective, (c) & (f) polarizers setted for cross polarization,
(d) DDLCC or NLC sample, (e) & (h) thermal chamber and control device. Finally, (g)
represents the computer for controlling the thermal device and receiving images from the
CCD camera.

In the experimental setup, temperature control is facilitated using the Linkam software
[69], while imaging is acquired through the ThorCam software [70]. This process occurs
subsequent to cross-polarization and employs a 10x magnification objective.

To study this system, the thermal chamber is programmed with a temperature ramp of
0.1˝C{min from 56˝C to 61˝C. This setup enables the examination of cell behavior (E7 or
DDLCCs) in the vicinity of the critical temperature Tc. Comparative analysis of snapshots
representing distinct states is conducted until the isotropic state completely pervades the
system (see Figure 5.2).
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Figure 5.2: Experimental snapshots, of the spatial behaviour for E7, E7-MR, and E7-MRME
mixtures, where the DDDLCC are composed by 99% of E7 LC and 1% of Dye-Dopant. The
different states are induced by a temperature ramp of 0.1˝C{min.
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In Figure 5.2, the comparison of different states across the three mixtures reveals a notable
observation. The isotropic state invades the system at a lower temperature than expected
(traditionally at 61.0˝ for E7 [33, 34, 35]), indicating that the presence of the dopant in the
mixture alters the system’s critical temperature and the observed dynamics. An even more
significant finding is the emergence of a distinct nematic phase as bubbles coexist before the
isotropic phase takes over, persisting alongside the regular nematic phase, resulting in the
coexistence of three states simultaneously (from 57.5˝C to 60.0˝C).

Due to the utilization of a temperature ramp, distinguishing between various behaviors is
challenging. However, it is possible to check that at temperatures below 59.0˝C, the DDLCCs
exhibit only two distinct nematic phases. Between 59.0˝C and 60.0˝C, three states coexisting,
and at higher temperatures, the isotropic state invades the system. On the other hand, pure
E7 LC demonstrates a singular nematic phase up to 59.0˝C, with observable isotropic bubbles
after that temperature Note that the observation of the bubbles is unexpected, because this
is a manifestation of a typical wavelength which is not included on Landau-deGennes theory.
As the temperature rises, these bubbles invades the system, and finally goes to the isotropic
at the critical temperature TC . The delineation of these temperature ranges is crucial for
the ongoing exploration of this phenomenon. In regions where only two nematic bubbles
coexist, the occurrence can be characterized as a ”phase separation” phenomenon. For the
E7 mixture, it is imperative to investigate the potential presence of this phenomenon since
bubbles are observed at temperatures below Tc.

5.1.2 E7 Phase Separation

Given the observed diverse behaviors, it becomes imperative to conduct a detailed examina-
tion of both, the DDLCC and the E7 mixture in different temperature ranges. Specifically,
for E7, a measurement in the temperature range Tps ă T ă Tc, where Tps signifies the tem-
perature at which bubbles emerge and Tc denotes the temperature of the nematic-isotropic
(NI) transition. This targeted study is essential for a comprehensive understanding of the
system’s behavior within the specified temperature interval.

In this case, the selected temperature is T “ 60.3˝C for NLC. The study focuses on the
system’s dynamics, initiating from a nematic state and rapidly reaching the chosen tempera-
ture. Subsequently, the system evolves over a duration of 60 hours, and the evolution of the
characteristic length is examined over time.

To calculate the characteristic length of the system, a region in the homogeneous mixture
is observed, it is essential to isolate the green bubbles and focus solely on their evolution.
As a white region surrounds the bubbles, employing image processing techniques allows us
to generate binary images of the isolated bubbles, as illustrated in Fig. 5.3(b). This binary
image is then compared with the experimental snapshot for analysis.
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The characteristic length Lptq is determined using a Fourier method [50], calculating the
2D-structure length from the Fourier transform of the image. Obtaining the probability
distribution ppq, tq of q-vectors by integration over all directions. Taking the inverse of the
mean value of q over this distribution gives the characteristic length as:

Lptq “ 2π{

ˆ
ż

qppq, tqdq

˙

(5.1)

102 103 104 105

time (s)

0

1.25
3 mm

(a)

(b)

(c)
1 s 10 s 500 s

5000 s 30000 s 100000 s

Figure 5.3: Evolution of the E7 liquid crystal sample at a temperature of 60.3˝C. (a)
Snapshots at various time points illustrating the emergence and interaction of structures. (b)
Binarization of the green nematic structures. (c) Experimental length calculation, along with
the exponential fit depicting isotropic front propagation, and the phase separation regimes
(represented by orange and yellow curves, respectively).

An important observation is that the evolution is governed by two distinct mechanisms at
different stages. Initially, the evolution exhibits an exponent of approximately ´t1, indicating
a front propagation dynamic of the isotropic state over the nematic one [71], which is typically
of front propagation, because the speed is constant.

Subsequently, after a prolonged period (in comparison to the isotropic front time), a new
regime emerges involving the interaction of green bubbles. These green bubbles display two
intriguing behaviors: interaction with other bubbles and the emergence of a white region
around them. The interaction among bubbles is attributed to phase separation dynamics, as
evidenced by an exponent in the characteristic length regime of approximately t1{3—following
the Lifshitz–Slyozov law [48]. The emergence of the white region is attributed to the spatial
inhomogeneity of the green structures.
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(a) (b) (c)

Figure 5.4: Concentration Inhomogeneity: (a) Structures of green bubbles, (b) Emergence of
isotropic front initially after cooling down and reheating, (c) Overlapping of (a) and (b).

In this instance, phase separation is not attributed to two distinct liquids or materials, as is
commonly observed in several mixtures [24], such as oil and vinegar. Instead, it is attributed
to local concentration variations within the sample. Specifically, the green structures would
be a different molecular concentration than the rest of the sample, as evident in Fig. 5.4.
The emergence of the isotropic front after cooling down, when the bubbles are present in the
sample, indicates a modulation of the size of the initial isotropic front by the form of the
bubbles. This is distinct from the emergence observed when heating a homogeneous sample
(refer to Fig. 5.3 (a)). Addressing this variation becomes crucial for experiment replication,
necessitating heating to higher temperatures to restore a homogeneous medium.

5.1.3 DDLCC Phase separation

In this case, the E7-MRME sample is chosen for the experiment due to its brighter colors
compared to the E7-MR, which facilitates the study.

To investigate the impact of the dopant in the sample, a similar analysis is conducted.
However, executing the experiment becomes challenging due to the coexistence of three states.
At a temperature of 56.5˝C, the system is observed to explore Nematic-Nematic interactions
(Fig. 5.5(a)), with the experiment lasting for only 8 h. During the initial phase, a new nematic
phase emerges over the original one, characterized by front propagation for up to 800 s.
Following this, the nematic bubbles over the nematic medium exhibit the Lifshitz–Slyozov law
until 8000 s. Subsequently, from 10000 s until the end, certain bubble concentrations become
sufficient to induce the NI transition, becoming dominant in the system. The experiment is
halted at this point, as the phase separation behavior of a pure liquid crystal was previously
discussed in the last section.
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Figure 5.5: Evolution of the MRME-E7 LC sample at a temperature of 56.5˝C. (a) Snap-
shots at various time points illustrating the emergence and interaction of structures. (b)
Experimental length calculation, along with the exponential fit depicting nematic-nematic
front propagation, phase separation and isotropic front propagation regimes (represented by
yellow, red and black curves, respectively).

An important observation is that the presence of nematic-nematic coexistence is a result
of the phase separation of the dopant, which modified the transition temperatures compared
to the pure LC sample. This allows for the independent observation of the phase separation
of the dopant. However, for large enough time, the LC transition and potentially the LC
phase separation will become evident. This indicates that the order parameter is intricately
linked to the molecular concentration of the LC mixture and the concentration of the dopant
in the system, resulting in a triple-coupled system.

One challenge in the experiment is the inability to directly measure local concentration,
as transmitted light is proportional to S2 (order parameter). Thus, the experiment relies on
observing the indirect effects of local concentration.

It is noteworthy that the execution of this experiment demands extended measurement
times, guided by a slow dynamic process. This show that the understanding of the Nematic-
Isotropic (NI) transition and the behavior in proximity to this transition is not entirely
comprehensive within the context of liquid crystals. The observed phenomena are more
intricate in various aspects than initially expected and not discussed on the litterature. Note
that the NI transition is one of more relevant transitions in liquid crystal.
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5.2 LC Phase Separation Model

To elucidate the dynamics of the previous experiment, the Cahn-Hilliard equation [47] is
employed to describe the evolution of molecular concentration N , and is coupled with the
Landau-deGennes equation for the order parameter S [4]. For simplicity, the model is initially
applied to a pure liquid crystal (LC).

The Cahn-Hilliard model, being mass-conservative, is represented by the equation [47]:

dN

dt
“ ∇2

`

µN ´ N3
´ ∇2C

˘

(5.2)

Here, µ “ µpT q is temperature-dependent parameter that account for diffusion, and
N “ Npr⃗, tq signifies the deviation from the average concentration N . On the other hand,
utilizing a typical Landau-deGennes equation for the order parameter S coupled with the
concentration follows:

τ
dS

dt
“ ´pε ` αpN0 ` NqqS ` βS2

´ S3
` ∇2S (5.3)

Here, τ represents the timescale of the phase separation, N0 is the initial homogeneous
concentration and α represents the coupling between concentration variation and the order
parameter (Note that the change in the concentration induce a change of the parameter
value for the NI transition), while the other parameters were previously discussed in this
dissertation.

The timescale since the experiment show that the phase separation regime occurs after a
long time, is setted for big values of τ , because the S parameter does not reach the isotropic
state before the phase separation regime.

The coupled system for the phase separation is given by:

τ
dS

dt
“ ´pε ` αpN0 ` NqqS ` βS2

´ S3
` ∇2S

dN

dt
“ ∇2

`

µN ´ N3
´ ∇2C

˘

.

(5.4)

It is crucial to note that when dealing with more than one separable medium, such as
in the case of DDLCC, it becomes necessary to introduce multiple Nipr⃗, tq terms. Each
separable medium in the system is denoted by the index i “ 1, ..., n, where n represents the
total number of such mediums.
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5.2.1 Model Simulation

Here is study the numerical simulation of the model 5.4. For this simulations, which neces-
sitates mass conservation in the N equation, a 2D spectral method [53] is employed. The
chosen parameters include τ “ 100, ε “ ´0.2, α “ 0.2, N0 “ 1, β “ 0, and µ “ 0.1,
with homogeneous initial conditions Npr⃗, 0q “ 0 and Spr⃗, 0q “ 1. The colors are selected to
facilitate comparison with experimental observations (black, white, and green in gradient).
the parameter and variables are in arbitrary units. Evolution of the simulation is presented
in Fig. 5.6.
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Figure 5.6: Evolution of the S field phase separation coupled model (Eq. 5.4). (a) Snapshots
at various time points illustrating the emergence and interaction of structures. (b) Char-
acteristic length calculation, along with the exponential fit depicting front propagation and
phase separation regimes (represented by orange, red, and yellow, respectively).

It is crucial that the simulated curve exhibits a behavior similar to the experimental
one, revealing a regime change around t “ τ “ 100. This suggests that this factor could
be associated with the timescale between the regimes. In both regimes, the curves display
a front propagation law and an approximate Lifshitz–Slyozov law. The calculation of the
characteristic length is conducted by excluding the white area around the green structures.

The dynamics presented in this model simulation aligns with experimental observations.
However, is important to consider to improve the model, particularly, because the order
parameter does not currently affect the concentration equation.
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5.2.2 Effect of Non-Homogeneous Parameters in Landau-DeGennes
Model

Since both equations in the model have different time scales, it is possible to approximate
Npr⃗, tq « Npr⃗q. To comprehend the impact of structures induced by phase separation and
the white region around these structures, analyzing the Landau-deGennes equation:

τ
dS

dt
“ ´pµ ` αNprqqS ` βS2

´ S3
` ∇⃗2S (5.5)

where

Nprq “ N1 ` N2
e´pr2{r20q

δ0 ` e´pr2{r20q
(5.6)

.

In Fig. 5.7(a) is shown the profile of Nprq in radial coordinate. Essentially, this converts
into a localized spatial modulation of the linear parameter connecting N1 with N1 `N2. It is
important to choose δ0 ăă 1 to create a function resembling a structure that connects just
two states sharply (Figure 5.7(a)).
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Figure 5.7: Effect of Inhomogeneous Structure: (a) Inhomogeneity connecting two symmetric
states, (b) comparison between the experimental structure and the numerical simulation
showing a white region around the green structure,(c) splitting in the bifurcation diagram
(the red line disappear emerging two possible new curves depending of the local value of
concentration).

Analyzing the stability of this solution, is possible to separate it in two regimes, essentially
locally changing the effective value of ε in the Landau-deGennes equation, as shown in Figure
5.7(b).
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This implies that three different states S “ S1, S “ S2, and S “ 0 are coexisting in this
simplified model, where:

S1 “
β `

a

β2 ´ 4pµ ` αN1q

2
(5.7)

S2 “
β `

a

β2 ´ 4pµ ` αpN1 ` N2qq

2
(5.8)

In Fig. 5.7 (b), the bifurcation shows three distinct behaviors when the original curve (red
one) splits: (I) Depicts the coexistence of two curves (yellow and blue curves), representing the
white area around the green structure in both the experiment and simulation. (II) Represents
the existence of only a green nematic state and the isotropic one (blue and black curves).
(III) Indicates the complete NI transition (black curve). This result is crucial because it
implies that the transition depends on concentration. Even when the temperature is close to
the NI transition, phase separation allows for the coexistence of nematic and isotropic states.
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Chapter 6

Conclusion

Non equilibrium systems usually exhibits coexistence between two or more stable states,
multistability, also exhibit domains of patterns between them. The patterns can be controlled
and characterized by imposing some characteristics length in the dynamical system. In this
dissertation several phenomena involving pattern formation and coexistence between phases
in the context of liquid crystals were studied experimental and theoretically. Three topics
were studied, in which the topics studied were analyze the molecular order, the pattern
formation on the respective system, and the coexistence of different spaces. The main results
of this dissertation and future perspectives are summarized below.

6.1 Photoisomerization Process in Dye-Doped Liquid

Crystals:

• Experimentally, structures resulting from photoisomerization were observed, with the
main result being the emergence, stabilization and characterization of ring patterns.

• The transition is induced by the photoisomerization process, where dye dopant molecules
undergo trans-cis transitions upon exposure to light. This transition leads to a random
reorientation of liquid crystal molecules, causing the emergence of the isotropic phase,
modulated by a characteristic wavelength of the system.

• The interaction between the dopant and the liquid crystal is modeled by a Swift-
Hohenberg type model, derived from the adiabatic elimination on a coupled model,
where the liquid crystal is described using the Landau-deGennes model and an injection-
relaxation model for the cis-state concentration.

• The rings pattern at high light intensities collapses, showing the existence of more intri-
cate patterns, and the behavior in this regime requires meticulous study (theoretically
and experimentally).

• The dynamics of Dye-Doped Liquid Crystal Configurations (DDLCC) depend on the
light absorbance curve. If the pump light wavelength is far from the absorbance peak,
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the sample will not be affected. This property could be utilized to create pixels in
digital displays, controlled by light instead of voltage.

6.2 Universal Description of Ring Patterns in Non-

Linear Systems:

• Utilizing a Swift-Hohenberg prototype model, the existence of single-modal rings close
to the Turing point was theoretically demonstrated. However, these rings are unstable
due to higher modal interaction.

• The emergence of stable ring patterns is observed far from the Turing Instability, as
modal analysis is not applicable in this regime. The main ingredients for the exis-
tence of stable ring patterns were characterized as bistability of states, a characteristic
wavelength, and curvature effects.

• Structures generated when the system exhibits angular invariance demonstrate the
existence of different mechanisms, termed ”inside ringing” and ”outside ringing.”

• If the system’s boundary conditions lack angular invariance (square boundaries as ex-
ample), the structure will not form a ring pattern when the front reaches the boundaries
but will remain stationary .

• Ring patterns with these characteristics can be controlled, enabling the manipulation
of specific features, such as choosing the wavelength, by adjusting certain system pa-
rameters. This capability allows to the manufacturing of devices, as example, adaptive
iris diaphragms.

6.3 Phase Separation in NLC Close to the NI Transi-

tion

• The emergence and characterization of coexistence between different nematic structures
in an isotropic medium are observed. The characteristic length evolution follows the
Lifshitz–Slyozov law.

• The evolution of structures is driven by non-homogeneous concentration locally in the
sample, resulting in the coexistence of different stable states.

• Concentration inhomogeneities persist in the sample even after returning to the nematic
phase, creating a memory effect. Upon heating, the sample returns to homogeneous
concentration. This property could be employed for encryption, such as generating
single-use passwords or securing information. The inhomogeneities also induce the
propagation of a white front around the structures if the temperature is low enough.

• The critical temperature Tc for the nematic transition, locally change for the different
concentration.
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• The concentration of the liquid crystal can be explained by coupling a Landau-deGennes
equation with a Cahn-Hilliard equation, yielding similar results.

• Dye-Doped Liquid Crystal Configurations (DDLCC) enable multi-phase separation in
the sample, leading to the emergence of dopant concentration structures and liquid
crystal concentration structures driven by phase separation.
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Annex A: Light-Induced Ring Pattern in a Dye-Doped

Nematic Liquid Crystal

This sections presents our results about Light-Induced ring patterns on a dye-doped liquid
crystal cell.
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Abstract: The use of dye-doped liquid crystals allows the amplification of the coupling of light and
liquid crystals. Light can induce the self-organization of the molecular order. The appearance of
ring patterns has been observed, which has been associated with phase modulation. However, the
morphology and dynamics of the ring patterns are not consistent with self-modulation. Based on
an experimental setup with two parallel coherence beams orthogonal to a liquid crystal cell, one of
which induces photo-isomerization and the other causes illumination, the formation of ring patterns
is studied. To use these two coherent beams, we synthesize methylred methyl ester as a dye-dopant,
which is photosensitive only to one of the light beams, and a commercial E7 liquid crystal as a matrix.
Based on a mathematical model that accounts for the coupling between the concentration of the
cis-state and the order parameter, we elucidate the emergence of the rings as forming patterns in
an inhomogeneous medium. The bifurcation diagram is analytically characterized. The emergence,
propagation of the rings, and the establishment of the ring patterns are in fair agreement with the
experimental observations.

Keywords: photo-isomerization in liquid crystals; pattern formation; light-induced phenomena;
azo-dye-dopant

1. Introduction

The interaction between light and matter has played a fundamental role in the under-
standing and characterization from the early stages of research [1]. Likewise, the interaction
between light and matter has also been the basis of the development of technological el-
ements such as mirrors, lenses, telescopes, microscopes, lasers, and waveguides, among
others. The development of more coherent and monochromatic light sources (lasers) ac-
companied by materials that present stronger nonlinear responses has allowed the creation
of a great variety of devices [2–6]. Liquid crystals are one of the most versatile materials,
because of their strong nonlinear response and reorientation capacity through the applica-
tion of electromagnetic waves and electric and magnetic fields [7–11]. Liquid crystals are
a state of matter in which the molecules have a preferential orientation and can have or
not have a positional order; this organization is also known as soft matter [7–11]. Indeed,
this state of matter shares features of solids and liquids. In particular, fluidity, molecular
reorientation, and birefringence are characteristic properties of liquid crystals. One of the
most studied types of liquid crystals used in technological applications are nematic liquid
crystals (NLC). This state is composed of rod-like organic molecules [7–11]. Because of
an intermolecular interaction, these molecules are arranged to have a similar molecular
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orientation without positional order for specific temperature ranges. This results in a sharp
anisotropy of all their physical properties, especially regarding elastic and optical charac-
teristics. Likewise, the ability to reorient the molecular order has allowed the development
of many applications, mainly liquid crystal displays (LCDs) and sensors [12]. The LCD
is perhaps the best known liquid crystal application by the public today. However, in
most of these applications, the control of molecular reorientation is done through electric
fields. LCDs therefore require transparent or reflective electrodes, power sources, and
other elements. Another manner of achieving molecular reorientation is to consider the
application of electromagnetic waves through the liquid crystal sample [13–17]. However,
this type of strategy requires the use of strong electromagnetic fields, which typically
need a power on the order of 100 W/cm2. For these powers, the nonlinear response of
the medium is activated [11,18]. The previous scenario can change radically when one
considers the dye-dopant inside the liquid crystal matrix. Indeed, when nematics are
doped with azo-dyes, their nonlinear response to opto-electrical perturbations is increased
by several orders of magnitude [11,18]. Indeed, azo-dyes mediate the origin of the coupling
of the electromagnetic waves with the liquid crystal; when these molecules are irradiated,
they present an isomeric transition. This phenomenon is known as the Jánossy effect [19].
This transition is characterized by the fact that the molecule changes from an elongated
structure (trans-state) to one with a boomerang shape (cis-state) when the molecule absorbs
a photon. Figure 1 illustrates the typical structure of these molecules.

Figure 1. Ring patterns induced by light in a dye-doped liquid crystal cell (DDLCC). (a) Schematic
representation of the experimental system. The blue and red bars, respectively, account for the
molecules of the liquid crystal and azo-dye. The cell is illuminated by a blue and green beam. The
snapshot accounts for the observed ring patterns. A transversal plane in the DDLCC is schematically
represented. The areas under higher blue laser irradiation are more disordered, while the zones less
illuminated preserve the nematic order. (b) Isomers of the molecule methyl red methyl ester. (c) Two
snapshots showing the observed pattern (upper panel) and snapshot with the beam that induces
photo-isomerization superimposed (bottom panel).

When a sufficiently intense light beam illuminates a thin film of dye-doped nematic
liquid crystal, this can induce molecular disorder, generating a transition from a nematic
phase to an isotropic one [20]. This type of transition is characterized by the emergence of
a front between phases [20]. These fronts are characterized by being a circular spot that
gathers in the center of the beam and spreads outwards and stops in the region where both
states are energetically equivalent, Maxwell point. For intermediate light intensities, which
do not induce isotropic liquid phase, the emergence of a pattern with a stripe shape has
been reported [21,22]. In fact, these patterns correspond to regions that alternate higher
and lower orientational molecular order. This phenomenon is understood as a result of
the different scales in the transport processes of the concentration of the cis state and
the orientational order of the liquid crystal. Thin films of liquid crystals without dye-
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dopants subjected to strong electromagnetic fields in their cross section exhibit diffraction
rings [14,23]. The above phenomenon is associated with phase modulation or autofocusing
of light when is diffracted in the NLC. This medium is a good approximation to a Kerr
medium [2–6,24], that is, the envelope of the light is under the effect of phase modulation,
a cubic term for the envelope and diffraction. Hence, the conjunction of diffraction and
phase modulation produces the emergence of diffraction rings. Note that the thickness of
the observed rings decreases with the square distance from the center of the light beam.
A similar phenomenon is observed in dye-doped liquid crystals when subjected to a
coherent light with a moderate and low light intensity [25–27]. Because of the presence of
dye-dopants, the nonlinear response can be achieved for light power of a few milliwatts
[28]. The emergence of these rings has been associated with phase modulation. However,
the morphology and dynamics of the ring patterns are not consistent with that expected
for self-modulation rings observed for large intensities of light [14,23]. Furthermore, in
this type of description, the dynamical behavior of the cis state concentration is passive. In
other words, this concentration is enslaved to the system dynamics.

The article aims to elucidate and characterize the origin of the ring patterns observed
when illuminating a dye-doped nematic liquid crystal cell with a light beam and planar
anchoring. Based on an experimental setup with two parallel coherent beams, one of
which induces photo-isomerization and the other the illumination, the formation of ring
patterns is studied. Figure 1 illustrates the typical observed ring patterns. This type of
setup allows us to separate the induction of the photo-isomerization and the observation
of the self-organized patterns. To use these two coherent beams, we have synthesized
methyl red methyl ester as dye-dopant, photo sensitive only to one of the light beams, and
a commercial E7 (Instec Inc., Boulder, CO, USA) as a liquid crystal matrix. The methylred
methyl ester was used as a dye-dopant (cf. Figure 1). Unlike methylred, the methylred
methyl ester is more soluble and less viscous in E7 due to the absence of hydrogen bonds
from the carboxylic acid group of the methylred. In addition, this structural modification
prevents an intramolecular hydrogen bonding interaction with one of the nitrogens of
the azo group, causing a faster cis-trans isomerization [29]. Theoretically, based on a
mathematical model that accounts for the coupling between the concentration of the cis
state and the order parameter, we elucidate the emergence of the rings as forming patterns
in an inhomogeneous medium. The bifurcation diagram is analytically characterized. The
emergence, propagation, and establishment of the ring patterns are in fair agreement with
the experimental observations.

2. Experimental Observations of the Ring Patterns

The conventional phototropic transition detection is performed by sampling the
excitation laser beam and extracting the reorientational order parameter with polarized
optical microscopy [19–23,30]. The main inconvenience with those setups arises from
the loss of information of the liquid crystal dynamics outside of the central Gaussian
illuminated zone. Hence, the impossibility of differentiating between polarization changes
in the light filtered out by the analyzer and the absorbed light by the sample. To overcome
these difficulties, we developed an experimental setup with two parallel coherent beams
applied to the dye-doped liquid crystal sample, which is only photo-sensitive to one beam
(excitation beam) while the other is harmless (probing beam).

2.1. Experimental Setup

Figure 2 shows the experimental setup diagram. The dye-doped liquid crystal cell
(DDLCC) undergoes a phototropic transition when it is irradiated by a light source in the
absorption band of the guest dye [19,31]. We used a concentration of methylred methyl
ester 1 wt% as azo-dye guest doping a commercially available E7 NLC (host). The chemical
structure and isomers of methylred methyl ester are illustrated in Figure 1c. The absorption
spectrum of the methylred methyl ester is depicted in Figure 2b (for details about the
chemical synthesis and depuration of the azo-colorant, see Section 2.2).
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Figure 2. Experimental setup for the dye-doped nematic liquid crystal phototropic transition with a
harmless external illumination. (a) A dye-doped liquid crystal cell (DDLCC) is irradiated by a 445 nm
blue laser (excitation light beam) LB and illuminated by a 532 nm green laser (probing light beam) LG.
Two pairs of lenses are placed in a Kepler telescope configuration KB and KG to expand the laser beam
while preserving the collimation. ~PB and ~PG are the polarization of the laser sources. A long-wave
pass dichroic mirror DM is used to set both excitation and probing on the same optical line. After
the DDLCC, another long-wave pass dichroic mirror is used to filter out the excitation beam. An
analyzer in a crossed configuration with respect to ~PG. A set of imaging optics IL consisting on a
×2 Kepler telescope and a ×7 zoom lens is used to enhance the image captured by the 1/2” CCD
camera. (b) Absorption spectrum of methyl red methyl ester in dichloromethane 2.0 × 10−5 mol/L.
The solid vertical lines account for the wavelength of the exciting and probing light, respectively.
Vertical dashed lines account for the absorption maximum.

The mixture was injected into an antiparallel planarly aligned liquid crystal cell with
a thickness of 25µm (Instec Inc., Boulder, CO, USA). A 445 nm Cobolt 90 nW Polarized
Laser was used as an exciting irradiation source to generate a phototropic transition.
The polarization ~PB was fixed, and the laser power was used as a tuning or bifurcation
parameter. Note that the blue laser wavelength was close to the absorbance peak at 420 nm,
enabling us to trigger the isomerization and increase the amount of cis methyl red methyl
ester isomer. There was no relevant temperature change in the DDLCC. The experiment
was conducted at room temperature, approximately 20 ◦C. This meant that only an increase
of the cis-isomer concentration was responsible for a decrease of birefringence on the liquid
crystal. A Kepler telescope KB with a magnification of ×1/5 was used to change the
waist of the blue laser. The orientational molecular order in the dye-doped liquid crystal
interacted with the blue light, making blue light sampling unsuitable for scanning the
optical response of the liquid crystal sample.

To uncouple the excitation and probing fields, we provided illumination with a 532 nm
Verdi V-2 polarized green laser as a probing light. Indeed, the absorbance at 532 nm is
negligible for methyl red methyl ester, as seen in Figure 2. Both the green laser polarization
~PG and its intensity were set fixed. A Kepler telescope with a magnification of ×2 was used
to expand the beam and obtain a more homogeneous illumination. A long-pass dichroic
mirror DM (cutoff wavelength at 500 nm) was mounted in a pitch-yaw kinematic mount to
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control the reflection angle and thus the position of the blue laser on the DDLCC. A second
dichroic mirror was used to filter out the excitation light from the optical path to the 1/2”
CCD camera. To record the images, a set of illumination optics was used to enhance the
image quality. A first pair of lenses in a Kepler telescope configuration with an optical zoom
of×2 and a secondary zoom lens with a magnification of×7 was used. This system allowed
s to achieve diffractionless recordings on the elements in the DDLCC plane, ensuring no
diffractive rings on the images were recorded. Likewise, we displaced the liquid crystal
cell parallel to the optical axis with respect to the dichroic mirrors, and no changes were
observed in the ring patterns. This guaranteed that the observed phenomenon was not
diffractive in nature. Figure 1b shows the probing illumination field in the upper panel, and
the lower panel shows both the excitation and probing fields obtained by the CCD camera,
respectively. The dynamical behavior of the order parameter could not be completely
sampled only by measuring the excitation field. A set of imagining lenses was used to
enhance the recorded images. In particular, we used a ×2 magnification telescope coupled
with a zoom lens and density filters. Notice that both excitation and probe illuminations
were collimated when reaching the DDLCC. Thus, diffractive effects induced by changes
in the position along the optical axis of the DDLCC were negligible. This meant that the
position of the DDLCC was not a parameter of the experiment. The dynamics of the cis
concentration and nematic order parameter did not depend on the cell position along the ẑ
axis, which was the axis of light propagation on the dye-doped liquid crystal cell.

2.2. Synthesis and Preparation of Dye-Dopant and Liquid Crystal Mixture

Dye-dopant: The methylred methyl ester was obtained from a Fischer–Spier esterifica-
tion between methyl red (Sigma-Aldrich Inc., St. Louis, MO, USA) and methanol (Merck).
The methanol was used as a reagent and solvent at reflux for 6 h with sulfuric acid (Merck)
as a catalyst [32]. The final compound was characterized by Fourier Transform Infrared
Spectroscopy, and the purity was confirmed by thin layer chromatography. The absorption
spectrum of methyl red methyl ester was measured by employing a Spectroquant Pharo 300
spectrometer with a 1 cm optical path quartz cuvette in dichloromethane (Merck) solutions.
The absorption spectrum is reported in Figure 2b).

Mixture preparation: The 1 wt% mixture was prepared by weighing each component
and dissolving them separately into dichloromethane. The solutions were combined and
homogenized by sonicating for 5 min. The solvent was removed by slow evaporation at
room temperature.

2.3. Light-Induced Ring Patterns

When the dye-doped liquid crystal cell was illuminated with a probing light, the
monitoring CCD camera showed a homogeneous dark greenish color throughout the cell,
as illustrated in the snapshot of Figure 3b at t0. When applying the blue light beam, we
observed that the illuminated area immediately began to transmit more light. Figure 3a
illustrates how the total transmitted intensity measured in the green channel of the CCD
camera (∆Ig) evolved over time with respect to the transmitted light without the blue light
beam (Ig,0). The temporal evolution of the detected light intensity was characterized by
growth and subsequent saturation. Figure 3a shows two regions in which the growth
(region I) and saturation region (I I) could be distinguished. In order to describe the growth
and saturation process, we modeled it using the following expression: ∆Ig(t)/Ig,0 =

A(1− et/τ), where A = 2.79 and τ = 55.71 s. Namely, the establishment of the stationary
ring pattern required a time period on the order of one minute.
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Figure 3. Experimental ring pattern emergence induced by a blue light (with a 445 nm wavelength)
applied to a dye-doped liquid crystal cell, E7 NLC with azo-dye methyl red methyl ester at a
concentration of 1 wt%. (a) Temporal evolution of transmitted total intensity, measured in the green
channel of the CCD camera (∆Ig) with respect to the transmitted light without the blue light beam
(Ig,0). The points were obtained experimentally, and the continuous curve was acquired using the
expression ∆Ig(t)/Ig,0 = A(1− et/τ), where A = 2.79 and τ = 55.71 s. Painted areas I and II account
for the growth and saturation regions, respectively. (b) Temporal sequence of snapshots in the ring
pattern formation process (t0 = 0 s, t1 = 1 s, t2 = 5 s, t3 = 84 s, t4 = 360 s, and t5 = 570 s).
(c) Spatiotemporal diagram evolution of a diameter cut section.

When the blue light was applied, a region of light green with a darker center emerged;
as time elapsed, this dark spot became a propagative ring. Note that the lightened region
continued to grow, becoming even larger than the waist of the blue laser. Figure 1b
compares the light green region to the waist size of the blue laser. As time continued to
elapse, the dark ring continued to move away from the center, and a new dark spot emerged
in the center, which then became a new dark ring. Figure 3b summarizes the temporal
sequence of snapshots in the ring pattern formation process. In order to determine the
process of spot emergence and ring propagation, we consider the spatiotemporal evolution
of a diameter cut section. Figure 3c illustrates the observed spatiotemporal diagram
evolution. From this chart, we see how the dark rings emerge, spread, and stop.

When we applied low powers of the blue laser (few mW, cf. Figure 4), the system
did not show the formation of ring patterns, and we only observed the emergence of a
light green spot. As the power was increased, this light green spot increased in size. With
powers close to 40 mW, we began to observe the emergence of a dark spot in the center
of the illuminated region (see Figure 4). Physically, we interpreted this region as a region
of greater orientational disorder due to the consideration of the dye-doped liquid crystal
sample between crossed polarizers. When we further increased the power of the blue laser,
we observed the emergence of the first ring. Figure 4 shows the observed equilibrium ring.
As the power increased, the diameter of the equilibrium ring grew. For powers close to
70 mW, we observed the emergence of a ring with a dark spot in the center as a state of
equilibrium. As the power of the blue laser continued to increase, we observed that the
central dark spot grew, and at a higher power, it became unstable, generating a new ring.
Figure 4 summarizes the equilibria found for different blue laser powers.
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Figure 4. Equilibria ring patterns were experimentally observed for different powers of the blue light
beam. After a long period of evolution, snapshots were observed for different powers, as denoted in
the lower part of each snapshot.

3. Mathematical Modeling for Photo-Isomerization in Dye-Doped Liquid Crystals

Nematic liquid crystals are formed by rod-shaped molecules that—in a temperature
range—can present an orientational rather than positional order. Then, the dynamics of the
NLC can be described by a scalar order parameter S(~r; t) that accounts for the alignment of
the molecules along a given direction [7–9], defined by

S(~r; t) ≡ (3〈cos2 θ〉 − 1)
2

, (1)

where the brackets 〈·〉mean the spatial average in a microscopic element volume at position
~r and time t, and θ is the angle between the molecules and the local preferred direction [7–9].
Thus, S accounts for the dispersion of the molecules with respect to their average direction.
The scalar order parameter for a perfectly aligned nematic phase is S = 1, and that for an
isotropic phase is S = 0. Note that a negative and large S shows that the molecules are
oriented, but the choice of the current orientation does not coincide with the molecular
average orientation. Close to a phase transition, Landau conjectured that the free energy
can be written as a polynomial expansion of the order parameter [33]. Based on this type
of approach, in the Landau–de Gennes theory, the transition between a nematic and an
isotropic liquid state in a thin film is described by the dimensionless equation [7]

∂tS(r⊥, t) = −AS + BS2 − S3 +∇2S, (2)

where r⊥ accounts for the transversal coordinate of the liquid crystal layer and A is the
bifurcation parameter, which is proportional to the difference between the current and
critical temperature. Note that for large values of A, the isotropic state is favored in
comparison to the nematic state. B is a parameter that characterizes the size of the region
of coexistence between the nematic and isotropic liquid state. The third and fourth terms
on the right-hand side account for the nonlinear response of the medium and the spatial
coupling of the order parameter, respectively. This coupling is diffusive in nature. Namely,
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the flow of the order parameter is proportional to its gradient. This model predicts that the
nematic and the isotropic liquid transition is of a subcritical nature. On the other hand, the
concentration of molecules in the cis-state C(~r, t) at position~r in time t satisfies a relaxation
and diffusion equation of the form [19]

∂tC = −λ[C− C0(I)] + δ∇2C, (3)

where λ is the decay rate related to the transition from a cis to trans state by thermal
relaxation. C0(I) is the equilibrium concentration of molecules in the cis state that is pro-
portional to the total intensity of the incident light I. Indeed, C0(I) ≡ γI/(1 + η I), where
γ and η are dimensional parameters [19]. δ is the diffusion coefficient of the concentration
of the cis state. As a result of the propagation of light, the intensity of the light has the
following form:

I = I0e−r2
⊥/w2

, (4)

where w and I0 are the light beam waist and the light intensity at the beam’s center, respectively.
As we have mentioned, the incorporation of dye-dopants increases the nonlinear

response of liquid crystals under the excitation of external fields [11,18–20,34]. Since the
dye-dopant is not a liquid crystal and may even be immiscible, its excessive inclusion can
prevent the mixture from being a liquid crystal; thus, a dye-dopant should be used in small
amounts. We note that one of the reasons for considering methyl red methyl ester is that
it is more miscible in E7 than other dopants; for example, methyl red. To describe the
dynamics of the photo-isomerization process in the dye-doped nematic layer with planar
anchoring, let us consider the concentration of molecules in the cis-state C(~r⊥, t) and the
scalar order parameter S(~r⊥, t), which satisfy the dimensionless rate equations [21,22]

∂tC = −λ[C− C0(I) + αS] + δ∇2C + D∇2S,
∂tS = −(A + βC)S + BS2 − S3 +∇2S + D∇2C.

(5)

The α parameter accounts for the reduction of the cis-state concentration when the
liquid crystal molecules are more aligned (larger S) because the dye-dopants tend to be
oriented in the direction of the molecules (transition from cis to trans) [19]. Indeed, the
liquid crystal matrix tends to make the dye-dopants orient and stretch in the direction of the
molecular order. The parameter β stands for the entropic effect of the photo-isomerization
process; that is, by increasing the concentration of the cis molecules, the disordered or
non-oriented state is favored. Then, the linear term in S must decrease if the dye-dopant
concentration increases. The parameter D accounts for the mutual transport process;
namely, a gradient in the dopant concentration induces the propagation of the order
parameter [35].

In the limit of the large-scale separation between the order parameter S and the concentra-
tion of the cis-state (λ� 1) and for small α and intensity I, the cis-state concentration satisfies

C = C0(I) ≈ γI = γI0e−r2
⊥/w2

. (6)

Therefore, the cis-state concentration acquires a Gaussian profile. Using this expression
in the equation of the order parameter, S satisfies the Landau–De-Gennes model for the
nematic to isotropic transition induced by photo-isomerization [20]. Indeed, the bifurcation
parameter A(I) ≡ A + βγI is controlled by the light intensity profile. When the sample is
not illuminated, the system is in a NLC phase (S+). When the sample is illuminated, the
light can induce front propagation from the isotropic (SIS) to the nematic phase [20].

3.1. Adiabatic Elimination and Effective Model

To determine the dynamics described by Equation (5), one can consider the adiabatic
elimination of the cis-state concentration [36]. Indeed, by assuming that the temporal
evolution of the cis-state concentration is rapid compared to the dynamics of the order
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parameter—i.e., λ� 1—and by using Neumann series, one can approach, in a dominant
order, the cis concentration by

C ' C0(I)− αS +
D− αδ

λ
∇2S. (7)

Introducing this expression in the equation for the order parameter S, at a dominant
order, we obtain

∂tS = −[A + βC0(I)]S + (B− αβ)S2 − S3 + (1− Dα)∇2S

+
D(D− αδ)

λ
∇4S +

β

λ
(D− δα)S∇2S + D∇2C0(I). (8)

Renormalizing the space~r =~r′[λ/D(δα− D)]1/4, the effective model reads

∂tS = −ÃS + B̃S2 − S3 − ν∇2S−∇4S + bS∇2S + η̃, (9)

where

Ã(~r′) ≡ A + βC0(I(~r′)), (10)

B̃ ≡ (B− αβ), (11)

ν ≡ Dα− 1

√
λ

D(δα− D)
, (12)

b ≡ β(D− δα)√
λD(δα− D)

, (13)

η̃(~r′) ≡ D

√
λ

D(δα− D)
∇2C0(I). (14)

The model in Equation (9) corresponds to a non variational Swift–Hohenberg-type
equation [37,38]. This model has been used to study patterns [39,40], localized, station-
ary [37,41], and propagative structures [42,43], and spatiotemporal chaotic extended [40]
and localized structures [44]. These phenomena have been studied in different contexts
ranging from physics and chemistry to biology. The physical origin of the formation of spa-
tial structures is due to the anti-diffusion coefficient (ν > 0), which represents the different
scales of the transport processes of the cis order and state parameter, which introduces an
intrinsic characteristic scale: the Turing mechanism [45]. Namely, by having two transport
processes with different scales, the system cannot propagate the order parameter and the
cis-state homogeneously; thus, it self-organizes, forming patterns.

3.2. Homogeneous Illumination and Bifurcation Diagram

Considering a spatially homogeneous illumination—that is, C0 is a constant—the
parameters that characterize the nematic and isotropic liquid transition are renormalized
and independent of the space. The effective model has the form

∂tS = −ÃS + B̃S2 − S3 − ν∇2S−∇4S + bS∇2S. (15)

The homogeneous phases of this model have the form S0 = 0 and

S± =
B̃±

√
B̃2 − 4Ã
2

, (16)

where S0 and S± account for the liquid isotropic and nematic phase. For high temperatures—
i.e., a large Ã—it is expected that the only stable state is the isotropic liquid phase S0. When
decreasing Ã, the system presents a coexistence between the isotropic and nematic phase
for Ã = Asn ≡ B̃2/4. This bifurcation occurs due to the emergence of two new equilibria:
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the saddle-node bifurcation causes the emergence of a stable nematic state (S+) and an
unstable state (S−). Figure 5 shows the bifurcation diagram of the model in Equation (15).
As Ã continues to decrease, the isotropic liquid state S0 is as favorable as the nematic
phase S+ for A = AM ≡ 2B̃2/9—the Maxwell point [46]. Then, a flat wall between
these two phase states at this critical point is characterized by being motionless. When
further decreasing Ã, the isotropic liquid phase presents a spatial instability. We can study
this instability by linearizing Equation (15) around the isotropic liquid state S0 = 0, and
considering the ansatz S(~r, t) = S′ei~k~r+iσt, we obtain the growth rate equation:

σ = −Ã + ν~k2 −~k4, (17)

S

So

S+

ΑT ΑM

Αsn

S-

A~

Αsp
Αsp

Αsp+

-

Pattern
State

Isotropic
Phase

Nematic
Phase

Figure 5. Schematic representation of the bifurcation diagram of the effective model in Equation (15)
with constant coefficients. The order parameter S as a function of the bifurcation parameter Ã. S0, S+,
and S− account for the isotropic liquid and nematic phases, respectively. The continuous and dashed
lines account for stable and unstable states respectively. Asn, AM, and AT are the critical points that
account for the emergence of the nematic phase; both phases are equally favored, with a transcritical
bifurcation of the isotropic liquid phase. Asp, A+

sp, and A−sp account for the spatial instabilities of the
homogeneous phases. The painted area shows the region of coexistence between the periodic state
and the homogeneous state. The decorated curve explains the amplitude of the patterns.

The instability condition is dσ(kc)/dk = 0 and σ(kc) = 0. The first condition deter-

mines the critical length kc =
√
~k2 ≡

√
ν/2, and the second defines the critical relation of

the parameters for the spatial instability, which has the form Ã = Asp ≡ ν2/4. Weakly
nonlinear analysis shows that this instability is of a supercritical nature for a small B̃. Thus,
despite the fact that the linear term is positive, 0 < Ã < Asp, the isotropic liquid state
is unstable. For Ã = AT ≡ 0, the system presents a transcritical bifurcation between
unstable states.

To study the stability of the nematic phase, we use a similar strategy as in the study of
the spatial stability of the isotropic liquid phase. Let us consider the linear perturbation
S = S± + χ, where χ is a small variable that satisfies the equation

∂tχ = (−Ã + 2B̃− 3S2
±)χ− (ν + bS±)∇2χ−∇4χ. (18)

Introducing the ansatz χ(~r, t) = χ′ei~k~r+iσt in the above equation, we obtain

σ = −Ã + 2B̃− 3S2
± + (ν + bS±)~k2 −~k4. (19)

Imposing the spatial instability conditions, we obtain kc =
√
~k2 =

√
(ν + bS±)/2 and

2Ã + B̃S± = − (ν + bS±)2

4
. (20)
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From this expression, we obtain two critical conditions for spatial instability A+
sp and

A−sp corresponding to each of the nematic states (see Figure 5). Therefore, the effective
model predicts a region of coexistence between a pattern state and a nematic phase. Figure 5
shows this region of coexistence with a painted area.

3.3. Light-Induced Ring Pattern

Figure 5 summarizes the different behaviors presented by the model in Equation (15).
From this chart, we conclude that the system has a coexistence region between the nematic
state and the pattern. Note that this pattern alternates between areas of higher and lower
orientation order [21,22]. This affects the sample’s refractive index; therefore, if a light
beam passes through the sample in a patterned state, one expects to observe interference
fringes. As the light intensity increases, the bifurcation parameter Ã grows. Then, if one
considers a light intensity with a Gaussian profile, the parameter Ã(I) is characterized
by being inhomogeneous, with a bell-like shape. Thus, if the cell is in a nematic phase
when the sample is illuminated, the central part of the light beam can induce the cell to
leave the coexistence region, and only the pattern will be stable. For this type of region, we
would expect to find that the illuminated area shows patterns because the central area of
the light beam is circular, and for a small-waist beam, one would expect to see ring-like
patterns. Figure 6 shows the typical equilibrium ring pattern observed numerically for
the model Equation (9). All numerical simulations presented are obtained by considering
finite differences coded with the Runge–Kutta order-4 algorithm.

If the system is not illuminated, I0 = 0, the uniform nematic phase is the equilibrium
of the system. By illuminating the system with a low intensity, we found numerically that
there was a slight decrease in the reorientation order and an increase in the cis concentration
in the central part of the Gaussian (cf. Figure 7). As the intensity I0 increased, the size of the
central spot showed greater orientation disorder; that is, the order parameter S decreased
in the central zone as I0 increased. Note that the spot of the orientational disorder was
smaller than the waist of the Gaussian forcing. As I0 increased in the central zone, the
parameter of order S approached zero (isotropic liquid). When it hit zero, it generated a
new dynamical behavior; the central point expanded, creating a ring. The origin of the
clearing out of the central zone was due to the fact that the order parameter S became
negative. This could be interpreted as two ordered regions separated by a circular interface
of the disordered state. A dark ring in Figure 7 represents this region. As I0 increased
further, the ring continued to expand. By further increasing the intensity of the Gaussian
forcing, we observed the emergence of a new central spot surrounded by a ring. Note
that for this parameter region, when beginning with a uniform nematic state and applying
Gaussian forcing, a central spot of disorder state initially emerged that expanded, forming
a ring that continued to propagate; later, another central spot of disorder state emerged,
and finally the ring pattern stopped and remained in a stationary state. Experimentally, we
observed a similar behavior to that observed numerically (see Figure 3). As the intensity
of the Gaussian forcing I0 increased further, new central spots emerged, which became
new rings of disordered states (see Figure 7). The waist of the light beam limits the above
process. This process is similar to the experimental process (see Figure 3).
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Figure 6. Numerical stationary ring pattern in a dye-doped nematic liquid crystal using the effective
model in Equation (9) for Ã = −0.5, B̃ = 0.3, ν = 1.05, b = 0.1, I0 = 1.45, and w = 4. (a) Contour
plot of the squared order parameter S. (b) Profile of the cut of the order parameter S in the diameter
of the ring pattern. (c) Surface plot of the squared order parameter S.
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Figure 7. Numerical light-induced ring pattern in a dye-doped nematic liquid crystal using the model
in Equation (9). (a) Temporal evolution of ring pattern using the effective model in Equation (9)
for Ã = −0.5, B̃ = 0.3, ν = 1.05, b = 0.1, I0 = 1.45, and w = 4. (b) Equilibrium of ring patterns
numerically obtained for a different forcing strength I0, and the other parameters are Ã = −0.5,
B̃ = 0.3, ν = 1.05, b = 0.1, and w = 4.

In brief, the effective model in Equation (9) described the dynamics of the light-induced
ring pattern in a dye-doped nematic liquid crystal well in qualitative terms.
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4. Discussion

The emergence of ring patterns from an illuminated dye-doped nematic liquid crystal
cell was initially attributed to the phase modulation of the diffractive light [27]. The light
diffraction process is mathematically described by the nonlinear Schrödinger equation,
which corresponds to the paraxial equation with a nonlinear correction associated with
phase modulation. A local disturbance of the homogeneous state is characterized by the
emergence of propagative rings towards the outside of the disturbance; these propagative
rings are concentric with different thicknesses and decay with the square of the distance.
In turn, the outer ring generates the emergence of outer rings with an increasingly smaller
thickness. This type of pattern is similar to those reported for liquid crystal samples
subjected to intense light rays [23]. The morphology of the ring pattern and the exhibited
dynamics are different from those observed experimentally in the dye-doped nematic
liquid crystal sample (see Figures 3 and 4).

The patterns found may allow manipulable interferometric patterns for light rays
outside the absorption range of the dye-dopant. To illustrate the manipulability of the ring
patterns, we adjusted the pitch and yaw of the dichroic mirror. Figure 8 schematizes the
modification of the dichroic mirror, the effect on the light beam, and the observed ring
patterns. Then, the light beam inside the doped liquid crystal sample could be shifted.
Experimentally, we observed from the ring pattern in equilibrium that it moved almost
rigidly. Figure 8b shows the light path scheme used and the ring patterns observed at the
points marked on the path by discs. Likewise, it is important to note that the previous
results showed that an interference mechanism does not cause the observed ring patterns.
Note that the ring patterns caused by phase modulation were deformed with the angle of
incidence [14], which is different from the observations in our setup (see Figure 8).

PB

PG DM

DDLCC

a) b)

c)
t1 t2 t3 t4

Figure 8. Manipulable ring patterns induced by illumination on a dye-doped liquid crystal sample.
(a) Schematic representation of the mechanism for applying the light beam to the dye-doped liquid
crystal sample. (b) Schematic representation of the path made by the light beam by adjusting the
pitch and yaw of the dichroic mirror. (c) Snapshots of ring patterns observed at different times
(t1 < t2 < t3 < t4).

5. Conclusions

Experimentally and theoretically, we have elucidated and characterized the origin of
the ring patterns observed in a dye-doped nematic liquid crystal cell with planar anchoring
under a light beam in the absorption band of the dye-dopant. To shed light onto the effect
of the coherent excitation beam, we designed an experimental setup that considered two
parallel beams—exciting and probing light—in which the probing light was monitored.
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Based on a mathematical model that accounted for the coupling between the concentration
of the cis-state and the orientational order parameter, we established the emergence of
the rings as forming patterns in an inhomogeneous medium. Namely, the origin of the
formation of pattern rings is due to the different scales and transport mechanisms of the
concentration of the cis-state and the orientational order parameter. The formation of
spatial structures induced by light can open up new applications such as the harnessing of
diffraction gratings, masks, and irises. Work in this direction is in progress.
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Annex B: Concentric ring patterns beyond Turing insta-

bility

This sections presents our results about theoretical description of the main ingredients in
ring patterns formation.
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Various out-of-equilibrium physical systems exhibit concentric ring patterns. However, these patterns are
expected to be unstable due to the interaction of spatial modes. Here, we show that concentric ring patterns
are stable beyond Turing instability. Based on a prototype pattern forming model, we show that these solutions
are stable and identify the main ingredients for their stability: curvature, characteristic wavelength, and bista-
bility. We further characterize the propagation of stable concentric ring patterns. Experimentally, we observe
stable concentric ring patterns in an illuminated dye-doped liquid crystal cell with sufficiently high intensity.
The formation of the concentric rings is in agreement with our predicted theoretical findings.
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Physical systems, in thermodynamic equilibrium, are char-
acterized by presenting homogeneous equilibria that are
invariant by spatial and temporal translation. Nonequilibrium
processes often lead to the formation of dissipative struc-
tures in nature [1–4]. These processes are characterized by
permanently injecting and dissipating energy, momenta, and
particles. When the injection of energy is small compared to
the dissipation, equilibria are usually characterized by being
uniform and stationary, similar to those observed in thermo-
dynamic equilibrium. From a dynamical system point of view,
these equilibria correspond to attractors. Increasing the en-
ergy injection, the homogeneous states can become unstable
and develop a pattern formation through a spatial symmetry-
breaking instability [1–6]. The formation of patterns such
as mountains, dunes, plants, clouds, snowflakes, stalactites,
and skin of mammalians, insects, fish, and seashells has
drawn attention since the beginning of time [3–7]. Also,
spatiotemporal effects in patterns have motivated theoretical
and experimental studies in nonequilibrium physics [8–11].
The wavelength of the pattern is usually determined by two
mechanisms: (i) external, such as the geometric properties of
the system under study (width, thickness, etc.) [2–6], or (ii)
internal, such as different coupling properties (transport, dif-
fusion, diffraction, etc.) [2–6,12]. This last mechanism, of an
intrinsic length, was proposed by Turing [12], and it has been
a relevant topic of study in the nonlinear optics community
[6,13–17].

At the onset of spatial instability, a general strategy to
describe the dynamics of the pattern is achieved through an
amplitude equation approach [3,4,6,18], where the ampli-
tudes account for the critical modes that become unstable.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

As a result of the nonlinear terms, the linearly unstable crit-
ical modes become saturated. This balance can give rise to
stripe, hexagon, square, superlattice, labyrinthine, or qua-
sicrystal patterns near the instability [3–7,18–20]. The striped
patterns are understood, in isotropic systems, as the stable
equilibrium of a single mode [3–5,18]. The direction of
this pattern depends on the initial condition. Likewise, the
square, hexagonal, and superlattice patterns are understood
as stable equilibria between two, three, and several reso-
nant modes, respectively [3–5,18,21]. Labyrinthine patterns
are understood as a stable equilibrium of many disordered
phase critical modes with similar wave numbers and magni-
tude of the amplitude. The labyrinths are locally dominated
by a single mode [19]. Quasicrystals result from higher
codimensional instabilities that include modes of different
wavelengths [3–6,22]. Patterns with many coherent phase
modes with the same wavelength and amplitude can generate
concentric ring patterns (see Fig. 1). Patterns with concen-
tric rings are observed in vegetation [23], fluid convection
[24], molecular assembling [25], suspended liquid crystal
films [26], laser irradiation at the solid/liquid interface [27],
gas-discharge systems [28], bacteria colony formation [29],
optically pumped semiconductor amplifiers [30], electroex-
plosion in a needle iron metal plate [31], evaporation-assisted
formation of surface patterns [32], evaporation of colloidal
nanoparticles in a confined cell [33], the far field of a photore-
fractive oscillator [20], and the photoisomerization process
in liquid crystals [34]. Although concentric ring patterns are
observed in various physical systems, they are unstable from
the point of view of amplitude equations [35,36]. Therefore,
the mechanism of origin of these patterns and their properties
is not established.

This Letter aims to show that concentric ring patterns are
stable beyond Turing instability, in the sense that the phe-
nomenon occurs after (or before) a Turing instability, but
not at the onset. Based on a prototype mathematical model
of pattern formation, we show that these solutions are sta-
ble and identify the necessary ingredients for their stability.

2643-1564/2023/5(1)/L012007(6) L012007-1 Published by the American Physical Society



M. G. CLERC et al. PHYSICAL REVIEW RESEARCH 5, L012007 (2023)

x0.5 x20

Pump laser
    532nm

Probe laser
   445nm

P(90°)

DC

DDLCC

CMOS

(b) 1s 5s

150s

300μm

50s

M

Probe Laser Profile Pump Laser Profile

M

L

DC

L

LL

(a)

(c)

FIG. 1. Experimental observation of concentric ring patterns in
a dye-doped liquid crystal sample under the effect of two parallel
coherent beams. (a) Schematic representation of the experimental
setup. A dye-doped liquid crystal cell (DDLCC) is irradiated by a
445-nm blue laser (BL, probing light beam) and illuminated by a
532-nm green laser (GL, excitation light beam). L, M, DC, and P ac-
count for lens, mirrors, dichroic crystals, and polarizer, respectively.
DDLCC is monitored by a CMOS camera. (b) A horizontal cut of the
spatiotemporal evolution (bottom panel) of an illuminated dye-doped
liquid crystal cell. Panels show a temporal sequence of snapshots of
the DDLCC cell. (c) Horizontal profile of the equilibrium concentric
ring pattern.

Concentric ring patterns are observed in the region of bista-
bility between uniform states and patterns. Close to Turing
instability, when unstable concentric rings are forming, they
are characterized by spreading so that the outer concentric
rings aggregate. However, in the region where concentric
ring patterns are stable, propagation is characterized by rings
emerging from the center and pushing the ring structure.
Hence, the propagation mechanisms of the modulated front
are completely different. Notice that front propagation in both
cases is controlled by curvature. Experimentally, we observe
stable concentric ring patterns in an illuminated dye-doped
liquid crystal cell with sufficiently high intensity. The forma-
tion and spread of the concentric rings are consistent with our
theoretical findings.

Experimental setup and observations. Out-of-equilibrium
liquid crystals exhibit complex spatial textures [37]. Tradi-
tional methods to keep liquid crystals out of equilibrium are
the application of electric and magnetic fields, and thermal
gradients. Likewise, they can be kept out of equilibrium with
strong electromagnetic fields. In addition, a nonintense light
beam can be used to drive liquid crystals out of equilibrium.
To do this, liquid crystals can be doped with photosensitive
molecules [38], which can change their molecular structure
upon receiving a photon with a particular frequency (photoi-
somerization). In turn, the rotations of these light-sensitive
molecules cause the oriented molecules of the liquid crystal to
become disordered. Patterns induced by photoisomerization
have been observed in a dye-doped nematic liquid crystal
layer. This type of self-organization has been modeled by a
reaction-diffusion system [34,39,40].

To study concentric ring patterns, we consider a dye-doped
liquid crystal cell (DDLCC) under the effect of two parallel

coherent beams at room temperature (18 ◦C). The sample is
only photosensitive to one beam (excitation beam), and at the
same time, the other is harmless (probing beam). Figure 1
illustrates the experimental setup diagram. The DDLCC un-
dergoes a phototropic transition when it is irradiated by a light
source in the absorption band of the guest dye [38]. We used a
concentration of methyl red 0.5 wt % as the azo-dye guest
doping a commercially available E7 nematic liquid crystal
(host). The mixture was inserted into an antiparallel planar-
aligned liquid crystal cell with a thickness of 25 µm (Instec). A
532-nm Verdi V-2 (Coherent) and 445-nm Cobolt 90 mW po-
larized laser were used as an exciting and probing irradiation
light source to generate and observe a phototropic transition,
respectively. Note that the green laser wavelength was close
to the absorbance peak at 496 nm of the mixture, enabling
us to trigger the isomerization and increase the amount of
cis methyl red isomer. Two Kepler telescopes with a magni-
fication of 0.5× and 20× were used to change the waist of
the green and blue laser, respectively. A dichroic crystal (DC,
high and low bandpass) is used to separate both beams and
to monitor the DDLCC with a complementary metal-oxide-
semiconductor (CMOS) camera. Before the CMOS camera, a
polarizer was placed orthogonal to the polarization of the blue
laser.

The camera displays a dark cell due to the polarizer when
the DDLCC is illuminated with a blue probing light. When
illuminating with the green laser with a power of the order
of 300 mW (a waist of 0.56 mm), we initially observe a
lightened circular area [see Fig. 1(b) at 1 s], which is later
accompanied by a central circular dark spot that afterward
becomes a dark propagating ring [see Fig. 1(b) at 5 s]. Then,
a second spot appears in the center, which in turn becomes
in another propagative ring. This process continues until four
dark rings are established [see Fig. 1(b) at 150 s, and the
video in the Supplemental Material [41]]. The lower panel
of Fig. 1(b) summarizes the spatiotemporal evolution of the
observed photoisomerization dynamics. Because the illumi-
nated area is a Gaussian region, the ring patterns eventually
stop, giving rise to a bull’s-eye shape [cf. Fig. 1(b) at 150 s].
Figure 1(c) shows the horizontal profile of the equilibrium
concentric ring pattern.

Theoretical descriptions. A prototype model of pattern
formation is the Swift-Hohenberg equation [42], which is
an isotropic, reflection symmetry, and real order parameter
nonlinear equation deduced originally to describe the pattern
formation on Rayleigh-Bénard convection [42]. This equa-
tion applies to a wide range of systems that undergo a spatial
symmetry-breaking instability—often called Turing instabil-
ity [2–4]—close to a second-order critical point marking the
onset of a hysteresis loop, which corresponds to a Lifshitz
point [4]. The Swift-Hohenberg equation reads

∂t u = εu − u3 − ν∇2u − ∇4u, (1)

where u = u(x, y, t ) is a real scalar field, x and y are spa-
tial coordinates, and t is time. Depending on the context in
which this equation has been derived, the physical meaning
of the scalar field u = u(x, y, t ) could be the electric field,
deviation of molecular orientations, phytomass density, or
chemical concentration, among others. The control or bifur-
cation parameter ε measures the input field amplitude, the

L012007-2



CONCENTRIC RING PATTERNS BEYOND TURING … PHYSICAL REVIEW RESEARCH 5, L012007 (2023)

aridity parameter, or the chemical concentration. The param-
eter ν stands for the diffusion coefficient (ν < 0); when this
parameter is positive (ν > 0), it induces an antidiffusion pro-
cess, which is characterized by the emergence of patterns with
a characteristic wavelength.

For sufficiently negative ε, the only stable state of this
model Eq. (1) is the zero solution u = 0. When ε is increased
or exceeds the critical value εc1 = −ν2/4, it exhibits a su-
percritical spatial instability (Turing instability) [3,4], which
gives rise to stable stripe patterns with a

√
ν/2 wave number.

The zero unstable state presents a secondary instability for
ε = 0, giving rise to two new homogeneous uniform states
±√

ε, which stabilize for ε = εc2 ≡ ν2/8. Then, for ε > εc2,
the system presents bistability between the uniform solutions
±√

ε and the pattern states. Figure 2(e) depicts the bifurcation
diagram of the Swift-Hohenberg equation (1). Numerically,
we have considered the uniform state −√

ε, and we have
perturbed it locally with a Gaussian [with a width of the
pattern wavelength—see Fig. 2(d)]. Depending on ε, we ob-
serve different behaviors. In the region where uniform states
are unstable (εc1 � ε � 0), we observe the propagation of
unstable concentric rings [cf. Fig. 2(a)] [24]. This propagation
is characterized by the appearance of outer rings that are
attached. When ε is increased, the previous scenario changes.
We observe similar propagation, but of stable concentric ring
patterns. In Fig. 2(e), we have characterized the parameter
space where this behavior is observed and called it out-
side ringing. Further increasing ε, and the system being in
the bistability region, propagation is characterized by rings
emerging from the center and pushing the concentric ring
structure [see Fig. 2(b)]. We have termed this region inside
ringing. When ε is increased even more, the system does not
exhibit the formation of a concentric ring pattern, but rather
the propagation of one homogeneous state over the other.
We have named this region inflation [cf. Fig. 2(c)]. Further
increasing ε, the initial perturbation stabilizes in a localized
structure [see Fig. 2(d)]. In addition, we have considered
numerical simulations in a circular geometry to avoid edge
effects, and study the stability of concentric ring patterns.
The lower panels (I) and (II) of Fig. 2(e) show stable con-
centric ring patterns. Note that stable concentric ring patterns
are observed beyond Turing instability (ε > εc1, ε < εc2, and
ε > εc2). This could be related to a shift of the Turing bound-
ary due to the axisymmetric (radial) restriction on the initial
condition. Numerical simulations were conducted with the
Runge-Kutta fourth-order algorithm for time integration and
a finite-difference scheme for spatial discretization.

To shed light on concentric ring patterns, we consider a
one-dimensional model that contains the necessary ingredi-
ents (curvature, bistability, and a characteristic wavelength) to
observe these patterns and their dynamics. Considering that
patterns are rotation invariant, we can propose the following
ansatz u(x, y, t ) = u(r, t ), where r is the radial coordinate.
Thus, Eq. (1) reads

∂t u = εu − u3 − ν

(
∂rr + ∂r

r

)
u

−
(

∂rrrr + 2
∂rrr
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− 2
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FIG. 2. Numerical observations of concentric ring patterns in
the Swift-Hohenberg Eq. (1) for ν = 1. Different concentric ring
patterns are observed considering the homogeneous state −√

ε and
perturbing it with a small Gaussian. (a) Outside ringing: The pattern
propagation is characterized by the appearance of attached outer
rings. (b) Inside ringing: The pattern propagation is characterized
by rings emerging from the center and pushing the concentric ring
structure. (c) Inflation: Front propagation of one homogeneous state
over the other. (d) Stable localized structures. The right panels
illustrate the spatiotemporal evolution of the middle line in the two-
dimensional simulations (segmented red line). The left panels depict
the surface plots obtained at the instant represented by the black
dashed line on the spatiotemporal diagram. (e) Bifurcation diagram
of the Swift-Hohenberg Eq. (1): Maximum value of u vs ε. The green
line corresponds to the uniform state

√
ε (HSS, homogeneous steady

state), the blue curve stands for stripe patterns (SP), and the black
line represents the zero solution. Segmented and solid lines indicate
that the corresponding state is unstable and stable, respectively. The
lower panels (I) and (II), which correspond to the red solid circles,
show stable concentric ring patterns.

which is a one-dimensional Swift-Hohenberg model with cur-
vature corrections inherent to two dimensions. The curvature
effects are controlled by the terms proportional to the inverse
of a power of r in Eq. (2). This model has uniform solu-
tions μ = {0,±√

ε} and one-dimensional patterns. Note that
these patterns correspond to concentric ring states. ε = εc1 =
−ν2/4 accounts for the Turing instability (supercritical spatial
instability) for Eq. (2) [3,4]. In the case when one ignores the
curvature effects (standard one-dimensional Swift-Hohenberg
model), patterns propagate through the emergence of spatial
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FIG. 3. Domain walls and localized structures of the one-
dimensional Swift-Hohenberg Eq. (2) for ν = 1, and without
curvature corrections. (a) Domain wall profile and spatiotemporal
evolution between symmetrical uniform states u = ±√

ε for ε =
{0.2, 0.3}. (b) Profiles of localized structures and spatiotemporal evo-
lution (ε = 0.2). (c) Pattern propagation from a domain wall solution
(ε = 0.15) or a (d) localized structure (ε = 0.15). The red lines on
the spatiotemporal diagram show the instant where the profiles are
obtained. The dashed horizontal lines account for the homogeneous
equilibria. The domain of integration is from r = −25 to r = 25.

oscillations at the end of the pattern. Figure 3 illustrates pat-
tern propagation in the absence of curvature, by integrating
Eq. (2) in the whole spatial range (negative and positive values
of r). This behavior is similar to that observed in concen-
tric ring patterns in two dimensions in the outside ringing
region; see Fig. 2(e). We consider ε in the region of bista-
bility between uniform and pattern states. In this parameter
region, the system has a domain wall solution that connects
two symmetric states [see Fig. 3(a)]. The damped spatial
oscillation amplitudes increase with ε. Likewise, the model
Eq. (2), without curvature effects, has localized structures,
for higher values of ε, supported by homogeneous states [see
Fig. 3(b)]. For lower values of ε, the pattern state becomes
more stable than the homogeneous one. Then, the pattern
begins to propagate from the domain wall center or from the
localized structure [see the bottom panels of Figs. 3(c) and
3(d), respectively].

The above scenario changes radically when one consid-
ers the curvature effects. Starting from a localized structure
in the center of the numerical integration domain, for ε in
the outside ringing region, we observe pattern propagation
through the emergence of spatial oscillations outside the pat-
tern [see Fig. 4(a)], as in the case without curvature effects.
However, by increasing ε (inside ringing region), the prop-
agation changes drastically. Now, spatial oscillations created
in the center of the integration domain drive the propagation,
which propagates outward, and subsequently gives rise to new

FIG. 4. Pattern propagation and profiles from a localized struc-
ture of the one-dimensional Swift-Hohenberg model Eq. (2) for
ν = 1. (a) Pattern propagation for ε = 0.1 by including spatial os-
cillations in the outer part of the pattern. (b) Pattern propagation for
ε = 0.2 characterized by spatial oscillations that emerge from the
center and push the pattern structure outward. (c) Front propagation
of one homogeneous state over the other, for ε = 0.5. (d) Stable
localized structures for ε = 0.9. The red lines on the spatiotempo-
ral diagrams show the instant where the profiles are obtained. The
dashed horizontal lines account for the homogeneous equilibria. The
domain of integration is from r = 0 to r = 25, and then reflected at
r = 0.

oscillations in the center [cf. Fig. 4(b)]. This type of prop-
agation is similar to the one observed experimentally [see
Fig. 1(b)]. When ε is increased even more, we observe, as
a consequence of the curvature, that one homogeneous state
invades the other as illustrated in Fig. 4(c). Notice that the
speed of the fronts is constantly decelerating. This observed
dynamical behavior is consistent with what we have called
the inflation region in Fig. 2(e). By further increasing ε, the
localized structure is stable, and propagation of patterns or ho-
mogenous states is not observed [see Fig. 4(d)]. The solutions
of Eq. (2) shown in Fig. 4 were numerically integrated for r >

0, and then reflected at r = 0. In brief, the effects of curvature
and bistability (uniform and pattern state) control and stabi-
lize the propagation mechanisms of concentric ring patterns.
The transition between the inflation mode and a stationary
localized structure has been reported in a previous work [43].
There, a Swift-Hohenberg model was used to explore the
phase domain dynamics. By a minimization principle, a local
velocity-curvature relationship was proposed. Note that in the
cases of inside and outside ringing [cf. Fig. 2(e)], the local
approximation is invalid, and the ring dynamics is governed
by nonlocal interactions.

In conclusion, we have shown that concentric ring pat-
terns are stable beyond Turing instability. To observe these
concentric ring patterns, the bistability of patterns and homo-
geneous states in an isotropic medium is required. Based on
a prototype model, the Swift-Hohenberg equation, we show
that these solutions are stable and identify the ingredients for
their stability. Close to the Turing instability, the concentric
rings are unstable due to the interaction of spatial modes.
Then, beyond the Turing instability, the concentric ring
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patterns can be stabilized. We propose a mechanism of pattern
formation, inside ringing, which is triggered by curvature.
Experimentally, we observed stable concentric ring patterns in
an illuminated dye-doped liquid crystal cell with sufficiently
high intensity. The formation of the concentric ring patterns is
in agreement with our theoretical findings in the inside ringing
region.
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