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Paris. For this reason, at the beginning of 2024, I did a four-month long research intern-
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and technological importance of the systems studied and for her support during the de-
velopment of this thesis.

I am deeply grateful to Prof. Patricio Fuentealba for the opportunity to join the The-
oretical Chemical Physics Group and for all the knowledge he has imparted to me over
the years. Without his initial support, I might not be in science today.



v

I extend my appreciation to everyone in the Department of Physics at the Univer-
sidad de Chile, especially the Theoretical Chemical Physics group students: Javiera,
Loreto, Edgar, Wilver, Ignacio, and Andrea. Special thanks to my office mates, Javiera
Cabezas (or jcabezas) and Loreto Portales (or lolo), whose friendship filled my master’s
degree with laughter and many wonderful moments. Son las mejores y las quiero mucho!
I also want to extend my gratitude to the unofficial student of our office, Ítalo (isalas).
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RESUMEN

La interacción de especies quı́micas, cómo los enlaces se crean y rompen para dar pie
a nuevas especies, es un fenómeno esencialmente cuántico y un problema fundamental
de la fı́sica quı́mica. Por esta razón el poseer un marco teórico simple que permita dilu-
cidar, comprender y predecir este fenómeno resulta esencial. La Teorı́a del Funcional de
la Densidad provee una estructura matemática y fı́sica que ha permitido la construcción
de este marco, que ha sido denominado Teorı́a del Funcional de la Densidad Conceptual
o Teorı́a del Funcional de la Densidad Quı́mica. De ella emergen funciones de respuesta
fı́sicas y quı́micas que dan cuenta de las pertubaciones generadas en el proceso de inter-
acción. Una de las más importantes es la denominada función de Fukui y su potencial
electrostático.

A pesar de que la Teorı́a del Funcional de la Densidad Conceptual ha sido ampliamente
usada para estudiar la reactividad de sistemas finitos (átomos, molécula, etc), su uso
en sistemas extendidos o periódicos es escaso debido a problemas técnicos y formales.
Uno de ellos es la necesidad de incorporar un fondo de carga homogéneo en el cálculo
de la estructura electrónica de sistemas cargados con condiciones de borde periódicas, el
cual genera un potencial electrostático ficticio en y entre las imágenes de las superceldas.

En esta tesis, estudiamos el efecto de las interacciones espurias del fondo de carga ho-
mogéneo en el cálculo e interpretación quı́mica de las funciones de Fukui para super-
ficies inorgánicas mediante el uso de distintas metodologı́as. Junto con lo anterior, uti-
lizamos métodos de corrección para el cálculo del potencial electrostático de la función
de Fukui, el denominado potencial de Fukui. Además, demostramos su importancia en
el problema de predicción de reacciones quı́micas, analizando una familia de superfi-
cies de titanio: titanio metálico, carburo de titanio y óxido de titanio en sus polimorfos
anatasa y rutilo.
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ABSTRACT

The interaction of chemical species, how bonds are created and broken to give rise to
new species, is an essentially quantum phenomenon and a fundamental problem of
chemical physics. For this reason, a simple theoretical framework to elucidate, under-
stand and predict this phenomenon is essential. The Density Functional Theory pro-
vides a mathematical and physical structure that has allowed the construction of this
framework, which has been called Conceptual Density Functional Theory or Chemical
Density Functional Theory. From it emerge physical and chemical response functions
that account for the perturbations generated in the interaction process. One of the most
important is the so-called Fukui function and its electrostatic potential.

Although the Conceptual Density Functional Theory has been widely used to study
the reactivity of finite systems (atoms, molecules, etc.), its use in extended or periodic
systems is scarce due to technical and formal problems. One of them is the need to incor-
porate a homogeneous charge background in the calculation of the electronic structure
of charged systems with periodic boundary conditions, which generates a fictitious elec-
trostatic potential in the supercell and between its images.

In this thesis, we study the effect of spurious interactions of the homogeneous charge
background on the calculation and chemical interpretation of Fukui functions for inor-
ganic surfaces by using different methodologies. Along with the above, we use correc-
tion methods for the calculation of the electrostatic potential of the Fukui function, the
so-called Fukui potential. In addition, we demonstrate its importance in the problem of
chemical reaction prediction by analyzing a family of titanium surfaces: titanium metal,
titanium carbide and titanium oxide in its polymorphs anatase and rutile.
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Introduction

The evolution of the interaction between two chemical systems (i.e., atoms, molecules,

clusters, solids, and so on) is one of the key paradigms of chemistry: reactivity. The

theory of chemical reactivity , that is to say, the models to understand and predict the

way a chemical specie will react it is one of the main subjects of the theoretical chemistry

and molecular physics. It is common to classify reactions as being controlled by either

electrostatic effects or electron transfer. However, both are borderline cases, as both ef-

fects are always present in actual reactions. Thus, a chemical reaction may be viewed as

the chemical species’ response to a perturbation, which is caused not only by a change

in the external potential but also by changes in the number of electrons. The corpus of

Density-functional theory (DFT) offers a natural framework to build a chemical reactiv-

ity theory because of is able to deal with non-integer number of electrons [1–7]. The

construction of this theory, known as Conceptual Density-functional theory (CDFT) [8–

11], began with the seminal work of Prof. Parr et al. [12] in 1978 in which they realized

that the Lagrange multiplier of the Euler-Lagrange equation of the DFT is no more than

the chemical potential of the system, µ, and that its negative gives a non-empirical scale

of electronegativity.

CDFT has demonstrated remarkable success in elucidating established principles of

chemical reactivity (e.g., hard/soft acid/base principle [13–15] and electronegativity

equalization [12, 16, 17]) and also for the development of new principles (e.g., the max-

imum hardness principle [18–20]). One of the its most successful chemical descriptor

is the Fukui function [21–26]. This provides a DFT-based alternative to the standard

rationalization of the Fukui’s Frontier molecular orbital theory (FMO) [27–30], can be

6
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considered a generalisation of it, since it is based on density rather than orbitals, being

able to incorporate correlation effects without obscuring their meaning and interpreta-

tion [10].

Although the Fukui function is extremely useful for characterising the reactivity [31, 32],

it says nothing about whether these regions are really accessible by the active site of a

reagent. On the contrary, the Fukui potential, that is defined as the electrostatic potential

due to a distribution equal to the Fukui function, specifies what regions are energetically

favorable to the approach of the active site of a reagent that will take or donate electrons

from or to the substrate [11, 33].

Both the Fukui function and its electrostatic potential have been extensively used in

characterizing the reactivity of atoms, molecules and clusters [34–36]. However, its use

in solid-state chemistry/physics is sparse because of its calculation brings theoretical

and computational challenges [37, 38].

The ab initio calculations of periodic systems frequently employ Born–von Kármán peri-

odic boundary conditions (PBC) and discrete plane-wave basis set [39–41]. This choice

allows exploit the translational symmetry of the periodic systems, by performing the

simulation in one primitive cell only. Moreover, the Fast Fourier transform (FFT) algo-

rithms [42, 43] allow the calculation of electrostatic equations very efficiently, consider-

ably reducing the computational cost of the calculations. In many cases, like modelling

points defects [44, 45] and surface chemistry [46–48], the supercell model is used. In this

approximation, the system is treated as fully 3D-periodic one, but the new unit cell is

built in such way that some empty space is add in the non-periodical direction to sepa-

rate the supercell from its periodic images. This method allows to retain the advantages

of the plane-wave expansions and PBC. Despite these enormous advantages, the peri-

odic images see each other through the long-range Coulomb interaction, introducing

spurious interactions, even if much empty space is add in the non-periodic direction

[41, 49, 50].

The situation is further complicated when the supercell has a net charge, as is encoun-

tered in the computation of the Fukui function and Fukui potential. This arises from
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the fact that the total charge of the infinite system represented by the supercell becomes

infinite, resulting in a divergent Coulomb repulsion energy [49, 51]. To avoid the di-

vergence of the Coulomb energy due to the repetition of the supercell, a uniform Com-

pensating background charge (CBC) is always introduced to keep the supercell neutral

[52, 53]. The use of the CBC introduces two complications. Firstly, the presence of a

uniform charge in the vacuum region is physically unrealistic. Secondly, the screening

of the CBC varies depending on its location within regions characterized by different

dielectric profiles [52, 54]. This problems must be take in account at the moment of cal-

culating the Fukui function and Fukui potential. Recently, Cardenas et al. [37, 38] has

proposed a methodology to, in principle, overcome these drawbacks in the calculation

of the solid-state Fukui function.

In this thesis, we will examine the advantages and disadvantages of various methods

used to compute Fukui functions, along with schemes to correct the Fukui potential

in solid-state chemistry. We will introduce an efficient method for obtaining the latter.

Furthermore, we will provide examples illustrating the powerful impact of the Fukui

potential on the Chemical Reaction Prediction Problem. As a case study, we will analyze

a family of four titanium surface slabs: metallic titanium, titanium carbide, and anatase

and rutile TiO2.

For completeness we have included in chapter 1 a summary of the electronic structure

problem and Kohn-Sham method, so that the reader familiar with it could skip that

chapter. Likewise the reader familiar with conceptual DFT, could skip chapter 2. Finally,

chapter 4 deals with how we calculate the surfaces we study here, so the reader who is

not interested in these details may as well skip that chapter.



Hypothesis

Spurious electrostatic interactions in charged systems with periodic boundary condi-

tions can be corrected with electrostatic models. This allows the Fukui potential, and

other chemical response functions, in these systems to be calculated. The Fukui po-

tential can be used to get insights on the adsorption energies of chemical species in

inorganic surfaces of interest for catalysis.

9



Objectives

General Objective

The main objective of this master’s thesis is to develop and implement chemical re-

sponse functions in extended systems with periodic boundary conditions.

Specific Objectives

Specifically, we propose the following objectives:

1. Study and elucidate the effect of CBC on Fukui functions.

2. Develop and implement a method to correct the spurious electrostatic interaction

between images in the case of the Fukui potential.

3. To develop and apply a model based on chemical response functions to predict the

adsorption energy of chemical species on prototypical surfaces for catalysis.

10
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Chapter 1

On the electronic problem

Chemistry may be seen, in a restricted sense, as the science that study the formation

and rupture of interactions in the matter in the scale of atoms and their higher struc-

tures (molecules, clusters, solids, etc). These interactions are intrinsically linked to the

electronic structure (to the energy and spatial arrangement of electrons) of components

in interaction. As electrons are quantum particles, all chemical phenomena are quan-

tum also. This idea, which is the basis of modern chemistry, was stated in the dawn

of quantum mechanics by Prof. Paul A.M. Dirac: “The fundamental laws necessary for

the mathematical treatment of a large part of physics and the whole of chemistry are

thus completely known, and the difficulty lies only in the fact that application of these

laws leads to equations that are too complex to be solved [· · · ]” [55]. In this chapter, we

will give an overview on how to obtain the electronic structure of a material from the

postulates of quantum mechanics. In particular, we will start showing the Schrödinger

equation and its form to the many-electron system in Section 1.1. Born-Oppenheimer

approximation used to separate the electron and nuclear degrees of freedom is pre-

sented in Section 1.2. Then, the main ideas and theorems of density-functional theory

will be laid out in Section 1.3. Pseudopotentials will be introduced in Section 1.4. Fi-

nally, Bloch’s theorem and Kohn-Sham equations in periodic systems will be describe in

Section 1.5.
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1.1 The Schrödinger equation

In the non-relativistic limit, the evolution of a quantum state is determinate by the

Schrödinger equation. Therefore, any problem about electronic structure within that

limit is covered by the time-dependent Schrödinger equation in its position representa-

tion,

ih̄
∂

∂t
Φ
(
{ri},{RI}; t

)
= ĤΦ

(
{ri},{RI}; t

)
. (1.1)

Here, Φ is the wavefunction and Ĥ is the Hamiltonian operator. In atomic units (a.u.),

the Hamiltonian operator for a system composed by M nuclei and N electron is

Ĥ = −
M

∑
I

1
2MI

∇2
I −

N

∑
i

1
2
∇2

i +
N

∑
i<j

1
|ri − rj|

−
M,N

∑
I,i

ZI
|RI − ri|

+
M

∑
I<J

ZIZJ

|RI − RJ |

= T̂N
(
{RI}

)
+ T̂e

(
{ri}

)
+ V̂e−e

(
{ri}

)
+ V̂e−n

(
{ri},{RI}

)
+ V̂n−n

(
{RI}

)
= T̂N

(
{RI}

)
+ Ĥe

(
{ri},{RI}

)
(1.2)

for the electronic {ri} and nuclear {RI} degrees of freedom. Note that here, MI y ZI are

the mass and atomic number of the Ith nuclei. The first two terms correspond to kinetic

energies of nuclei and electrons, respectively; the third term represents the Coulomb re-

pulsion between electrons; the fourth term corresponds to Coulomb attraction between

electrons and nuclei; and the last one is the Coulomb repulsion between nuclei.

In most cases, and for the purposes of this thesis as well, however, the electronic struc-

ture is not related to time-dependent interactions. Thus, our problem is actually the

time-independent Schrödinger equation

ĤΨ
(
{ri},{RI}

)
= EΨ

(
{ri},{RI}

)
(1.3)

In the above equation, the Hamiltonian operator corresponds to the given by Eq. 1.2. As

we can see, the electrons and nuclei are coupled through the operator V̂e−n
(
{ri},{RI}

)
.

This fact means that the equation is not one of separable variables and it is not possible

to despise it because it is so big. Moreover, its 3M + 3N degrees of freedom make it
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practically impossible to solve. Therefore, resorting to approximations becomes imper-

ative.

1.2 Decoupling electrons and nuclei

The vast majority studies of theoretical chemistry and condensed matter physics use

approximate solutions to the time-independent non-relativistic Schrödinger equation

formulated within the Born-Oppenheimer approximation as a method to deal with the

decoupling of electrons and nuclei [56].

The classic picture to justify the Born-Oppenheimer approximation is that electrons

move faster than nuclei. that is, electrons “feel” or “see” the instantaneous position of

the nuclei. In contrast, nuclei “feel” the average potential of the electronic cloud. Hence,

the electronic structure can be studied by considering the nuclei as stationary (referred

to as the “clamped nuclei” approximation).

The Born-Oppenheimer approximation implies that Eq. 1.3 is solved in two steps and

the total wavefunction may be write as a simple product

Ψ
(
{ri},{RI}

)
≈ Ψe

(
{ri};{RI}

)
ΨN

(
{RI}

)
(1.4)

where Ψe
(
{ri};{RI}

)
corresponds to the electronic wavefunction in the field of clamped

nuclei and ΨN
(
{RI}

)
is the nuclear wavefunction.

The two steps already mentioned result in two Schrödinger equations. The first one is

the electronic Schrödinger equation,

ĤeΨe,k
(
{ri};{RI}

)
= Ek

(
{RI}

)
Ψe,k

(
{ri};{RI}

)
(1.5)

where the electronic Hamiltonian (including the energy due to nuclear-nuclear repul-

sion) is

Ĥe = T̂e
(
{ri}

)
+ V̂e−e

(
{ri}

)
+ V̂e−n

(
{ri},{RI}

)
+ V̂n−n

(
{RI}

)
. (1.6)
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Ek
(
{RI}

)
and Ψe,k

(
{ri};{RI}

)
are calculated at fixed nuclei position. That is, V̂n−n

(
{RI}

)
is a constant and both electronic energy and electronic wavefunction depend paramet-

rically on the nuclei position.

The other one is the nuclear Schrödinger equation,

ĤNΨN,j
(
{RI}

)
= EN

(
{RI}

)
ΨN,j

(
{RI}

)
(1.7)

where the nuclear Hamiltonian is

ĤN = T̂N + Ek
(
{RI}

)
(1.8)

Even with the Born-Oppenheimer approximation, the task of solving the Eq. 1.6 re-

mains a challenge. There are two main different ways to solve the electronic Schrödinger

equation: wavefunction-based methods and density-functional theory (DFT). Because

we use density functional theory methods in this thesis, we will not describe the basic

wavefunction methods in this thesis and we will limit ourselves to give an brief intro-

duction to DFT. Detailed descriptions about wavefunction-based methods can be found

in great books [57–61].

1.3 Density-functional theory

DFT is nowadays the workhorse for electronic structure calculations in both quantum

chemistry and condensed matter physics and is also the basis for the construction of a

theory of chemical reactivity. Its fundamentals and physics formalism are supported

in existence theorems. The first theorems corresponds to the Hohenberg-Kohn theo-

rems [62] (1964), which essentially state that all that is needed to know the properties

of ground- and stationary excited states of a non-relativistic many-particles system is

its ground-state electron density, ρ(r). Moreover, the theorems ensure that the exact

ground-state density follows a variational principle and it can be therefore calculated
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without the necessity of solving the Schrödinger equation.

1.3.1 Hohenberg-Kohn theorems

The Hohenberg-Kohn theorems (HK-theorems) [62] are the most basic of a number of

existence theorems which state that stationary many-particle systems can be fully char-

acterized by the ground-state density.

The first theorem states that for a system of N interacting electrons in an external poten-

tial υext(r), there is a one-to-one correspondence, up to a constant, between said external

potential, the non-degenerate ground-state wavefunction |Ψ0⟩ resulting from the solu-

tion of the Schrödinger equation and its associated ground-state density ρ,

υext(r)⇐⇒
↑

|Ψ0⟩ ⇐⇒
↑

ρ(r) = N ∑
σ1···σN

∫
dr2 · · · rN

∣∣(r1σ1, · · · ,rNσN)|Ψ0⟩
∣∣2

unique (up to some additive constant in υext)

(1.9)

The proof that υext(r) and ρ(r) are determine each other uniquely relies on reductio ad

absurdum method. We assume that two external potentials υext(r) and υ′ext(r) (which

differ by more than a constant) that yield the same electron density ρ(r). Thus we have

the two Schrödinger equations,

Ĥ|Ψ0⟩ =
(
T̂ + V̂ext + V̂ee

)
|Ψ0⟩ = E0|Ψ0⟩ (1.10)

Ĥ′|Ψ′
0⟩ =

(
T̂ + V̂′

ext + V̂ee
)
|Ψ′

0⟩ = E′
0|Ψ′

0⟩ (1.11)

From the Ritz variational principle one obtains,

E0 = ⟨Ψ0|Ĥ|Ψ0⟩ < ⟨Ψ′
0|Ĥ|Ψ′

0⟩

E0 < ⟨Ψ′
0|Ĥ′ + Ĥ − Ĥ′|Ψ′

0⟩

E0 < E′
0 +

∫
ρ(r)

(
υext − υ′ext

)
dr (1.12)
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Exchanging the primes one gets,

E′
0 = ⟨Ψ′

0|Ĥ′|Ψ′
0⟩ < ⟨Ψ0|Ĥ′|Ψ0⟩

E′
0 < E0 +

∫
ρ(r)

(
υ′ext − υext

)
dr (1.13)

After addition of Eqs. 1.12 and 1.13, one ends up with a contradiction,

E0 + E′
0 < E′

0 + E0 (1.14)

Because of this theorem, we can say that any ground-state observable is a density func-

tional. In particular, this is true for the ground-state energy,

Eυ[ρ(r)] = T[ρ(r)] + Vee[ρ(r)] +
∫

ρ(r)υext(r)dr (1.15)

Eυ[ρ(r)] = F[ρ(r)] +
∫

ρ(r)υext(r)dr (1.16)

where F[ρ(r)] is an universal functional in the sense that it is the same form for all sys-

tems.

V̂ext |Ψ0⟩ ρ(r)

Figure 1.1: One-to-one correspondence, established by the Hohenberg-Kohn, theorems
between external potentials V̂ext, non-degenerate ground states |Ψ0⟩ and its associated
ground-state densities ρ(r).

The second Hohenberg-Kohn theorem states the existence of a variational principle for
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Eυ[ρ]. This is, for a trial density ρ̃(r), such that ρ̃(r) ≥ 0 and
∫

ρ̃(r)dr = N,

Eυ[ρ] ≤ Eυ[ρ̃] (1.17)

The proof relies on Ritz variational principle. The first theorem ensures that a electron

density ρ̃(r) determines uniquely its own external potential υ̃ext, Hamiltonian Ĥ′ and

ground-state |Ψ̃⟩. Thus, evaluating the energy density functional in this trial density,

one obtains

Eυ[ρ̃(r)] = F[ρ̃(r)] +
∫

υext(r)ρ̃(r)dr = ⟨Ψ̃|Ĥ|Ψ̃⟩ (1.18)

and from the Ritz variational principle the last term satisfies the inequality

⟨Ψ̃|Ĥ|Ψ̃⟩ ≥ ⟨Ψ|Ĥ|Ψ⟩ = Eυ[ρ(r)] = E0 (1.19)

Assuming the existence of variational derivative δEυ[ρ]/δρ (its existence requires that

the functional Eυ[ρ] to be a defined on a sufficiently dense set of densities ρ), the mini-

mum principle (1.17) indicate the possibility to determinate the ground-state density by

a variational equation:

δ

δρ(r)

{
Eυ[ρ(r)]− µ

(∫
ρ(r)dr − N

)}
= 0 (1.20)

which leads to the Euler-Lagrange equation

µ =
δEυ[ρ]

δρ(r)
= υext(r) +

δFυ[ρ]

δρ(r)
(1.21)

where µ is the Lagrange multiplier that ensures that ρ integrates to N. µ is also the

chemical potential of electrons [12].
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1.3.2 The constrained search formulation

An important point about the HK-theorems is that both assume that ρ(r) is interacting

υ-representable; i.e., that the electron density comes from an non-degenerate antisym-

metric ground-state wavefunction which is a solution of a Schrödinger equation that

has a Hamiltonian with some external potential υext. This restriction results in a prob-

lem because is very difficult to enforce its compliance in the minimization of (1.20). To

solve this problem Prof. Mel Levy in 1979 [63] defined the universal functional in a new

form

FLL[ρ] = min
Ψ→ρ

⟨Ψ|T̂ + V̂ee|Ψ⟩ (1.22)

in which the density only needs to be N-representable. This variational search is con-

strained because the space of wavefunctions is limited only to those that gives the den-

sity ρ.

We would like to close this section by clarifying that although the HK-theorems has a

number of serious restricions such as the assumption of non-degenerate ground states

and that only deal with local and time-independent external potentials, the rigorous

foundations of density functional theory have been extended to practically all chemical

and physical situations of interest, e.g., degenerate ground states, non-local external

potentials, relativistic systems, spin-polarised systems, etc [64–67].

1.3.3 The Kohn-Sham scheme

In principle, the HK-theorems allow the determination of the exact ground-state density

of a specified many-body system. However, HK-theorems do not give (and it does not

exist until this moment) the explicit form of Eυ[ρ(r)] (or F[ρ(r)]). In 1965, W. Kohn and L.

Sham [68] proposed a method in which the direct minimization with respect to density

by one based on an orbital picture. The resulting self-consistent equations, known as

the Kohn-Sham equations, are in principle exact and have become the cornerstone of

the DFT implementations. An overview of its derivation is in order.
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As we do not known the exact form of F[ρ(r)], we can not solve the Eq. 1.21. However,

we may always ask ourselves in what scenario would be easier to solve it. Let us to

consider a system of N non-interacting electrons described by the Hamiltonian,

Ĥ = T̂s + V̂s(r) (1.23)

where T̂s and V̂s(r) represent the kinetic energy and external potential, respectively. The

corresponding ground-state many-body wavefunction, assumed to be non-degenerate,

is a Slater determinant,

⟨r1σ1, · · · ,rNσN|Ψ0⟩ = Ψ0(r1σ1, · · · ,rNσN)

=
1√
N

det


ϕ1(r1σ1) · · · ϕN(r1σ1)

... . . . ...

ϕ1(rNσN) · · · ϕN(rNσN)

 (1.24)

which is constructed from the energetically lowest solutions ϕi of the single-particle

Schrödinger equation,

[
− h̄2

2me
∇2 + υs(r)

]
ϕi(riσi) = εiϕi(riσi) (1.25)

and corresponding the ground-state density ρs(r) possesses a unique representation,

ρs(r) = ∑
σ=↑,↓

N

∑
i
|ϕi(riσi)|2 (1.26)

Kohn-Sham’s great idea is that for any interacting system, there exists a local single-

particle potential υs(r) such that the exact ground-state density ρ(r) of the interacting

system equals the ground-state density of the auxiliary non-interacting system,

ρ(r) = ρs(r) (1.27)
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That is, we are demanding that all interacting υ-representable ground-state densities are

assumed to be at the same time non-interacting υ-representable. As the kinetic energy of

the auxiliary system is different from that of the real system, the effective potential must

have the potential energy due to interactions among the particles and the difference in

the kinetic energy. We may rewrite the universal functional as,

F[ρ(r)] = Ts[ρ(r)] + J[ρ(r)] + Exc[ρ(r)] (1.28)

where J is Coulomb repulsion and Exc is the exchange-correlation functional, which is

defined as

Exc[ρ(r)] ≡ T[ρ(r)]− Ts[ρ(r)] + Vee[ρ(r)]− J[ρ(r)] (1.29)

So the Euler-Lagrange equation takes the form,

µ =
δTs[ρ]

δρ(r)
+ υKS(r) (1.30)

where the Kohn-Sham effective potential is given by,

υKS(r) = υext(r) +
δJ[ρ]
δρ(r)

+
δExc[ρ]

δρ(r)

= υext(r) +
∫

ρ(r′)
|r − r′| dr′ + υxc(r;ρ(r))

(1.31)

with the exchange-correlation potential defined as,

υxc(r) =
δExc[ρ]

δρ(r)
(1.32)

Inserting the Eq. 1.31 into Eq. 1.25 we obtain the celebrated Kohn-Sham equations,

[
− h̄2

2me
∇2 + VKS(r)

]
ϕi(r) = ϵiϕi(r) (1.33)
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from which we construct the exact density as

ρ(r) =
N

∑
i=1

|ϕi(r)|2 (1.34)

and the exact energy is given by

E[ρ(r)] = Ts[ρ(r)] + J[ρ(r)] + Exc[ρ(r)] +
∫

Vext(r)ρ(r)dr (1.35)

In principle, this energy corresponds to the real ground state energy for the many body

interacting system. Nonetheless, one crucial element remains unknown. The quantum

correlations of the many-body system is transferred to the exact exchange correlation

energy Exc[ρ(r)], the exact form therof is unknown. Despite this fact, some reasonable

approaches can be made that lead to good results.

1.3.4 Density-functional approximations

Approximations to the correlation-exchange functional give life to the so-called Density-

functional approximations (DFA) and are the basis for all practical applications of DFT.

The “mother” of almost all these approximations is Local-density approximation (LDA),

in which the exchange-correlation energy is approximate by,

ELDA
xc ≡

∫
exc(ρ)ρ(r)dr (1.36)

where exc(ρ) is the exchange-correlation energy per particle of a Homogeneous electron

gas (HEG) of density ρ [68]. Physically this means that we treat a real system as if it

locally consisted of elements of infinitesimal volume within which the density is homo-

geneous. As the exchange-correlation functional can be exactly written as

Exc[ρ] = Ex[ρ] + Ec[ρ] (1.37)
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the terms of exchange and correlation can be approximated separately [69]. In the case

of the LDA, the exchange of a HEG part was first obtained exactly by P. A. M. Dirac

[70]

ex(ρ) = −Cxρ1/3(r) (1.38)

where Cx = 3/4
(
3/π

)1/3. The correlation part have been extensively studied and there

are theoretical estimates [71] and very exact analytical fits to quantum Monte Carlo cal-

culations, the best known and most used being the one by Vosko, Wilk and Nussair [72].
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Chemical accuracy

Figure 1.2: Alternative representation of Jacob’s ladder of density functional approxi-
mations of Prof. Perdew. Each rung represents a family of density functionals based on
the same type of approximation.

Another approximations and ways to build the exchange and correlation functionals

have been developed, such as: Generalized gradient approximation (GGA), Meta gen-

eralized gradient approximation (meta-GGA), hybrid functionals, Random phase ap-

proximation (RPA), etc. In 2001, Prof. J.P. Perdew published an analogy between Jacob‘s

ladder (Genesis 28:10–19) and the approximations that constitutes the DFA [73]. Fig. 1.2

shows an alternative representation of Jacob’s ladder in the DFT context. The idea be-

hind of this analogy is that including exact constraints into approximations beyond the

LDA result in more accurate functionals, determining a hierarchy.
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Despite the large number of existing functionals (more than two hundred [74]) and stud-

ies carried out, one of the weaknesses of DFA persists: it is not possible, in practice,

to systematically refine its results, as is possible in wavefunction-based methods. The

choice of the functional to use must be an adequate balance between the accuracy of

the properties to be studied and the computational cost. Reaching for the heaven is not

always the best idea.

1.4 Some ideas about pseudopotentials

Another way to reduce the complexity of determining the electronic structure comes

from the clever idea of pseudopotentials. In many problems of molecular and con-

densed matter physics, the electrons of the system can be divided into two groups: core

and valence. Moreover, many properties of atoms or molecules or solids, depended

mainly on the electronic distribution of the valence electrons. It results natural to try to

reduce the N-electron problem, where N is the total number of electrons, to n-electron

problem, where n is the valence electrons number. This reduction means a significant

mathematical and computational simplification. This idea was proposed and worked

by H. Hellmann (a brilliant man with very bad luck [75]) at the dawn of quantum me-

chanics. In a series of papers he demonstrated, using the Thomas-Fermi model, that

the Pauli exclusion principle for valence electrons can be replaced by a non-classical

potential (Abstossungspotential), which is now called pseudopotential [76–79].

Currently there are several types of pseudopotentials, each with its own advantages

and disadvantages. Of interest for the development of this thesis are Norm-conserving

pseudopotentials (NCPP) and Projector augmented wave (PAW). The first ones were

introduced by Hamann et al. in 1979 [80] and are built to desirably follow four proper-

ties:

1. Real and pseudo valence eigenvalues agree for a chosen “prototype” atomic con-
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figuration.

2. Real and pseudo atomic wavefunctions agree beyond a chosen “core radius” rc.

3. The integrals from 0 to r of the real and pseudo charge densities agree for r > rc, for

each valence state (norm conservation),

∫ rc

0
r2|ϕps

i |2 dr =
∫ rc

0
r2|ϕi|2 dr (1.39)

4. The logarithmic derivatives of the real and pseudo wavefunction and their first

energy derivatives agree for r > rc.

On the other hand, PAW method is a general approach to solving the electronic structure

problem that retains the full-electron wavefunction of a system. Because the wavefunc-

tion changes rapidly near the nucleus of an atom, the integrals are expressed as combi-

nations of smooth functions that extend through space and localized contributions that

are evaluated using radial integration over thin spherical regions (muffin-tin spheres)

centered at the nuclei.

1.5 Considering the periodicity

In the case of perfect crystalline solids, periodicity is taken into account to reduce the

complexity of the calculation. In these systems, the electrons move through a perfectly

periodic potential and therefore the Hamiltonian is invariant to the discrete translations

that correspond to this periodicity,

Ĥ(r + T) = Ĥ(r) (1.40)

where T = n1a1 + n2a2 + n3a3 are the lattice vectors and ai are the primitive lattice vec-

tors. This invariance also holds for any effective single-electron Hamiltonian and po-

tential. Bloch’s theorem states that one-electron solution (Bloch states) must have the
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following form:

ϕn,k(r) = eik·rUnk(r) (1.41)

ϕn,k(r + T) = eik·Tϕn,k(r) (1.42)

where Unk(r) has the periodicity of the lattice, n is the band index and k is the wave

vector of the electron. The Kohn-Sham equations (Eq. 1.33) can be rewritten as

[
− h̄2

2me
∇2 + VKS(r)

]
ϕn,k(r) = ϵn,kϕn,k(r) (1.43)

Imposition of an appropriate set of periodic boundary conditions (PBC) allows the wave-

function ϕn,k(r) to be expanded as Fourier series,

ϕn,k(r) =
1√
Ω

∑
G

Cn,k+Gei(k+G)·r, (1.44)

where G are the reciprocal lattice vectors.

When attempting to solve Eq. 1.43 for a volume Ω, it is necessary to consider an infinite

number of reciprocal lattice vectors G, which is computationally unrealistic. Typically,

a cutoff energy, Ecut, is introduced so that the G vectors in the sum of Eq. 1.44 can be

truncated according to the condition

1
2
|k + G|2 < Ecut (1.45)

The value of Ecut should be chosen large enough so to include enough vectors G to be

able to accurately describe the smallest features of wave function ϕn,k



Chapter 2

Chemical and physical response

functions

The theory of electronic structure all accounts for the art of skillfully converting informa-

tion about molecular or crystalline structures into insights about their chemistry, i.e., the

reactivity. According to the American Chemical Society (ACS), there are more than 50

million known chemical compounds [81]. These chemical compounds are transformed

through chemical reactions. Chemical reactions can be seen as the way in which a chem-

ical species (a many-body system) responds to an external perturbation, which in princi-

ple will be given by the change in the external potential and the number of electrons. At

the beginning of the reaction this perturbation will be small enough to use perturbation

theory of low order. As DFT is able to deal with a non-integer number of particles, offers

a natural theoretical framework to build a chemical reactivity theory, CDFT, in which a

series of response functions emerge. In this chapter, we briefly review the CDFT. Sec-

tion 2.1 contains an overview of the fundamental ideas of this theory, while Section 2.2

presents the main response functions and descriptions that emerge and that are of inter-

est to this thesis.



2.1 General consideration 29

2.1 General consideration

The prediction and description of chemical reactivity essentially involve understanding

how and why a chemical species (such as an atom, molecule, surface, etc.) responds

to the attack of different types of reactants. The usual reference point is the isolated

chemical species, and its response to chemical attack is considered. This description

leads to what has been called “inherent chemical reactivity” and it is the essence of

CDFT.

One can consider as a starting point for the CDFT that any ground-state property can be

sufficiently described by the number of particles, N, and the external potential, υext(r).

In particular, the electronic energy can be rewritten as

E = E(N)[υ] ≡ E[N,υ] (2.1)

where we have made explicit the dependence as a function of energy with respect to the

number of electrons and as a functional with respect to the external potential. The last

identity will be used for simplicity. It is worth noting that this representation is consis-

tent with the Hohenberg-Kohn DFT in the sense that for a given number of electrons,

the external potential fixes the electronic density, which determines the energy via Eq.

1.18.

Let us consider in this representation, called canonical ensemble, the scenario in which

an attacking agent approaches a chemical species or substrate, causing a change in en-

ergy due to the change of both the number of electrons and the external potential. Via

Taylor expansion we have that the change in the total energy at 0K is [82]

∆U =
∫ [

δVNN[ν]

δν(r)

]
δν(r)dr +

(
∂E
∂N

)
v
∆N +

∫ [
δE

δv(r)

]
N

δv(r)dr

+
∫ (

∂

∂N

[
δE

δv(r)

]
N

)
v
∆Nδv(r)dr + · · ·

(2.2)

where U denotes the total energy within the Born-Oppenheimer approximation, i.e, U
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is the sum of total electronic energy and internuclear repulsion energy. The terms in Eq.

2.2 represent (i) the change in internuclear repulsion energy due to the change in exter-

nal potential (ii) the change in electronic energy due to electron transfer, (iii) the change

in electronic energy due to the change in external potential, (iv) the cross term linking

electron transfer to changes in the external potential. Naturally, it is impossible to take

into account the complete expansion. Thus, it is necessary to truncate the expansion

or, alternatively, to employ the functional-analytic generalization of Taylor’s theorem

with an accompanying remainder [83]. We are neglecting the second- and higher-order

derivatives with respect to the number of electrons because those vanish at 0 K [1, 2].

Higher order response with respect to the external potential could be important. How-

ever, polarization effects are commonly neglected in CDFT principally because it is dif-

ficult to compute the density polarizability kernel [84] and the interactions that arise

from them are short-ranged compared to linear (electrostatic) terms [82]. As such, only

the terms that are explicitly shown in Eq. 2.2 can be sufficiently for qualitative and

semi-quantitative purposes.

The coefficients in the expansion of Eq. 2.2 can be identified as response functions of

the system due to the perturbation, i.e., each response function is a reactivity descriptor.

Please note that up to this point, we have assumed differentiability of E with respect

both N and υext(r) (functional). This will be briefly discussed below.

2.1.1 Some insights about the derivative discontinuities of the energy

Some response functions involves derivatives of the energy with respect the number

of particles and therefore require that energy to be well defined for fractional particle

number and, naturally, to be differentiable with respect the number of particles. Perdew,

Levy and Parr extended the DFT to fractional number of electrons (open systems) based

on zero-temperature grand canonical ensemble theory [1]. They demonstrated, among

other things, that the energy is a series of straight lines interpolating its values at integer

number of electrons. That is, the energy for a system with N + η particles is given



2.2 Response functions 31

by

E(N + η) = (1 − η)E(N) + ηE(N + 1) (2.3)

This relationship between energy and particle number is illustrated in Fig. 2.1. As a

consequence of this, the derivative of total energy functional with respect number of

electrons is discontinuous at all integer particle numbers. As we will show later, this is

a fact of notable importance in the CDFT.

N − 1 N N + 1 N + 2

Fractional particle number, Q

En
er

gy
,E

(Q
)

Figure 2.1: Dependence of the total energy, E(Q), on the fractional particle number, Q,
under the same external potential, υext.

2.2 Response functions

One of the main aims of CDFT have been to make sense to the chemical descriptors in

Eq. 2.2 through the DFT formalism and both chemical knowledge and language. The

response functions that are treated in the development of this thesis are described below.

A detailed overview of CDFT can be found in great articles and books [9–11, 85].

2.2.1 Chemical potential and electronegativity

The first response function in Eq. 2.2 corresponds to the electronic chemical potential,

µ. As we have previously mentioned, the Lagrange multiplier in the Euler-Lagrange
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equation of the DFT, Eq. 1.21, is the chemical potential of the electrons. This can be

easily seen by using the chain rule,

µ =

[
δE

δρ(r)

]
υ

=

(
∂E
∂N

)
υ

[
δN

δρ(r)

]
υ

(2.4)

where the second factor in Eq. 2.4 is

[
δN

δρ(r)

]
υ

=
d
dϵ

∫ (
ρ(r) + ϵδ(r − r′)

)
dr
∣∣∣∣
ϵ=0

= 1 (2.5)

As a result one finds

µ =

(
∂E
∂N

)
υ

(2.6)

which was established by Parr et al. in the seminal paper of CDFT [12]. The crucial step

in constructing a chemical reactivity theory was to identify the chemical potential as the

negative of electronegativity , χ, i.e.

µ =

(
∂E
∂N

)
υ

= −χ (2.7)

The concept of electronegativity was introduced by Pauling in 1932 as the “ atom’s ten-

dency to attract electrons within a molecule during the formation of the molecule”. Since

then, the electronegativity has transformed in a empirical fundamental concept in chem-

istry and material science. Essentially, it allows to infer important aspects about the

interactions between chemical species. Particularly, the distribution of the charge.

The justification of Eq. 2.7 by Parr et al. [12] comes from the work of Iczkowski and

Margrave [86] in which they define electronegativity as

χ = −
(

dEvs

dQ

)
Q=0

(2.8)

where Q was defined as the number of electrons minus the nuclear charge, Z, and Evs

denotes the valence state energy, which corresponds essentially to the energy of an atom

in a molecule. In contrast, Eq. 2.7 is expressed in terms of the energy of the ground state



2.2 Response functions 33

of the chemical species, extending the definition of electronegativity to the point where

some people consider them to refer to different quantities [87, 88].

2.2.2 Electron density

The second response function in Eq. 2.2 is the electron density,

[
δE

δυext(r)

]
N
=

[
δ

δυext(r)

]
N

(
F[ρ] +

∫
ρ(r)υext(r)dr

)
= ρ(r) (2.9)

which is a physical observable that represents the average distribution of electrons in a

given external potential.

2.2.3 Fukui function

The third response function in Eq. 2.2, which is central in the development of this thesis,

was defined by Parr and Yang in 1984 [21] with the name of Fukui Function and is given

by (
∂

∂N

[
δE

δυext(r)

]
N

)
υext

=

(
∂ρ

∂N

)
υext

(2.10)

which locally quantifies the change in electron density with respect to the change in the

number of electrons at constant external potential.

Due to the slope of ρ(r) as a function of N has discontinuities at integers numbers of

electrons [1], the derivative must be evaluated from above and below [21]. This results

in two Fukui functions, one appropriate for describing electrophilic attack, i.e., attacks

by electron-poor species

f−(r) =
(

∂ρ(r)
∂N

)−

v(r)
(2.11)

and other appropriate for describing nucleophilic attack, that is, attacks by electron-rich

species

f+(r) =
(

∂ρ(r)
∂N

)+

v(r)
(2.12)
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If other effects are ignored, a molecule is prone to donate/accept electrons in those sites

where the Fukui function is large [10, 25].

The Fukui function takes its name because it generalizes the Fukui’s FMO [27–30] theory,

which states that in a reaction electrons are added to the lowest unoccupied molecular

orbital (LUMO) and removed from the highest occupied molecular orbital (HOMO).

That relation is better seen when the Fukui functions are written in terms of Kohn-Sham

(KS) orbitals [22]:

f−/+(r) =
∣∣ϕHOMO/LUMO(r)

∣∣2 + N

∑
i=1

(
∂|ϕi(r)|2

∂N

)−/+

v(r)
(2.13)

These expressions comprises two terms: the density of Highest occupied molecular or-

bital (HOMO) or Lowest unoccupied molecular orbital (LUMO) and a relaxation term.

In molecules, the relaxation term is usually small because of the discrete nature of the

KS orbitals’ spectra [37]. Furthermore, as mentioned earlier, Perdew et al. [1] demon-

strated that the density of an open system with N + η electrons, where N is an integer,

is a linear combination of the densities of the system with the nearest integer numbers

of electrons. Thus, the Fukui function for finite system can be calculated in exact way, at

least in principle, from finite differences [1, 25]:

f±(r) = ±
(
ρN±1(r)− ρN(r)

)
(2.14)

There is another way to compute the Fukui function without the necessity of consid-

ering charged systems. It emerges from the relation between the local softness, s(r),

Fukui function and Local density of states (LDOS), g(r, E). The local softness and Fukui

function are related through a chain rule,

s(r) =
(

ρ(r)
∂µ

)
v(r)

=

(
∂ρ(r)
∂N

)
v(r)

(
∂N
∂µ

)
v(r)

= f (r)S (2.15)

Thus Fukui function is the ratio between local softness and global softness, S. As elec-
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tron density can be write in terms of LDOS,

ρ(r) =
∫ µ

g(r, E)dE (2.16)

we can take the derivative with to respect µ (using the Leibniz’s rule), obtaining the

exact expression for s(r), which was derived first by MH Cohen et al.[89],

s(r) ≡
(

∂ρ(r)
∂N

)
v(r)

= g(r,µ) +
∫ µ

(
∂g(r, E)

∂µ

)
v(r)

dE (2.17)

As we can see, the resulting expression is analogous to Eq. 2.13 in the sense that it

comprises two terms: a frontier contribution (LDOS at Fermi level) and the relaxation

term. In contrast to molecules, the relaxation terms could be not small o negligible

because the density of states around the Fermi level is finite, that is to say, the states

near to the Fermi level may contribute to the Fukui function [37]. Although Eq. 2.17

is exact, there is not analytic expression or method to compute the relaxation terms.

Cárdenas et al. [90] proposed an ansatz to compute the Eq. 2.17 writing the derivative

as a limit,

s±(r) ≈ ± lim
δµ→0+

1
δµ

∫ µ±δµ

µ
g(r, E)dE (2.18)

from where obtaining the Fukui function is straightforward,

f±(r) ≈ ±
lim

δµ→0+

∫ µ±δµ

µ
g(r, E)dE

lim
δµ→0+

∫ µ±δµ

µ
g(r, E)dEdr

(2.19)

The advantage of the Eq. 2.18 is that it is easy to compute because the local density of

states is implemented in almost all solid-state softwares. However, it does have com-

plexities: i) naturally, the limit cannot taken to 0, i.e., the s(r) value depends on the δµ

chosen, ii) it is essentially a “frozen orbital” approximation of the Eq. 2.17 because it

does not consider the dependency of g(r, E) with to respect µ.

Cárdenas et al. [37] has proposed another alternative using finite differences with a frac-
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tional number of electrons. The problem of the introduction of the CBC can be partially

bypassed in the limit in which δN tends to zero. They proposed that one way to take

this limit is to calculate the density of the neutral system, ρ(r, N0), and several lightly

charged systems, ρ(r, N0 + δN),ρ(r, N0 + 2δN), · · · . Then for every point in the real space

a linear interpolation of the densities as a function of the number of electrons may be

made, the slope of this interpolation, for each point, is the Fukui function because

ρ(r, N) = ρ(r, N0) +

(
∂ρ(r, N)

∂N

)
v(r)

(
N − N0

)
+ · · · (2.20)

This approximation is valid if the charge of the charged systems is small enough to

be within the linear regime of ρ versus N. Although this approach can in principle

bypass the problem of introducing the CBC and takes into account the relaxation effects,

another problem arises with it. Specifically, there is an issue with the lack of accuracy

of approximate functionals to describe the electron density of systems with a fractional

number of electrons. It is widely recognized that local density approximation (LDA)

functionals, all generalized gradient approximation (GGA) functionals, and most hybrid

and corrected long-range functionals fail to correctly predict the piecewise E versus N,

obtaining a convex underestimation of E versus N, which results in a delocalization

error in the density [7, 91].

Fukui potential

Unlike the Fukui function, its electrostatic potential can shed light on whether those

regions in which the system is more prone to accept or donate electrons from/to the re-

actant are actually accessible to it [11, 33, 92]. This potential is called the Fukui potential

and is given by

v±f (r) =
∫ f±(r′)

|r′ − r| dr′ (2.21)

The Fukui potential can be calculate straightforward as a difference of electrostatic po-

tentials

v±f (r) = ±
(
ΦN(r)− ΦN±1(r)

)
(2.22)
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Here,

ΦN(r) = ∑
α

Zα

|rα − r| −
∫

ρN(r′)
|r′ − r| dr′ (2.23)

denotes the electrostatic potential of the system with N electrons due to its electron

density and nuclei. Although the calculation via Eq. 2.22 is straightforward, errors are

introduced when this equation is used with calculations with PBC and discrete plane-

wave basis set in which the charged systems involve the CBC. Details about this problem

will be discussed in Chapter 3.



Chapter 3

Electrostatics in Periodic Boundary

Conditions

Obtaining the Fukui function and Fukui potential presents technical difficulties for peri-

odic or extended systems. In this chapter, the fundamental ideas and laws of electrostat-

ics are reviewed in Section 3.1 and in the following three sections, three methodologies

that have been proposed to overcome these difficulties are presented: Exact Coulomb

cutoff technique in Section 3.2, Self-Consistent Potential Correction scheme in Section

3.3 and finally Electrodes’ method in Section 3.4.
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3.1 Fundamental equations

Electrostatic interaction are described by Maxwell’s equations, which relate the electric

field, E(r), and charge density, ρ(r),

∇ · E(r) = 4πρ(r) (3.1)

∇× E(r) = 0 (3.2)

Due to the irrotational nature of the electrostatic field, it is frequently more convenient to

describe it using the gradient of a scalar potential, i.e., the electrostatic potential, as

E(r) = −∇υ(r) (3.3)

Combining Eqs. 3.1 and 3.3, Maxwell’s equations are recast into a single second-order

differential equation,

∇2υ(r) = −4πρ(r) (3.4)

called Poisson equation.

Once appropriate boundary conditions are established, the above differential equation

can be solved exactly. Specifically, within a closed volume of space, specifying either the

potential (Dirichlet or open boundary conditions) or the normal component of the field

(von Neumann boundary conditions) at the boundary is required to obtain a unique so-

lution to the electrostatic problem.

The Eq. 3.4 can alternatively be rewritten in a general formulation using Green’s func-

tions, namely,

υ(r) =
∫

B
G(r − r′)ρ(r′)dr′ (3.5)

Here, the integration is carried out across the arbitrary bounded region denoted as B.

For the particular case of an isolated charge density in vacuum, it is customary to impose
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homogeneous Dirichlet or von Neumann conditions at infinity, such that

υ(r) =
∫

ρ(r′)
|r − r′| dr′ (3.6)

On the other hand, when dealing with periodic systems, it is natural to recast the elec-

trostatic equations in reciprocal space, we can rewrite the Eq. 3.6, using the convolution

theorem, in the Fourier space as

υ(G) = ρ(G)w(G) (3.7)

where w(G) is the Fourier transform of Coulomb potential

w(G) =
4π

G2 (3.8)

Transforming the Eq. 3.7 back into real space, we obtain, for a unit cell of volume Ω

υ(r) =
4π

Ω ∑
G ̸=0

ρ(G)

G2 eiG·r (3.9)

Note that the null ”wave vector” (G = 0) cannot be included or the potential would

diverge. This is not a problem in bulk crystals bulk crystals as V(G = 0) corresponds to

the average value of the potential in the unit cell. Furthermore, this average value can

be set to zero (V(G = 0) = 0) by noticing that the overall charge neutrality of the unit

cell imposes the average of the sum of the electronic and ionic charge is zero.

Charged systems are more complicated as the Gauss theorem precludes the existence of

charge unit cells with PBCs; its electrostatic energy would be infinity. This difficulty is

usually circumvent by adding compensating background of charge (CBC, ⟨ρ(r)⟩) that

restores neutrality,

ρ(r) −→ ρ(r)− ⟨ρ(r)⟩ (3.10)
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To overcome the complications that arises in charged surfaces, namely, the presence of

unphysical uniform charge in the vacuum, a correction of the electrostatic potential is

required. The correction methodologies used in this work are detailed below.

3.2 Exact Coulomb cutoff technique

To solve this problem, Rozzi et al. [53] introduced a reciprocal space analytical method

to cut off the long range interactions in supercell calculations for systems that are infinite

and periodic in one or two dimensions, as a generalization of the technique proposed

by Jarvis [49] for finite charged and polar systems. The initial step involves the transfor-

mation of Eq. 3.7 into a modified form, given by

υ̃(G) = ρ̃(G)w̃(G) (3.11)

ensuring the elimination of all interactions involving the undesired periodic replicas

of the system. To do so, it is necessary to: i) define a screening region D , outside of

which there is no Coulomb interaction; ii) compute the Fourier transform of the desired

effective interaction w̃(G), such that

w̃(r) =


1
r

if r ∈ D

0 if r /∈ D

(3.12)

and iii) modify the density ρ(r) in such a way that the effective density is still 3D-

periodic, so that the convolution theorem can be still applied, but densities belonging

to undesired images are not close enough to interact through w̃(r). The step (2) implies

that we need to calculate the modified Fourier integral

w̃(G) =
∫

w̃(r)e−iG·r dr =
∫

D
w(r)e−iG·r dr (3.13)
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where the modified potential w̃ is zero outside the domain D . The results of the integral

3.13 for 2-D periodic systems is the following:

w̃2D(G∥, Gz) =



4π

G2

[
1 + e−G∥R

(
|Gz|
G∥

sin(|Gz|R)− cos(|Gz|R)
)]

;

for G∥ ̸= 0

4π

G2

[
1 − cos(|Gz|R)− GzRsin(|Gz|R)

]
;

for G∥ ̸= 0

−2πR2;

for G∥ = 0 and Gz = 0

(3.14)

Exact Coulomb cutoff technique (ECC) is implemented in the Octopus code [93–96] to

compute the Hartree potential in those system that are periodic in one or two dimen-

sions.

3.3 Self-Consistent Potential Correction scheme

Self-Consistent Potential Correction (SCPC) scheme [97] incorporates a corrective poten-

tial (υcor) to the Kohn-Sham equations. During self-consistent iterations, υcor is updated

via the following four steps: (i) find the distribution of extra charge within the supercell

(δρ), (ii) compute its corresponding periodic electrostatic potential (υper), (iii) establish

the potential for an identical isolated charge distribution (υiso) utilizing open (Dirichlet)

boundary conditions, and lastly, (iv) employing υper and υiso to derive the corrective po-

tential υcor, which is subsequently integrated into the total electrostatic potential.

The extra charge is constructed directly by taking the difference between the electronic

density of the charged ”defect” system (ρchg) and that of the reference system (ρre f ) on a

real-space grid,

δρ(r) = ρchg(r)− ρre f (r) (3.15)
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The corresponding periodic electrostatic potential (υper) is obtained by solving the Pois-

son equation,

∇
[
ε(r)∇υper(r)

]
= −4π

[
δρ(r)− ⟨δρ⟩

]
(3.16)

where the Dirichlet boundary conditions are determine through the difference between

the periodic electrostatic potential of the charged defect system (υchg) and that of the

reference system (υre f ) on the supercell edges.

A self-consistent process is implemented to incorporate a macroscopic dielectric profile

of the material in the Poisson equation of the isolated defect charge,

∇2υiso(r) = −4π

[
δρ(r)
ε(r)

+ ρiter(r)
]

(3.17)

ρiter(r) =
1

4πε(r)
∇ε(r) · ∇υiso(r) (3.18)

Finally, υcor is obtained obtained through the solution of the Poisson equation for the

CBC,

∇
[
ε(r)∇υcor(r)

]
= −4π⟨δρ⟩ (3.19)

where the difference between υiso and υper is used to determine the Dirichlet boundary

conditions at the edges of the supercell.

This scheme is provided by its developers as a patch for VASP on request [98].
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3.4 A posteriori correction - Electrodes’ method

(A)

(B)

(C)

Figure 3.1: Schematic diagram depicting (a) the supercell utilized for computing a sym-
metric neutral slab with a dielectric constant ε, with vacuum on both sides, (b) the proce-
dure of introducing charge (depicted in yellow) to the slab with a uniform compensating
background charge (depicted in sky blue) distributed throughout the supercell, and (c)
an auxiliary system featuring reference electrodes at the cell edges. Adaptation of the
original illustration by Krishnaswamy et al. [54]

This method was introduced by Krishnaswamy et al. [54] The electrostatic potential

from a first principle calculation as a superposition may write as

ῡ(r) = υ(r) + υCBC(r) (3.20)

where ῡ(r) is the electrostatic potential of the slab including the CBC, υCBC(r) is the

electrostatic potential generate by the CBC and υ(r) is the real electrostatic potential of

the slab. Lozovoi et al.[99] and Komsa and Pasquarello [100] have proposed a simple

approximation for υCBC(r). This consists in finding υCBC(r) as the potential of the CBC
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screened by the profile of dielectric function of the, ε(z). Under this approximation,

we can readily solve for the electrostatic potential contribution from the CBC, υCBC(r),

using the Poisson equation

d
dz

(
ε(z)

d
dz

υCBC(z)
)
= −ρCBC = − q

Ω
(3.21)

where q is the charge of CBC and Ω is the volume of the supercell. To establish boundary

conditions and select a suitable reference potential for comparing systems with different

amounts of charge, grounded “reference electrodes” are introduced at cell boundaries.

Since the electrodes are grounded, we have the boundary condition υCBC(±Lz/2) = 0.

For simplicity, the dielectric profile is considered as a piecewise function with a constant

value ε in the slab and unity in the vacuum. The slab region is assumed to be the one

defined by the atomic positions of the outermost surface layers. Moreover, because the

position of the ions remains fixed,ε is the electronic part of the static dielectric constant.

Solving Poisson’s equation gives

υCBC(z) =
−q

2ε0Ω
×



(
z2 − L2

z
4

)
;

for − Lz/2 < z < −Ls/2

1
ε

(
z2 − L2

s
4
(ε − 1)− ε

L2
z

4

)
;

for − Ls/2 < z < Ls/2

(
z2 − L2

z
4

)
;

for Ls/2 < z < Lz/2

(3.22)

From the result of Eq. 3.22, the free electrostatic potential of the CBC contribution can

be obtained by the Eq. 3.20.
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Chapter 4

Computational methods

4.1 Computational details

The periodic DFT calculations have been performed in the Vienna Ab initio simulation

package (VASP) [101–104] Version 6.2.1. PAW method was used to represent the core

electron with 2, 4, 4, 6, and 14 valence electrons for Mg, Ti, C, O and Sn, respectively

[105, 106]. The generalized gradient approximation (GGA) Perdew-Burke-Ernzerhof

exchange-correlation (PBE) was used [107] and the plane-wave basis set was truncated

at 700 eV for all systems. For sampling of the reciprocal space, the Monkhorst-Pack

scheme [108] was chosen, the set of system-specific k-points are shown in Table 4.1. For

oxides, the GGA + U approach of Dudarev et al. [109] was used to treat the 3d electrons

and 4d electrons of Ti and Sn, respectively. We choose the effective Hubbard on-site

Coulomb interaction parameter (U′ = U − J) to be 4 and 3.5 eV, respectively, according

to values proposed in previous works [110–112]. Additionally, the OCTOPUS code ver-

sion 13 [93–96] was used to carry out all the calculations that include the exact Coulomb

cutoff technique [53]. We used optimized Optimized nonlocal norm-conserving pseu-

dopotentials (ONCVPSP) [113, 114] to describe the electron-ion interaction and the PBE

functional to describe exchange-correlation effects. We employed a cubic regular mesh

for the real-space expansion of the Kohn-Sham equations. The spacing between the grid

points is 0.4 a0 for all systems. The GGA+U approach of Dudarev et al. implemented

[115] in OCTOPUS was used at the same way as in VASP calculations.
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Table 4.1: Computational parameters employed for bulk and slab models, including
energy cutoff, k−point grid, smearing and its width.

System Energy cut off (eV) k−point grid Smearing sigma (eV)

hcp Ti 700 30 × 30 × 20 Methfessel-Paxton order 1 0.05

Ti (0001) 700 30 × 30 × 1 Methfessel-Paxton order 1 0.05

fcc TiC 700 13 × 13 × 13 Gaussian 0.1

TiC (001) 700 13 × 13 × 1 Gaussian 0.1

Rutile TiO2 bulk 700 9 × 9 × 18 Gaussian 0.1

Rutile TiO2 (110) 700 9 × 9 × 1 Gaussian 0.1

Anatase TiO2 bulk 700 15 × 15 × 5 Gaussian 0.1

Anatase TiO2 (001) 700 15 × 15 × 1 Gaussian 0.1

fcc Pt 700 29 × 29 × 29 Methfessel-Paxton order 1 0.05

Pt (111) 700 29 × 29 × 1 Methfessel-Paxton order 1 0.05

fcc ZrC 700 17 × 17 × 17 Gaussian 0.1

ZrC (001) 700 17 × 17 × 1 Gaussian 0.1

fcc MgO 700 13 × 13 × 13 Gaussian 0.1

MgO (001) 700 13 × 13 × 1 Gaussian 0.1

Rutile SnO2 bulk 700 6 × 6 × 12 Gaussian 0.1

Rutile Reduced SnO2 (110) 700 6 × 6 × 1 Gaussian 0.1

Ti (0001) TiC (001) Anatase TiO2 (001) Rutile TiO2 (110)

Z

X Y

Figure 4.1: Side view of the slab models for Ti (0001), TiC (001), anatase TiO2 (001), and
rutile TiO2 (110) surfaces. The Ti atoms are shown by blue balls, C atoms by gray balls
and O atoms by red balls.
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4.2 Bulk and surfaces models

Full optimization of the lattice parameters was performed for each bulk material. The

values of the optimized lattice parameters as well as experimental values are reported in

Table 4.2, which are in close agreement. Slab models were cut from their corresponding

optimized bulk. A vacuum layer of 30Å (15Å in each side) in the c (or z) direction,

orthogonal to the slab, was employed to prevent interactions between periodic images.

Conjugate gradient algorithm was used for geometry optimization of the slab models,

with a force threshold for the ionic relaxation of 0.01eV/Å. The symmetry of the slab

models and number of layers are shown in Figs. 4.3 and 4.4. The four titanium surfaces

Ti (0001), TiC (001), anatase TiO2 (001), and rutile TiO2 (110) are depicted in Figure 4.1.

On the surfaces, the coordination number of titanium atoms vary from 5 to 7: Ti (0001)

has only Ti5c, TiC (001) has solely Ti7c, anatase TiO2 (001) has only Ti5c, and rutile TiO2

(110) has Ti5c and Ti6c. Regarding oxygen atoms in oxides, both anatase TiO2 (001) and

rutile TiO2 (110) have O2c, and rutile O3c.

Table 4.2: Cell parameters (a and c) of the materials studied and their respective experi-
mental values.

System Parameter (Å) This work Experimental

hcp Ti a 2.923 2.951[116]
c 4.625 4.684[116]

fcc TiC a 4.383 4.327[117]

Anatase TiO2
a 3.899 3.784[118]
c 9.913 9.515[118]

Rutile TiO2
a 4.737 4.593[118]
c 3.048 2.958[118]

fcc Pt a 4.016 3.924[119]
fcc ZrC a 4.754 4.680[120]

fcc MgO a 4.289 4.210[121]

Rutile SnO2
a 4.784 4.737[122]
c 3.217 3.186[122]
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(B)

(D)(C)

(A) Ti7c Ti5c

O3c

O2c
Ti5c O3c

O2c

Ti5c Ti6c

Figure 4.2: Structures and coordination of surface atoms of (A) Ti (0001), (B) TiC (001),
(C) anatase TiO2 (001), and (D) rutile TiO2 (110) panels. Ti atoms are shown by blue
balls, C atoms by gray balls and O atoms by red balls.
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Relaxed

Relaxed

Ti (0001)

Relaxed

Relaxed

Frozen

Frozen

Frozen

TiC (001)

Relaxed

Relaxed

Relaxed

Relaxed

Frozen

Frozen

Frozen

Anatase TiO2 (001)

}
}Relaxed

Frozen

Rutile TiO2 (110)

}
}

}
Frozen

Relaxed

Relaxed

Figure 4.3: Slab models used in this work to study the titanium surfaces: Ti (0001), TiC
(001), anatase TiO2 (001), and rutile TiO2 (110).
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Relaxed

Relaxed

Pt (111)

Relaxed

Relaxed

Frozen

Frozen

Frozen

ZrC (001)

Relaxed

Relaxed

Relaxed

Relaxed

Frozen

Frozen

Frozen

MgO (001) Rutile SnO2 (110)

}
}

}
Frozen

Relaxed

Relaxed

Relaxed

Relaxed

Relaxed

Relaxed

Frozen

Frozen

Frozen

Figure 4.4: Slab models used for Pt (111), ZrC (001), Mg (001), and rutile SnO2 (110)
surfaces.
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Chapter 5

Fukui Functions

In this chapter, we present the results obtained for the calculation of both electrophilic,

f−(r), and nucleophilic, f+(r), Fukui function for four surfaces of materials containing

titanium: Ti (0001), TiC (001), anatase TiO2 (001), and rutile TiO2 (110). Additionally, in

the Appendixes A and B, we provide results for four other inorganic surfaces: Pt (111),

ZrC (001), Mg (001), and rutile SnO2 (110). We used five different methodologies: i) Fi-

nite differences (FD) with ∆N = ±1 from VASP calculations, i.e., considering the CBC;

ii) Finite differences with the SCPC method (FD-SCPC); iii) Interpolation scheme (in-

terpolation) with δN = ±0.05,±0.10, ±0.15 electrons; iv) LDOS with δµ energy from

Fermi level; and Finite differences with Exact Coulomb Cutoff technique (FD-ECC)

from Octopus calculations.

To visualize the differences between the Fukui functions f±(r) from different method-

ologies, we calculated their planar averages. For this, the supercell is split in a homo-

geneous grid of points, and for all points in a plane parallel to the slab (z), the average

is computed (see Fig. 5.1). To have a better understanding of the Fukui distribution

around each atom, we also calculated its condensed version. Specifically, we used the

method called topological analysis of the Fukui function [34, 123, 124]. Briefly, this con-

sists of finding attractors and basins of the Fukui gradient field and integrating it over

each of the basins. Then, the integral in a given basin is assigned to the atom closest

to the attractor in that basin. Numerical integrations were performed using Bader, a

56
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code developed by Henkelman’s group [125]. Finally, we also use contour maps, when

necessary, to visualize the relaxation effects on the difference surfaces.

Z1 Z2 ...

Figure 5.1: Schematic representation of the calculation of planar averages.

The chapter is organized as follows. In section 5.1 we discuss the results on the elec-

trophilic Fukui Function, f−(r) and in section 5.2, we do it for the nucleophilic Fukui

function, f+(r). Each section is further divided into metal surfaces and titanium ox-

ides.

5.1 Electrophilic Fukui Function, f−(r)

As previously mentioned, the electrophilic Fukui function, f−(r), is larger in those re-

gions where the chemical species is prone to lose electrons. In a chemical process this

usually occurs as a donation of electrons to an electrophile. The planar averages for all

titanium surfaces and methodologies used are shown in Fig. 5.2 for f−(r). For clarity,

the whole vacuum of the supercell is not shown. Deep into the vacuum the Fukui func-

tion is zero, except a pathological case. In most cases the planar averages is largest in

the region between the plane of the outermost atoms of the surface (indicated by a red

dashed line) and a plane where the electron density has decayed to ρ = 10−4 a−3
0 (indi-

cated by a black dashed line). This is, in principle, the expected behaviour as atoms in

the surface are normally more reactive than those in the bulk because its lower coordi-

nation raises the electronic surface levels close to the Fermi level. Despite this common
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(A)(B)

(D)(C)

(A)

Figure 5.2: Planar average of Fukui functions, f−(r), for the titanium surfaces: (A) Ti
(0001), (B) TiC (001), (C) anatase TiO2 (001), and (D) rutile TiO2 (110). The black dashed
lines represent the position where the planar average electron density is equal to ρ =
10−4 a−3

0 and the red dashed lines represent the position of the surface atoms.

feature, there are clear differences.

5.1.1 Metallic surfaces: Ti(0001) and TiC(001)

The planar average of f−(r) computed with LDOS in Ti(0001) and TiC (001) have their

maximum at the surface sites and a non-negligible amount of Fukui function extends

to the center of slab, which is the region of the slab representative of the bulk environ-

ment. Fukui functions from all other methods penetrate less the bulk and their maxima

extend slightly beyond the nuclear position towards the vacuum region. This differ-

ence is clearly seen in the contour maps shown in Figs. 5.3 and 5.4 of the f−(r) of Ti

(0001) and TiC (001), respectively. Note that the contours of the Fukui function that in-

cludes self-consistent corrections of the potential (panel B) look middle-way between
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LDOS and finite differences and interpolation. This suggests that the relaxations effects

(not present in LDOS) increases the Fukui function toward the vacuum but the fictitious

electric field of the CBC exaggerates this trend in this metallic surfaces. It is also worth

mentioning that the planar averages of f−(r) of Ti (0001) from FD, interpolation, and

FD-ECC show significant negative peaks located in the first atomic planes (0001) of the

surface. Negative values of the Fukui functions are also observed in planar molecules

and it has been associated with orbital relaxation effects and nodal surface of the frontier

orbitals [126–128].

(A)

Ti

(C)

Ti

(B)

Ti

(D)

Ti

Figure 5.3: Contour maps in the X-Z plane (y = 2.53Å) for the f−(r) Fukui functions of Ti
(0001) with: finite difference (panel A), finite difference with self-consistent corrections
of the potential, SCPC, (panel B), Interpolation (panel C), and from LDOS (panel D).

Regarding the topological analysis, condensed Fukui functions of Ti (0001) are presented

in Table A.1 in the Appendix A. One can see that condensed values of Fukui function,

f−k , depend on the methodology but the ratio between the values of different sites does

depend much on the method. One is usually interested in relative values of f−k as this

reveals the relative reactivity of atoms, and in this case all methods are consistent. Note

that superficial atoms, Ti13 and Ti14 on one side of the slab and Ti7 and Ti10 on the
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other, have the largest values of the condensed Fukui function. On the other hand,

the condensed Fukui functions of TiC (001) agree very well among all methods, with

the exception of LDOS, for which the values of f−k are more evenly distributed on all

atoms, showing no clear preferential reactivity between C and Ti (see Table A.2 in the

Appendix A). As for the other methods, the atoms more prone to donate electrons are

surface carbons (C9, C10, C13 and C14). This agrees with studies that show that atomic

species tend to adsorb on carbon atoms [129, 130].

c

(D)

c

(B)

c

(C)

(A)

c

c

Figure 5.4: Contour maps in the X-Z plane (y = 0Å) for the f−(r) Fukui functions of TiC
(001) with: finite difference (panel A), finite difference with self-consistent corrections of
the potential, SCPC, (panel B), Interpolation (panel C), and from LDOS (panel D).
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5.1.2 Titanium oxide surfaces: anatase TiO2 (001) and rutile TiO2 (110)

Anatase TiO2 (001) is a peculiar case. It present asymmetry with respect to z direction

(i.e. lacks xy mirror planes or inversion center) and its optimized structure has an slight

surface reconstruction. The Ti5c −O2c − Ti5c bonds at the surface have different lengths,

one of them is shortened to 1.84Å, while the other is lengthened to 2.21Å (from the

original 1.99Å); a finding previously reported [131, 132]. This asymmetry causes the

appearance of a dipole moment, which could impose additional difficulties since the

vacuum in the aperiodic direction is not enough to screen the dipole interaction. To

counteract this situation, dipole corrections were introduced to the neutral supercell,

resulting a dipole moment of µ = 0.15D. These structural and charge distribution asym-

metries are clearly observed in the profiles of the planar averages of the f−(r) (see Fig.

5.2 panel C). In this case the planar averages of f−(r) with all methodologies have the

same trend, with the peaks occurring in the same places. The main differences between

methodologies is the degree of localization of the Fukui function in the surface, where

LDOS and FD-SCPC decay faster toward the vacuum.

In the case of rutile TiO2 (110), large differences between different methodologies are

observed (see Fig. 5.2 panel D and Fig. 5.5). While FD, interpolation and FD-ECC are

qualitatively in agreement and strongly localised on the surface of the slab, the profiles

of LDOS and FD-SCPC are more delocalised across the slab, to the point that f−(r) from

LDOS is much larger in the bulk region than on the surface.

The condensed Fukui functions f−k for anatase TiO2 (001) are shown in Table A.3 in

the Appendix A. In this case, good agreement is observed between the five methodolo-

gies, since the largest values are found in the O2c, as we expected because of their low

coordination number and relatively electron-rich nature, which make its easy to loose

electrons. A similar behavior is observed in the case of rutile TiO2 (110) (see Table A.4 in

the Appendix A) except for LDOS, which predict that oxygen atoms in the bulk could be

more reactive than in the surface, which contradicts the chemistry of this surface [133,

134]. What this shows is the importance that the relaxation effects could have to account
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for the correct reactivity of some surfaces.

(B) (D)(C)(A)
FD FD-SCPC Inter LDOS

Figure 5.5: Isosurfaces (± 0.0025 au) of electrophilic Fukui functions f−(r) for the ru-
tile TiO2 (110) surface: A) Finite differences (FD), B) Finite differences with the SCPC
method (FD-SCPC), C) Interpolation scheme (Inter), and D) Local density of states
(LDOS).

5.2 Nucleophilic Fukui function, f+(r)

The planar averages for Fukui functions f+(r) are shown in Fig. 5.6. The FD-ECC re-

sults are presented only with N + 0.05 electrons because we could not obtain converged

calculations for the vertical anions with N + 1 electrons. Unlike the case of f−(r), an

asymptotic decay into the vacuum is not observed with all schemes. Namely, f+(r) with

FD shows broad peaks in the vacuum region, which represent ∼ 40% of the function it-

self. This evidences the appearance of ghost states in vertical anions, i.e., nonphysical

states in the vacuum. This behavior is sufficiently inadequate to warrant the rejection of

the FD (N + 1) calculation method for inorganic surfaces. The other three schemes that

incorporate relaxation effects–FD-SCPC, FD-ECC, interpolation–and LDOS manage to

overcome this serious difficulty.
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(A)

(D)(C)

(B)

Figure 5.6: Planar average of Fukui functions, f+(r), for the titanium surfaces: (A) Ti
(0001), (B) TiC (001), (C) anatase TiO2 (001), and (D) rutile TiO2 (110). The black dashed
lines represent the position where the planar average electron density is equal to ρ =
10−4 a−3

0 and the red dashed lines represent the position of the surface atoms.

5.2.1 Metallic surfaces: Ti(0001) and TiC(001)

Most methods predict that f+(r) in Ti (0001) and TiC(001) is larger in the surface and it

rapidly decreases toward inner layers of the slabs (see Fig. 5.6 panels A and B). How-

ever, LDOS and FD-ECC are exceptions for different reasons. The Fukui functions from

LDOS strongly oscillates along all layers of the slabs. This is a manifestation of the im-

portance of properly accounting for the relaxation effects in gapless-metallic systems;

which are largely polarizable. On the other hand, f+(r) of Ti(0001) computed with FD-

ECC not only oscillates but in the inner layers is more negative than positive. Although

negative values of the Fukui are not ruled out, the evidence in molecules shows that the

regions of negative values are marginal compared to the positive values [83, 127, 128].

We can think of two possible explanations for this behavior. One is that the number of

atomic layers (seven) of the slab is not sufficient to represent the surface states with this



64 5 Fukui Functions

method, and the other, which we are inclined to believe, is that the method is more nu-

merically unstable when the system has excess electrons. In fact, as mentioned above, in

spite of our many efforts, it was only possible to obtain converged results for all systems

when ∆N is at most 0.05 e.

The comparison of planar averages of all methods with LDOS allows us to establish

that the major effect of the relaxation in Ti(0001) and TiC(001) is to attenuate the oscil-

lations of f+(r) in the inner layers and to shift the maximum towards the vacuum, in

the same way that happens with f−(r). Contour maps show the same trend for the case

of f−(r), essentially indicating an exaggerated increase of the Fukui function in the sur-

face calculated with FD and interpolation compared to those that include self-consistent

corrections of the potential (panel B in both figures). These maps are displayed in Figs.

5.7 and 5.8 for Ti (0001) and TiC(001), respectively.

(D)

(B)

Ti

Ti

(C)

Ti

(A)

Ti

Figure 5.7: Contour maps in the X-Z plane (y = 2.53Å) for the f+(r) Fukui functions of Ti
(0001) with: finite difference (panel A), finite difference with self-consistent corrections
of the potential, SCPC, (panel B), Interpolation (panel C), and from LDOS (panel D).

Condensed Fukui functions, f+k , for Ti (0001) and TiC(001) are reported in Tables A.9 and

A.10, respectively. The most likely sites to accept electrons in Ti(0001) are the surface
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titanium atoms (Ti13, Ti14, Ti7, and Ti10). In contrast, for TiC (001), the surface carbon

atoms (C9,C10, C13, and C14) are more prone to capture electrons, with the exception

of the LDOS, which presents its highest condensed values on the superficial titanium

atoms (Ti9, Ti10,Ti13, and Ti14). Thus, the inclusion of relaxation effects in these systems

is not only important in the direction perpendicular to the surface but also in the plane.

Their non-inclusion may lead to an incorrect prediction of the atomic environment ready

to receive electrons.

(D)

c

(C)

c

(B)

c

(A)

c

Figure 5.8: Contour maps in the X-Z plane (y = 0Å) for the f+(r) Fukui functions of TiC
(001) with: finite difference (panel A), finite difference with self-consistent corrections of
the potential, SCPC, (panel B), Interpolation (panel C), and from LDOS (panel D).
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5.2.2 Titanium oxide surfaces: anatase TiO2 (001) and rutile TiO2 (110)

Planar averages of f+(r) of anatase TiO2 (001) are characterized by peaks not only in the

surface but also in the bulk region (see Fig. 5.6 panel C). Although inclusion of relaxation

decreases the amplitude of the Fukui in the center of the slab, it remains substantial, to

varying extents, in all the schemes. Strikingly, the method that includes self-consistent

potential corrections, FD-SCPC, has its largest values not in the surface but in the first

sub-superficial layer of titanium (z ≈ 16Å), while the other methods–FD, interpolation,

and FD-ECC δ = 0.05– have their largest peak in the surface. We will see below that there

is experimental and computational evidence that electrons tend to accumulate several

layers beneath the surface.

Table A.11 summarizes values of the condensed Fukui functions f+k for anatase TiO2

(001). Surface oxygen atoms O2c (O9 and O10) have the largest values of f+k according to

methods FD, interpolation and FD-ECC. Contrary, LDOS has them in the titanium atoms

of the inner layers (Ti1,Ti4, Ti2,Ti3) and it is almost null in the atoms of the surface(T6,

O10, O5). It is noteworthy that FD-SCPC has its largest value in the titanium atoms of

the first inner layer (Ti3, Ti2) followed by superficial titanium (Ti6, Ti5). One would be

tempted to anticipate that the electron-greedy sites must be on the surface and not in

inner layers, however, in this case there is evidence to suggest that this is not the case.

For instance, Selcuk et al. [135] used Car-Parinello molecular dynamics (CPMD) and

‘effective screening method’ to show that the excess of electrons in anatase TiO2 (001)

surface (which is induced by the adsorption of a hydrogen atom on the bridging oxygen)

strongly avoids the surface, forming a quasi-two-dimensional state in a inner (001) plane

in the Ti atoms. Furthermore, they found that the excess of charge moves quickly from

layer to layer (see Fig. 5.9 panel B). With averages over time, they showed that the

most visited sites are the subsurface titanium atoms, followed by the most inner sites,

which explains the poor activity of this surface for reduction reactions. This precisely

the behavior predicted by the Fukui functions f+(r) calculated with the FD-SCPC (see

Fig. 5.9 panel A).
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Figure 5.9: Excess charge on the anatase TiO2 (001) surface. Panel A shows the isosur-
face (± 0.0025 au) of nucleophilic Fukui functions f+(r) calculated using the FD-SCPC
methodology. Panel B displays the localization of excess charge in the direction perpen-
dicular to the surface during a CPMD simulation carried out by Selcuk et al. [135], along
with the corresponding distribution. The labels S, S-1 and S-2 indicate the surface layer
and the subsequent layers below the surface.

The planar averages of f+(r) for rutile TiO2 (110) show are also peculiar (see Fig. 5.6

panel D). Although in all methods the Fukui amplitude is large both on the surface and

in the first inner layer of Ti atoms (z ≈ 20), only for LDOS and FD-SCPC it is larger

in the inner layer. Likewise, the condensed Fukui results largest in the bicoordinated

oxygen atoms O2c, when computed with FD, FD-ECC, and interpolation , while for FD-

SCPC and LDOS it is largest in the subsurface Ti atoms (Ti7 and Ti10 in Table A.12 in the

Appendix A). Let’s contrast our results with the work by Krüger et al. [136], in which

they studied the distribution of excess electrons in a reduced surface of rutile TiO2 (110)

through the adsorption of Na atoms. Using Resonant photoelectron diffraction (RPED),

they found that the excess of negative charge, coming from the adsorbed Na, locates

mainly in the subsurface Ti atoms (see Fig. 5.10). Namely, 44% of the excess charge



68 5 Fukui Functions

is located in the subsurface titanium Ti6c/Ti7. This behavior is partially recovered or

rather predicted only by the f+(r) calculated with FD-SCPC and LDOS.

(A) (B)

44%

38%

18%

Figure 5.10: Excess charge on the rutile TiO2 (110) surface. Panel A shows a schematic
representation of the excess charge location and the relative weights, measured through
RPED by Kruger et al. [136] Panel B displays the isosurface (± 0.0025 au) of nucleophilic
Fukui functions f+(r) calculated using the FD-SCPC methodology.



Chapter 6

Fukui Potentials

As previously mentioned, the Fukui potential corresponds to the electrostatic potential

due to a charge distribution equals to a Fukui function. In principle, it can be deter-

mined straightforward via Eq. 2.22, i.e., as a difference of ‘molecular electrostatic poten-

tial’ or via Eq. 3.9. However, using these equations presents formal difficulties, mainly

related to incorporating a CBC in the supercell, for which a correction is needed. In this

chapter, we discuss about the corrections methods, alignment, and the corresponding

potentials generated. The Fukui potentials are obtained for both electrophilic, v−f (r),

and nucleophilic Fukui functions, v+f (r), for the four titanium surfaces: Ti (0001), TiC

(001), anatase TiO2 (001), and rutile TiO2 (110). As in the previous chapter, we provide

results for four other surfaces: Pt (111), ZrC (001), Mg (001), and rutile SnO2 (110) in

Appendix C. We used three types of correction: ECC, SCPC, and electrodes’ methods,

which are described in Secs. 3.2, 3.3, and 3.4, respectively, in Chapter 3. Using these cor-

rection methods give rise to five calculation methodologies: i) FD with ∆N = ±1 from

VASP calculations, i.e., considering the CBC; ii) FD-ECC from Octopus calculations;

iii) SCPC; iv) electrodes-FD; and v) electrodes-interpolation with δN = ±0.05,±0.10,

±0.15 electrons.

6.1 Alignment

The Fukui potential can be seen as a change in the electrostatic potential due to an elec-

tron transfer. If two species A and B approach to each other, A will be under the elec-

69
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trostatic potential of B and vice versa. However, if an amount electrons are transfer

between A and B, their electron densities will change and so will do the electrostatic

potential. The Fukui functions measures the change in density and the Fukui potentials

in electrostatic potentials. An aspect that deserves care is where to set the zero of the

electrostatic and Fukui potentials. In the case of the former, it is natural to set it at in-

finity perpendicular to the surface. As the Fukui potential corresponds to a non-neutral

charge distribution, as it moves away from the surface, it will be that of an infinite plane

of charge, i.e., it grows or decreases linearly. Note, however, that in the real physical

system there is charge neutrality. The charge transferred to or from the surface is bal-

anced by a layer of absorbed or solution molecules. Takes for instance the interface

between and electrode and electrolyte. In this, a positive (or negative) charge buildup at

the interface of the electrode and electrolyte solution, which is partially neutralized by

the gathering of counterions in the solution through the action of the electrostatic poten-

tials, resulting in a structured electric double layer. Then, it seems plausible to establish

the zero of Fukui potentials at the same place where the electrostatic zero is established.

Namely, we align the Fukui potential fixing its zero in the point where both the electro-

static potential and Fukui function begin to have their asymptotic decay which is when

the valence electron density is ρ(r)≈ 10−4 a−3
0 for all surfaces considered. This criteria is

in similar to Bader’s suggestion [137] that the contour surface of an small value of den-

sity , ρ(r) = 0.001 a−3
0 , reflects the specific features of chemical species, e.g., lone pairs,

strained bonds, and so on.

6.2 Correction

The presence of the CBC in the calculation of the electronic structure of surfaces with

a net charge makes it imperative to perform a correction to the Fukui potential. As

we have previously mentioned, one of the methodologies used to correct the Fukui po-

tential is the a posteriori correction of the electrodes’ method. Originally Krishnaswamy

et al. [54] proposed to fix the limits of the material’s dielectric profile by the atomic
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positions of the outermost layers of atoms. However, both the electron density and elec-

trostatic potential spill over for some angstroms from that position to the vacuum. For

this reason, we modified this boundary condition and optimized it to match, as best as

possible, the planar averages of ECC Fukui potentials, since in ECC there is not need to

define a dielectric profile as this is implicit in the calculation itself. In contrast, the SCPC

method requires a dielectric profile to compute the correction, υcor(r). The best match is

achieved when the dielectric step is place around the position where the planar average

of the electron density is equal to ρ(r) = 0.02a−3
0 . As an example, Fig. 6.1 schematically

shows the modification in this boundary condition. We also tested our results changing

this position in few tenths of angstrom. Computed planar averages of the Fukui poten-

tial are stable to this change.

(A)

(B)

Figure 6.1: Schematic diagram depicting the auxiliary system featuring reference elec-
trodes at the cell edges with the dielectric profile fixed by (a) the atomic positions of the
outermost surface layers and by (b) the position where the planar average of the valence
electron density is equal to ρ(r) = 0.02a−3

0 . The black curve corresponds to the planar
average of the valence electron density. Adaptation of the original illustration by Krish-
naswamy et al. [54]

The planar averages for all titanium surfaces and methodologies used are shown in Fig.
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5.2 for both v−f (r) and v+f (r) Fukui potentials. As one can see, the Fukui potentials with

correction schemes are in a good agreement in the main region of chemical interest,

which is the transition from the vacuum to the surface (the region between the black

and red dashed lines for each plot). These plots suggest that in most cases a simple a

posteriori correction could be sufficient as it matches the profile of an method free of CBC

(ECC) and one in which this self-consistently corrected, SCPC . However, there are sev-

eral details and differences that are worth discussing. First, the SCPC method presents

great differences in the central region of the slabs (bulk), compared to the rest of the cor-

rection schemes. Even tough it is a region inaccessible to almost all chemical reagents,

it could have consequences in the understanding of the chemistry of hydrogen atoms

migrating underneath the surfaces [138]. Second, differences are observed between the

resulting Fukui potentials using the electrodes’ method with FD and interpolation (see

dark-yellow and light-red curves in Fig. 6.2, respectively). Since in both cases the correc-

tion performed is the same, the differences arise essentially from the Fukui functions. In

the particular case of v+f (r) with FD, the CBC locates a large fraction of Fukui function

in the vacuum. As consequence, the Fukui function and potential in the slab and the

region of chemical interest are underestimated. Third, one can observe that in anatase

TiO2 (001) the decay of the Fukui potentials into the vacuum is asymmetric. This is a

direct consequence of the asymmetry of the slab. In this case, the zero of the potential is

set in the side of the relaxed layers (the left in each graph).
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Figure 6.2: Planar average of both electrophilic and nucleophilic Fukui potentials for
the titanium surfaces: Ti (0001), TiC (001), anatase TiO2 (001), and rutile TiO2 (110).
The black dashed vertical lines represent the position where the planar average electron
density is equal to ρ = 10−4 a−3

0 and the red dashed lines represent the position of the
surface atoms.



74 6 Fukui Potentials

(A)

(D)

(B) (C)

(E) (F)

Figure 6.3: Contour maps of the Fukui potential v+f (r) for the rutile TiO2 (110) sur-
face. Panels (a), (b), and (c) show the contour maps in the X-Y plane at the position
where the planar average of the electronic density equals 0.001a−3

0 , calculated using the
Electrodes-FD, Electrodes-Inter, and SCPC methods, respectively. Panels (d), (e), and (f)
present the contour maps in the X-Z plane located at the bridging oxygen (O2c), calcu-
lated using the Electrodes-FD, Electrodes-Inter, and SCPC methods, respectively.

Although the planar averages of the potential computed with different methods are in

fair agreement with each other, they do not capture differences in X-Y planes. As an

example, we plotted contour maps of v+f (r) for rutile TiO2 (110) surface, due to the

important characteristic and differences observed in the f+(r) of this system (see Fig.

6.3). One can see that in the X-Y plane representative of the van der Waals surface

(where the average of density is 0.001a−3
0 ), the topology of the potential found with

SCPC is more symmetric around the oxygen atom (center of the plot) than the others

methods. Potentials by finite differences and interpolation are prolate, with the points

of greatest value being strongly located in the twofold-coordinated bridge oxygen atom

(see Fig. 4.2 panel D). On the other hand, the contour maps for X-Z plane shows that

the Fukui potential from SCPC varies smoothly and it has its largest values into the

slab model, whereas the Fukui potential from the another two methodologies have their
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largest values more towards the vacuum, that is, to the surface and subsurface layers.

These differences in topology could be important when the Fukui potential is used to

predict reactivity of different sites of the surfaces, which will be addressed in the next

chapter.



Chapter 7

Chemical Model

In this chapter, we present results on the application of the corrected Fukui potential. In

Section 7.1, we examine the adsorption of a Na atom on rutile TiO2 (110) surface using

perturbation theory, providing evidence of the utility and scope of the model. Section

7.2 shows another application, presenting results for the adsorption of an Cl atom on the

same surface. Finally in Section 7.3 we show the results for a general model, illustrating

how electron transfer modulates the regioselectivity of the interactions.

7.1 Perturbative Perspectives: sodium adsorption

The corrected Fukui potential, along with the electrostatic potential, can be used to

model and predict the interaction energy of an attacking (perturbing) agent, B, on a

given substrate, A. As Ayers et al. [92] has stated, there are two possible effects due to

the perturbation of B on A. First, the presence of B changes the external potential “felt”

by the electrons in A; that is, the external potential is now due to the nuclei in A, but

also to nuclei and electrons in B, vA(r) → vA(r) + δv. Second, electrons may flow from

A to B, or vice-versa. Thus, the number of electrons in A may change from the number

in the isolated surface, NA → NA + ∆N. Considering these changes as perturbations to

the isolated surface A, we may use Taylor expansion to characterize the changes (see Eq.

2.2), which after replacing the derivatives for their respective descriptors from CDFT, it

76
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can be rewritten as

∆U(r) = µ±∆N −
∫ (

∑
α∈S

[
Zαδ(r′ − Rα)

]
− ρ(r′)− ∆N f±(r′)

)
δv(r)dr′ (7.1)

where the superscripts “+” and “-” indicate differentiation from above and below, re-

spectively.

As a example of the usefulness of the perturbative scheme and the corrected Fukui po-

tential, we consider the problem of predicting where a surface undergoes nucleophilic

attack. In particular, we explore the reactivity of the rutile TiO2 (110) surface toward an

electron donor species, using the interaction energy as a measure of reactivity, that is,

to predict the most and least energetically favorable regions. The donor species used as

a probe is a sodium atom due its small electronegativity (it readely donates electrons)

and because its interaction with rutile TiO2 (110) has been studied theoretically and ex-

perimentally,and the preferential adsorption site is precisely known [136, 139]. Sodium

adsorbs on an ’in-between’ site where it is bound to two O2c atoms at 2.25Å and one

in-plane oxygen atom (O3c) at 2.40Å. This site is shown in Fig. 7.1. Apart from a slight

change in bond relaxation, sodium does not perturb much the rutile lattice, ensuring

minimal disruption to the overall structure [140]. We do not want to miss the oppor-

tunity to emphasize that the site at which the sodium atom (or any other) adsorbs to

the surface does not have to be the one with the highest value of the Fukui function or

potential. The adsorption site will be determined by a balance between electrostatics,

electron transfer, Pauli repulsion, van der Waals, etc. Our model only captures the first

two.
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(A) (B)
O2cO3c

Figure 7.1: Adsorption site of a sodium atom on the rutile TiO2 (110) surface, indicating
the two types of surface oxygen atoms. Panel (A) shows a top view of the adsorption
site, while panel (B) presents a side view.

With the aim to obtain a simple, but also useful model to the perturbation, we can

approximate the change in the external potential due to the atom by a effective point

charge, −q/|r − r′|, i.e., δv(r) = −q/|r − r′|. Substituting the latter into the truncated

expression of the perturbation expansion,

∆U(r) = µ±∆N + ∑
α

qZα

|Rα − r| −
∫ qρ(r′)

|r − r′| dr′︸ ︷︷ ︸
qΦ(r)

−∆N
∫ q f±(r′)

|r − r′| dr′︸ ︷︷ ︸
qv f± (r)

= µ±∆N + qΦ(r)− q∆Nv f±(r)

(7.2)

where µ±, Φ(r) and v f±(r) are the electronic chemical potential, electrostatic potential

and Fukui potential of the surface, respectively, while ∆N is the number of electrons

transferred between the atom and the surface or vice versa, and q is the atom effective

charge. Because the first term in Eq. 7.2 does not depend on the position of the attacking

reagent, the second and third terms control the regioselectivity of the adsorption.

In this equation the two extreme control regimes of a chemical reaction naturally arise.

The second term is purely electrostatic, while the third term captures electron transfer

effects.

Since the surface-atom system is closed, we will assume that q = ∆N. The change in the
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number of electrons, ∆N, can be estimated using the parabolic Parr and Pearson’s [141]

model for the association reaction A + B → AB, in which ∆N is given by

∆N =
µA − µB
ηA + ηB

(7.3)

where µ and η are the electronic chemical potential and the absolute hardness, respec-

tively. These last two terms can be obtained in terms of ionization potential (I) and the

electron affinity (A)

µi = − Ii + Ai
2

(7.4)

and

ηi = Ii − Ai (7.5)

Because the theoretical calculation of the ionization potential and the electron affinity

in the supercell requires the shifting of the eigenvalues of the top of valence band, tVB,

and the bottom of the conduction band, bCB, with respect to the value of the electrostatic

potential in vacuum, and obtaining the latter does is not easy for the case of open shell

systems (such as the sodium atom), we decided to use benchmark values proposed from

reference data for ionization potentials and electron affinities, which are µ = −2.84eV

and η = 4.59eV [142]. For the rutile TiO2 (110) surface, I was approximated by the

negative of the eigenvalue of the tBC and A by the negative of the bCB, I = 7.35eV

and A = 5.50eV. Introducing these values in Eq. 7.3, we obtain that sodium donates

∆N ≈ 0.5 electrons to the surface.
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(A) (B)

Figure 7.2: Spatial distribution of a 63-point grid of sodium atoms positioned 0.5 Å
above the van der Waals surface of rutile TiO2 (110). Panel (A) displays the points of the
grid from top view perspective. Panel (B) is a side view of the same points, accompanied
by the isosurface of electron density at an isovalue of 0.001a−3

0 . Titanium atoms are
depicted with sky blue spheres, oxygen atoms with red spheres, and sodium atoms
with yellow spheres.

With the aim of evaluating the interaction energy of the Na probe with all the surface,

we constructed a grid with 63 points in a 2 × 1 supercell surface-model to place the Na

atom. The points are separated by an stepsize of 0.25Å in the X⃗ direction and 0.42Å in

the Y⃗ direction. Because in our model the effects of correlation and exchange between

the electrons of the two subsystems are neglected, the probes are placed 0.5Å above the

van der Waals surface, thus avoiding a large overlap between their electron densities.

Fig. 7.2 shows the arrangement of the grid points on the surface model used.
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(A) (B)

Figure 7.3: Heat maps of the interaction energy, ∆Uint, of a sodium atom positioned
0.5Å above the van der Waals surface of rutile TiO2 (110) calculated with PBE (panel
A) and with the CDFT model (panel B). The maximum and minimum points for both
methodologies are shown enclosed by concentric circles. The position reported both
theoretically and experimentally for a Na atom adsorbed on rutile TiO2 (110) is shown
with a black star in both panels. ∆Uint = U[Na − TiO2]− U[Na]− U[TiO2] and ∆Uint =
qΦ(r)− q∆Nv f+(r) for PBE and CDFT, respectively.

Heat maps representing the interaction energy between the sodium atom probe and the

surface are shown in Fig. 7.3. Panel (A) shows the heat map of the actual interaction

energy computed the PBE functional. As Eq.7.2 does not take into account structural

relaxation, the interaction energy is computed keeping ions fixed. Panel (B) depicts the

heat map of the interaction energy (U − µ±∆N) estimated from the CDFT model. As Na

atoms donates electrons to the surface, one has to use f+(r) for the latter. Specifically, we

used the one computed with the SCPC method. As we can observe from Fig. 7.3, both

heat maps exhibit the same trends. The region with the largest (more positive) interac-

tion energy are displayed in shades of blue, extending from 0 to ∼ 1Å in the Y-direction

(or b⃗). This region corresponds to the vicinity of the surface titanium atom Ti5c. The

largest interaction energy happens when the Na sits on top of Ti5c, which is indicated

with blue circle in Fig. 7.3. Intermediate values of the interaction energy are observed

in the vicinity of the oxygen atom O2c (upper central region). The stronger interactions
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(red) take place in points between Ti6c atom and the triple-coordinated oxygen (O3c).

The point with smallest interaction energy of our model is enclosed with a red circle in

Fig. 7.3.

The capability of CDFT model to predict the interaction energy of this particular system

is strikingly. It does not only captures the general topology of the actual interaction

energy, but it predict with good accuracy the place where Na prefers to adsorb on the

surface. X-ray absorption fine structure experiments show that Na adsorbs in the 3-fold

hollow site formed by O3c and O2c (see Fig. 7.1). This experimental adsorption site is

depicted in Fig. 7.3 with a black star, which is very close to the grid point with the

smallest (more negative) interaction energy. We believe that a finer mesh of dots could

bring the predicted site closer to the experimental site.

Figure 7.4: Correlation between the interaction energy at the PBE level and the in-
teraction energy predicted by our CDFT model (using only the last two terms of
Eq. 7.2). A linear fit yields a slope of 1.39, an intercept of −0.98eV, with r2 = 0.86.
∆Uint = U[Na − TiO2]− U[Na]− U[TiO2] and ∆Uint = qΦ(r)− q∆Nv f+(r) for PBE and
CDFT, respectively.

In order to know more details about the usefulness of this model for semiquantitative

purposes, that is, to go beyond the trends shown in the heat maps, we made a scatter
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plot between the interaction energy at the PBE level and our CDFT model. As we can

see from Fig. 7.4, there is a good correlation between both quantities, with the linear fit

having R2 = 0.86. This result supports the idea that a truncation to second order in the

perturbative expansion (Eq. 2.2) is adequate and could be sufficient for semiquantitative

purposes.

7.2 Perturbative Perspectives: chlorine adsorption

As second example of the usefulness of corrected Fukui potential, we considered the

adsorption of a chlorine atom on rutile TiO2 (110) surface. From experiments and cal-

culations, Vogtenhuber et al. have given evidence that in a clean TiO2 (110) surface, Cl

adsorbs preferentially on top of fivefold coordinated Ti atoms, Ti5c, (see Fig. 7.5) [133,

134].

(A) (B)

Ti5c

Figure 7.5: Representation of the adsorption site of a chlorine atom on the rutile TiO2
(110) surface, indicating the fivefold coordinated titanium atom. Panel (A) shows a top
view of the adsorption site, while panel (B) presents a side view.

In contrast to sodium atom, chlorine is a strong electron attractor, with a very negative

chemical potential (-8.29 eV. Compare with Na, -2.84) [142]. This implies that rutile

surface will loose electrons and v−f (r) should be used in 7.2. The change in the number

of electrons was determined via Parr-Pearson model, Eq. 7.3. For the chlorine atom,
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we used the benchmark values proposed from reference data for ionization potentials

and electron affinities, which are µ = −8.29eV and η = 9.35eV [142]. For the surface,

we considered the same values as before, i.e., I = 7.35eV and A = 5.50eV. With these

values, the Parr-Pearson model predicts a flux of ∆N ≈ 0.2 e from the surface to the

chlorine atom. With this, we built a heat map of the interaction energy in the same

way we did with Na (see Fig. 7.6). As one can see, the stronger interactions (more

negative values) are located on fivefold coordinated Ti atoms, Ti5c, in perfect agreement

with the experimental and theoretical results [133, 134]. While the weaker interactions

(more positive values) correspond to the bridging oxygen atoms O2c. It is worth noting

that although there is a considerable electron transfer, the adsorption site matches the

site where the electrostatic potential is largest. That is, the adsorption is dominated by

electrostatics. Nevertheless, both contributions–electrostatic and electron transfer, have

to be taken into account to obtain a good description.

Figure 7.6: Heat map of the interaction energy, ∆Uint, of a chlorine atom positioned
0.5Å above the van der Waals surface of rutile TiO2 (110) with the CDFT model. The
maximum and minimum points are shown enclosed by concentric circles. ∆Uint =
qΦ(r)− q∆Nv f−(r).
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7.3 Perturbative Perspectives: a general model

A general model of the interaction between chemical species and surface can be con-

structed using Eq. 7.2, where ∆N and q enter as parameters that control the relative

importance of electron charge and electrostatic effects. Paul Ayers et al. proposed a

general-purpose reactivity indicator based on a similar idea, although they a much sup-

plied version of the interaction energy by replacing local quantities by condensed values

[82]. Here we consider the case in which the charge of the reactive site is fixed, while the

number of electrons transferred is variable. Fig. 7.7 shows the heat maps for the interac-

tion energy of a model species with active site charge q = −0.25 and charge transfer in

the interval from ∆N = [0,0.5]. For ∆N = 0 the interaction is determined by the electro-

static potential of the surface, resulting in a more favorable interaction on the bridging

oxygen atom O2c. By incorporating the effect of electron donation towards the surface,

the Fukui potential ”competes” with the electrostatic potential. Thus, for ∆N = 0.1,0.2

and 0.3, the model predicts that the most favourable interaction is between the model

attacking agent and the surface over the Ti6c site, while for ∆N = 0.4 and 0.5, the most

favourable interaction moves towards a hollow site of the oxygen, which precisely the

site favorable for the sodium adsorption, as it was previously discussed. As we can

see, in this model the regioselectivity of the interaction is evidently dependent on the

amount of electrons flowing between the species, thus highlighting the importance of

an adequate Fukui potential for a general case where both effects, electrostatics and

electron transfer are important.
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Figure 7.7: Heat maps of interaction energy, ∆Uint, for a model with charge q = −0.25
varying the change in the number of electrons, ∆N, from 0 to 0.5, for interactions with
rutile TiO2 (110) surface. The maximum are shown enclosed by concentric red circles.
∆Uint = qΦ(r)− q∆Nv f±(r).



Chapter 8

Conclusions

In this thesis, we explain how Conceptual Density Functional Theory can be a useful tool

in solid-state reactivity. Our research focused on the Fukui function and Fukui potential,

specifically on the effects of orbital relaxation and the incorporation of the compensating

background charge in the calculation of the electronic structure of net charged systems.

We studied four titanium surfaces as models: Ti (0001), TiC (001), anatase TiO2 (001),

and rutile TiO2 (110).

In Chapter 5, we calculated Fukui functions using five different methodologies, two

of which are expected to fully correct or be free of the background charge (SCPC and

ECC). Our results show that the use of finite differences without correction should be

restricted to the calculation of f−(r), since for f+(r), a significant fraction of the anion

charge density build up in the vacuum region. Our results also demonstrate that re-

laxation effects can become so significant that they substantially modify the topology

of Fukui functions. Comparison with theoretical and experimental results allows us to

conclude that, a priori, a self-consistent correction (as provided in SCPC) is necessary,

especially for f+(r), where the largest pathological differences are observed.

In Chapter 6, we calculate the Fukui potentials for the Fukui functions obtained above.

We show that an simple a posteriori correction is sufficient to correct the potential in the

region of main chemical interest, that is, the transition between the vacuum and the sur-

87
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face, but not necessarily within the slab model (bulk).

We leverage the results obtained for the Fukui potentials in the previous chapter to ad-

dress the chemical-reaction-prediction problem in Chapter 7. We show that a suitable

Fukui potential allows predicting the adsorption sites of nucleophiles and electrophiles

on a surface. Specifically, by using a perturbation series of Equation (7.2), we predict the

adsorption sites of sodium and fluorine atoms on a rutile TiO2 (110) surface. Moreover,

we illustrate how, in general, a reaction is modulated by both electron transfer and elec-

trostatic interactions effects. The former are well captured by the Fukui potential and

the latter by the electrostatic potential.

Summarizing, this work provides a methodolgy for predicting adsorption sites and un-

derstanding surface interactions. It has potential applications in designing more effi-

cient catalysts and developing advanced materials, thereby contributing to the field of

solid-state reactivity.
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Appendix A

Condensed Fukui Functions

A.0.1 Condensed Donor Fukui Function

• Ti (0001) Surface

Table A.1: Condensed Donor Fukui Function, f−(r), at all sites according to Bader
partitioning.

Site f− FD f− FD-SCPC f− Interpolation f− LDOS δ = 0.1 f− FD-ECC

Ti1 0.026414 0.023383 0.025186 0.043980 -0.009687

Ti2 0.030389 0.039305 0.028275 0.061109 -0.000065

Ti3 0.026414 0.023383 0.025186 0.043980 -0.009679

Ti4 0.026414 0.023383 0.025186 0.043980 -0.009690

Ti5 0.030389 0.039305 0.028275 0.061109 -0.000068

Ti6 0.026414 0.023383 0.025186 0.043980 -0.009678

Ti7 0.185159 0.183612 0.185339 0.107528 0.259670

Ti8 0.023223 0.023350 0.025343 0.067937 0.000044

Ti9 0.023224 0.023350 0.025343 0.067937 0.000093

Ti10 0.185159 0.183612 0.185339 0.107528 0.259669

Ti11 0.023223 0.023350 0.025343 0.067937 0.000048

Ti12 0.023224 0.023350 0.025343 0.067937 0.000046

Ti13 0.185177 0.183617 0.185327 0.107528 0.259699

Ti14 0.185177 0.183617 0.185327 0.107528 0.259591
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• TiC (001) Surface

Table A.2: Condensed Donor Fukui Function, f−(r), at all sites according to Bader
partitioning.

Site f− FD f− FD-SCPC f− Interpolation f− LDOS δ = 0.2 f− FD-ECC

Ti1 0.008643 0.010056 0.007423 0.027999 -0.000527

Ti2 0.009280 0.016889 0.009329 0.024875 -0.001433

Ti3 0.009280 0.016889 0.009329 0.024875 -0.001433

Ti4 0.008643 0.010056 0.007423 0.027999 -0.000438

Ti5 0.008643 0.010056 0.007423 0.027999 -0.000527

Ti6 0.008643 0.010056 0.007423 0.027999 -0.000438

Ti7 0.006028 0.003726 0.005069 0.023341 -0.003416

Ti8 0.006028 0.003726 0.005069 0.023341 -0.003416

Ti9 0.030741 0.039163 0.028458 0.056163 0.043640

Ti10 0.030741 0.039163 0.028458 0.056163 0.045940

Ti11 0.006028 0.003726 0.005069 0.023341 -0.003416

Ti12 0.006028 0.003726 0.005069 0.023341 -0.003416

Ti13 0.030743 0.039163 0.028459 0.056163 0.043640

Ti14 0.030743 0.039163 0.028459 0.056163 0.045940

C1 0.022199 0.024134 0.022654 0.038629 0.003507

C2 0.016525 0.021464 0.017359 0.026320 0.000579

C3 0.016525 0.021464 0.017359 0.026320 0.000579

C4 0.022199 0.024134 0.022654 0.038629 0.002995

C5 0.016525 0.021464 0.017359 0.026320 0.000579

C6 0.016525 0.021464 0.017359 0.026320 0.000579

C7 0.011676 0.012750 0.013607 0.034669 0.000290

C8 0.011676 0.012750 0.013607 0.034669 0.000457

C9 0.160686 0.142335 0.163156 0.049756 0.207239

C10 0.160590 0.142323 0.161025 0.049756 0.207239
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Site f− FD f− FD-SCPC f− Interpolation f− LDOS δ = 0.2 f− FD-ECC

C11 0.011676 0.012750 0.013607 0.034669 0.000290

C12 0.011676 0.012750 0.013607 0.034669 0.000457

C13 0.160702 0.142335 0.163158 0.049756 0.207239

C14 0.160607 0.142322 0.161025 0.049756 0.207239

• Anatase TiO2 (001) Surface

Table A.3: Condensed Donor Fukui Function, f−(r), at all sites according to Bader
partitioning.

Site f− FD f− FD-SCPC f− Interpolation f− LDOS δ = 0.3 f− FD-ECC

Ti1 0.008155 0.008079 0.019864 0.000598 0.000039

Ti2 0.010383 0.022052 0.012867 0.006299 -0.002785

Ti3 0.010855 0.042274 0.011524 0.014963 0.001374

Ti4 0.007718 0.015155 0.008143 0.000941 0.000250

Ti5 0.028363 0.040913 0.028535 0.010003 0.072694

Ti6 0.027869 0.075420 0.026160 0.005482 0.065263

O1 0.017754 0.033220 0.021561 0.001437 -0.001046

O2 0.024302 0.019885 0.016392 0.006355 -0.002271

O3 0.019080 0.033890 0.012971 0.000114 -0.000172

O4 0.018895 0.050107 0.006728 0.000684 -0.003549

O5 0.082154 0.066197 0.088646 0.097492 0.087269

O6 0.021432 0.042951 0.025876 0.000504 -0.002995

O7 0.027503 0.030391 0.019748 0.010736 -0.016343

O8 0.016892 0.018083 0.004101 0.001257 0.000018

O9 0.288721 0.157301 0.309925 0.429917 0.354102

O10 0.286689 0.154338 0.285825 0.170123 0.356174

O11 0.083891 0.155781 0.088749 0.239254 0.096990

O12 0.019342 0.033962 0.012386 0.003842 -0.005008
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• Rutile TiO2 (110) Surface

Table A.4: Condensed Donor Fukui Function, f−(r), at all sites according to Bader
partitioning.

Site f− FD f− FD-SCPC f− Interpolation f− LDOS δ = 0.2 f− FD-ECC

Ti1 0.005933 0.025319 0.006078 0.001505 -0.000447

Ti2 0.005727 0.018421 0.003796 0.003439 -0.000305

Ti3 0.006299 0.013292 0.005628 0.003074 -0.000060

Ti4 0.005505 0.004494 0.004469 0.004079 -0.001218

Ti5 0.006299 0.013292 0.005628 0.003074 -0.000060

Ti6 0.005727 0.018421 0.003796 0.003439 -0.000305

Ti7 0.006433 0.017614 0.004369 0.000024 -0.001359

Ti8 0.004015 0.004308 -0.000014 0.000106 -0.001489

Ti9 0.021816 0.011471 0.032109 0.000153 0.036360

Ti10 0.005818 0.001228 0.000076 0.000723 0.002257

Ti11 0.006433 0.017614 0.004369 0.000024 -0.001359

Ti12 0.004015 0.004308 -0.000014 0.000106 -0.001489

Ti13 0.021816 0.011471 0.032109 0.000153 0.036360

Ti14 0.005818 0.001228 0.000076 0.000723 0.002257

O1 0.013185 0.026191 0.017516 0.073233 0.000537

O2 0.014070 0.019450 0.015877 0.085099 0.000141

O3 0.014697 0.041936 0.019299 0.089811 0.001017

O4 0.012585 0.032983 0.015940 0.053405 0.000200

O5 0.014623 0.041936 0.019407 0.089813 0.001342

O6 0.012577 0.032786 0.016048 0.053407 0.001030

O7 0.013163 0.026224 0.017516 0.073232 0.000537

O8 0.014070 0.019450 0.015877 0.085099 0.000141

O9 0.012577 0.032786 0.016048 0.053407 0.001030

O10 0.012585 0.032983 0.015940 0.053405 0.000200
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Site f− FD f− FD-SCPC f− Interpolation f− LDOS δ = 0.2 f− FD-ECC

O11 0.017793 0.022309 0.026509 0.039411 0.002242

O12 0.009176 0.015478 0.010291 0.027467 0.000580

O13 0.015552 0.032035 0.015383 0.020567 0.001698

O14 0.015675 0.032035 0.015486 0.020567 0.002932

O15 0.007791 0.012026 0.004742 0.004243 0.000380

O16 0.019399 0.021191 0.023102 0.016126 0.001869

O17 0.056796 0.026101 0.053037 0.002904 0.074902

O18 0.057842 0.026140 0.053761 0.002904 0.077995

O19 0.177081 0.078099 0.161812 0.000543 0.299747

O20 0.017793 0.022309 0.026509 0.039411 0.002242

O21 0.009176 0.015478 0.010291 0.027467 0.000580

O22 0.015552 0.032035 0.015383 0.020567 0.001698

O23 0.015675 0.032035 0.015486 0.020567 0.002932

O24 0.007791 0.012026 0.004742 0.004243 0.00038

O25 0.019399 0.021191 0.023102 0.016126 0.001869

O26 0.056796 0.026101 0.053037 0.002904 0.074902

O27 0.057842 0.026140 0.053761 0.002904 0.07799

O28 0.177085 0.078067 0.161621 0.000543 0.299747
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• Pt (111) Surface

Table A.5: Condensed Donor Fukui Function, f−(r), at all sites according to Bader
partitioning.

Site f− FD f− FD-SCPC f− Interpolation f− LDOS δ = 0.3 f− FD-ECC

Pt1 0.183745 0.176356 0.182598 0.062650 0.248905

Pt2 0.026648 0.030873 0.025106 0.073953 -0.000996

Pt3 0.027587 0.029703 0.028969 0.076681 0.001524

Pt4 0.026648 0.030873 0.025106 0.073953 -0.001006

Pt5 0.027587 0.029703 0.028969 0.076681 0.001199

Pt6 0.183745 0.176356 0.182598 0.062650 0.250649

Pt7 0.024040 0.026135 0.026654 0.073430 -0.000290

Pt8 0.024040 0.026135 0.026656 0.073430 -0.000250

Pt9 0.026648 0.030873 0.025106 0.073953 -0.001660

Pt10 0.026648 0.030873 0.025106 0.073953 -0.000342

Pt11 0.027587 0.029703 0.028969 0.076681 0.001479

Pt12 0.027587 0.029703 0.028969 0.076681 0.001244

Pt13 0.183745 0.176356 0.182597 0.062650 0.248905

Pt14 0.183745 0.176356 0.182597 0.062650 0.250649

• ZrC (001) Surface

Table A.6: Condensed Donor Fukui Function, f−(r), at all sites according to Bader
partitioning.

Site f− FD f− FD-SCPC f− Interpolation f− LDOS δ = 0.2 f− FD-ECC

Zr1 0.044112 0.065932 0.048364 0.033905 0.057808

Zr2 0.009437 0.010497 0.009326 0.014152 -0.000391

Zr3 0.009437 0.010497 0.009326 0.014152 -0.000363

Zr4 0.003944 -0.000378 0.004712 0.009974 -0.001766
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Site f− FD f− FD-SCPC f− Interpolation f− LDOS δ = 0.2 f− FD-ECC

Zr5 0.012944 0.020056 0.014798 0.014287 -0.001822

Zr6 0.003944 -0.000378 0.004712 0.009974 -0.001768

Zr7 0.003944 -0.000378 0.004712 0.009974 -0.001766

Zr8 0.012944 0.020056 0.014798 0.014287 -0.001822

Zr9 0.003944 -0.000378 0.004712 0.009974 -0.001768

Zr10 0.044112 0.065932 0.048364 0.033905 0.057808

Zr11 0.009437 0.010497 0.009326 0.014152 -0.000391

Zr12 0.009437 0.010497 0.009326 0.014152 -0.000363

Zr13 0.044112 0.065931 0.048364 0.033905 0.057809

Zr14 0.044112 0.065931 0.048364 0.033905 0.057809

C1 0.014495 0.013355 0.015374 0.048122 -0.002218

C2 0.021204 0.020866 0.022150 0.048827 0.003093

C3 0.014495 0.013355 0.015374 0.048122 -0.002232

C4 0.142996 0.121021 0.137078 0.078189 0.195230

C5 0.017944 0.019113 0.016672 0.034668 0.000699

C6 0.017944 0.019113 0.016672 0.034668 0.000694

C7 0.142993 0.121021 0.137078 0.078189 0.195230

C8 0.017944 0.019113 0.016672 0.034668 0.000699

C9 0.017944 0.019113 0.016672 0.034668 0.000694

C10 0.014495 0.013355 0.015374 0.048122 -0.002218

C11 0.021204 0.020866 0.022150 0.048827 0.003093

C12 0.014495 0.013355 0.015374 0.048122 -0.002232

C13 0.142996 0.121023 0.137077 0.078189 0.195232

C14 0.142993 0.121023 0.137077 0.078189 0.195232



98 A Condensed Fukui Functions

• MgO (001) Surface

Table A.7: Condensed Donor Fukui Function, f−(r), at all sites according to Bader
partitioning.

Site f− FD f− FD-SCPC f− Interpolation f− LDOS δ = 0.3 f− FD-ECC

Mg1 0.000000 0.000000 -0.000068 0.000000 -0.000113

Mg2 0.000000 0.000000 0.000000 0.000008 -0.000035

Mg3 0.000000 0.000000 0.000000 0.000008 -0.000035

Mg4 0.000000 0.000000 -0.000068 0.000000 -0.000113

Mg5 0.000000 0.000000 -0.000068 0.000000 -0.000113

Mg6 0.000000 0.000000 -0.000068 0.000000 -0.000113

Mg7 -0.000583 0.000037 -0.001361 0.000011 -0.001289

Mg8 -0.000583 0.000037 -0.001361 0.000011 -0.001289

Mg9 0.000317 0.000000 0.000115 0.000000 0.007582

Mg10 0.000317 0.000000 0.000115 0.000000 0.007582

Mg11 -0.000583 0.000037 -0.001361 0.000011 -0.001289

Mg12 -0.000583 0.000037 -0.001361 0.000011 -0.001289

Mg13 0.000320 0.000000 0.000116 0.000000 0.007582

Mg14 0.000320 0.000000 0.000116 0.000000 0.007582

O1 0.021096 0.050827 0.030062 0.047289 0.000861

O2 0.025426 0.056709 0.031708 0.047080 0.002197

O3 0.025426 0.056709 0.031708 0.047080 0.002197

O4 0.021096 0.050827 0.030062 0.047289 0.000860

O5 0.025426 0.056709 0.031705 0.047080 0.002197

O6 0.025426 0.056709 0.031705 0.047080 0.002197

O7 0.031944 0.054516 0.030392 0.053878 0.006563

O8 0.031944 0.054516 0.030392 0.053878 0.006562

O9 0.182345 0.113325 0.174183 0.125382 0.234654

O10 0.182345 0.113324 0.174182 0.125382 0.234654
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Site f− FD f− FD-SCPC f− Interpolation f− LDOS δ = 0.3 f− FD-ECC

O11 0.031944 0.054516 0.030392 0.053878 0.006563

O12 0.031944 0.054516 0.030392 0.053878 0.006562

O13 0.182350 0.113325 0.174187 0.125382 0.234654

O14 0.182350 0.113325 0.174185 0.125382 0.234654
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• Reduced SnO2 (110) Rutile Surface

Table A.8: Condensed Donor Fukui Function, f−(r), at all sites according to Bader
partitioning.

Site f− FD f− FD-SCPC f− Interpolation f− LDOS δ = 0.2 f− FD-ECC

Sn1 0.004936 0.007213 0.017564 0.007650 0.000088

Sn2 0.021108 0.016493 0.026960 0.011458 0.000027

Sn3 0.004936 0.007213 0.017564 0.007650 0.000089

Sn4 0.197534 0.169319 0.175173 0.183547 0.300464

Sn5 0.016436 0.015019 0.024803 0.009916 -0.000221

Sn6 0.016437 0.015019 0.024804 0.009916 -0.000240

Sn7 0.085810 0.105165 0.113869 0.076882 0.105160

Sn8 0.011656 0.016102 0.025167 0.009860 0.000117

Sn9 0.011656 0.016102 0.025168 0.009860 0.000116

Sn10 0.004948 0.002291 0.011990 0.002572 -0.000320

Sn11 0.023068 0.016376 0.026831 0.011194 0.000070

Sn12 0.004948 0.002291 0.011990 0.002572 -0.000301

Sn13 0.197535 0.169321 0.175175 0.183547 0.300466

Sn14 0.085810 0.105165 0.113869 0.076882 0.105179

O1 0.010813 0.007152 0.006042 0.004892 -0.000996

O2 0.003796 0.002526 0.003276 0.003343 0.000015

O3 0.010813 0.007152 0.006042 0.004892 -0.000992

O4 0.028302 0.026047 0.023007 0.059083 0.050526

O5 0.006055 0.003107 0.003403 0.002974 -0.000011

O6 0.006055 0.003107 0.003403 0.002974 -0.000010

O7 0.010810 0.007152 0.006042 0.004892 -0.000996

O8 0.003796 0.002526 0.003276 0.003343 0.000016

O9 0.010810 0.007152 0.006042 0.004892 -0.000992

O10 0.028218 0.025983 0.022430 0.059000 0.050526
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Site f− FD f− FD-SCPC f− Interpolation f− LDOS δ = 0.2 f− FD-ECC

O11 0.006055 0.003107 0.003403 0.002974 -0.000011

O12 0.006055 0.003107 0.003403 0.002974 -0.000010

O3 0.012605 0.025370 0.007084 0.008321 -0.002793

O14 0.003700 0.004364 0.003355 0.003122 0.000018

O15 0.013037 0.009386 0.003961 0.002415 -0.000366

O16 0.005683 0.002721 0.003756 0.002721 0.000005

O17 0.004317 0.001366 0.003309 0.002785 0.000018

O18 0.023198 0.050173 0.015469 0.041725 -0.001296

O19 0.013037 0.009386 0.003961 0.002415 -0.000355

O20 0.003700 0.004364 0.003355 0.003122 0.000018

O21 0.012605 0.025370 0.007084 0.008321 -0.002789

O22 0.023198 0.050173 0.015469 0.041725 -0.001295

O23 0.004317 0.001366 0.003309 0.002785 0.000018

O24 0.005683 0.002721 0.003756 0.002721 0.000006

O25 0.028305 0.026048 0.023006 0.059083 0.050532

O26 0.028219 0.025986 0.022430 0.059000 0.050532
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A.0.2 Condensed Acceptor Fukui Function

• Ti (0001) Surface

Table A.9: Condensed Acceptor Fukui Function, f+(r), at all sites according to
Bader partitioning.

Site f+ FD f+ FD-SCPC f+ Interpolation f+ LDOS δ = 0.1 f+ FD-ECC

Ti1 0.022243 0.017167 0.024696 0.045442 -0.005866

Ti2 0.038050 0.020717 0.034353 0.068537 -0.027928

Ti3 0.022243 0.017167 0.024696 0.045442 -0.005473

Ti4 0.022243 0.017167 0.024696 0.045442 -0.005859

Ti5 0.038050 0.020717 0.034353 0.068537 -0.027918

Ti6 0.022243 0.017167 0.024696 0.045442 -0.005478

Ti7 0.180639 0.182975 0.185985 0.094703 0.246170

Ti8 0.027702 0.039703 0.022145 0.075587 0.023271

Ti9 0.027702 0.039294 0.022145 0.075587 0.023623

Ti10 0.180639 0.182975 0.185985 0.094703 0.246170

Ti11 0.027702 0.039703 0.022145 0.075587 0.023282

Ti12 0.027702 0.039294 0.022145 0.075587 0.023642

Ti13 0.181420 0.182977 0.185980 0.094703 0.246384

Ti14 0.181420 0.182977 0.185980 0.094703 0.246369
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• TiC (001) Surface

Table A.10: Condensed Acceptor Fukui Function, f+(r), at all sites according to
Bader partitioning.

Site f+ FD f+ FD-SCPC f+ Interpolation f+ LDOS δ = 0.2 f+ FD-ECC

Ti1 0.009558 0.011090 0.008634 0.033711 0.000327

Ti2 0.010610 0.024750 0.010315 0.040293 -0.000716

Ti3 0.010610 0.024750 0.010315 0.040293 -0.000716

Ti4 0.009558 0.011090 0.008634 0.033711 -0.000250

Ti5 0.009558 0.011090 0.008634 0.033711 0.000327

Ti6 0.009558 0.011090 0.008634 0.033711 -0.000250

Ti7 0.008586 0.006278 0.007613 0.025321 -0.001251

Ti8 0.008586 0.006278 0.007613 0.025321 -0.001251

Ti9 0.041244 0.040036 0.030651 0.050920 0.041486

Ti10 0.041244 0.040036 0.030651 0.050920 0.038228

Ti11 0.008586 0.006278 0.007613 0.025321 -0.001251

Ti12 0.008586 0.006278 0.007613 0.025321 -0.001251

Ti13 0.041753 0.040038 0.030645 0.050920 0.041486

Ti14 0.041753 0.040038 0.030645 0.050920 0.038228

C1 0.018071 0.022623 0.020771 0.036122 0.002907

C2 0.016292 0.024390 0.016872 0.024417 -0.000194

C3 0.016292 0.024390 0.016872 0.024417 -0.000194

C4 0.018071 0.022623 0.020771 0.036122 0.003607

C5 0.016292 0.024390 0.016872 0.024417 -0.000194

C6 0.016292 0.024390 0.016872 0.024417 -0.000194

C7 0.013371 0.010058 0.011385 0.028573 0.000628

C8 0.013371 0.010058 0.011385 0.028573 0.000305

C9 0.180917 0.134462 0.159334 0.048851 0.210011

C10 0.111488 0.134461 0.159323 0.048851 0.210011
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Site f+ FD f+ FD-SCPC f+ Interpolation f+ LDOS δ = 0.2 f+ FD-ECC

C11 0.013371 0.010058 0.011385 0.028573 0.000628

C12 0.013371 0.010058 0.011385 0.028573 0.000305

C13 0.181224 0.134460 0.159278 0.048851 0.210011

C14 0.111789 0.134458 0.159291 0.048851 0.210011



105

• Anatase TiO2 (001) Surface

Table A.11: Condensed Acceptor Fukui Function, f+(r), at all sites according to
Bader partitioning.

Site f+ FD f+ FD-SCPC f+ Interpolation f+ LDOS δ = 0.3 f+ FD-ECC

Ti1 0.040336 0.042317 0.068126 0.242211 0.038719

Ti2 0.055898 0.100800 0.092746 0.220293 0.042258

Ti3 0.044131 0.151906 0.074531 0.223484 0.028917

Ti4 0.040521 0.074389 0.062036 0.240272 0.034250

Ti5 0.061076 0.118746 0.081587 0.037412 0.144840

Ti6 0.045945 0.106783 0.053525 0.0051806 0.082267

O1 0.012098 0.017406 0.006038 0.003914 -0.005996

O2 0.010998 0.011215 0.011938 0.003325 0.000736

O3 0.009512 0.026814 -0.001577 0.003816 -0.007837

O4 0.004793 0.049926 -0.000262 0.002573 -0.006177

O5 0.030611 0.014172 0.084275 0.001366 0.095779

O6 0.011617 0.057912 0.001778 0.003819 0.002034

O7 0.012925 0.013531 0.011160 0.003285 -0.000185

O8 0.011707 0.013618 0.006041 0.003836 -0.006375

O9 0.280987 0.075610 0.187379 0.000440 0.233297

O10 0.287448 0.046312 0.182985 0.000736 0.250645

O11 0.029145 0.054500 0.075212 0.001500 0.074470

O12 0.010252 0.024042 0.002482 0.002538 -0.001942
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• Rutile TiO2 (110) Surface

Table A.12: Condensed Acceptor Fukui Function, f+(r), at all sites according to
Bader partitioning.

Site f+ FD f+ FD-SCPC f+ Interpolation f+ LDOS δ = 0.2 f+ FD-ECC

Ti1 0.025052 0.022372 0.031090 0.046517 0.047265

Ti2 0.010082 0.000483 0.011296 0.001963 0.002625

Ti3 0.020556 0.030968 0.024708 0.050604 0.020367

Ti4 0.009141 0.005569 0.006776 0.000742 -0.001041

Ti5 0.020556 0.030968 0.024708 0.050604 0.020367

Ti6 0.010082 0.000483 0.011298 0.001963 0.002625

Ti7 0.046627 0.316773 0.079459 0.296705 0.062441

Ti8 0.013784 0.008572 0.014105 0.011842 -0.003127

Ti9 0.048566 0.037667 0.064030 0.090895 0.064303

Ti10 0.008700 -0.005997 0.001488 0.000426 0.001154

Ti11 0.046627 0.316773 0.079459 0.296705 0.062441

Ti12 0.013784 0.008572 0.014105 0.011842 -0.003127

Ti13 0.048566 0.037667 0.064030 0.090895 0.064303

Ti14 0.008700 -0.005997 0.001488 0.000426 0.001154

O1 0.007878 0.003887 0.007468 0.003030 -0.004647

O2 0.006259 0.004716 0.003208 0.000124 -0.008649

O3 0.006899 0.000069 0.007528 0.000025 -0.006675

O4 0.007889 0.005796 0.006779 0.000716 -0.003598

O5 0.006884 0.000069 0.007371 0.000025 -0.005087

O6 0.008046 0.005796 0.006778 0.000754 -0.002225

O7 0.007878 0.003887 0.007468 0.003030 -0.004647

O8 0.006259 0.004716 0.003208 0.000124 -0.008649

O9 0.008046 0.005796 0.006778 0.000754 -0.002225

O10 0.007889 0.005796 0.006778 0.000716 -0.003598
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Site f+ FD f+ FD-SCPC f+ Interpolation f+ LDOS δ = 0.2 f+ FD-ECC

O11 0.003711 0.003152 0.002874 0.000137 -0.000983

O12 0.004407 0.004514 0.001415 0.010287 -0.002184

O13 0.006384 0.007912 0.003872 0.000765 -0.006330

O14 0.006384 0.007977 0.003938 0.000765 -0.005902

O15 0.003935 0.000104 -0.000362 0.001471 -0.002585

O16 0.005659 -0.003415 0.008062 0.000089 -0.004255

O17 0.026067 0.005487 0.052565 0.002611 0.071902

O18 0.025944 0.005487 0.052453 0.002611 0.072036

O19 0.214424 0.046082 0.130047 0.000550 0.232163

O20 0.003711 0.003152 0.002874 0.000137 -0.000983

O21 0.004407 0.004514 0.001415 0.010287 -0.002184

O22 0.006384 0.007912 0.003872 0.000765 -0.006330

O23 0.006384 0.007977 0.003938 0.000765 -0.005902

O24 0.003935 0.000104 -0.000362 0.001471 -0.002585

O25 0.005659 -0.003415 0.008062 0.000089 -0.004255

O26 0.026067 0.005487 0.052565 0.002611 0.071902

O27 0.025944 0.005487 0.052453 0.002611 0.072036

O28 0.215847 0.046081 0.128919 0.000550 0.232163
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• Pt (111) Surface

Table A.13: Condensed Acceptor Fukui Function, f−(r), at all sites according to
Bader partitioning.

Site f+ FD f+ FD-SCPC f+ Interpolation f+ LDOS δ = 0.05

Pt1 0.181982 0.175043 0.180402 0.062650

Pt2 0.026661 0.032362 0.029524 0.073953

Pt3 0.028556 0.029413 0.028626 0.076681

Pt4 0.026661 0.032362 0.029524 0.073953

Pt5 0.028556 0.029413 0.028626 0.076681

Pt6 0.181982 0.175043 0.180416 0.062650

Pt7 0.025532 0.026366 0.022864 0.073430

Pt8 0.025532 0.026366 0.022864 0.073430

Pt9 0.026661 0.032362 0.029524 0.073953

Pt10 0.026661 0.032362 0.029524 0.073953

Pt11 0.028556 0.029413 0.028626 0.076681

Pt12 0.028556 0.029413 0.028626 0.076681

Pt13 0.182051 0.175042 0.180435 0.062650

Pt14 0.182051 0.175043 0.180417 0.062650

• ZrC (001) Surface

Table A.14: Condensed Acceptor Fukui Function, f+(r), at all sites according to
Bader partitioning.

Site f+ FD f+ FD-SCPC f+ Interpolation f+ LDOS δ = 0.2

Zr1 0.056369 0.138332 0.051226 0.038869

Zr2 0.012691 0.013525 0.009524 0.024383

Zr3 0.012691 0.013525 0.009524 0.024383

Zr4 0.011893 0.000964 0.005473 0.013484
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Site f+ FD f+ FD-SCPC f+ Interpolation f+ LDOS δ = 0.2

Zr5 0.013275 0.031991 0.014587 0.024330

Zr6 0.011893 0.000964 0.005473 0.013484

Zr7 0.011893 0.000964 0.005473 0.013484

Zr8 0.013275 0.031991 0.014587 0.024330

Zr9 0.011893 0.000964 0.005473 0.013484

Zr10 0.056369 0.138332 0.051226 0.038869

Zr11 0.012691 0.013525 0.009524 0.024383

Zr12 0.012691 0.013525 0.009524 0.024383

Zr13 0.056156 0.138331 0.051228 0.038869

Zr14 0.056156 0.138331 0.051228 0.038869

C1 0.012870 0.005040 0.015344 0.042215

C2 0.020596 0.023484 0.022579 0.052460

C3 0.012870 0.005040 0.015344 0.042215

C4 0.128798 0.046100 0.133759 0.066188

C5 0.010872 0.018304 0.016085 0.026467

C6 0.010872 0.018304 0.016085 0.026467

C7 0.128798 0.046101 0.133758 0.066188

C8 0.010872 0.018304 0.016085 0.026467

C9 0.010872 0.018304 0.016085 0.026467

C10 0.012870 0.005040 0.015344 0.042215

C11 0.020596 0.023484 0.022579 0.052460

C12 0.012870 0.005040 0.015344 0.042215

C13 0.128156 0.046098 0.133766 0.066188

C14 0.128156 0.046098 0.133767 0.066188



110 A Condensed Fukui Functions

• MgO (001) Surface

Table A.15: Condensed Acceptor Fukui Function, f+(r), at all sites according to
Bader partitioning.

Site f+ FD f+ FD-SCPC f+ Interpolation f+ LDOS δ = 0.3

Mg1 0.000000 0.000015 0.000027 0.009181

Mg2 0.000000 0.000000 0.000001 0.003236

Mg3 0.000000 0.000000 0.000001 0.003236

Mg4 0.000000 0.000015 0.000027 0.004407

Mg5 0.000000 0.000015 0.000027 0.009181

Mg6 0.000000 0.000015 0.000027 0.004407

Mg7 -0.000046 -0.000006 0.019082 0.015203

Mg8 -0.000046 -0.000006 0.019082 0.015203

Mg9 0.130960 0.186296 0.123187 0.189929

Mg10 0.130960 0.186296 0.123187 0.178989

Mg111 -0.000046 -0.000006 0.019082 0.015203

Mg12 -0.000046 -0.000006 0.019082 0.015203

Mg13 0.131357 0.100789 0.123187 0.189929

Mg14 0.131425 0.100884 0.123187 0.178989

O1 0.003854 0.002351 0.004535 0.002186

O2 0.020034 0.005343 0.019304 0.003473

O3 0.020034 0.005343 0.019304 0.003473

O4 0.003854 0.002351 0.004535 0.002186

O5 0.020285 0.005324 0.019156 0.003473

O6 0.020285 0.005324 0.019156 0.003473

O7 0.020327 0.011855 0.020777 0.012715

O8 0.020327 0.011855 0.020777 0.009475

O9 0.076609 0.150572 0.244734 0.026265

O10 0.076609 0.150572 0.011476 0.026265
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Site f+ FD f+ FD-SCPC f+ Interpolation f+ LDOS δ = 0.3

O11 0.020327 0.011855 0.020777 0.012715

O12 0.020327 0.011855 0.020777 0.009475

O13 0.076305 0.025549 0.002754 0.026265

O14 0.076305 0.025549 0.002754 0.026265
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• Reduced Rutile SnO2 (110) Surface

Table A.16: Condensed Acceptor Fukui Function, f+(r), at all sites according to
Bader partitioning.

Site f+ FD f+ FD-SCPC f+ Interpolation f+ LDOS δ = 0.2

Sn1 0.019138 0.022198 0.005354 0.022198

Sn2 0.020547 0.015415 0.017198 0.015415

Sn3 0.019138 0.022198 0.005354 0.022198

Sn4 0.084313 0.114813 0.132897 0.114813

Sn5 0.022176 0.018139 0.015490 0.018139

Sn6 0.022176 0.018139 0.015490 0.018139

Sn7 0.068195 0.147498 0.159525 0.147498

Sn8 0.023280 0.023354 0.009640 0.023354

Sn9 0.023280 0.023354 0.009640 0.023354

Sn10 0.016095 0.011746 0.006734 0.011746

Sn11 0.023934 0.016832 0.024943 0.016832

Sn12 0.016095 0.011746 0.006734 0.011746

Sn13 0.084313 0.114803 0.132367 0.114803

Sn14 0.068195 0.147498 0.159525 0.147498

O1 0.006016 0.004783 0.009186 0.004783

O2 0.004920 0.003578 0.004736 0.003578

O3 0.006016 0.004783 0.009186 0.004783

O4 0.170794 0.025222 0.028740 0.025222

O5 0.004964 0.003454 0.007163 0.003454

O6 0.004964 0.003454 0.007163 0.003454

O7 0.006016 0.004783 0.009174 0.004783

O8 0.004920 0.003578 0.004736 0.003578

O9 0.006016 0.004783 0.009174 0.004783

O10 0.013722 0.025061 0.028726 0.025061
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Site f+ FD f+ FD-SCPC f+ Interpolation f+ LDOS δ = 0.2

O11 0.004964 0.003454 0.007163 0.003454

O12 0.004964 0.003454 0.007163 0.003454

O13 0.006114 0.020796 0.018944 0.020796

O14 0.004587 0.008165 0.004664 0.008165

O15 0.003708 0.010818 0.014308 0.010818

O16 0.003824 0.004551 0.005321 0.004551

O17 0.004005 0.004530 0.002834 0.004530

O18 0.010725 0.026935 0.009534 0.026935

O19 0.003708 0.010818 0.014308 0.010818

O20 0.004588 0.008165 0.004673 0.008165

O21 0.006114 0.020796 0.018944 0.020796

O22 0.010725 0.026935 0.009534 0.026935

O23 0.004005 0.004530 0.002834 0.004530

O24 0.003824 0.004551 0.005321 0.004551

O25 0.171200 0.025231 0.027680 0.025231

O26 0.013722 0.025059 0.027900 0.025059



Appendix B

Additional Fukui Functions

B.1 Electrophilic Fukui Function, f−(r)

(A) (B)

(C) (D)

Figure B.1: Planar average of Fukui functions, f−(r), for the surfaces: (A) Pt (111), (B)
ZrC (001), (C) MgO (001), and (D) rutile SnO2 (110). The black dashed lines represent
the position where the planar average electron density is equal to ρ = 10−4 a−3

0 and the
red dashed lines represent the position of the surface atoms.
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B.2 Nucleophilic Fukui function, f+(r)

(A) (B)

(C) (D)

Figure B.2: Planar average of Fukui functions, f+(r), for the surfaces: (A) Pt (111), (B)
ZrC (001), (C) MgO (001), and (D) rutile SnO2 (110). The black dashed lines represent
the position where the planar average electron density is equal to ρ = 10−4 a−3

0 and the
red dashed lines represent the position of the surface atoms.



Appendix C

Additional Fukui Potentials

C.1 Electrophilic Fukui Potential, v−f (r)

(A) (B)

(C) (D)

Figure C.1: Planar average of electrophilic Fukui potentials, v−f (r), for the surfaces: (A)
Pt (111), (B) ZrC (001), (C) MgO (001), and (D) rutile SnO2 (110). The black dashed lines
represent the position where the planar average electron density is equal to ρ = 10−4 a−3

0
and the red dashed lines represent the position of the surface atoms.
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C.2 Nucleophilic Fukui Potential, v+f (r)

(A) (B)

(C) (D)

(D)

(B)(A)

(C)

Figure C.2: Planar average of nucleophilic Fukui potentials, v+f (r), for the surfaces: (A)
Pt (111), (B) ZrC (001), (C) MgO (001), and (D) rutile SnO2 (110). The black dashed lines
represent the position where the planar average electron density is equal to ρ = 10−4 a−3

0
and the red dashed lines represent the position of the surface atoms.



Appendix D

Bader charge analysis

D.1 Bader Charges

• Ti (0001) Surface

Table D.1: Charges at all sites of Ti (0001) surface according to Bader partitioning.

Site AIM Charge Site AIM Charge

Ti1 0.123006 Ti8 -0.028505

Ti2 0.005655 Ti9 -0.028505

Ti3 0.123006 Ti10 -0.097339

Ti4 0.123006 Ti11 -0.028505

Ti5 0.005655 Ti12 -0.028505

Ti6 0.123006 Ti13 -0.097320

Ti7 -0.097339 Ti14 -0.097320

• TiC (001) Surface

Table D.2: Charges at all sites of TiC (001) surface according to Bader partitioning.

Site AIM Charge Site AIM Charge Site AIM Charge Site AIM Charge

Ti1 1.439252 Ti8 1.428475 C1 -1.457306 C8 -1.452575

Ti2 1.422274 Ti9 1.437220 C2 -1.431081 C9 -1.403785
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Site AIM Charge Site AIM Charge Site AIM Charge Site AIM Charge

Ti3 1.422274 Ti10 1.437220 C3 -1.431081 C10 -1.403781

Ti4 1.439252 Ti11 1.428475 C4 -1.457306 C11 -1.452575

Ti5 1.439252 Ti12 1.428475 C5 -1.431081 C12 -1.452575

Ti6 1.439252 Ti13 1.437220 C6 -1.431081 C13 -1.403769

Ti7 1.428475 Ti14 1.437220 C7 -1.452575 C14 -1.403763

• Anatase TiO2 (001) Surface

Table D.3: Charges at all sites of TiO2 (001) anatase surface according to Bader
partitioning.

Site AIM Charge Site AIM Charge Site AIM Charge

Ti1 2.07086 O1 -1.02763 O7 -1.03308

Ti2 2.0682 O2 -1.03899 O8 -1.02863

Ti3 2.06918 O3 -1.03423 O9 -1.04067

Ti4 2.06262 O4 -1.0076 O10 -1.00307

Ti5 2.04369 O5 -1.04279 O11 -1.03003

Ti6 2.0188 O6 -1.04039 O12 -1.00625
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• Rutile TiO2 (110) Surface

Table D.4: Charges at all sites of TiO2 (110) rutile surface according to Bader parti-
tioning.

Site AIM Charge Site AIM Charge Site AIM Charge Site AIM Charge

Ti1 2.059846 Ti12 2.048919 O9 -1.036098 O20 -1.028911

Ti2 2.067652 Ti13 2.046665 O10 -1.037767 O21 -1.015777

Ti3 2.059971 Ti14 2.032251 O11 -1.028911 O22 -1.039956

Ti4 2.065925 O1 -1.020906 O12 -1.015777 O23 -1.038394

Ti5 2.059971 O2 -1.039472 O13 -1.039956 O24 -1.020103

Ti6 2.067652 O3 -1.037458 O14 -1.038394 O25 -1.052384

Ti7 2.069722 O4 -1.037767 O15 -1.020103 O26 -1.048211

Ti8 2.048919 O5 -1.035789 O16 -1.052384 O27 -1.057955

Ti9 2.046665 O6 -1.036098 O17 -1.048211 O28 -0.914613

Ti10 2.032251 O7 -1.022688 O18 -1.057955

Ti11 2.069722 O8 -1.039472 O19 -0.914639

• Pt (111) Surface

Table D.5: Charges at all sites of Pt (111) surface surface according to Bader parti-
tioning.

Site AIM Charge Site AIM Charge

Ti1 -0.04804 Ti8 -0.01284

Ti2 0.0101 Ti9 0.0101

Ti3 0.04436 Ti10 0.0101

Ti4 0.0101 Ti11 0.04436

Ti5 0.04436 Ti12 0.04436

Ti6 -0.04804 Ti13 -0.04804

Ti7 -0.01284 Ti14 -0.04804
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• ZrC (001) Surface

Table D.6: Charges at all sites of ZrC (001) surface according to Bader partitioning.

Site AIM Charge Site AIM Charge Site AIM Charge Site AIM Charge

Zr1 1.78493 Zr8 1.80969 C1 -1.83646 C8 -1.81165

Zr2 1.80668 Zr9 1.80916 C2 -1.81076 C9 -1.81165

Zr3 1.80668 Zr10 1.78493 C3 -1.83646 C10 -1.83646

Zr4 1.80916 Zr11 1.80668 C4 -1.75213 C11 -1.81076

Zr5 1.80969 Zr12 1.80668 C5 -1.81165 C12 -1.83646

Zr6 1.80916 Zr13 1.78493 C6 -1.81165 C13 -1.75213

Zr7 1.80916 Zr14 1.78493 C7 -1.75213 C14 -1.75213
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• MgO (001) Surface

Table D.7: Charges at all sites of MgO (001) surface surface according to Bader
partitioning.

Site AIM Charge Site AIM Charge Site AIM Charge Site AIM Charge

Mg1 1.64296 Mg8 1.6378 O1 -1.66923 O8 -1.65493

Mg2 1.64335 Mg9 1.64842 O2 -1.61923 O9 -1.64208

Mg3 1.64335 Mg10 1.64842 O3 -1.61923 O10 -1.64208

Mg4 1.64296 Mg11 1.6378 O4 -1.66923 O11 -1.65493

Mg5 1.64296 Mg12 1.6378 O5 -1.61923 O12 -1.65493

Mg6 1.64296 Mg13 1.64842 O6 -1.61923 O13 -1.64208

Mg7 1.6378 Mg14 1.64842 O7 -1.65493 O14 -1.64208

• Reduced Rutile SnO2 (110) Surface

Table D.8: Charges at all sites of SnO2 (110) reduced rutile surface according to
Bader partitioning.

Site AIM Charge Site AIM Charge Site AIM Charge Site AIM Charge

Sn1 2.40198 Sn11 2.37376 O7 -1.20078 O17 -1.18731

Sn2 2.34031 Sn12 2.43293 O8 -1.18344 O18 -1.22832

Sn3 2.40198 Sn13 1.46471 O9 -1.20225 O19 -1.19485

Sn4 1.4647 Sn14 2.27083 O10 -1.21536 O20 -1.16646

Sn5 2.35559 O1 -1.20225 O11 -1.188 O21 -1.2356

Sn6 2.35559 O2 -1.18497 O12 -1.1865 O22 -1.22832

Sn7 2.27083 O3 -1.20078 O13 -1.2356 O23 -1.18731

Sn8 2.3588 O4 -1.21719 O14 -1.16808 O24 -1.23426

Sn9 2.3588 O5 -1.1865 O15 -1.19485 O25 -1.21715

Sn10 2.43293 O6 -1.188 O16 -1.23426 O26 -1.21535



Appendix E

Surfaces Structures

In this appendix, we provide the surface structures (in POSCAR format) from our re-

laxation calculations. Details about the parameters and level of theory used in theses

calculations are given in Chapter 4.

E.1 Structures (POSCAR format)

• Ti (0001) Surface

Ti

1.00000000000000

2.9238300323000002 0.0000000000000000 0.0000000000000000

0.0000000000000000 5.0642223358000003 0.0000000000000000

0.0000000000000000 0.0000000000000000 43.8761396407999982

Ti

14

Selective dynamics

Direct

-0.0000000000000000 0.3333735726520805 0.3930000418216849 T T T

0.0000000000000000 0.3333333400000029 0.5000000000000000 F F F

0.0000000000000000 0.3333735726520805 0.6069999581783151 T T T

0.5000000000000000 0.8333735426520781 0.3930000418216849 T T T
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0.5000000000000000 0.8333333100000004 0.5000000000000000 F F F

0.5000000000000000 0.8333735426520781 0.6069999581783151 T T T

0.0000000000000000 -0.0000053547499946 0.3441944837088804 T T T

0.0000000000000000 0.0000000000000000 0.4472904900000003 F F F

0.0000000000000000 0.0000000000000000 0.5527095200000005 F F F

0.5000000000000000 0.4999946452500055 0.3441944837088804 T T T

0.5000000000000000 0.5000000000000000 0.4472904900000003 F F F

0.5000000000000000 0.5000000000000000 0.5527095200000005 F F F

-0.0000000000000000 -0.0000053547499946 0.6558055162911193 T T T

0.5000000000000000 0.4999946452500055 0.6558055162911193 T T T
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• TiC (001) Surface

TiC

1.00000000000000

4.3832509999999996 0.0000000000000000 0.0000000000000000

0.0000000000000000 4.3832509999999996 0.0000000000000000

0.0000000000000000 0.0000000000000000 43.1497529999999969

Ti C

14 14

Selective dynamics

Direct

0.0000000000000000 0.0000000000000000 0.4492088516999999 F F F

0.0000000000000000 0.5000000000000000 0.5000000000000000 F F F

0.5000000000000000 0.0000000000000000 0.5000000000000000 F F F

0.5000000000000000 0.5000000000000000 0.4492088516999999 F F F

0.0000000000000000 0.0000000000000000 0.5507911481999983 F F F

0.5000000000000000 0.5000000000000000 0.5507911481999983 F F F

-0.0000000000000000 0.5000000000000000 0.6002856372843206 T T T

0.5000000000000000 -0.0000000000000000 0.6002856372843206 T T T

0.0000000000000000 0.0000000000000000 0.6488876704712709 T T T

0.5000000000000000 0.5000000000000000 0.6488876704712709 T T T

0.0000000000000000 0.5000000000000000 0.3997143626156773 T T T

0.5000000000000000 -0.0000000000000000 0.3997143626156773 T T T

0.0000000000000000 0.0000000000000000 0.3511123294287344 T T T

0.5000000000000000 0.5000000000000000 0.3511123294287344 T T T

0.0000000000000000 0.0000000000000000 0.5000000000000000 F F F

0.0000000000000000 0.5000000000000000 0.4492088516999999 F F F

0.5000000000000000 0.0000000000000000 0.4492088516999999 F F F

0.5000000000000000 0.5000000000000000 0.5000000000000000 F F F

0.0000000000000000 0.5000000000000000 0.5507911481999983 F F F



126 E Surfaces Structures

0.5000000000000000 0.0000000000000000 0.5507911481999983 F F F

-0.0000000000000000 0.0000000000000000 0.6009261781487875 T T T

0.5000000000000000 0.5000000000000000 0.6009261781487875 T T T

-0.0000000000000000 0.5000000000000000 0.6514765959633713 T T T

0.5000000000000000 0.0000000000000000 0.6514765959633713 T T T

-0.0000000000000000 0.0000000000000000 0.3990738217512109 T T T

0.5000000000000000 0.5000000000000000 0.3990738217512109 T T T

0.0000000000000000 0.5000000000000000 0.3485234039366340 T T T

0.5000000000000000 0.0000000000000000 0.3485234039366340 T T T
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• Anatase TiO2 (001) Surface

Ti4 O8

1.00000000000000

3.8997984099950789 0.0000000000000000 0.0000000000000000

0.0000000000000000 3.8997984099950789 0.0000000000000000

0.0000000000000000 0.0000000000000000 40.0000000000000000

Ti O

6 12

Selective dynamics

Direct

0.5000000000000000 0.5004520821715162 0.5299768892345348 T T T

0.5000000000000000 0.9975525947901642 0.5909213765386289 T T T

0.0000000000000000 0.0000000000000000 0.4070648750000032 F F F

0.0000000000000000 0.5000000000000000 0.4690216699999965 F F F

0.5000000000000000 0.0000000000000000 0.3451081250000030 F F F

0.0000000000000000 0.0165028272117620 0.6503675967914354 T T T

0.0000000000000000 0.5006064317361487 0.5194949143839019 T T T

0.5000000000000000 0.5016058097969492 0.5803864036800952 T T T

0.5000000000000000 0.0005522675476766 0.5404335170566729 T T T

-0.0000000000000000 0.0176301103727609 0.6009375133198769 T T T

0.5000000000000000 0.9719899741409621 0.6410227523805988 T T T

0.0000000000000000 0.0000000000000000 0.4584028020000019 F F F

0.0000000000000000 0.5000000000000000 0.4176837429999978 F F F

0.5000000000000000 0.5000000000000000 0.4796405379999982 F F F

0.5000000000000000 0.5000000000000000 0.3344891249999975 F F F

0.0000000000000000 0.4665118565834872 0.6637765970705889 T T T

0.0000000000000000 0.0000000000000000 0.3557268750000020 F F F

0.5000000000000000 0.0000000000000000 0.3964461249999971 F F F
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• Rutile TiO2 (110) Surface

Ti2 O4

1.00000000000000

3.0479900836999998 0.0000000000000000 0.0000000000000000

0.0000000000000000 6.7003068924000004 0.0000000000000000

0.0000000000000000 0.0000000000000000 52.7231406800000002

Ti O

14 28

Selective dynamics

Direct

0.0000000000000000 0.0000000000000000 0.5000000000000000 F F F

0.0000000000000000 0.5000000000000000 0.4364576270000029 F F F

0.5000000000000000 0.0000000000000000 0.4364576270000029 F F F

0.5000000000000000 0.5000000000000000 0.5000000000000000 F F F

0.5000000000000000 0.0000000000000000 0.5635423720000006 F F F

0.0000000000000000 0.5000000000000000 0.5635423720000006 F F F

-0.0000000000000000 -0.0000000000000000 0.6255597684685229 T T T

0.5000000000000000 0.5000000000000000 0.6279400784638057 T T T

0.5000000000000000 -0.0000000000000000 0.6871002113867121 T T T

0.0000000000000000 0.5000000000000000 0.6922800290969375 T T T

-0.0000000000000000 -0.0000000000000000 0.3744402305314736 T T T

0.5000000000000000 0.5000000000000000 0.3720599205361907 T T T

0.5000000000000000 -0.0000000000000000 0.3128997876132843 T T T

-0.0000000000000000 0.5000000000000000 0.3077199699030591 T T T

0.5000000000000000 0.0000000000000000 0.5248677789999974 F F F

0.5000000000000000 0.5000000000000000 0.4613254060000003 F F F

0.0000000000000000 0.3043212890000007 0.5000000000000000 F F F

0.0000000000000000 0.8043212890000007 0.4364576270000029 F F F
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0.0000000000000000 0.6956787109999993 0.5000000000000000 F F F

0.0000000000000000 0.1956787109999993 0.4364576270000029 F F F

0.5000000000000000 0.0000000000000000 0.4751322239999993 F F F

0.5000000000000000 0.5000000000000000 0.5386745930000032 F F F

0.0000000000000000 0.1956787109999993 0.5635423720000006 F F F

0.0000000000000000 0.8043212890000007 0.5635423720000006 F F F

0.5000000000000000 0.5000000000000000 0.5879879075030647 T T T

0.5000000000000000 -0.0000000000000000 0.6021665810665227 T T T

-0.0000000000000000 0.3015875812445427 0.6265970448948432 T T T

-0.0000000000000000 0.6984124187554573 0.6265970448948432 T T T

0.5000000000000000 -0.0000000000000000 0.6511118683604032 T T T

0.5000000000000000 0.5000000000000000 0.6647423093602356 T T T

0.0000000000000000 0.1858320429929593 0.6923813143563453 T T T

0.0000000000000000 0.8141679570070407 0.6923813143563453 T T T

0.5000000000000000 0.5000000000000000 0.7135304569653970 T T T

0.5000000000000000 0.5000000000000000 0.4120120914969311 T T T

0.5000000000000000 -0.0000000000000000 0.3978334219334740 T T T

0.0000000000000000 0.3015875812445427 0.3734029541051530 T T T

0.0000000000000000 0.6984124187554573 0.3734029541051530 T T T

0.5000000000000000 -0.0000000000000000 0.3488881346396006 T T T

0.5000000000000000 0.5000000000000000 0.3352576896397681 T T T

0.0000000000000000 0.1858320429929593 0.3076186846436513 T T T

-0.0000000000000000 0.8141679570070407 0.3076186846436513 T T T

0.5000000000000000 0.5000000000000000 0.2864695420346065 T T T
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• Pt (111) Surface

Pt

1.00000000000000

4.9212403296999998 0.0000000000000000 0.0000000000000000

0.0000000000000000 2.8412795066999998 0.0000000000000000

0.0000000000000000 0.0000000000000000 43.9193599999999975

Pt

14

Selective dynamics

Direct

-0.0002189827899401 -0.0000000000000000 0.3444513368835281 T T T

0.6666666870000029 0.0000000000000000 0.4471783218000027 F F F

0.3332560391848671 0.0000000000000000 0.3962107627903403 T T T

0.1666666719999981 0.5000000000000000 0.4471783218000027 F F F

0.8332560091848646 0.5000000000000000 0.3962107627903403 T T T

0.4997810172100598 0.5000000000000000 0.3444513368835281 T T T

0.0000000000000000 0.0000000000000000 0.5000000000000000 F F F

0.5000000000000000 0.5000000000000000 0.5000000000000000 F F F

0.3333333429999996 0.0000000000000000 0.5528216828000012 F F F

0.8333333129999971 0.5000000000000000 0.5528216828000012 F F F

0.6667439908151354 -0.0000000000000000 0.6037892418096565 T T T

0.1667439758151306 0.5000000000000000 0.6037892418096565 T T T

0.0002189827899401 0.0000000000000000 0.6555486630164702 T T T

0.5002189827899400 0.5000000000000000 0.6555486630164702 T T T
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• ZrC (001) Surface

ZrC

1.00000000000000

4.7548799515000004 0.0000000000000000 0.0000000000000000

0.0000000000000000 4.7548799515000004 0.0000000000000000

0.0000000000000000 0.0000000000000000 44.2646398544000022

Zr C

14 14

Selective dynamics

Direct

-0.0000000000000000 -0.0000000000000000 0.3424109990540343 T T T

0.0000000000000000 0.0000000000000000 0.4462903200000028 F F F

0.0000000000000000 0.0000000000000000 0.5537096899999980 F F F

-0.0000000000000000 0.5000000000000000 0.3938179791547299 T T T

0.0000000000000000 0.5000000000000000 0.5000000000000000 F F F

-0.0000000000000000 0.5000000000000000 0.6061820208452702 T T T

0.5000000000000000 0.0000000000000000 0.3938179791547299 T T T

0.5000000000000000 0.0000000000000000 0.5000000000000000 F F F

0.5000000000000000 0.0000000000000000 0.6061820208452702 T T T

0.5000000000000000 0.5000000000000000 0.3424109990540343 T T T

0.5000000000000000 0.5000000000000000 0.4462903200000028 F F F

0.5000000000000000 0.5000000000000000 0.5537096899999980 F F F

0.0000000000000000 -0.0000000000000000 0.6575890009459658 T T T

0.5000000000000000 0.5000000000000000 0.6575890009459658 T T T

0.0000000000000000 0.0000000000000000 0.3929143605743600 T T T

0.0000000000000000 0.0000000000000000 0.5000000000000000 F F F

-0.0000000000000000 0.0000000000000000 0.6070856394256401 T T T

-0.0000000000000000 0.5000000000000000 0.3406949585841665 T T T

0.0000000000000000 0.5000000000000000 0.4462903200000028 F F F
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0.0000000000000000 0.5000000000000000 0.5537096899999980 F F F

0.5000000000000000 0.0000000000000000 0.3406949585841665 T T T

0.5000000000000000 0.0000000000000000 0.4462903200000028 F F F

0.5000000000000000 0.0000000000000000 0.5537096899999980 F F F

0.5000000000000000 0.5000000000000000 0.3929143605743600 T T T

0.5000000000000000 0.5000000000000000 0.5000000000000000 F F F

0.5000000000000000 0.5000000000000000 0.6070856394256401 T T T

0.0000000000000000 0.5000000000000000 0.6593050414158336 T T T

0.5000000000000000 0.0000000000000000 0.6593050414158336 T T T
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• MgO (001) Surface

MgO

1.00000000000000

4.2889999999999997 0.0000000000000000 0.0000000000000000

0.0000000000000000 4.2889999999999997 0.0000000000000000

0.0000000000000000 0.0000000000000000 42.8699700000000021

Mg O

14 14

Selective dynamics

Direct

0.0000000000000000 0.0000000000000000 0.4499650921000011 F F F

0.0000000000000000 0.5000000000000000 0.5000000000000000 F F F

0.5000000000000000 0.0000000000000000 0.5000000000000000 F F F

0.5000000000000000 0.5000000000000000 0.4499650921000011 F F F

0.0000000000000000 0.0000000000000000 0.5500349077999971 F F F

0.5000000000000000 0.5000000000000000 0.5500349077999971 F F F

-0.0000000000000000 0.5000000000000000 0.5994123546198602 T T T

0.5000000000000000 0.0000000000000000 0.5994123546198602 T T T

0.0000000000000000 -0.0000000000000000 0.6479575645069193 T T T

0.5000000000000000 0.5000000000000000 0.6479575645069193 T T T

0.5000000000000000 0.0000000000000000 0.4005876452801451 T T T

0.0000000000000000 0.5000000000000000 0.4005876452801451 T T T

-0.0000000000000000 -0.0000000000000000 0.3520424353930863 T T T

0.5000000000000000 0.5000000000000000 0.3520424353930863 T T T

0.0000000000000000 0.0000000000000000 0.5000000000000000 F F F

0.0000000000000000 0.5000000000000000 0.4499650921000011 F F F

0.5000000000000000 0.0000000000000000 0.4499650921000011 F F F

0.5000000000000000 0.5000000000000000 0.5000000000000000 F F F

0.5000000000000000 0.0000000000000000 0.5500349077999971 F F F
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0.0000000000000000 0.5000000000000000 0.5500349077999971 F F F

0.0000000000000000 -0.0000000000000000 0.5992117811849870 T T T

0.5000000000000000 0.5000000000000000 0.5992117811849870 T T T

0.5000000000000000 0.0000000000000000 0.6491437093919559 T T T

-0.0000000000000000 0.5000000000000000 0.6491437093919559 T T T

0.0000000000000000 -0.0000000000000000 0.4007882187150182 T T T

0.5000000000000000 0.5000000000000000 0.4007882187150182 T T T

0.5000000000000000 -0.0000000000000000 0.3508562905080494 T T T

0.0000000000000000 0.5000000000000000 0.3508562905080494 T T T
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• Reduced Rutile SnO2 (110) Surface

SnO2

1.00000000000000

3.2178599833999999 0.0000000000000000 0.0000000000000000

0.0000000000000000 6.7661209105999998 0.0000000000000000

0.0000000000000000 0.0000000000000000 50.2983627318999993

Sn O

14 26

Selective dynamics

Direct

0.5000000000000000 0.0000000000000000 0.3674659719575288 T T T

0.5000000000000000 0.0000000000000000 0.5000000000000000 F F F

0.5000000000000000 0.0000000000000000 0.6325340280424711 T T T

0.5000000000000000 0.5000000000000000 0.2965132070378025 T T T

0.5000000000000000 0.5000000000000000 0.4327401500000008 F F F

0.5000000000000000 0.5000000000000000 0.5672598600000001 F F F

0.0000000000000000 0.0000000000000000 0.3020936073505889 T T T

0.0000000000000000 0.0000000000000000 0.4327401500000008 F F F

0.0000000000000000 0.0000000000000000 0.5672598600000001 F F F

-0.0000000000000000 0.5000000000000000 0.3654357038583927 T T T

0.0000000000000000 0.5000000000000000 0.5000000000000000 F F F

-0.0000000000000000 0.5000000000000000 0.6345642961416075 T T T

0.5000000000000000 0.5000000000000000 0.7034867929621972 T T T

-0.0000000000000000 0.0000000000000000 0.6979063926494110 T T T

0.5000000000000000 0.3047999312858130 0.3656337795335747 T T T

0.5000000000000000 0.3059722799999989 0.5000000000000000 F F F

0.5000000000000000 0.3047999312858130 0.6343662204664254 T T T

0.5000000000000000 0.8185334601385078 0.2958458144685098 T T T
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0.5000000000000000 0.8059722799999989 0.4327401500000008 F F F

0.5000000000000000 0.8059722799999989 0.5672598600000001 F F F

0.5000000000000000 0.6952000687141872 0.3656337795335747 T T T

0.5000000000000000 0.6940277200000011 0.5000000000000000 F F F

0.5000000000000000 0.6952000687141872 0.6343662204664254 T T T

0.5000000000000000 0.1814665398614917 0.2958458144685098 T T T

0.5000000000000000 0.1940277200000011 0.4327401500000008 F F F

0.5000000000000000 0.1940277200000011 0.5672598600000001 F F F

-0.0000000000000000 0.0000000000000000 0.3414115566427885 T T T

0.0000000000000000 0.0000000000000000 0.4738994499999976 F F F

-0.0000000000000000 0.0000000000000000 0.6077582772273080 T T T

-0.0000000000000000 0.5000000000000000 0.4065599621072626 T T T

0.0000000000000000 0.5000000000000000 0.5411592999999968 F F F

0.0000000000000000 0.5000000000000000 0.6758400877178491 T T T

-0.0000000000000000 0.0000000000000000 0.3922417327726859 T T T

0.0000000000000000 0.0000000000000000 0.5261005600000033 F F F

-0.0000000000000000 0.0000000000000000 0.6585884533572122 T T T

-0.0000000000000000 0.5000000000000000 0.3241599222821449 T T T

0.0000000000000000 0.5000000000000000 0.4588407000000032 F F F

-0.0000000000000000 0.5000000000000000 0.5934400378927374 T T T

0.5000000000000000 0.8185334601385078 0.7041541855314906 T T T

0.5000000000000000 0.1814665398614917 0.7041541855314906 T T T
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405–413.

(25) Ayers, P. W.; Levy, M. Theor. Chem. Acc. 2000, 103, 353–360.

(26) Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2000, 122, 2010–2018.

(27) Fukui, K.; Yonezawa, T.; Shingu, H. J. Chem. Phys. 1952, 20, 722–725.

(28) Fukui, K.; Yonezawa, T.; Nagata, C.; Shingu, H. J. Chem. Phys. 1954, 22, 1433–1442.

(29) Fukui, K. In Orientation and Stereoselection, Springer Berlin Heidelberg: Berlin,

Heidelberg, 1970, pp 1–85.

(30) Fukui, K. science 1982, 218, 747–754.

(31) Fuentealba, P.; Cárdenas, C. In Chemical Reactivity, Kaya, S., von Szentpály, L.,
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