
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
ESCUELA DE POSTGRADO Y EDUCACIÓN CONTINUA
DEPARTAMENTO DE INGENIERÍA MATEMÁTICA

ASTRONOMICAL SEEING PREDICTION AT PARANAL OBSERVATORY

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIA DE DATOS

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL MATEMÁTICO

ARTURO IGNACIO LAZCANO GONZÁLEZ

PROFESOR GUÍA:
FRANCISCO FÖRSTER BURÓN

PROFESOR CO-GUÍA:
JAIME SAN MARTÍN ARISTEGUI

MIEMBROS DE LA COMISIÓN:
JOSEPH PAUL ANDERSON

JOAQUÍN FONTBONA TORRES

SANTIAGO DE CHILE
2024

RESUMEN DE LA TESIS PARA OPTAR
AL GRADO DE MAGÍSTER EN CIENCIA
DE DATOS Y MEMORIA PARA OPTAR
AL TÍTULO DE INGENIERO CIVIL MATEMÁTICO
POR: ARTURO IGNACIO LAZCANO GONZÁLEZ
FECHA: 2024
PROF. GUÍA: FRANCISCO FÖRSTER BURÓN
PROF. CO-GUÍA: JAIME SAN MARTÍN ARISTEGUI

PREDICCIÓN DE LA VISIBILIDAD ASTRONÓMICA EN EL
OBSERVATORIO PARANAL

La visión o visibilidad astronómica (en inglés, seeing) es una variable de turbulencia óp-
tica que refiere al efecto distorsionador de la atmósfera sobre las imágenes capturadas por los
observatorios de objetos astronómicos. Este parámetro se puede calcular en tiempo real con
diferentes instrumentos, entre ellos, el Differential Image Motion Monitor (DIMM). Sin em-
bargo, los observatorios requieren usualmente una predicción de antemano para poder plan-
ificar la observación de algún objeto astronómico. Aquí es donde entra el área de simulación
numérica y aprendizaje de máquinas, siendo dos enfoques muy utilizados en la predicción de
variables atmosféricas.
El Observatorio Europeo Austral (ESO, por sus siglas en inglés) es la organización intergu-
bernamental de ciencia y tecnología más importante en astronomía, la cual opera en tres
sitios diferentes: La Silla, Paranal y Chajnantor. De estos, Paranal es el enfoque de esta
tesis, donde se encuentra el Very Large Telescope (VLT). Así, el objetivo de este trabajo es
predecir el valor promedio del seeing una hora hacia el futuro, utilizando datos provenientes
de la ESO y un marco enteramente enfocado en aprendizaje de máquinas.

En esta tesis se ha desarrollado una modificación extensa de la base de datos proveniente
de la ESO, junto con un análisis de esta, con el fin de generar los mejores resultados posi-
bles. Además, se han probado de manera exhaustiva diferentes modelos para evaluarlos y
seleccionar el óptimo en términos de predicción.

El resultado obtenido fue de 0.151 de RMSE y 0.753 de Success Rate, lo que refleja una
mejora en un 14.2% y un 4.15%, respectivamente, con respecto al modelo de predicción actual.
Esto se traduce a predicciones más precisas junto con un mayor porcentaje de observaciones
que cumplieron los requisitos de seeing solicitados.
Comparado con el modelo que se usa actualmente en la ESO, esta nueva implementación
refleja, en promedio, 28 horas ganadas sobre ejecuciones que cumplen los requisitos de seeing
por semestre, donde 18 son de las observaciones más importantes y 10 son de aquellas de
menor grado. Junto a esto, se redujo, en promedio, 40 horas el tiempo en el cual se usa el
telescopio para una ejecución fallida por semestre, es decir, se observan más ejecuciones de
calidad, se ocupa menos el telescopio en ejecuciones que no cumplen los requisitos solicitados
y se gana la capacidad de llenar la cola de nuevas OBs (Observation Blocks), es decir, ejecutar
nuevas observaciones astronómicas.

i

RESUMEN DE LA TESIS PARA OPTAR
AL GRADO DE MAGÍSTER EN CIENCIA
DE DATOS Y MEMORIA PARA OPTAR
AL TÍTULO DE INGENIERO CIVIL MATEMÁTICO
POR: ARTURO IGNACIO LAZCANO GONZÁLEZ
FECHA: 2024
PROF. GUÍA: FRANCISCO FÖRSTER BURÓN
PROF. CO-GUÍA: JAIME SAN MARTÍN ARISTEGUI

ASTRONOMICAL SEEING PREDICTION AT PARANAL OBSERVATORY

Astronomical seeing is an optical turbulence variable that refers to the distorting effect of
the atmosphere on images captured by observatories of astronomical objects. This parameter
can be calculated in real-time using different instruments, including the Differential Image
Motion Monitor (DIMM). However, observatories usually require a prediction in advance
to plan the observation of an astronomical object. This is where numerical simulation and
machine learning come into play, as they are two widely used approaches for predicting at-
mospheric variables.
The European Southern Observatory (ESO) is the most important intergovernmental sci-
ence and technology organization in astronomy, operating in three different sites: La Silla,
Paranal, and Chajnantor. Among these, Paranal is the focus of this thesis, where the Very
Large Telescope (VLT) is located. Thus, the objective of this work is to predict the average
value of seeing one hour into the future, using data from the ESO and an entirely machine
learning-focused framework.

In this thesis, an extensive modification of the database from the ESO has been developed,
along with an analysis of it, to generate the best possible results. Additionally, different mod-
els have been exhaustively tested to evaluate and select the optimal one in terms of prediction.

The result obtained was 0.151 RMSE and 0.753 Success Rate, reflecting improvements of
14.2% and 4.15%, respectively, compared to the current prediction model. This translates
to more accurate predictions along with a higher percentage of observations meeting the
requested seeing requirements.
Compared to the model currently used at the ESO, this new implementation reflects an
average gain of 28 hours per semester for executions that meet the seeing requirements,
with 18 hours from the most important observations and 10 hours from those of lower rank.
Additionally, the time spent using the telescope for failed executions was reduced by an
average of 40 hours per semester. This means more high-quality executions are observed, the
telescope is used less for executions that do not meet the required standards, and there is
increased capacity to fill the queue with new OBs (Observation Blocks), that is, to conduct
new astronomical observations.

ii

Por una cabeza,
todas las locuras, su boca que besa,

borra la tristeza, calma la amargura.

- Carlos Gardel

iii

Agradecimientos

Agradezco primero a mis profesores guías, Francisco Förster y Jaime San Martín, por el
gran apoyo y transmisión de sabiduría en todo este proceso de tesis. Su constante ayuda
junto con las personas de la ESO; Joseph Anderson, Natalie Behara, Ángel Otarola, Elyar
Sedaghati y Faviola Molina que hicieron de este proceso algo tremendamente disfrutable y
enriquezedor.

Agradezco a mis compañeros y compañeras de la universidad que tuve todos estos años.
La unión que tuvimos desde el primer minuto y las constantes risas son lo más valioso que
me llevo de la universidad. Gracias Seba, Nico, Toro, Samu y Dani.

Agradezco a mis compañeros del colegio, los cuales fueron y son un pilar en mi trayectoria.
Su amistad me mantiene firme a lo largo de situaciones complicadas. Gracias, por sobre todo,
Alex.

Agradezco a mi amigo de la infancia Joaco. Hemos estado juntos desde que nacimos y
solo espero que podamos seguir esta hermosa amistad.

Agradezco a mi polola, Ale, la cual fue probablemente el mayor apoyo en este proceso y
de la cual me siento muy orgulloso de lo que hemos logrado. Gracias por estar ahí para mi.

Agradezco, por último, a toda mi familia. Madre, Abue, Mati, Alejandro, Yoyo, Kari,
Mane, Cristián, primos y primas por todo. Sin ustedes no habría llegado aquí, especialmente
a ti Abue que me recibiste en todo este viaje de la universidad. Esto es por y para ustedes.

Gracias por todo Mamá, te amo. Espero que el tata se pueda sentir orgulloso de esto.

iv

Table of Content

1. Introduction 1
1.1. European Southern Observatory . 1
1.2. Astronomical Turbulence . 2
1.3. General Objective . 5
1.4. Specific Objectives . 6

2. Literature Review 8
2.1. Prediction based on meteorological models 8
2.2. Prediction based on machine learning . 8
2.3. Prediction based on hybrid models . 9

3. Theoretical Framework 10
3.1. Classic Machine Learning Models . 10

3.1.1. Isotonic Regression . 10
3.1.2. Stochastic Gradient Descent . 10
3.1.3. Decision Tree . 11
3.1.4. Ensemble models . 11

3.2. Deep Learning Models . 12
3.2.1. Multilayer Perceptron . 12
3.2.2. Recurrent Neural Networks . 13
3.2.3. Convolutional Neural Networks . 13

3.3. Metrics . 14
3.3.1. Mean Absolute Error . 14
3.3.2. Mean Squared Error and Root Mean Squared Error 15
3.3.3. Precision . 15
3.3.4. Recall . 15
3.3.5. Accuracy . 15
3.3.6. f1-score . 16
3.3.7. Diagonal Average . 16
3.3.8. Success Rate . 16

4. Database 17
4.1. Features Explanation . 18

4.1.1. Target Variables . 18
4.1.2. Input Variables . 19

5. Methodology 22
5.1. Exploratory Data Analysis . 24

v

5.2. Feature Engineering . 29
5.3. Regression Problem . 34
5.4. Classification Problem . 35

6. Results 36
6.1. Regression Models . 37

6.1.1. PM: Actual model at the European Southern Observatory 37
6.1.2. Isotonic . 38
6.1.3. SGD . 39
6.1.4. DT . 40
6.1.5. RF . 41
6.1.6. XGBoost . 42
6.1.7. LightGBM . 43
6.1.8. CatBoost . 44
6.1.9. MLP . 45
Sliding Window Dataframe . 46
6.1.10. LSTM . 47
6.1.11. GRU . 48
6.1.12. CONV1D . 49
6.1.13. MINIROCKET . 50
6.1.14. TST . 51
6.1.15. Summary . 52

6.2. Classification Models . 53
6.3. Hyperparameters Optimization . 55
6.4. Multi-Output Problem . 58
6.5. Failed Approaches . 59
6.6. Feature Importance and Interpretability . 60
6.7. Simulations at the European Southern Observatory 64

7. Conclusion 66
7.1. Limitations . 67
7.2. Impact and Contribution . 67
7.3. Future Work . 67

Bibliography 69

ANNEXES 71
A. Database features . 71

A.1. Initial features . 71
A.2. Final features . 74

B. Classification models matrices . 75
C. Simulations per period . 82

vi

List of Tables

5.1. Numeric description of target variables for training set. 24
5.2. Numeric description of target variables for test set. 25
6.1. Regression metrics table for all models. 52
6.2. Time performance table for all regression models. 52
6.3. Classification metrics table for all models. 53
6.4. Custom metrics table for classification models. 54
6.5. Time performance table for all classification models. 54
6.6. Metrics for the best models, with the actual model PM included for comparison. 56
6.7. Hyperparameter grid search for LightGBM regressor. 57
6.8. Regression metrics table for the three target variables. 58
6.9. Hours gained and lost on average of each UT for all A/B/C graded and ranked

OBs compared to the stationary model. Rank: Scientific importance. Grade:
Whether the observation was successful or not, depending on astronomical tur-
bulence. 65

C.1. Hours gained/lost of LightGBM versus PM for UT1. 82
C.2. Hours gained/lost of LightGBM versus PM for UT2. 82
C.3. Hours gained/lost of LightGBM versus PM for UT3. 83
C.4. Hours gained/lost of LightGBM versus PM for UT4. 83

vii

List of Figures

1.1. Illustration of common atmospheric path. 4
3.1. RNN diagram (image from [18]) . 13
3.2. CNN diagram (image from [22]) . 14
4.1. Target columns from December 18th to 20th, 2020. 18
4.2. Absolute humidity at different heights from October 15th, 2018. 19
4.3. Relative humidity at different heights from October 15th, 2018. 20
4.4. Temperature at different heights from October 15th, 2018. 20
4.5. DIMM Seeing in arcsec from December 19th, 2020. 21
4.6. Distribution plot for DIMM Seeing [arcsec] 21
5.1. CRISP-DM methodology for data science projects. 22
5.2. Histogram of the values of “targetSeeing1hr” data. 25
5.3. Histogram of the values of “targetMin1hr” data. 26
5.4. Histogram of the values of “targetMax1hr” data. 26
5.5. Pearson correlation of all features for a sample of 100 000 data points. 27
5.6. Lag plots for the principal target variable (“targetSeeing1hr”). The black dashed

line is for reference. 28
5.7. Hour variable before and after modifications. 29
5.8. Day variable before and after modifications. 30
5.9. Wind data distribution heatmap with all training data included. 31
5.10. Chosen Matrices for PCA: In this plot, an example of the absolute humidity

variables with their corresponding submatrices is shown. 33
5.11. Correlation plot for a sample of 100 000 training data after all the feature engi-

neering. 34
5.12. Label conversion from continuous to discrete values. 35
6.1. Display of confusion matrix of stationary model. The matrix is normalized by

the rows (true values). 37
6.2. Display of confusion matrix of Isotonic regression model. The matrix is normal-

ized by the rows (true values). 38
6.3. Display of confusion matrix of SGD regression model. The matrix is normalized

by the rows (true values). 39
6.4. Display of confusion matrix of Decision Tree regression model. The matrix is

normalized by the rows (true values). 40
6.5. Display of confusion matrix of Random Forest regression model. The matrix is

normalized by the rows (true values). 41
6.6. Display of confusion matrix of XGBoost regression model. The matrix is nor-

malized by the rows (true values). 42
6.7. Display of confusion matrix of LightGBM regression model. The matrix is nor-

malized by the rows (true values). 43

viii

6.8. Display of confusion matrix of CatBoost regression model. The matrix is nor-
malized by the rows (true values). 44

6.9. Display of confusion matrix of MLP regression model. The matrix is normalized
by the rows (true values). 45

6.10. Display of confusion matrix of LSTM regression model. The matrix is normal-
ized by the rows (true values). 47

6.11. Display of confusion matrix of GRU regression model. The matrix is normalized
by the rows (true values). 48

6.12. Display of confusion matrix of Conv1D regression model. The matrix is normal-
ized by the rows (true values). 49

6.13. Display of confusion matrix of MINIROCKET regression model. The matrix is
normalized by the rows (true values). 50

6.14. Display of confusion matrix of TST regression model. The matrix is normalized
by the rows (true values). 51

6.15. Parallel coordinates plot for 60 trials of LightGBM model. Plot restricted to
objective values ≤ 0.028 for visualization purposes. 56

6.16. Hyperparameter importance plot for 60 trials of LightGBM model. 57
6.17. Feature importance of the LightGBM regressor using the split method. The 15

most important features are displayed. 61
6.18. Feature importance of the LightGBM regressor using the gain method. The 15

most important features are displayed. 61
6.19. Summary plot of the 20 most important variables by SHAP values. 62
6.20. Dependence plot for EMA Seeing, DIMM Seeing (arcsec), EMA Wind speed V

and Hour cos component features. 63
B.1. Display of confusion matrix of SGD classification model. The matrix is normal-

ized by the rows (true values). 75
B.2. Display of confusion matrix of Logistic Regression model. The matrix is nor-

malized by the rows (true values). 75
B.3. Display of confusion matrix of Decision Tree classification model. The matrix is

normalized by the rows (true values). 76
B.4. Display of confusion matrix of Random Forest classification model. The matrix

is normalized by the rows (true values). 76
B.5. Display of confusion matrix of Balanced Random Forest classification model.

The matrix is normalized by the rows (true values). 77
B.6. Display of confusion matrix of XGBoost classification model. The matrix is

normalized by the rows (true values). 77
B.7. Display of confusion matrix of LightGBM classification model. The matrix is

normalized by the rows (true values). 78
B.8. Display of confusion matrix of CatBoost classification model. The matrix is

normalized by the rows (true values). 78
B.9. Display of confusion matrix of MLP classification model. The matrix is normal-

ized by the rows (true values). 79
B.10. Display of confusion matrix of LSTM classification model. The matrix is nor-

malized by the rows (true values). 79
B.11. Display of confusion matrix of GRU classification model. The matrix is normal-

ized by the rows (true values). 80

ix

B.12. Display of confusion matrix of Conv1D classification model. The matrix is nor-
malized by the rows (true values). 80

B.13. Display of confusion matrix of MINIROCKET classification model. The matrix
is normalized by the rows (true values). 81

B.14. Display of confusion matrix of TST classification model. The matrix is normal-
ized by the rows (true values). 81

x

Chapter 1

Introduction

1.1. European Southern Observatory
The European Southern Observatory (ESO) is an intergovernmental organization with head-
quarters located in Garching, near Munich, Germany and three unique world-class observing
sites in the Atacama Desert: La Silla, Paranal and Chajnantor.
ESO’s first site is at La Silla, a 2400 m high mountain 600 km north of Santiago de Chile.
At the time of writing, it is equipped with several optical telescopes with mirror diameters
of up to 3.6 metres. While La Silla continues to lead in the field of astronomy and remains
the second most scientifically productive ground-based astronomical observatory, the Paranal
site, standing at an altitude of 2600 meters, represents the pinnacle of European astronomy.
Home to the renowned Very Large Telescope array (VLT), Paranal is strategically located
approximately 130 kilometers south of Antofagasta in Chile, positioned 12 kilometers inland
from the Pacific coast, in one of the driest regions globally. Scientific activities commenced
at Paranal in 1999 and have since led to numerous highly successful research programs.

The VLT is an extraordinary telescope that utilizes state-of-the-art technology. Rather
than being a singular entity, it comprises four Unit Telescopes (UT), each boasting an 8.2-
meter main mirror. Remarkably, a single Unit Telescope can capture images of celestial
objects as faint as magnitude 30 in just one hour, equivalent to observing objects four billion
times fainter than those visible to the naked eye.

The upcoming endeavor following the VLT is the construction of the Extremely Large
Telescope (ELT), featuring a 39-meter primary mirror. Positioned as “the world’s biggest
eye on the sky”, this telescope will hold the title of the largest optical/near-infrared telescope
globally. The ELT aims to tackle numerous unresolved questions in astronomy, potentially
revolutionizing our understanding of the universe.
Given the green light for construction in late 2014, the ELT is slated to achieve its first light
for scientific observations by 2027.

Although there are multiple projects and astronomy instruments at the European South-
ern Observatory worth discussing for their functionality and achievements, we will focus on
the VLT in Paranal and its future version, the ELT. This choice is because the initial focus
of this study was on the VLT, with a potential extension to include the ELT.

1

At Paranal Observatory there are four 8 m telescopes. Most of the time at the telescopes,
they are operating in “Service Mode” where they have a database of valid observations to
execute. At any given time t, they select the “optimal” observation to execute. This selec-
tion depends on a lot of conditions like target coordinates, Moon phase, scientific ranking,
and others. Additionally, this depends on atmospheric conditions. Each observation has
“constraints” that describe under which atmospheric conditions the observation should be
executed. After the observation has been completed, a quality control assessment is achieved
to decide if the observations were successful or not. If the atmospheric conditions evolve to
be out of constraints during the observation, then the observation may be repeated, which is
considered a loss of telescope time.
The main atmospheric parameter that is used that varies the most is the “seeing” parameter
which is related to the optical turbulence of the atmosphere.
Having accurate predictions for the seeing on hour timescales would be extremely useful to
improve the selection of the optimal observation for execution.

Currently, the model utilized for predicting atmospheric seeing at the European Southern
Observatory is denoted as the “Persistence Model” (PM), also sometimes referred to as the
“Stationary Model” or “precast”. It operates by calculating a 10-minute average for the ob-
served seeing conditions, with the assumption that the seeing will remain consistent at this
average level for a duration of one hour.
Efforts have been made to create a new model aimed at surpassing the performance of the
stationary model, however, the outcomes have thus far not yielded optimal results.
The primary focus of these models were the utilization of Machine Learning (ML), Deep
Learning (DL), and numerical simulations for atmospheric modeling. Furthermore, alterna-
tive endeavors at different observatories involved the exploration of hybrid models, character-
ized by the integration of numerical systems with machine learning methodologies to forecast
atmospheric seeing conditions or, even better, optical turbulence parameters.

1.2. Astronomical Turbulence
Atmospheric optical conditions are crucial for selecting the best astronomical sites of the
world. Among them, the seeing is one of the most important because is directly related with
the spatial resolution of images taken by the observatories in the world.
Astronomical seeing is one of the optical turbulence variables along with isoplanatic angle
and coherence time that is caused by the Earth atmospheric turbulence. Thermal convection
and winds produce turbulence cells having different optical refraction indexes, leading to
perturbations and distortions of the incoming light wavefronts.
This behaviour of the atmosphere is seen at the eyepiece as a blurred, moving, or scintillating
image. There are roughly 3 main areas where atmospheric turbulence occurs. Near ground
(0 – 100 m approximately) central troposphere (100 m – 2 km), and High troposphere (6 -
12 km). These altitude values can be really different in reality depending on the location.
Details are explained below.

1. Near ground turbulence.

The air closest to the ground hosts the majority of atmospheric turbulence. This tur-

2

bulence primarily comes from variations in heat radiation from different density areas,
such as buildings, leading to localized convection currents. During the day, the Sun
heats the ground, which in turn radiates heat at night, contributing to these currents.
Observing over consistent topography is advantageous, as they release stored heat more
gradually and uniformly, minimizing turbulence effects.

2. Central troposphere turbulence.

The turbulence experienced at these altitudes is predominantly influenced by the topog-
raphy situated upwind of the observing location. When airflow encounters a mountain
peak, turbulence is induced, forming turbulent eddies that lead to shimmering or scin-
tillating images. This phenomenon can persist for up to 100 kilometers downwind from
the peak. Therefore, it is advisable to select observation sites where prevailing winds
have traversed over consistent terrain. This facilitates the establishment of a laminar
flow, resulting in stable and clear images.

3. High troposphere turbulence.

At this altitude, the effects are primarily driven by swiftly moving “rivers” of air called
jet streams. Wind shears occurring around the 200-300 mb altitude level can result in
images appearing stable yet notably blurred, lacking intricate details. Unfortunately,
observers have limited means to counteract these effects. However, forecasts are possible
to predict whether a jet stream is positioned over the observation area, offering valuable
insight for planning astronomical activities.

A rigorous quantification of the seeing effect depends on the exposure time. For most
astronomical observations, seeing is quantified for the so-called long exposure case, in which
the exposure is longer than the time in which the wavefront phase inhomogeneities larger
than the telescope pupil pass through it. In practice for a large telescope this is an exposure
of a duration of the order of 10 to 30 seconds. As a consequence the image motion effect of
seeing will be summed-up in an overall blur effect.

The seeing conditions from a mathematical point are described by two fundamental pa-
rameters t0 and r0 in the Kolmogorov’s turbulence theory. Both t0 and r0 parameters are a
function of the wavelength of the light used for imaging.
t0 is known as the coherence time and it is equals to the time interval over which the rms
wavefront error due to the turbulence is 1 radian, or λ/(2π). In short this is the time over
which the image of a star can be considered frozen.

It’s important to note that the quality of seeing isn’t consistent across the entire field of
view (FOV) of a telescope. This occurs because light from two celestial objects might travel
slightly different paths through the atmospheric turbulence of Earth. When objects are sepa-
rated by a “large” angle, the wavefront distortion affecting one object won’t necessarily apply
to the other, as their turbulence-induced errors differ, leading to a lack of correlation. The
angle at which wavefront errors are nearly identical is termed the isoplanatic angle, a crucial
parameter in understanding atmospheric turbulence effects. Figure 1.1 shows an illustration

3

of this behavior.

Common Atmospheric Path

Altitude

TargetReference Star

Telescope

Turbulence

Figure 1.1: Illustration of common atmospheric path.

The term r0, also known as Fried’s parameter or Fried’s coherence length, quantifies the
quality of optical transmission through the atmosphere, attributable to random inhomo-
geneities in its refractive index. Measured in centimeters, r0 represents the diameter of a
circular area where the rms wavefront error induced by atmospheric passage equals 1 radian
or λ/(2π). Essentially, r0 is the coherence length from the all atmosphere contribution and
can be seen as the average turbulence cell size.

For practical applications in calculating the seeing, equations 1.1 and 1.2 (equations (13)
and (14) in [1]) can be used. Here, σ2 denotes the variance of the differential image motion,
with the subscripts l and t referring to longitudinal and transverse motion, respectively, both
for d ≥ 2D.

σ2
l = 2λ2r

−5/3
0 (0.179D−1/3 − 0.0968d−1/3) (1.1)

σ2
t = 2λ2r

−5/3
0 (0.179D−1/3 − 0.145d−1/3) (1.2)

Where D is the diameter of the scope apertures of the DIMM instrument and d is the is
the distance between the center of the apertures. The variables σl and σt are measured using
the DIMM instrument and λ = 500 nm (or 500−9 m) is the wavelength used to calculate the
turbulence.
It is worth to note that every variable involved is these equations are measured in meters.

Finally, to obtain the seeing value we need to calculate the following:

seeing [rad] = 1.02 · r0

λ
(1.3)

To calculate the documented seeing (as well as the one in the Paranal Observatory

4

database), we need to convert it to arcseconds, which is:

seeing [arcsec] = 1.02 · r0

λ
· 360

2π
· 36600 (1.4)

1.3. General Objective
This thesis aims to primarily concentrate on predicting the hourly average of atmospheric see-
ing utilizing a diverse array of machine learning techniques applied to the minute-by-minute
data collected by ESO. We focus on the hourly average because most individual science
observations last about one hour and thus this prediction matches the average duration of
observations for which ESO conducts quality control on the measured seeing during the ob-
servation.
This problem presents multiple approaches for treatment. It can be approached as a regres-
sion problem, where the objective is to predict a continuous value in R+ utilizing all available
data. This predicted value represents the anticipated average seeing for the upcoming hour.
Conversely, the problem can be viewed as a classification problem, where the goal is to pre-
dict the range within which the average seeing will fall. Alternatively, the problem can be
approached as a pure forecasting task, entailing the prediction of seeing values at regular
intervals of time. Once an hour’s worth of values is obtained, they can be averaged to derive
the final prediction.
For this work, we will focus on regression and classification problems. This decision is based
on the fact that forecasting requires significantly more computational resources due to its
complexity. Additionally, forecasting data further into the future tends to introduce more
noise due to the chaotic behavior of seeing. Moreover, for predictions for the real-time
scheduling of observations ESO does not require a model capable of forecasting an entire
night of seeing values; instead, they need a model that can be run a few times. In this
context, a regression/classification approach is ideal.
While a forecast of turbulence values for the entire night would certainly be useful, it falls
outside the scope of this work.

As we mentioned before, the primary objective of this thesis is to develop a new model ca-
pable of surpassing the performance of the existing stationary model, leveraging the dataset
provided by ESO. Therefore, the aim is to explore each approach comprehensively in order
to draw conclusions regarding their effectiveness.

The necessity for this research arises from the belief that there exists potential to enhance
the prediction of average seeing beyond the current methodology of relying solely on a 10-
minute average. Additionally, the recent surge in advancements in artificial intelligence serves
as a motivating factor for the development of such models.
Another strong reason is the ongoing development of the ELT at Cerro Armazones. With
this, importance of accurately predicting atmospheric seeing is becoming even more critical
for optimizing operational decision-making. An inaccurate prediction can lead to significant
losses in telescope time, personnel efforts, and, inevitably, financial resources.

5

1.4. Specific Objectives
To fulfill the general objectives, we also concentrated on specific tasks aimed at deriving the
desired conclusions.The primary specific objectives of this thesis include:

1. Exploratory Data Analysis (EDA).

a) Basic information about the database.
b) Data distribution and plots.
c) Correlation between features.

2. Performing Feature Engineering.

a) Add time-based features.
b) Add seeing-related columns representing different times.
c) Remove less important variables.

3. Experimenting with various models and approaches.

a) Try basic ML algorithms.
b) Use basic and state-of-the-art DL models.
c) Adjust the last two points for regression and classification problems.

4. Perform Hyperparameter tuning for models.

a) Choose the critical hyperparameters to adjust their values.
b) Use different techniques to get optimal values for these hyperparameters.

5. Provide interpretability of the optimal model.

a) Calculate feature importance, if possible.
b) Explain the model’s output and its relation to the input data.

6. Give conclusions with the selection of an optimal model for implementation.

a) Choose the best model and the best approach to this problem of seeing prediction
with a optimize implementation.

b) Provide a conclusion for each method explored in this study and discuss potential
paths for future research.

The construction of these specific objectives is based on a typical machine learning prob-
lem, providing us with a flexible working path.

Before going directly into the data, we need to explore existing information about this
problem and any previous attempts to predict future seeing. Following this, we will present a
theoretical framework, making this thesis self-contained, covering the concept of seeing and
other mathematical tools necessary for predicting values and evaluating different models.
Then, we will discuss the database provided by ESO, which we will utilize to address this
problem and we will talk about the modifications we believe are most effective for improving

6

model performance.
Finally, we will experiment with multiple models and assess their performance to draw a
comprehensive conclusion on this topic.

All coding aspects were developed and deployed in Python, utilizing common libraries
for data reading and preprocessing, as well as traditional machine learning features. For
advanced deep learning models we used the tsai library [2]. For visualizations, we primarily
used the Plotly1 library.

Almost all code-related tasks were implemented using Google Colaboratory. The machine
specifications include an Intel Xeon CPU with 2 virtual CPUs and 13 GB of RAM. Addi-
tionally, by changing the runtime type, we gain access to an NVIDIA Tesla T4 GPU with 16
GB of VRAM for a limited time.

1 https://plotly.com/

7

https://plotly.com/

Chapter 2

Literature Review

In this chapter, we will review some existing work of astronomical seeing forecasting and
what tools can be used to do that. This is a difficult task so there has been a few attempts
trying new things to outperform the previous results, but nowadays as we have more data,
it is more common to see data-driven models.
In the next sections, we will discuss various approaches that can be employed to predict
seeing values.

2.1. Prediction based on meteorological models
Since the start of weather and atmospheric parameter forecasting, numerous numerical mod-
els have been developed for this purpose. One such model is the non-hydrostatic mesoscale
model (MESO-NH [3]), which is utilized by many observatories, often in modified versions,
to predict various weather parameters. Another approach involves employing the Weather
Research and Forecasting (WRF [4]) model. Currently, numerous methods are derived from
Tatarskii theory [5].
Although meteorological models are a powerful tool for prediction tasks, they are beyond the
scope of this work. However, as future work, incorporating these models as a potential tool
for predictions could provide a strong and robust fusion for optical turbulence variables.

2.2. Prediction based on machine learning
Given the significant advancements in machine learning over recent years, there is a high
motivation to explore these models for the task of seeing prediction. These attempts range
from classical machine learning approaches to deep learning (DL) models including Multi-
Layer Perceptron (MLP), Long Short-Term Memory (LSTM), Convolution Neural Networks
(CNN) and even state-of-the-art models like MINIROCKET [6] and transformer based models
like Time Series Transformer (TST [7]) that are based in attention modules [8] and more.
As evidenced in the literature [9–12], ML models offer a promising approach for forecasting
and prediction challenges. Thus, the primary focus of this thesis will center on exploring ML
methodologies, from classical to state-of-the-art algorithms and how efficiently they work,
in terms of pure prediction error, training and prediction time as well as the difficulty of
implementation.

8

2.3. Prediction based on hybrid models
We have discussed numerical and machine learning models independently, however, there is
natural idea of integrating them into a unified model. Attempts to explore this concept can
be found in [13].

At the time of writing, we couldn’t find many hybrid models, as they may not be the
primary approach for the forecasting task. The most common methods are to implement
numerical and complex models or pure machine learning techniques.

9

Chapter 3

Theoretical Framework

3.1. Classic Machine Learning Models
Machine learning models are algorithms designed to predict the categorical class (classifica-
tion) or a continuous value (regression) based on input features. They use a train data set
to adjust or learn patterns within the data that enable accurate predictions.
Classic ML methods refer to models that are simpler than deep learning models and are
typically easier to interpret, requiring fewer computational and time resources.
For simplicity, the next subsections will explain how the models work in a classification task.
Minor changes are necessary to transform it to a regression problem.

3.1.1. Isotonic Regression
This model is only used for regression problems and fits a non-decreasing real function to
1-dimensional data. That being said, this is one of the simplest models we are going to test
because this will only take into account the seeing parameter and will try to make a piecewise
increasing linear function to make predictions.

The mathematical statement of the problem is, given n points of the form (xi, yi):

min
n∑

i=1
wi(yi − ŷi)2

s.t. ŷi ≤ ŷj for all (i, j) ∈ {(i, j) : xi ≤ xj}
wi > 0

(3.1)

3.1.2. Stochastic Gradient Descent
Stochastic Gradient Descent or SGD is, strictly speaking, a merely optimization technique
and does not correspond to a ML model, but it can be an estimator depending on the pa-
rameters. For example, if we optimize the problem through the ordinary least squares fit and
use a l2 regularization, this will be equivalent to a Ridge regression.
The reason to test this model is the amount of data that we will work on and the ease of
implementation it offers.

For the mathematical formulation, we try to minimize a objective function with the form

10

Q(w) = 1
n

n∑
i=1

Qi(w) (3.2)

where the parameter w that minimizes Q(w) is to be estimated. Then, the true gradient
of Q(w) is approximated by the value w := w − η∇Qi(w) at a single sample. This is an
iterative method so several steps will be made until the algorithm converges.
Here, η is called learning rate and is one of the most crucial parameters in this model as well
as DL models.

3.1.3. Decision Tree
Decision Trees (DT) represent a non-parametric approach within supervised learning, serv-
ing as a method for both classification and regression tasks. It is important to note that it
operates as a piecewise linear model, with each neighborhood defined in a non-linear way.
The process by which decision trees operate involves a data point x = (x1, x2, x3, . . . , xk, y)
entering the tree and progressing to subsequent nodes based on certain feature values until
it arrives at a leaf node (nodes that have no additional nodes coming off them), where a
prediction is obtained.

Choosing the best attribute at each node is done by calculating the information gain. The
way this is calculated is first calculating the entropy:

H(S) = −
∑
c∈C

p(c) log2 p(c) (3.3)

Where S represents the data set, c represent a class in the dataset where C is the collection
of all possible classes and p(c) is the fraction of data points that belong to class c.
Then, the information gain is calculated by:

IG(S, a) = H(S) −
∑

v∈vals(a)

|Sa(v)|
|S|

H(Sv) (3.4)

Where vals(a) is the value of the ath attribute and Sa(v) = {x ∈ S|xa = v} with xa being
the ath attribute of example x.

Another important function to measure the quality of the splits is the Gini Impurity:

IG = 1 −
∑
c∈C

p(c)2 (3.5)

This is the probability of misclassifying random data point in the dataset if it were labeled
according to the class distribution of the dataset.

3.1.4. Ensemble models
Ensemble models in machine learning are techniques that combine the predictions from mul-
tiple individual models to produce a more accurate and robust final prediction. These indi-
vidual models will be decision trees for all the ensemble models we consider in this study.
The idea behind ensemble learning is to leverage the diversity of multiple models to com-
pensate for the weaknesses of individual models and improve overall performance. These

11

methods can address both classification and regression tasks and are among the most fre-
quently utilized models due to their performance, efficiency in training and prediction, as
well as their straightforward implementation.

There are four algorithms that we will focus on. These are Random Forest [14], XGBoost
[15], LightGBM [16] and CatBoost [17]. These models are one of the most used in machine
learning tasks due to their performance and the amount of hyperparameters that can be
tuned to tackle the problem with a more suitable model.

3.2. Deep Learning Models
Deep learning models are a powerful class of artificial neural networks characterized by their
deep architectures, often consisting of multiple layers of interconnected nodes. Unlike tradi-
tional machine learning algorithms, which rely on handcrafted features, deep learning models
can learn intricate patterns and representations of data through the iterative process of for-
ward and backward propagation.

3.2.1. Multilayer Perceptron
A multilayer perceptron (MLP) is a type of feedforward artificial neural network that consists
of multiple layers of interconnected nodes, or neurons. It is one of the simplest and most
common architectures in deep learning. In an MLP, each neuron in one layer is connected to
every neuron in the subsequent layer, forming a dense network of connections. The layers in
an MLP typically include an input layer, one or more hidden layers, and an output layer.
The input layer receives the raw input data, which is then passed through the network. Each
neuron in the hidden layers applies a weighted sum of the inputs, followed by an activation
function to produce an output. This output is then passed as input to the next layer. The
final output layer produces the model’s prediction.

We’ll denote xj to the input units and the activation of the output unit as y. The units
in the l-th hidden layer will be denoted h

(l)
i and L the numbers of layers. Therefore, the

network’s model can be expressed as:

h
(1)
i = ϕ(1)

(∑
j

w
(1)
ij xj + b

(1)
i

)

h
(2)
i = ϕ(2)

(∑
j

w
(2)
ij h

(1)
j + b

(2)
i

)
...

yi = ϕ(L)
(∑

j

w
(L)
ij h

(L−1)
j + b

(L)
i

)
(3.6)

We differentiate between ϕ(1) and ϕ(2) to account for the possibility of different activation
functions across various layers. The equations shown in (3.6) can be reformulated in a
vectorized form, incorporating an activation vector h(l), a weight matrix W(l), and a bias
vector b(l) giving the following equations:

12

h(1) = ϕ(1)
(

W(1)x + b(1)
)

h(2) = ϕ(2)
(

W(2)h(1) + b(2)
)

...

y = ϕ(L)
(

W(L)h(L−1) + b(L)
)

(3.7)

3.2.2. Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are another class of artificial neural networks designed
to handle sequential data by introducing connections between units within the network that
form directed cycles. Unlike a MLP, which process data in a single direction, RNNs have
connections that loop back on themselves, allowing them to exhibit temporal dynamics and
capture dependencies over time.

In an RNN, each unit, or neuron, maintains an internal state that represents information
from previous time steps. This internal state, often referred to as the “memory” of the
network, is updated at each time step based on both the current input and the previous
state. This recurrent structure enables RNNs to model sequences of arbitrary length and
capture patterns in sequential data.
The Figure (3.1) represents a general RNN and we can see their chain-like nature that can
represents such type of data.

Figure 3.1: RNN diagram (image from [18])

Traditional RNNs can struggle with capturing long-term dependencies in sequences due
to (probably) the main problem which is vanishing gradients, where the gradients used to
update the network’s parameters vanish exponentially over time. To address this limitation,
several variants of RNNs have been developed, such as Long Short-Term Memory (LSTM
[19]) networks and Gated Recurrent Units (GRU [20]). These architectures incorporate
mechanisms to better retain and update information over long sequences, making them more
effective for tasks requiring modeling of long-range dependencies.

3.2.3. Convolutional Neural Networks
Convolutional Neural Networks (CNNs [21]) are another class of artificial neural networks
designed originally to handle structured grid-like data, such as images or audio spectrograms.
However, it is usually a good method to try in regression/classification tasks due to their

13

(usually) lower training time.

CNNs are characterized by their architecture, which includes convolutional layers, pooling
layers, and fully connected layers. Convolutional layers are the core building blocks of CNNs
and consist of filters, also known as kernels, that slide over the input data to perform con-
volutions. These convolutions can capture local patterns or features. By stacking multiple
convolutional layers, CNNs can learn increasingly complex and abstract features from raw
input data.

Pooling layers are situated between convolutional layers and serve to downsample the fea-
ture maps produced by the convolutions. Common pooling operations include max pooling
and average pooling, which reduce the spatial dimensions of the feature maps while preserv-
ing important features.

Fully connected layers are typically located at the end of the network and are responsible
for combining the high-level features learned by the convolutional layers to make final pre-
dictions.
Figure (3.2) represents a simple CNN model. Usually, the net is more interconnected but it
serves as an illustration.

Figure 3.2: CNN diagram (image from [22])

3.3. Metrics
3.3.1. Mean Absolute Error
Mean Absolute Error (MAE) is a metric that measures the average absolute difference be-
tween predicted values and actual values in a dataset. It reflects the magnitude of errors
without considering their direction, making it easy to interpret as the average error size.

MAE = 1
n

n∑
i=1

|ŷi − yi| (3.8)

Where yi is the true value and ŷi the prediction. MAE is measured in the same units
as the target variable, making it easy to interpret. A lower MAE indicates better model
performance, as it reflects smaller average errors between predictions and actual outcomes.

14

3.3.2. Mean Squared Error and Root Mean Squared Error
Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) are common metrics used
to evaluate the performance of regression models. They measure the average of the squared
differences between the predicted values and the actual values in a dataset and an average
magnitude of the errors between the predicted values and the actual values, respectively.

MSE = 1
n

n∑
i=1

(ŷi − yi)2 (3.9)

RMSE =
√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (3.10)

MSE is measured in the square of the units of the target variable while RMSE is measured
in the same units as the target variable, which makes it more interpretable. Both of them
indicates a better performance the lower the value.
Minimizing RMSE (or MSE) will focus more on reducing large errors, while minimizing MAE
will focus on reducing the average error.

3.3.3. Precision
Precision is important metric used to evaluate the performance of classification models. It
measures the proportion of correctly predicted positive cases out of all cases that are predicted
as positive.

Precision = True Positives (TP)
True Positives (TP) + False Positives (FP) (3.11)

Precision ranges between 0 and 1, where a higher value represents a better performance
of the model.

3.3.4. Recall
Recall is another important metric used to evaluate the performance of classification models.
It measures the proportion of correctly predicted positive cases out of all actual positive
cases.

Recall = True Positives (TP)
True Positives (TP) + False Negatives (FN) (3.12)

Recall ranges between 0 and 1, where a higher value represents a better performance.

3.3.5. Accuracy
Accuracy is a fundamental metric used to evaluate the overall performance of classification
models. It measures the proportion of correctly predicted instances (both positive and neg-
ative) out of all instances in the dataset.

Accuracy = TP + TN
TP + TN + FP + FN (3.13)

15

Accuracy also ranges between 0 and 1, where a higher value represents a better perfor-
mance.

3.3.6. f1-score
The f1-score is a metric commonly used to evaluate the performance of classification models,
especially in scenarios where class imbalance is present. It is a harmonic mean of precision
and recall, providing a single score that balances both metrics.

f1-score = 2 · Precision · Recall
Precision + Recall = 2 · TP

2 · TP + FP + FN (3.14)

f1-score also ranges between 0 and 1, where a higher value represents a better performance.

3.3.7. Diagonal Average
The Diagonal Average metric involves segmenting predictions into predefined bins, in this
case, (0.15, 0.5], (0.5, 0.6], (0.6, 0.7], (0.7, 0.8], (0.8, 1.0], (1.0, 1.3], (1.3, 2.2] and (2.2, +∞), and
then visualizing them in a confusion matrix to compare predictions against true values.
Then by normalizing the matrix over the rows (representing true values) and computing the
diagonal average, that is, the average recall in classification problems, we obtain model per-
formance. Note that a higher Diagonal Average signifies better model performance.

If we have a square matrix A with size n, then,

Diagonal Average = 1
n

n∑
i=1

Aii (3.15)

3.3.8. Success Rate
The Success Rate metric refers to fulfilling observation seeing prerequisites. For example,
if an observation requires an average visibility within the range of 0.5 to 0.6 for an hour
(average), the criteria are considered met even if the actual visibility falls below 0.5 (better
seeing). Consequently, this metric does not penalize predictions exceeding the actual values.
It’s worth to note that this metric primarily assesses model performance in the lower visibil-
ity ranges (below 1.0). This is because if we employed this metric as a model loss function,
predictions would result in the model favoring exceedingly high values because then every pre-
diction will be higher than the actual value and will score perfectly based on the Success Rate.

If we have a square matrix A with size n and a total of N observations, then one way to
obtain this metric is,

Success Rate = 1 − 1
N

n∑
j<i

Aij (3.16)

16

Chapter 4

Database

The thesis utilizes a database2 provided by the European Southern Observatory, with various
time periods (p97 to p111) spanning six months each, from April 6, 2016, to September 30,
2023. This dataset has already been cleaned by the ESO, putting all measurements onto
a common time series, removing null values and any unnatural outliers. Additionally, ESO
performed preprocessing to ensure there were no gaps in the data except for the transitions
between nights. That is, the only gaps in the data occur when one night ends and the next
measurement by the instruments is taken the following night, so there are no gaps between
rows of data within the same night.

The train database (p97 to p109) contains a total of 1 174 104 rows and 168 columns.
Three columns have been excluded from the dataset due to redundancy, as they contain
duplicate information presented in a less optimal format compared to other columns so the
total of useful columns is 165.
The provided data is captured at one-minute intervals, with each row representing a distinct
minute. Data collection typically spans from around 22:00/23:00 to 8:00/9:00 UTC (Univer-
sal Time), varying slightly depending on the season.
It is worth to note that there is no data at day time so this is considered a discontinuous time
series. This fact makes it really hard to use some state-of-the-art models that require a fixed
frequency in the data directly. Additionally, in the future, as the ELT is being constructed,
there are plans to use instruments that can measure seeing 24 hours a day, providing a better
and more detailed time series for these optical turbulence variables.

On the other hand, the test set has the same qualities with the only difference that there
are 199 314 rows and it is a entire year (p110 and p111), from 2022-10-01 to 2023-09-30.

The initial memory usage of the database was 1812.912 MB, before optimizing certain
data types for efficiency. Following the optimization process, the database’s memory usage
decreases significantly to 895.469 MB. These modifications were implemented to minimize
memory usage, particularly for features where high precision in measurements was unneces-
sary.

2 https://www.eso.org/sci/facilities/paranal/astroclimate/ASMDatabase.html

17

https://www.eso.org/sci/facilities/paranal/astroclimate/ASMDatabase.html

4.1. Features Explanation
4.1.1. Target Variables
As previously mentioned, the dataset include 165 pertinent features utilized in this study.
Among these, three are designated as target variables, indicating the focus of prediction
efforts. These features, namely “targetSeeing1hr”, “targetMin1hr”, and “targetMax1hr” rep-
resent the average, minimum, and maximum values of seeing measurements, respectively,
taken one hour after the initial observations. For example, at 1:30 AM, each column will
represent data at 1:30 AM, such as wind speed, absolute humidity, temperature, etc. The
only exceptions are the target variables. Therefore, targetSeeing1hr will represent the aver-
age seeing from 1:31 to 2:30 AM, and the same applies to the other two target variables.
These targets are all float numbers so a regression model is the first that comes to mind to
try and predict these values.

The variable “targetSeeing1hr” likely holds the most significance of the three as it en-
capsulates the average behavior of seeing, which is closely related to the stationary model
employed at ESO because that is what they are trying to predict, as this is used for quality
control of the observations (whether an observation is successful or not). Nevertheless, both
the minimum and maximum values provide valuable insights, offering perspectives on the
best and worst-case scenarios for the seeing values.

In Figure 4.1, we can observe an example of three consecutive nights and their target val-
ues. Note how the targetMin1hr and targetMax1hr variables exhibit a few jumps throughout
the night. This is because the seeing value can be quite chaotic, experiencing significant lows
and highs, which directly impacts these features. However, the targetSeeing1hr variable is
much smoother. By definition, this variable is an average of 60 seeing values, so it makes
sense that it doesn’t exhibit sudden jumps. The large gaps in the center represent periods
where no data is available (during daytime).

00:00
Dec 18, 2020

12:00 00:00
Dec 19, 2020

12:00 00:00
Dec 20, 2020

0.4

0.6

0.8

1

1.2

1.4

1.6 targetSeeing1hr
targetMax1hr
targetMin1hr

Average, minimum and maximum seeing in the next hour

Date

Ta
rg

et
 v

ar
ia

bl
es

Figure 4.1: Target columns from December 18th to 20th, 2020.

18

4.1.2. Input Variables
For constructing a regression or classification model, it’s imperative to have input variables
that the model can interpret. Fortunately, all columns in the dataset are of numeric types,
eliminating any potential issues in this regard. With that said, we proceed to explain the
162 features in general terms.

Initially, the dataset includes a date column representing values in the format of year-
month-day hour:minutes:seconds. Subsequently, it encompasses various Differential Image
Motion Monitor (DIMM) variables, absolute and relative humidity measurements at different
altitudes as well as temperature at these heights. Additionally, Multi-Aperture Scintillation
Sensor (MASS) variables with some variables from MASS-DIMM combined profiles, as well
as wind direction and speed measurements at varying altitudes, are included.
The specific variable names are provided in Annex A.1. For detailed definitions of each vari-
able, please refer to the page Paranal Ambient Query Forms.

In Figures 4.2, 4.3, and 4.4, we can see some of the variables present in the database,
including absolute humidity, relative humidity, and temperature. These variables are mea-
sured at different heights: 0, 10, 30, 50, 75, 100, 125, 150, 200, 250, 325, 400, 475, 550, 625,
700, 800, 900, 1000, 1150, 1300, 1450, 1600, 1800, 2000, 2200, 2500, 2800, 3100, 3500, 3900,
4400, 5000, 5600, 6200, 7000, 8000, 9000, and 10 000 meters. In total, we have 39 columns
for each parameter, resulting in a total of 117 features related to humidity and temperature.

00:00
Oct 15, 2018

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Absolute Humidity [g/m**3] at 0[m] Absolute Humidity [g/m**3] at 100[m] Absolute Humidity [g/m**3] at 1000[m] Absolute Humidity [g/m**3] at 5000[m]

Absolute Humidity 2018-10-14 to 2018-10-15

Date

Va
lu

e
[g

/m
**

3]

Figure 4.2: Absolute humidity at different heights from October 15th, 2018.

19

https://archive.eso.org/cms/eso-data/ambient-conditions/paranal-ambient-query-forms.html

00:00
Oct 15, 2018

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

2

4

6

8

10

12

Relative Humidity [%] at 0[m] Relative Humidity [%] at 100[m] Relative Humidity [%] at 1000[m] Relative Humidity [%] at 5000[m]

Relative Humidity 2018-10-14 to 2018-10-15

Date

P
er

ce
nt

ag
e

[%
]

Figure 4.3: Relative humidity at different heights from October 15th, 2018.

00:00
Oct 15, 2018

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

255

260

265

270

275

280

285

Temperature [K] at 0[m] Temperature [K] at 100[m] Temperature [K] at 1000[m] Temperature [K] at 5000[m]

Temperature [K] 2018-10-14 to 2018-10-15

Date

Te
m

pe
ra

tu
re

 [K
]

Figure 4.4: Temperature at different heights from October 15th, 2018.

Now, the next plot shows the main input feature among all of these: the DIMM Seeing
[arcsec]. This column indicates the seeing value at any given time during the night. As
mentioned before, this optical turbulence variable is very chaotic and can experience sudden
jumps. Figure 4.5 reveals the seeing measurements for one night.

20

00:00
Dec 19, 2020

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

DIMM Seeing [arcsec]

Date

S
ee

in
g

Figure 4.5: DIMM Seeing in arcsec from December 19th, 2020.

Next, Figure 4.6 shows the distribution of this variable. For visualization purposes, the
X-axis is limited to 2.5 arcsec. Higher values than this are not very common, and when we
look at the target variable (average of seeing), these values are even more uncommon.

0.5 1 1.5 2 2.5

0

0.5

1

1.5

DIMM Seeing Distribution

Arcsec

F
re

qu
en

cy

Figure 4.6: Distribution plot for DIMM Seeing [arcsec]

In order to enable the model to predict these target variables effectively, significant mod-
ifications will be made to these columns. These adjustments will involve the removal of less
significant features, capturing the periodic nature of time-related features, and generating
features related to seeing. Further elaboration on these modifications will be provided in the
next chapter.

21

Chapter 5

Methodology

The methodology utilized in this research is founded upon a classical data science approach
known as CRISP-DM (Cross-Industry Standard Process for Data Mining). It entails a sys-
tematic progression beginning with a thorough comprehension of the problem and objectives,
followed by an examination of the available data. Then, feature engineering, modeling, and
evaluation of the results are conducted. While the final step typically involves deployment,
it is noteworthy that the European Southern Observatory already has an operational model.
Altering this model would affect numerous internal areas within the observatory, so deploy-
ment will not be the primary focus of this process. However, we will run virtual simulations
to compare different prediction models, meaning they will be “deployed” in an operational
environment in some sense.
This entire methodology operates in a cyclical manner, where data is prepared in different
ways, numerous models are tested and evaluated using various metrics, iteratively, until the
desired result is achieved.

Business
Understanding

Data
 Understanding

Data
Preparation

Modeling

Evaluation

Deployment

DATA

Figure 5.1: CRISP-DM methodology for data science projects.

22

To fulfill the initial objectives, we will first conduct an exploratory data analysis. This step
involves understanding the data in detail. We will achieve this by providing numeric descrip-
tions of the main features and creating graphs to make the data more visually understandable.
Next, we will study the correlation between features and target variables. Additionally, we
will analyze the lag plot of the seeing values to determine if there is a correlation with past
values, which will help us conclude if a machine learning approach to this problem is suitable.

After understanding the data in detail, the next step is the feature engineering process.
This involves making modifications to the database to improve the model’s predictive per-
formance. There are two main reasons for this step:

1. Removing less useful features, such as highly correlated characteristics or those with low
importance (identified by different algorithms), and intelligently creating new ones can
positively impact the model’s performance by reducing error.

2. Having fewer features improves the model’s efficiency, which is important if we want to
train the model multiple times with validation datasets and perform a hyperparameter
search.

By refining the dataset, we can enhance both the accuracy and the training efficiency of the
model.

The feature engineering process was a primary focus of this thesis project. This is because
this step can significantly improve a model’s performance and largely depends on one’s cre-
ativity in generating new features. Therefore, this step involved numerous modifications to
compare the results of different models and continually add more columns to the dataset.

After completing all the previous steps, it’s time to try out some models and assess their
performance on this task. From the start, this problem was treated as a regression task,
so that’s our first attempt. One of the challenges we encountered is dealing with multiple
metrics that are important for each model, making it more difficult to select the optimal one.
As mentioned before, this is an iterative process, so the models presented in this thesis are
the final ones selected based on all metrics and time performance.
The next step was to try classification models and evaluate how well they adapt to this
problem. This will help us conclude which type of model to select as the optimal one.

The idea of selecting a few optimal models is to allocate more time for refining these models
and adapting them more effectively. Therefore, a hyperparameter search will be conducted
for these selected models. Then, final comparisons will be made between these fine-tuned
models, which will include their performance on the test set.

To evaluate each presented model, we will partition the data into training, validation, and
test sets. Note that there exists a test set, but we will not use it until we have selected the
best models. Therefore, for this selection, we will only focus on the validation set performance
and their average. Since this is a time series problem, the train and validation sets will be
created using the TimeSeriesSplit3 function with a number of splits = 5 and a gap of 1000

3 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit

23

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit

data points, ensuring that there is a gap of approximately two days between each split. That
gives the following cross validation splits, where each number is a different evaluation so we
have a new train and validation sets:

1. Train index = [0, 194 683], validation index = [195 684, 391 364]

2. Train index = [0, 390 364], validation index = [391 365, 587 045]

3. Train index = [0, 586 045], validation index = [587 046, 782 726]

4. Train index = [0, 781 726], validation index = [782 727, 978 407]

5. Train index = [0, 977 407], validation index = [978 408, 1 174 088]

In conclusion, the above represents a time series scenario where a model is trained with
some of the data and validated with future points that the model hasn’t seen. Note that the
number of training points is increasing, so one might expect better performance with each
split. However, due to the chaotic nature of the target variable, this may not always be the
case.

5.1. Exploratory Data Analysis
First, we will examine the data from numerical perspective. Then we will plot some variables
and observe how they behave over time.

Here we can see Table 5.1 and Table 5.2 with statistical information about the target
variables. They show the mean, minimum and maximum values with the standard deviation
and the 25th, 50th, and 75th percentiles.
These tables were created separately to determine if the training and test datasets exhibit
similar target variables. If big discrepancies exist, we would need to clean the data and
attempt to align the distribution of these target variables between the training and test set.

Table 5.1: Numeric description of target variables for training set.

targetSeeing1hr targetMin1hr targetMax1hr
mean 0.855 0.647 1.178
min 0.225 0.175 0.254
25% 0.579 0.442 0.773
50% 0.727 0.550 1.003
75% 0.988 0.738 1.393
max 4.827 4.202 7.530
std 0.432 0.335 0.615

24

Table 5.2: Numeric description of target variables for test set.

targetSeeing1hr targetMin1hr targetMax1hr
mean 0.843 0.640 1.154
min 0.264 0.228 0.295
25% 0.594 0.454 0.786
50% 0.751 0.565 1.023
75% 0.986 0.743 1.377
max 3.439 2.723 5.913
std 0.371 0.286 0.545

We can observe that the two sets are quite similar, despite the difference in the amount of
data in each set (approximately a 6:1 ratio for the train and test sets). The most significant
disparity may lie in the maximum values of the three target variables. However, since our
primary concern is with the lower values of seeing, this discrepancy should not be an issue
for the models that we will evaluate.

Now that we have identified several characteristics of the target variables, we will examine
their distribution. The bin ranges for the histogram plot is the standard practice at ESO,
and we will maintain these values consistently throughout the study.

0.15-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-1.0 1.0-1.3 1.3-2.2 2.2+
0

50k

100k

150k

200k

TargetSeeing1hr distribution by determined ranges

targetSeeing1hr

C
ou

nt

Figure 5.2: Histogram of the values of “targetSeeing1hr” data.

Figure 5.2 provides an approximate distribution of the average seeing values. We observe
that each range of values is fairly similar in quantity, except for the last one (2.2+). This
disparity is not concerning, as this range is of lesser importance to us and to the ESO, be-
cause almost every observation requires a better visibility. Consequently, we will not focus
on using undersampling or oversampling techniques. However, we will explore models that
inherently address class imbalances, such as the Balanced Random Forest.

Next, we will observe similar histograms for the other two target variables:

25

0.15-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-1.0 1.0-1.3 1.3-2.2 2.2+
0

50k

100k

150k

200k

250k

300k

350k

400k

450k

targetMin1hr distribution by determined ranges

targetMin1hr

C
ou

nt

Figure 5.3: Histogram of the values of “targetMin1hr” data.

0.15-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-1.0 1.0-1.3 1.3-2.2 2.2+
0

50k

100k

150k

200k

250k

targetMax1hr distribution by determined ranges

targetMax1hr

C
ou

nt

Figure 5.4: Histogram of the values of “targetMax1hr” data.

Figures 5.3 and 5.4 show the distribution of data across bins. In both cases, instances of
seeing values surpassing 2.2 are infrequent. Notably, the range (0.15, 0.5] contains fewer data
points for the targetMax1hr variable. This discrepancy arises because if, for any minute,
the seeing value exceeds 0.5 (which is plausible considering the nature of seeing), the target-
Max1hr value will shift to a higher bin.
In the case of the targetMin1hr variable, it is evident that the majority of data points fall
within the (0.15, 0.5] range. Therefore, if we intend to employ a classification model, we must
ensure that the model does not only predict this “class” as a result of a naive prediction.

Continuing in the same direction of visualizing the data, Figure 5.5 presents a (Pearson)
correlation plot of all available features using a random subset of 100 000 points from the
training set, a measure taken due to time and computational resource constraints.

26

−1

−0.5

0

0.5

1

Correlation Matrix Heatmap

Figure 5.5: Pearson correlation of all features for a sample of 100 000 data
points.

The big 3 × 3 block that we observe in the heatmap is caused by 3 variables taken at
different heights. These variables are absolute humidity [g/m3], relative humidity [%] and
temperature [K]. The altitude that these measures were taken are again 0, 10, 30, 50, 75,
100, 125, 150, 200, 250, 325, 400, 475, 550, 625, 700, 800, 900, 1000, 1150, 1300, 1450, 1600,
1800, 2000, 2200, 2500, 2800, 3100, 3500, 3900, 4400, 5000, 5600, 6200, 7000, 8000, 9000
and 10 000 meters. Therefore, each square of this 3 × 3 block is a 39 × 39 grid, where the
upper-left squares represent lower altitudes and the bottom-right squares represent higher
altitudes.
As we can see, these values are highly correlated even at different heights so we can do a lot
of modifications in order to reduce the number of variables, training and prediction time of
the models.
The smaller yellow squares located in the bottom-right corner represent the target variables,
as well as the predictions generated by the existing model at ESO, alongside additional mea-
surements of wind, temperature, and humidity obtained from another sensor, in this case,
LHATPRO.

The final visualization for this EDA section can be observed in Figure 5.6, showing lag plots
at various time intervals. These graphs are used to investigate whether the target variable
we aim to predict exhibits any correlation with itself over different time shifts. Included are
lag plots at intervals of 1, 15, 30, 60, 90, and 120 minutes.
For computational reasons, the plots are generated using a subset of 100 000 data points.
This subset of data was taken in such a way that it is not shuffled, meaning, 2 indices were
selected, and all corresponding elements between these 2 selected rows were taken.

27

0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

Multiple lag-plots for targetSeeing1hr variable

targetSeeing1hr(t) targetSeeing1hr(t)

targetSeeing1hr(t) targetSeeing1hr(t)

targetSeeing1hr(t) targetSeeing1hr(t)

ta
rg

et
S

ee
in

g1
hr

(t
+1

)

ta
rg

et
S

ee
in

g1
hr

(t
+1

5)

ta
rg

et
S

ee
in

g1
hr

(t
+3

0)

ta
rg

et
S

ee
in

g1
hr

(t
+6

0)

ta
rg

et
S

ee
in

g1
hr

(t
+9

0)

ta
rg

et
S

ee
in

g1
hr

(t
+1

20
)

Lag-plot targetSeeing1hr 1 min Lag-plot targetSeeing1hr 15 min

Lag-plot targetSeeing1hr 30 min Lag-plot targetSeeing1hr 60 min

Lag-plot targetSeeing1hr 90 min Lag-plot targetSeeing1hr 120 min

Figure 5.6: Lag plots for the principal target variable (“targetSeeing1hr”).
The black dashed line is for reference.

Here, we observe that the main target variable demonstrates correlation with itself across
various time shifts. This suggests that employing a machine learning approach to predict
this value is indeed a suitable strategy to address the problem.
The black dashed line serves as a reference, indicating perfect correlation between a feature
and its time-shifted values. Although some points deviate significantly from this line even in
the 1-minute lag plot, there are two primary reasons for this: the sudden fluctuations that
seeing can exhibit and the variance between consecutive rows, where the first may represent
the final measurement of the observatory at night and the subsequent one could be the initial
measurement of the following night. This discontinuity in the time series is not likely to be
a significant problem because the number of nights from the start to the end of the database
is negligible compared to the amount of continuous data collected throughout the night.

28

5.2. Feature Engineering
In this section, our focus will be on modifying and refining the database to improve the per-
formance of our models. Our objective is to achieve improved prediction efficiency, aiming for
better prediction outcomes and reduced training and prediction times. Thus, the objective is
to reduce the number of input features. To do this, we compare the correlation between the
target variables to the input features and run a few algorithms to get the feature importance
of each variable and then decide if we are going to drop them depending on the performance
changes.

First, we adjust the “Date” variable. Since this column is of datetime type, we will ex-
tract only the month and hour components, considering the year, day, and minutes to be less
relevant. Secondly, we change the month and hour variables into periodic representations by
converting them into radians and subsequently deriving the sine and cosine components of
these values.

00:00
Aug 26, 2018

12:00 00:00
Aug 27, 2018

12:00 00:00
Aug 28, 2018

12:00 00:00
Aug 29, 2018

0

5

10

15

20

Hour variable before cyclic representation

Date

H
ou

r

(a) Hour value obtained by the “Date” variable from April 6th to April 9th, 2016.

00:00
Aug 26, 2018

12:00 00:00
Aug 27, 2018

12:00 00:00
Aug 28, 2018

12:00 00:00
Aug 29, 2018

−0.5

0

0.5

1

Sin component
Cos component

Hour variable after cyclic representation

Date

H
ou

r
re

pr
es

en
ta

tio
n

(b) Time of day cyclic representation from April 6th to April 9th, 2016.

Figure 5.7: Hour variable before and after modifications.

Here in Figure (5.7.a), we observe the hour column before the modification, which consists
of discrete values ranging from 0 to 23. Notably, there are no values recorded after 9, at least

29

for that particular night. Typically, there is no data available after 9:00, and the first recorded
entries of the night typically start at 23:00. Following the transformation, in Figure (5.7.b)
we can see the representation of the hours appears more continuous. However, the entire
cyclical form cannot be fully discerned due to the absence of data from 9:00 to 23:00.

May 2016 Jul 2016 Sep 2016 Nov 2016 Jan 2017 Mar 2017 May 2017 Jul 2017 Sep 2017

0

50

100

150

200

250

300

350

Day of year variable before cyclic representation

Date

D
ay

 o
f y

ea
r

(a) Day of year plot obtained by the “Date” variable from April 6th, 2016 to October
25th, 2017.

May 2016 Jul 2016 Sep 2016 Nov 2016 Jan 2017 Mar 2017 May 2017 Jul 2017 Sep 2017

−1

−0.5

0

0.5

1 Sin component
Cos component

Day of year variable after cyclic representation

Date

D
ay

 o
f y

ea
r

re
pr

es
en

ta
tio

n

(b) Day of year cyclic representation from April 6th, 2016 to October 25th, 2017.

Figure 5.8: Day variable before and after modifications.

In Figure (5.8), we can observe a similar pattern to the previous figure. However, the
only point of discontinuity occurs when the year changes. Since we have more data available
(almost every days), we can fully observe the cyclical behavior of the day variable after the
transformation.

Next, we modify the measurement unit of two variables: Wind direction at 10 and 30 me-
ters. This adjustment is necessary because these features were initially recorded in degrees,
which might not effectively capture their cyclic nature within the model. Therefore, we will
convert these columns into sine and cosine components to better represent their periodic
characteristics.

30

0 50 100 150 200 250 300 350
0

5

10

15

20

0

1000

2000

3000

4000

5000

6000

7000

count

Wind data distribution

Wind Direction at 30m (0/360) [deg]

W
in

d
S

pe
ed

 a
t 3

0m
 [m

/s
]

(a) Wind direction and velocity before modification.

−15 −10 −5 0 5 10 15

−10

−5

0

5

10

15

0

2k

4k

6k

8k

10k

12k

14k

count

Wind speed vector

Wind X component [m/s]

W
in

d
Y

 c
om

po
ne

nt
 [m

/s
]

(b) Wind direction and velocity after modification.

Figure 5.9: Wind data distribution heatmap with all training data included.

Here in Figure (5.9), we can observe the distribution of wind speed and direction at 30
meters, with the majority of points concentrated between 0 and 30 degrees, and a velocity
ranging from 5 to 10 m/s. After modification, we can also see the X and Y components of
the wind speed. This is calculated by converting degrees to radians, and then obtaining the
sine and cosine components, which are then multiplied by the magnitude of the wind speed.

The next step involved incorporating seeing statistics, which included calculating the
average, minimum, and maximum values over the past 5, 10, and 15 minutes. These values
have proven to be one of the best combinations of statistical information through trial and
error.
After adding some statistics of the main features, we wanted to gather additional information,
such as the first derivative of all the time series columns. Specifically, we focused on the seeing,
air temperature, and wind speed values. To calculate the derivative, the only option is to use
backward finite differences. This is because, in the real use case, we wouldn’t have access to
future values, such as the seeing 5 minutes ahead. The formula is as follows:(

dy

dt

)
i

= yi − yi−1

ti − ti−1
(5.1)

With this, and given that all the data is collected at one-minute intervals, Equation 5.1
simplifies to calculating yi − yi−1. However, we decided instead to use the present values of
seeing, temperature, and wind speed, along with the values from 5, 10, and 15 minutes in
the past, to include these first derivatives in the input data.
Following that, we generated several new variables, including the temperature difference be-
tween 30 and 2 meters, as well as the wind speed and direction differences between 30 and 10
meters. In the same process, we constructed Exponential Moving Average (EMA) features
of air temperature, absolute humidity, and relative humidity at 30 meters. Similarly, we
applied the EMA methodology to other variables such as wind speed V at 20 [m], maximum
wind speed at 10 [m], MASS-DIMM Tau0, and current DIMM Seeing, all utilizing different
configurations.
The method used to construct these EMA variables is detailed below:

The expression we use to calculate this values is using normalized weights (adjusting the
calculations). This ensures that the EMA values are comparable across different time spans

31

and helps maintain the consistency of the EMA calculation. Mathematically, the weights we
use are wi = (1 − α)i, so for a observation x⃗i = (x0, x1, ..., xt), the exponential weight moving
average is given by:

yt = xt + (1 − α)xt−1 + (1 − α)2xt−2 + ... + (1 − α)tx0

1 + (1 − α) + (1 − α)2 + ... + (1 − α)t
(5.2)

If we don’t normalize the weights, the exponential weighted values are calculated recur-
sively by the formula:

y0 = x0

yt = (1 − α) · yt−1 + α · xt

Our goal was to generate these variables using different parameters and evaluate their in-
formational value to the model through feature importance analysis and Pearson correlation.
We concluded that the best way to add this type of features into the input data is with
the method ewm4 with parameters α = 0.3, α = 0.5 or α = 0.8 and adjust=True, that is,
normalize the weights.

The next step was to consider how to handle a large number of data points for absolute
humidity, relative humidity, and temperature at different heights.
Given the obvious high correlation among these variables, using them directly didn’t seem
optimal for performance reasons. Instead, two smarter approaches were considered. The first
approach was to use only a small subset of these variables, for example, absolute humidity,
relative humidity, and temperature at 0, 500, 1000, 5000, and 10 000 m. The second approach
was to calculate the largest eigenvalue of the matrices formed by these variables at different
heights.

As we can see in Figure 5.10, there are small submatrices within each large matrix defined
by the three variables. We decided to calculate the first eigenvalue of all three submatrices
within each large block. This resulted in nine eigenvalues and their corresponding eigenvec-
tors, which we used to obtain new features. By doing this, we eliminated all 117 original
columns and added only these nine new variables. This allowed us to test a few models and
evaluate their new performance and feature importance.

4 https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.ewm.html

32

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.ewm.html

Selected Matrices for PCA

Figure 5.10: Chosen Matrices for PCA: In this plot, an example of the
absolute humidity variables with their corresponding submatrices is shown.

All the calculations of these eigenvectors were performed using the PCA algorithm with
the following details: For absolute humidity, the three submatrices were from 0 to 1450 [m],
1600 to 4400 [m], and 5000 to 10 000 [m]. For relative humidity, the three submatrices were
from 0 to 1450 [m], 1600 to 6200 [m], and 7000 to 10 000 [m]. For temperature, the three
submatrices were from 0 to 625 [m], 700 to 3100 [m], and 3500 to 10 000 [m]. These heights
were selected manually by examining the correlation plot (Figure 5.5). Adding these new
features to the model resulted in better performance compared to using the unmodified fea-
tures. However, this approach did not improve the model’s performance more than simply
adding a few of the original raw features, so this procedure was ultimately rejected. This was
demonstrated by feature importance methods, such as internal methods for some prediction
models or permutation methods, where the values of certain columns are shuffled to compare
model performance.

The final step involved in this feature engineering process was eliminating features that
we deemed unnecessary for inputting into the models. This decision was based on either
redundant information being available in other formats or the model assigning lower signifi-
cance to those particular features.
In the end, we have 47 input features, a column containing the actual model PM that we
don’t use for any purpose other than comparing results, and 3 target variables, giving a total
of 51 columns.
Finally, we apply a scaling method to all the data. The scaling algorithm applied was stan-
dard scaler5. The decision of not using the minmax scaler6 was based on that we do not

5 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html.
6 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html.

33

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

know if the maximum value in the training set will be a maximum in the test set and so with
the minimum.
The next figure represents the Pearson correlation between all features we consider impor-
tant for this task. It’s important to note that we intentionally didn’t eliminate all correlated
features. The decision not to eliminate all correlated features is driven by our search of better
performance, and having a number of columns between 40 and 60 appears suitable for this
purpose.

−1

−0.5

0

0.5

1

Correlation Matrix Heatmap

Figure 5.11: Correlation plot for a sample of 100 000 training data after all
the feature engineering.

All the previous changes mentioned were integrated into a pipeline to make the process
efficient and clear.

5.3. Regression Problem
The first approach to solve the problem involved is employing a regression model, aimed at
predicting a continuous value. Using the features explained in the previous section, the goal
is to predict the variable “targetSeeing1hr”.
As we mentioned earlier, there are two more target variables, however, we are going to first
compare the performance of the models with only the main target variable and then we will
select a few of the best models and try again to compare how good are they with all of the
target variables.

To perform a regression task, we don’t require many changes to the database. As pre-
viously mentioned, redundant columns have been removed, and the data types have been
modified according to the features involved. Therefore, we can proceed to train a regression

34

model directly and evaluate its performance.

5.4. Classification Problem
An alternative strategy involves treating this problem as a classification task. Here, we di-
vide the target variable into predefined ranges, as determined by ESO (the same as previous
sections), and encode them into numerical values ranging from 0 to 7. All other features
remain unchanged.

The evaluation of the model differs from regression methods, as metrics like MSE, RMSE,
or MAE are no longer applicable. Instead, we assess the model’s performance using metrics
such as precision, recall, accuracy, and F1-score. Personalized metrics like Diagonal Average
and Success Rate can still be calculated without any complications.

The purpose of employing both regression and classification approaches is to identify
whether a particular model yields superior metrics.
It’s worth noting that we can use these two distinct methods due to the nature of how
observations at ESO specify desired seeing ranges. By using these ranges, we can create
classes and then proceed to evaluate both regression and classification tasks, comparing the
outcomes using metrics that works for both models.

Figure 5.12: Label conversion from continuous to discrete values.

From now on, we will present the results of both approaches mentioned. Our primary
focus is to examine and select the best model based on their metrics. It’s important to note
that Diagonal Average and Success Rate are two of the most crucial metrics for selecting a
particular model. Additionally, low prediction time is essential since we need to predict the
average visibility for the next hour every minute.
Having said that, the methodology used to develop these models involved a process of trial
and error, including creating new variables and making modifications in an attempt to achieve
the best performance.

35

Chapter 6

Results

In this chapter, we will present the outcomes achieved by each model we experimented with.
It’s important to mention again that we use classification and regression models for this task.
As detailed in previous chapters, the dataframe were modified accordingly.
Then, in the concluding section of this chapter, we will identify the best-performing mod-
els for additional optimization through hyperparameter search. We will also implement the
rolling window technique (adding past values as new columns) on both the training and test-
ing dataframes to see if there exist a performance improvement.

While the metrics we present vary based on the specific task at hand, both Diagonal Av-
erage and Success Rate will be consistently featured across all models so this metrics will be
the key to pick the best models.
Since the regression problem is the primary and most intuitive method for addressing this
issue, the root mean square error metric will also hold significant importance in determining
the better models. This is also highlighted by the fact that the current model employed at
ESO operates as a regression model, as do other attempts to predict seeing and other optical
turbulence variables.

The outcomes will be visualized using a contingency matrix plot, aligning with the ap-
proach adopted by ESO to demonstrate model performance. However, this contingency
matrix will be exclusively showcased within the Regression Models section to prevent over-
whelming visual saturation. Conversely, within the Classification Models section, a table
detailing the performance of each model will be presented.

Lastly, we will address time performance. While training time may not hold significant
weight for ESO given their computational resources, it holds considerable importance for us
due to time constraints, as we cannot afford to train a complex model over five splits and then
retrain it again for evaluating the test set. Conversely, prediction time is of great importance
to ESO, as their objective revolves around forecasting the average seeing every minute for
the next hour. Therefore, a prolonged prediction time wouldn’t help us achieve our goal.
We will initially present the straightforward stationary model employed at the ESO called
“PM”. As previously mentioned, this model involves averaging the DIMM Seeing values over
the past 10 minutes and utilizing this average as a prediction for the average seeing over the
next hour.
Despite its simplicity, this model doesn’t yield poor metrics. This is attributed to the inherent

36

difficulty in predicting optical turbulence variables like seeing, given their chaotic nature.

6.1. Regression Models
In this section, we will review the regression models in detail, focusing on their error-based
and time performance. At the end of the section, a table with the results will be shown.

6.1.1. PM: Actual model at the European Southern Observatory

0.71
 ±0.01

0.22
 ±0.01

0.05
 ±0.0

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.23
 ±0.01

0.42
 ±0.01

0.24
 ±0.01

0.08
 ±0.0

0.03
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.06
 ±0.0

0.25
 ±0.0

0.36
 ±0.01

0.21
 ±0.01

0.1
 ±0.0

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.11
 ±0.01

0.25
 ±0.01

0.3
 ±0.0

0.27
 ±0.01

0.05
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.04
 ±0.0

0.1
 ±0.0

0.2
 ±0.0

0.44
 ±0.0

0.19
 ±0.01

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.02
 ±0.0

0.05
 ±0.01

0.27
 ±0.02

0.49
 ±0.01

0.17
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.04
 ±0.0

0.21
 ±0.02

0.7
 ±0.03

0.05
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.3
 ±0.04

0.7
 ±0.04

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: PM

Predicted

Tr
ue

Figure 6.1: Display of confusion matrix of stationary model. The matrix is
normalized by the rows (true values).

The metric values for this model are:

• Root Mean Square Error: 0.180

• Mean Square Error: 0.032

• Mean Absolute Error: 0.122

• Diagonal Average: 0.516

• Success Rate: 0.727

The training time is omitted because this isn’t a conventional model, it is just a heuristic
about the target value and it is calculated by a 10 minutes average of the DIMM Seeing value
in arcsec.

37

The prediction time is obtained by calculating this 10-minutes average through all the vali-
dation sets and then taking the mean. The outcome of this procedure is that the prediction
was 0.007 (s).

6.1.2. Isotonic
We’ll begin by testing this initial model due to its simplicity and the constraint of utilizing
only one feature as input. We’ve chosen “EMA Seeing 10 min” as the input variable (ex-
ponential moving average of seeing values with a 10-minutes span), as it yielded the most
favorable outcome through iterative testing.
The hyperparameters for this model were ymin = 0.15, ymax = 4.5, increasing=“auto” and
out_of_bounds=“clip”.
Figure 6.2 show the confusion matrix display for this Isotonic model.

0.5
 ±0.02

0.39
 ±0.03

0.09
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.09
 ±0.01

0.44
 ±0.02

0.35
 ±0.01

0.09
 ±0.0

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.19
 ±0.01

0.44
 ±0.01

0.25
 ±0.01

0.09
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.07
 ±0.01

0.27
 ±0.01

0.35
 ±0.01

0.26
 ±0.01

0.04
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.1
 ±0.0

0.23
 ±0.01

0.47
 ±0.01

0.16
 ±0.01

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.06
 ±0.01

0.31
 ±0.02

0.47
 ±0.02

0.14
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.04
 ±0.0

0.23
 ±0.02

0.7
 ±0.03

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.41
 ±0.06

0.58
 ±0.07

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: Isotonic

Predicted

Tr
ue

Figure 6.2: Display of confusion matrix of Isotonic regression model. The
matrix is normalized by the rows (true values).

The metric values for this model are:

• Root Mean Square Error: 0.174

• Mean Square Error: 0.030

• Mean Absolute Error: 0.118

• Diagonal Average: 0.494

• Success Rate: 0.758

38

The training time was 2.621 (s) and the prediction time was 0.010 (s).

We expected this model to be less accurate than others. However, given the challenging
nature of predicting the seeing, we included it for the sake of completeness. Although the
results are decent considering the simplicity of the model.

6.1.3. SGD
The hyperparameters for this model were the default by the sklearn library. Those are:
squared error loss, l2 penalty, alpha=0.0001, eta0=0.01, learning_rate=“invscaling” and
only one parameters was changed: max_iter=10 000.
Figure 6.3 show the confusion matrix display for this SGD model.

0.58
 ±0.05

0.33
 ±0.03

0.07
 ±0.02

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.15
 ±0.03

0.42
 ±0.01

0.32
 ±0.02

0.09
 ±0.01

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.03
 ±0.01

0.21
 ±0.02

0.39
 ±0.01

0.26
 ±0.02

0.1
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.08
 ±0.01

0.25
 ±0.01

0.33
 ±0.01

0.3
 ±0.02

0.03
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.09
 ±0.01

0.2
 ±0.0

0.49
 ±0.01

0.18
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.04
 ±0.0

0.27
 ±0.01

0.53
 ±0.02

0.14
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.03
 ±0.01

0.21
 ±0.03

0.72
 ±0.04

0.03
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.36
 ±0.04

0.64
 ±0.04

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: SGD

Predicted

Tr
ue

Figure 6.3: Display of confusion matrix of SGD regression model. The
matrix is normalized by the rows (true values).

The metric values for this model are:
• Root Mean Square Error: 0.159

• Mean Square Error: 0.025

• Mean Absolute Error: 0.111

• Diagonal Average: 0.515

• Success Rate: 0.765

The training time was 24.391 (s) and the prediction time was 0.028 (s).

39

This model demonstrates some improvement and surpasses all the metrics of the PM
model. The best results are in the (1.3, 2.2] and 2.2+ ranges. However, this model does not
provide extensive hyperparameter optimization, which may be a reason not to choose it for
the next step (hyperparameter optimization and evaluation on the test set).

6.1.4. DT
Here we try the most simple tree model as a regressor. For the hyperparameters, we use a
min_samples_split=20 and a max_depth=7. That was all for training time purposes and
rmse performance for the tree.
We didn’t search or change these parameters because we think ensemble models will out-
perform the DT model because multiple trees typically reduce variance. so we will focus on
their hyperparameters instead.
Figure 6.4 show the confusion matrix display for this decision tree model.

0.51
 ±0.04

0.38
 ±0.06

0.09
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.1
 ±0.03

0.44
 ±0.04

0.36
 ±0.02

0.08
 ±0.01

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.01

0.19
 ±0.02

0.46
 ±0.02

0.24
 ±0.03

0.09
 ±0.02

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.07
 ±0.01

0.29
 ±0.01

0.34
 ±0.04

0.26
 ±0.03

0.03
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.1
 ±0.01

0.22
 ±0.03

0.47
 ±0.02

0.17
 ±0.02

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.05
 ±0.01

0.28
 ±0.02

0.5
 ±0.02

0.14
 ±0.02

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.04
 ±0.01

0.22
 ±0.03

0.7
 ±0.04

0.03
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.01

0.01
 ±0.01

0.38
 ±0.08

0.6
 ±0.09

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: Decision Tree

Predicted

Tr
ue

Figure 6.4: Display of confusion matrix of Decision Tree regression model.
The matrix is normalized by the rows (true values).

The metric values for this model are:

• Root Mean Square Error: 0.172

• Mean Square Error: 0.030

• Mean Absolute Error: 0.116

• Diagonal Average: 0.503

• Success Rate: 0.764

40

The training time was 143.810 (s) and the prediction time was 0.020 (s).

As we can see, the performance of a single tree is similar to that of the Isotonic model and
slightly better than that of the stationary model. Although it is a simple model, its ease of
interpretation is the main reason we tried it. As expected, we anticipate better results from
ensemble models that use these decision trees as their basis.

6.1.5. RF
Now we present the first ensemble model and the metrics obtained. To address overfitting
and training time, we adjusted the default hyperparameters through trial and error as follows:
max_depth=7 and min_samples_split=20.

0.51
 ±0.02

0.39
 ±0.02

0.09
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.09
 ±0.01

0.45
 ±0.02

0.37
 ±0.0

0.08
 ±0.01

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.19
 ±0.01

0.46
 ±0.01

0.24
 ±0.02

0.08
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.07
 ±0.01

0.29
 ±0.02

0.34
 ±0.02

0.27
 ±0.01

0.03
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.11
 ±0.01

0.21
 ±0.01

0.48
 ±0.01

0.17
 ±0.02

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.01

0.05
 ±0.0

0.29
 ±0.03

0.5
 ±0.03

0.14
 ±0.02

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.04
 ±0.01

0.21
 ±0.02

0.72
 ±0.03

0.03
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.02

0.36
 ±0.04

0.63
 ±0.05

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: Random Forest

Predicted

Tr
ue

Figure 6.5: Display of confusion matrix of Random Forest regression model.
The matrix is normalized by the rows (true values).

The metric values for this model are:
• Root Mean Square Error: 0.165

• Mean Square Error: 0.027

• Mean Absolute Error: 0.112

• Diagonal Average: 0.511

• Success Rate: 0.768

The training time was 4303.685 (s) and the prediction time was 0.489 (s).

41

We can already see that this model performs well compared to the stationary model; how-
ever, it is still slightly worse than the SGD regression and the training time was significantly
higher compared to the previous models shown. On the other hand, we observe decent pre-
dictions at higher bins but very poor performance at the lower ones, specifically in the range
of 0.15-0.5, which is the best attribute of the stationary model.

6.1.6. XGBoost
Here we present one of the most well-known ensemble algorithms: Extreme Gradient Boosting
[15]. As a first attempt, we use the default hyperparameters. However, this model allows for
a considerable amount of modifications.

0.47
 ±0.05

0.39
 ±0.02

0.11
 ±0.02

0.02
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.09
 ±0.0

0.41
 ±0.01

0.37
 ±0.01

0.1
 ±0.0

0.02
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.18
 ±0.01

0.43
 ±0.01

0.26
 ±0.01

0.1
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.07
 ±0.01

0.27
 ±0.01

0.34
 ±0.02

0.28
 ±0.01

0.04
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.1
 ±0.01

0.22
 ±0.01

0.47
 ±0.01

0.18
 ±0.02

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.01

0.05
 ±0.01

0.28
 ±0.03

0.49
 ±0.02

0.15
 ±0.02

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.04
 ±0.02

0.23
 ±0.05

0.7
 ±0.06

0.03
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.01

0.01
 ±0.01

0.46
 ±0.07

0.53
 ±0.08

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: XGBoost

Predicted

Tr
ue

Figure 6.6: Display of confusion matrix of XGBoost regression model. The
matrix is normalized by the rows (true values).

The metric values for this model are:

• Root Mean Square Error: 0.178

• Mean Square Error: 0.038

• Mean Absolute Error: 0.121

• Diagonal Average: 0.480

• Success Rate: 0.770

The training time was 306.999 (s) and the prediction time was 2.254 (s).

42

Here we can observe that the error-based metrics are poor compared to the other models.
However, the success rate is higher. Given this and the fact that it didn’t take long to train,
this model could be a good candidate for tuning and parameter adjustment to better address
this problem.

6.1.7. LightGBM
Now it’s time to consider another well-known ensemble model: Light Gradient Boosting
Machine [16]. The fact that it is usually faster and provides results comparable to XGBoost
are sufficient reasons to try this model for predicting the average seeing. In Figure 6.7, we
can see the contingency matrix:

0.52
 ±0.02

0.39
 ±0.02

0.08
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.09
 ±0.01

0.45
 ±0.01

0.37
 ±0.01

0.08
 ±0.0

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.19
 ±0.01

0.46
 ±0.01

0.25
 ±0.01

0.08
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.06
 ±0.0

0.28
 ±0.01

0.35
 ±0.01

0.28
 ±0.01

0.03
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.09
 ±0.0

0.21
 ±0.01

0.5
 ±0.01

0.17
 ±0.02

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.05
 ±0.01

0.28
 ±0.03

0.51
 ±0.02

0.15
 ±0.02

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.03
 ±0.01

0.21
 ±0.04

0.73
 ±0.05

0.03
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.02

0.42
 ±0.06

0.56
 ±0.08

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: LightGBM

Predicted

Tr
ue

Figure 6.7: Display of confusion matrix of LightGBM regression model. The
matrix is normalized by the rows (true values).

The metric values for this model are:

• Root Mean Square Error: 0.162

• Mean Square Error: 0.026

• Mean Absolute Error: 0.110

• Diagonal Average: 0.510

• Success Rate: 0.775

The training time was 202.289 (s) and the prediction time was 1.617 (s).

43

Given these metrics, we can already say that this is the best model so far. However,
parameter tuning and other modifications might lead to another model being optimal.
As we mentioned earlier, this model is faster than XGBoost and gives better results. However,
the issue of poor predictions in the lowest range remains.

6.1.8. CatBoost
Finally, we present the last ensemble model: CatBoost [17]. Although this algorithm is
primarily designed to handle categorical data, which is not our case, we wanted to try it for
the sake of completeness regarding the most popular tree-based ensemble models.

0.45
 ±0.06

0.42
 ±0.02

0.11
 ±0.02

0.02
 ±0.01

0.01
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.08
 ±0.01

0.42
 ±0.01

0.38
 ±0.01

0.1
 ±0.01

0.02
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.18
 ±0.01

0.43
 ±0.01

0.27
 ±0.01

0.1
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.06
 ±0.01

0.27
 ±0.01

0.35
 ±0.02

0.28
 ±0.02

0.03
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.09
 ±0.0

0.22
 ±0.01

0.49
 ±0.0

0.17
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.01

0.05
 ±0.01

0.29
 ±0.03

0.5
 ±0.01

0.14
 ±0.03

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.04
 ±0.02

0.24
 ±0.06

0.7
 ±0.07

0.02
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.01

0.01
 ±0.01

0.5
 ±0.09

0.49
 ±0.1

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: CatBoost

Predicted

Tr
ue

Figure 6.8: Display of confusion matrix of CatBoost regression model. The
matrix is normalized by the rows (true values).

The metric values for this model are:
• Root Mean Square Error: 0.176

• Mean Square Error: 0.031

• Mean Absolute Error: 0.119

• Diagonal Average: 0.478

• Success Rate: 0.773

The training time was 673.489 (s) and the prediction time was 0.232 (s).

We can observe that the results are quite similar across all ensemble models. With suf-
ficient hyperparameter optimization, it is likely that all these models will achieve similar,

44

strong performance, surpassing the PM metrics. However, the main difference may lie in
the training time, which can also be misleading because each model has different default
hyperparameters.

6.1.9. MLP
From now on, we are going to showcase basic and advanced deep learning algorithms, starting
with the most well-known one, the Multi-Layer Perceptron or Feed Forward Artificial Neural
Network. For this construction, we compared the performance of a few architectures by
varying the number of layers and the number of units per layer, and concluded that the most
basic one works better. Therefore, the model consists only of a dense layer with 8 units and
a dense layer with 1 unit for regression purposes. The batch size is 512, and we train the
model for 10 epochs.

0.58
 ±0.03

0.34
 ±0.03

0.07
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.12
 ±0.01

0.46
 ±0.01

0.32
 ±0.01

0.08
 ±0.01

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.21
 ±0.01

0.44
 ±0.01

0.24
 ±0.01

0.08
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.07
 ±0.01

0.27
 ±0.02

0.35
 ±0.01

0.27
 ±0.02

0.03
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.1
 ±0.01

0.22
 ±0.01

0.48
 ±0.01

0.17
 ±0.02

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.05
 ±0.01

0.27
 ±0.03

0.52
 ±0.03

0.14
 ±0.03

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.03
 ±0.02

0.21
 ±0.05

0.72
 ±0.06

0.03
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.01

0.35
 ±0.05

0.65
 ±0.06

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: MLP

Predicted

Tr
ue

Figure 6.9: Display of confusion matrix of MLP regression model. The
matrix is normalized by the rows (true values).

The metric values for this model are:

• Root Mean Square Error: 0.158

• Mean Square Error: 0.025

• Mean Absolute Error: 0.111

• Diagonal Average: 0.513

• Success Rate: 0.772

45

The training time was 812.934 (s) and the prediction time was 17.679 (s).

Here we can see that we obtained the lowest value for the RMSE compared to all the
previous models. Additionally, we can observe a decent result in the contingency matrix.
However, we still can’t beat the prediction in the first range of the stationary model.

Sliding Window Dataframe
One of the most commonly used data transformations for time series is sliding windows. This
technique involves expanding the number of columns with the purpose of capturing past data.
The window size refers to how many past time steps we want to capture. Keep in mind that
the number of columns will grow linearly with respect to the original number of columns. So,
if I have a window size of 5 and M columns, I will have a dataframe of 6M columns after the
transformation (5M of past data and M of the actual time). Therefore, we need to be cau-
tious about how much past data we capture and which specific data we include, considering
memory constraints and the potential for adding noise or highly correlated features, which
could worsen model performance.
Note that in these types of time series problems, we typically use sliding windows on the
target variable to incorporate its past values as relevant input features. However, in this
case, we cannot do that directly. The variable “targetSeeing1hr” and the other two are the
average, minimum and maximum values of seeing values over one hour. Therefore, if we had,
for example, “targetSeeing1hr(t-1)”, we would incorporate a lot of future information that
we don’t have access in practice. As a result, we won’t use sliding windows on any of the
target variables.

This technique is primarily used to enable the testing of RNN models. This is because these
types of deep learning models require input data in the shape of (number of observations,
length of input sequence, number of features). With this data format, we can incorporate
previous data into a single prediction and expect (maybe) a better result.
Another model that can be used with this type of data is a convolutional model. Both models
receive an input shape of (batch size, time steps, feature dimensions), so this windowed data
will be used to try both RNN models and convolutional models.

To run all of these models, we used a window size of 5. As mentioned before, this means
we take 5 time steps and all their features to make one prediction. This window size was
primarily based on memory constraints, and we found it to be effective given the past corre-
lation with future values.

Due to memory constraints, the batch size of all deep learning models will be 512. Addi-
tionally, for time efficiency, every model will be trained for 10 epochs. Although this number
is typically low for this type of problem, the models need to be trained five times for cross-
validation, and we found that their performance was similar to previous attempts, with only
slight improvements (if any) after a few more epochs.

Regarding model architectures, each model was kept as simple as possible. For our case,
the LSTM and GRU models consist of only 8 units with a tanh activation function and a
final dense layer for the regression task. The convolutional model includes a convolutional
layer with 8 filters, a kernel size of 5, and a ReLU activation function. For the classification

46

task, the only modifications made were in the final layer, changing the output from 1 to the
length of the classes, which is 8 classes.
In all the models mentioned above, the optimizer used was Adam [23], and the loss function
employed was Mean Squared Error (MSE).

6.1.10. LSTM

0.54
 ±0.03

0.38
 ±0.02

0.07
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.11
 ±0.01

0.46
 ±0.02

0.33
 ±0.02

0.08
 ±0.01

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.22
 ±0.03

0.42
 ±0.01

0.25
 ±0.02

0.08
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.08
 ±0.01

0.27
 ±0.01

0.35
 ±0.02

0.27
 ±0.01

0.03
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.09
 ±0.01

0.23
 ±0.02

0.48
 ±0.01

0.17
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.05
 ±0.01

0.29
 ±0.03

0.5
 ±0.04

0.13
 ±0.02

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.04
 ±0.01

0.22
 ±0.02

0.7
 ±0.04

0.02
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.01

0.41
 ±0.1

0.58
 ±0.11

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: LSTM

Predicted

Tr
ue

Figure 6.10: Display of confusion matrix of LSTM regression model. The
matrix is normalized by the rows (true values).

The metric values for this model are:

• Root Mean Square Error: 0.167

• Mean Square Error: 0.028

• Mean Absolute Error: 0.114

• Diagonal Average: 0.504

• Success Rate: 0.755

The training time was 459.005 (s) and the prediction time was 20.445 (s).

With the parameters described above, the LSTM model results in 1792 parameters for
the LSTM layer and 9 parameters for the final dense layer, giving a total of 1801 trainable
parameters for this architecture.

47

In Figure 6.10, we can see expected results. The LSTM model performs well, but it is
not significantly better than previous attempts. This conservative perspective might be due
to the simplicity of the model architecture and the fact that it was trained for only a few
epochs.

6.1.11. GRU

0.56
 ±0.03

0.36
 ±0.02

0.07
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.13
 ±0.02

0.46
 ±0.02

0.32
 ±0.02

0.08
 ±0.01

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.03
 ±0.01

0.22
 ±0.03

0.42
 ±0.01

0.24
 ±0.02

0.08
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.08
 ±0.01

0.27
 ±0.01

0.34
 ±0.01

0.26
 ±0.02

0.03
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.09
 ±0.01

0.22
 ±0.01

0.48
 ±0.01

0.18
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.05
 ±0.01

0.27
 ±0.02

0.52
 ±0.03

0.14
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.03
 ±0.01

0.21
 ±0.02

0.73
 ±0.03

0.02
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.01

0.41
 ±0.06

0.58
 ±0.06

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: GRU

Predicted

Tr
ue

Figure 6.11: Display of confusion matrix of GRU regression model. The
matrix is normalized by the rows (true values).

The metric values for this model are:

• Root Mean Square Error: 0.163

• Mean Square Error: 0.027

• Mean Absolute Error: 0.112

• Diagonal Average: 0.510

• Success Rate: 0.757

The training time was 458.294 (s) and the prediction time was 22.700 (s).

Under the same conditions, the GRU model results in 1368 parameters for the GRU layer
and 9 parameters for the final dense layer, giving a total of 1377 trainable parameters for
this architecture.

48

Given the performance of this model and comparing it with the LSTM, we conclude that
the GRU model is superior in all aspects. It has better performance metrics, similar training
and prediction times, uses fewer parameters, and provides more accurate predictions in the
first bins, which range from 0.15 to 0.5 arcseconds.

6.1.12. CONV1D

0.53
 ±0.06

0.38
 ±0.04

0.08
 ±0.02

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.11
 ±0.02

0.47
 ±0.03

0.33
 ±0.03

0.08
 ±0.02

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.01

0.22
 ±0.03

0.42
 ±0.0

0.24
 ±0.02

0.09
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.08
 ±0.01

0.27
 ±0.02

0.33
 ±0.02

0.28
 ±0.02

0.03
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.09
 ±0.01

0.21
 ±0.0

0.49
 ±0.01

0.18
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.05
 ±0.01

0.26
 ±0.02

0.52
 ±0.03

0.15
 ±0.02

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.03
 ±0.01

0.2
 ±0.03

0.73
 ±0.04

0.03
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.35
 ±0.07

0.65
 ±0.07

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: Conv1D

Predicted

Tr
ue

Figure 6.12: Display of confusion matrix of Conv1D regression model. The
matrix is normalized by the rows (true values).

The metric values for this model are:
• Root Mean Square Error: 0.158
• Mean Square Error: 0.025
• Mean Absolute Error: 0.110
• Diagonal Average: 0.518
• Success Rate: 0.770

The training time was 351.655 (s) and the prediction time was 16.760 (s).

For this model, the Conv1D layer results in 1888 parameters and the final dense layer in
9 parameters, giving a total of 1897 trainable parameters.

Finally, we have the convolutional model. Of all four deep learning models tested, this one
and the MLP had the best performance. Additionally, the training time was approximately

49

24% lower than that of the RNN models, which is a promising sign if we want to search for
better parameters and architectures for the convolutional model.

6.1.13. MINIROCKET
Speaking now of state-of-the-art models, ROCKET is a distinctive approach to time series
classification/regression compared to traditional machine learning models. ROCKET uses
a large set of fixed, non-trainable convolutions applied independently to the time series.
It extracts features from each convolution output. ROCKET evolved into MINIROCKET,
refining convolutions based on pre-defined sets that have shown equal or better effectiveness.

0.48
 ±0.02

0.33
 ±0.02

0.14
 ±0.02

0.03
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.18
 ±0.03

0.35
 ±0.02

0.31
 ±0.02

0.13
 ±0.01

0.04
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.06
 ±0.03

0.21
 ±0.01

0.33
 ±0.03

0.24
 ±0.02

0.13
 ±0.02

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.01

0.1
 ±0.01

0.25
 ±0.01

0.29
 ±0.02

0.29
 ±0.02

0.05
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.01

0.04
 ±0.01

0.11
 ±0.01

0.2
 ±0.01

0.44
 ±0.03

0.19
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.02
 ±0.01

0.06
 ±0.01

0.27
 ±0.02

0.48
 ±0.03

0.17
 ±0.03

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.04
 ±0.01

0.22
 ±0.05

0.71
 ±0.07

0.02
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.46
 ±0.11

0.53
 ±0.11

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: MINIROCKET

Predicted

Tr
ue

Figure 6.13: Display of confusion matrix of MINIROCKET regression
model. The matrix is normalized by the rows (true values).

The metric values for this model are:
• Root Mean Square Error: 0.185

• Mean Square Error: 0.034

• Mean Absolute Error: 0.132

• Diagonal Average: 0.450

• Success Rate: 0.736

The training time was 1396.839 (s) and the prediction time was 7.443 (s).

Figure 6.13 demonstrates that the default configuration of this model does not fit this
problem well. Additionally, complex models of this type typically require significant time

50

for fine-tuning and training multiple times to perform effectively, which we do not have.
Therefore, for our work, we will not consider MINIROCKET as an optimal model.

6.1.14. TST
The Time Series Transformer (TST) model, based on [7], was implemented using the tsai
library [2]. The implementation and training for this problem utilized default hyperparame-
ters.

0.48
 ±0.04

0.41
 ±0.03

0.09
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.1
 ±0.03

0.44
 ±0.03

0.35
 ±0.03

0.09
 ±0.01

0.02
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.01

0.2
 ±0.03

0.42
 ±0.01

0.26
 ±0.03

0.09
 ±0.02

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.07
 ±0.01

0.26
 ±0.02

0.35
 ±0.01

0.29
 ±0.03

0.03
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.01

0.09
 ±0.01

0.21
 ±0.01

0.49
 ±0.01

0.18
 ±0.02

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.05
 ±0.01

0.27
 ±0.03

0.52
 ±0.02

0.15
 ±0.03

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.03
 ±0.01

0.21
 ±0.05

0.73
 ±0.06

0.03
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.4
 ±0.1

0.6
 ±0.1

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: TST

Predicted

Tr
ue

Figure 6.14: Display of confusion matrix of TST regression model. The
matrix is normalized by the rows (true values).

The metric values for this model are:
• Root Mean Square Error: 0.162

• Mean Square Error: 0.026

• Mean Absolute Error: 0.113

• Diagonal Average: 0.503

• Success Rate: 0.775

The training time was 4388.100 (s) and the prediction time was 10.917 (s).

Finally, Figure 6.14 illustrates the performance of the TST model. While it outperforms
MINIROCKET and other models, further configurations are necessary to fully exploit its
potential. Considering the metrics and for simplicity, we will focus on alternative models
rather than continuing with TST.

51

6.1.15. Summary

Table 6.1: Regression metrics table for all models.

RMSE MSE MAE Diagonal Average Success Rate
PM 0.180 0.032 0.122 0.516 0.727

Isotonic 0.174 0.030 0.118 0.494 0.758
SGD 0.159 0.025 0.111 0.515 0.765
DT 0.172 0.030 0.116 0.503 0.764
RF 0.165 0.027 0.112 0.511 0.768

XGBoost 0.178 0.038 0.121 0.480 0.770
LightGBM 0.162 0.026 0.110 0.510 0.775
CatBoost 0.176 0.031 0.119 0.478 0.773

MLP 0.158 0.025 0.111 0.513 0.772
LSTM 0.167 0.028 0.114 0.504 0.755
GRU 0.163 0.027 0.112 0.510 0.757

Conv1D 0.158 0.025 0.110 0.518 0.770
MINIROCKET 0.185 0.034 0.132 0.450 0.736

TST 0.162 0.026 0.113 0.503 0.775

Table 6.2: Time performance table for all regression models.

Training Time (s) Prediction Time (s)
PM 0.000 0.007

Isotonic 2.621 0.010
SGD 24.391 0.028
DT 143.810 0.020
RF 4303.685 0.489

XGBoost 306.999 2.254
LightGBM 202.289 1.617
CatBoost 673.489 0.232

MLP 812.934 17.679
LSTM 459.005 20.445
GRU 458.294 22.700

Conv1D 351.655 16.760
MINIROCKET 1396.839 7.443

TST 4388.100 10.917

52

6.2. Classification Models
In this section, we test nearly all the regression models in their classification versions. Ad-
ditionally, we include a few other classic models, such as Logistic Regression and Balanced
Random Forest, for completeness.
The implementation of Balanced Random Forest was based on using the imblearn library
[24]. Although this isn’t a highly imbalanced problem, as shown in Figure 5.2, this approach
typically yields good results. As for the other models, minimal changes were made to adapt
them to a classification problem. For classification models, the recall metric is the same as
the Diagonal Average.

Table 6.3: Classification metrics table for all models.

Precision Recall Accuracy f1-score
PM 0.514 0.516 0.479 0.514
SGD 0.383 0.416 0.367 0.387

LogisticRegression 0.540 0.514 0.500 0.515
DT 0.527 0.496 0.485 0.503
RF 0.551 0.521 0.503 0.529

BalancedRF 0.515 0.543 0.492 0.525
XGBoost 0.499 0.462 0.459 0.473

LightGBM 0.506 0.488 0.476 0.492
CatBoost 0.510 0.461 0.460 0.474

MLP 0.542 0.513 0.500 0.516
LSTM 0.541 0.516 0.497 0.521
GRU 0.541 0.517 0.501 0.522

Conv1D 0.544 0.516 0.501 0.521
MINIROCKET 0.494 0.459 0.446 0.470

TST 0.519 0.506 0.484 0.507

53

Table 6.4: Custom metrics table for classification models.

Diagonal Average Success Rate
PM 0.516 0.727
SGD 0.421 0.662

LogisticRegression 0.514 0.715
DT 0.496 0.718
RF 0.521 0.728

BalancedRF 0.543 0.742
XGBoost 0.462 0.703

LightGBM 0.488 0.716
CatBoost 0.461 0.698

MLP 0.513 0.706
LSTM 0.516 0.722
GRU 0.517 0.720

Conv1D 0.516 0.713
MINIROCKET 0.459 0.702

TST 0.506 0.713

Table 6.5: Time performance table for all classification models.

Training Time (s) Prediction Time (s)
PM 0.000 0.040
SGD 224.652 0.087

LogisticRegression 271.257 0.135
DT 166.448 0.040
RF 844.690 2.276

BalancedRF 771.556 6.586
XGBoost 600.532 5.969

LightGBM 667.431 12.716
CatBoost 7627.385 1.624

MLP 561.391 30.452
LSTM 962.156 38.071
GRU 659.386 20.984

Conv1D 471.483 20.962
MINIROCKET 1431.916 7.460

TST 4315.641 10.359

Given the results from regression and classification tasks, we need to select the best models
for hyperparameter optimization and adapt the model to this problem effectively. Although
some metrics, such as mean squared error versus accuracy, are not directly comparable, we
will use Diagonal Average and Success Rate to select a few models. Additionally, the Eu-

54

ropean Southern Observatory uses continuous prediction, requiring a singular seeing value
instead of a range as in classification tasks. For simplicity and consistency, we will select a
few regression models and one classification model and report the results.

The selected models were chosen based on their metrics and their capability to modify
hyperparameter settings, making parameter search worthwhile. That being said, the models
we are going to optimize are the following: LightGBM, MLP, Conv1D, GRU, and Balanced
Random Forest. The next section will provide details about this process and report the final
results for these models.

6.3. Hyperparameters Optimization
In this section, we will proceed to search for the best hyperparameters of our top-performing
models in order to achieve better performance on this problem. For this task, we will uti-
lize the Optuna7 library, which speeds up the search significantly compared to exhaustive
searches over parameter grids.

The procedure we are going to follow differs slightly from the previous cross-validation
using time series splits. This time, we will train the model using all periods from p97 to
p107 and reserve p108 and p109 as the validation set. This approach aims to accelerate the
hyperparameter search by using a single training and validation set with a larger number of
samples. This is different from the initial splits, where the train set was smaller and may not
have yielded the best performance. Additionally, this approach is chosen instead of randomly
selecting a previous split because the five different splits used for training and validation sets
often yield significantly different metrics. We aim to avoid selecting a random split that
might result in a better model simply because it was “easier” to predict. This variation can
be attributed to natural changes in weather and optical turbulence, which make some time
periods easier to predict than others.

The objective function to optimize in this case is the mean squared error (MSE). While it
could be the RMSE, the square root function is strictly increasing, allowing us to optimize
the MSE and achieve the same results without additional calculations. The decision to use
the MSE as the objective function is also based on the fact that the Success Rate might
not be optimal; the model could consistently predict high seeing values and still meet the
requirements of a particular observation. Additionally, we will not use Diagonal Average
because we do not value each range equally. We understand that high ranges, such as (1.3,
2.2) and 2.2+, are less important compared to low ranges like (0.15, 0.5), (0.5, 0.6), and so on.

The variables we focus on in our search are hyperparameters specific to various machine
learning models, such as the number of iterations, learning rate, and number of estimators
for tree-based models. For deep learning models, the focus will be on parameters like the
number of epochs, layer configurations, different architectures, and loss functions.

Once the grid search for these parameters is completed, we will evaluate the models on
the test set, which consists of data from p110 and p111 that the model has not seen before,

7 https://optuna.org/

55

https://optuna.org/

and draw final conclusions.

The next table shows the final performance of the models in p110 and p111.

Table 6.6: Metrics for the best models, with the actual model PM included
for comparison.

RMSE MSE MAE Diagonal Average Success Rate
PM 0.176 0.031 0.121 0.507 0.723

LightGBM 0.151 0.023 0.106 0.502 0.753
MLP 0.158 0.025 0.112 0.468 0.741

LSTM 0.160 0.026 0.110 0.478 0.739
GRU 0.159 0.025 0.112 0.494 0.721

Conv1D 0.156 0.026 0.108 0.477 0.726
BalancedRF - - - 0.540 0.726

Given the results in Table 6.6, we conclude that LightGBM is the best model for regression,
while BalancedRF is the best for classification. It is worth mentioning that BalancedRF does
not allow much hyperparameter optimization. We have already made the few modifications
possible to achieve the best results.

Figure 6.15 and 6.16 shows different visualizations of the hyperparameter search process.
We can observe the parallel coordinates plot representing every combination of hyperparam-
eters and the value they obtain for the objective function.
Additionally, we can see the feature importance, which represents how important it is for the
model to change each hyperparameter value.

0.0245

0.025

0.0255

0.026

0.0265

0.027

Objective Value

Parallel Coordinate Plot

0.02450.02450.02450.02450.0245

0.0250.0250.0250.0250.025

0.02550.02550.02550.02550.0255

0.0260.0260.0260.0260.026

0.02650.02650.02650.02650.0265

0.0270.0270.0270.0270.027

Objective Value

0.0272695

0.0243903

0.550.550.550.550.55

0.60.60.60.60.6

0.650.650.650.650.65

0.70.70.70.70.7

0.750.750.750.750.75

0.80.80.80.80.8

0.850.850.850.850.85

0.90.90.90.90.9

0.950.950.950.950.95

bagging_fraction

0.99967

0.51407
22222

33333

44444

55555

66666

77777

88888

99999

1010101010

bagging_freq

10

2
TrueTrueTrueTrueTrue

FalseFalseFalseFalseFalse

extra_trees

0.550.550.550.550.55

0.60.60.60.60.6

0.650.650.650.650.65

0.70.70.70.70.7

0.750.750.750.750.75

0.80.80.80.80.8

0.850.850.850.850.85

0.90.90.90.90.9

0.950.950.950.950.95

feature_fraction

0.99277

0.50168
0.002830.002830.002830.002830.00283

0.010.010.010.010.01

0.09850.09850.09850.09850.0985

learning_rate

55555

1010101010

1515151515

2020202020

2525252525

3030303030

max_depth

30

5
2020202020

3030303030

4040404040

5050505050

6060606060

7070707070

8080808080

9090909090

min_data_in_leaf

98

20

200200200200200

300300300300300

400400400400400

500500500500500

600600600600600

700700700700700

800800800800800

900900900900900

n_estimators

943

116

1010101010

1515151515

2020202020

2525252525

3030303030

3535353535

4040404040

4545454545

5050505050

num_leaves

50

7

55555

1010101010

1515151515

2020202020

2525252525

reg_alpha

29.978

0.308

55555

1010101010

1515151515

2020202020

2525252525

reg_lambda

29.6

0.346

Figure 6.15: Parallel coordinates plot for 60 trials of LightGBM model. Plot
restricted to objective values ≤ 0.028 for visualization purposes.

56

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

0.03

0.08

0.10

0.13

0.64

0 0.1 0.2 0.3 0.4 0.5 0.6

bagging_freq

bagging_fraction

min_data_in_leaf

reg_alpha

extra_trees

num_leaves

reg_lambda

learning_rate

max_depth

feature_fraction

n_estimators

Hyperparameter Importances

Hyperparameter Importance

H
yp

er
pa

ra
m

et
er

Figure 6.16: Hyperparameter importance plot for 60 trials of LightGBM
model.

Here we conclude that, based on the previous figures, the changes in the n_estimators was
the most influential to the model. This isn’t a surprise for tree-based models. On the other
hand, we observe that the model tried many combinations and achieved a very low objective
value (MSE), making it difficult to evaluate a model with just one set of hyperparameters.
Therefore, we can only rely on the minimum MSE metric to choose a specific combination.

Table 6 shows the hyperparameter grid search that we fed into the Optuna study. We
also display the data type for each parameter and the optimal value found. It is worth
mentioning that we tried other hyperparameters, such as boosting_type and others, but the
model showed significantly high values, worsening the results.

Table 6.7: Hyperparameter grid search for LightGBM regressor.

Hyperparameter space dtype Optimal value
n_estimators [50, 1000] int 755
learning_rate [0.001, 0.1] float 0.028
num_leaves [7, 50] int 12
max_depth [5, 30] int 27

min_data_in_leaf [20, 100] int 89
feature_fraction [0.5, 1.0] float 0.681
bagging_fraction [0.5, 1.0] float 0.616

bagging_freq [0, 10] int 5
reg_alpha [0, 30] float 26.586

reg_lambda [0, 30] float 15.712
extra_trees [False, True] bool False

57

6.4. Multi-Output Problem
Having selected the best model in the previous section, we now move on to addressing the
multi-output problem. This involves training and predicting multiple vectors instead of just
one. Some models inherently support this capability, while others do not. For models that
do not support multi-output directly, the solution is to create multiple models, each designed
to predict its corresponding output vector.
In this case, we have three target variables: “targetMin1hr”, “targetMax1hr”, and “target-
Seeing1hr”, with the latter being the target used in all previous tests as it is considered the
most important one.

These additional target variables are originally created to address the main challenge of
predicting seeing values. While the concept came from the European Southern Observatory,
this is one of the first attempts to forecast these values. However, as shown in the EDA
section, the difference in sample sizes across different seeing ranges could be a challenge in
training a robust model. Therefore, we need to interpret the results cautiously. For example,
a model that only predicts the “targetMin1hr” variable within the range of 0.15-0.5 might
yield satisfactory results, but it may not be practically useful.

To address this problem, the solution is quite simple: training a model for each target
variable. In this case, we chose the optimal LightGBM regressor, which was optimized with
the main target variable. We wanted to see if this model could also effectively predict the
other two targets. Therefore, we used the MultiOutputRegressor8 class from the sklearn
library.

Here in Table 6.8, we can see the results of the optimal model trained for each target vari-
able. For obvious reasons, the model has the same result for the targetSeeing1hr variable.
The other two targets are displayed, and we can conclude that the targetMin1hr variable is
easier to predict than the targetMax1hr variable. However, it is difficult to compare them
directly because the data itself is significantly different. Additionally, we would need a well-
defined baseline to determine if the model performed better than some naive prediction or
similar approach.

Table 6.8: Regression metrics table for the three target variables.

targetSeeing1hr targetMin1hr targetMax1hr
RMSE 0.151 0.117 0.292
MSE 0.023 0.014 0.085
MAE 0.106 0.081 0.197

Diagonal Average 0.502 0.414 0.342
Success Rate 0.753 0.726 0.811

Finally, the reason this approach wasn’t fully explored is that these target variables didn’t
represent reality very well. First, observation requirements don’t ask for a minimum seeing,

8 https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html

58

https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html

only a maximum value, so targetMin1hr might not be the optimal target in this problem,
though it could provide some information in a specific prediction. Second, although target-
Max1hr could be a good target, it is currently very sensitive to seeing values because it is
calculated as the absolute maximum over an hour. This might not be robust for an entire
hour, as observations with a low average seeing value are still acceptable even if the seeing
increases slightly for a few minutes.

6.5. Failed Approaches
As mentioned previously in the methodology, there were numerous approaches that we at-
tempted which did not work, or where we ultimately selected a specific configuration to use.
Additionally, some models we tested had the potential for better results but did not perform
well in the end. This section explains the approaches we tried and why they did not succeed
in a significant way.

First, we aimed to capture the features of absolute humidity, relative humidity, and tem-
perature in a smart way to reduce computational calculations. To achieve this, we used the
PCA algorithm as explained in the EDA section. However, this approach did not improve
our model’s results. Instead, using a few raw columns proved to be a better option. Based
on the data and metrics, we decided to remove the PCA step.
Another feature engineering step that was modified multiple times was the EMA (Exponen-
tial Moving Average) calculations for the features. We experimented with most of the features
and ultimately selected the ones listed in Annex A.2. Additionally, the parameters for the
weighted calculations were finalized after several trials with different weights and spans.

Regarding the models themselves, we also tried different approaches. First, we attempted
a residual model, which involved fitting a linear regressor to capture the trend of the data
and then fitting another non-linear regressor to capture the residuals of that prediction. The
final prediction was made by combining these two models. However, this approach did not
perform better than a simple linear least squares model with L2 regularization (Ridge regres-
sion).
Another method we tried was stacking regressors9. This involved defining a few estimators
and then using a final regression model to make the final predictions. Similar to the resid-
ual model, the stacked model performed well, but it was not significantly better than other
models and it was more complex. Therefore, we decided not to consider these methods in
the subsequent steps.
Other commonly used models that we did not include are Support Vector Machines (SVM)
and k-nearest neighbor (KNN). The main reasons for this are the very long training time
required by SVM and the long prediction time required by the KNN model. These time-
related reasons are the primary motives for not including them in this thesis.
Additionally, we experimented with using a windowed dataframe as input for different mod-
els. However, this approach did not improve the metrics and only increased the training time.

Regarding more advanced models, we evaluated the performance of convolutional models
and naturally tried the Temporal Convolution Network (TCN [25]). However, we did not

9 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html

59

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html

observe better performance with the TCN compared to the standard CNN. Therefore, in
favor of simplicity, we decided to focus on the CNN.
Additionally, given the typically good results of MLP and LSTM networks and the significant
contributions of transformers in recent years, we tried MLP and LSTM networks with At-
tention modules [8]. While these models performed better than the current stationary model
in some metrics, they did not outperform other approaches such as LightGBM or CNN.

The last aspect we did not focus on extensively was the multi-output problem, which
involved predicting the minimum and maximum values observed within an hour. There were
two main reasons for this. First, we encountered an imbalanced problem, which appeared
to be caused by sudden jumps in the data, making it a potentially “false” imbalanced. One
possible solution could be to capture the minimum or maximum value with a threshold or
by ignoring some outliers. Second, the ESO currently does not work with minimum values.
Observations only require a maximum value, and even then, the targetMax1hr variable might
not be representative of practical operations. For example, if the average seeing is 0.8 arc-
seconds over an hour, but it briefly spikes to 1.3 arcseconds in one minute, the observation is
likely still valid despite the momentary increase in seeing. Perhaps a classification approach
could be useful in this case, as it provides a maximum value based on a probability threshold.

6.6. Feature Importance and Interpretability
The final step in this data science process, excluding deployment (which is beyond our cur-
rent scope), is to show the feature importance. This tells us, in general terms, how the
model treats each variable and how much importance they have. We can then interpret the
model’s behavior both individually and globally to understand how it makes predictions.
This approach helps us to understand the model better, preventing it from being perceived
as a completely black box algorithm.

The method we will use to present these graphs involves the internal functions that models
have for this purpose. For example, tree-based models provide their own feature importance
metrics, such as the gain for each split or the frequency with which a variable is used to
split the data. Additionally, we will employ an entirely different framework: the Shapley
values and the corresponding SHAP10 library. This framework offers interpretability for a
wide range of machine learning models, allowing us to understand how a model made specific
predictions on an individual level, as well as providing a global interpretation of the features.

First, we will display the internal feature importance function offered by the LightGBM
model. The only parameter that can change in this function is the importance type. The
first option, split, indicates how many times a feature is used to split the data across all trees.
The second option, gain, represents the average gain of the feature when it is used in trees.
Figure 6.17 and 6.18 illustrates the two types of importance in the LightGBM model.

10 https://shap.readthedocs.io/en/latest/

60

https://shap.readthedocs.io/en/latest/

0 100 200 300 400 500

EMA_Seeing

EMA_Rel_Humidity_30m

EMA_Abs_Humidity_30m

EMA_Wind_speed_V

Free_Atmosphere_Seeing_(arcsec)

Seeing_15min_minimum

Temperature_diff_30-2_m

Hour_sin_component

Wind_Speed_V_at_20m_(m/s)

EMA_Air_Temperature_30m

Hour_cos_component

Air_Temperature_at_2m_(C)

Air_Temperature_at_ground_(C)

Day_sin_component

Day_cos_component

Feature Importance type: split

feature importance

F
ea

tu
re

Figure 6.17: Feature importance of the LightGBM regressor using the split
method. The 15 most important features are displayed.

0 100k 200k 300k 400k 500k 600k 700k 800k 900k

Day_cos_component

EMA_Wind_speed_max_10_m

Wind_Speed_max_at_30m_(m/s)

Air_Temperature_at_2m_(C)

Wind_Speed_max_at_10m_(m/s)

Wind_Speed_V_at_20m_(m/s)

EMA_Wind_speed_V

Seeing_10min_average

Seeing_15min_average

Seeing_5min_average

DIMM_Seeing_(arcsec)

Seeing_5min_minimum

Seeing_15min_minimum

Seeing_10min_minimum

EMA_Seeing

Feature Importance type: gain

feature importance

F
ea

tu
re

Figure 6.18: Feature importance of the LightGBM regressor using the gain
method. The 15 most important features are displayed.

In Figure 6.17, we observe that most features with high split importance are not related
to seeing. The time of day (with sinusoidal decomposition) is the most important feature
in terms of split importance. This indicates that the time of night plays a more significant
role in the decision-making process for seeing predictions than other variables. On the other
hand, Figure 6.18 shows that many seeing-related features are very important, including also
some wind variables and a temperature variable. However, these are not as significant as
the most important variable in gain terms: the EMA Seeing. This variable is an exponential
moving average of the seeing column. This makes sense since seeing highly depends on past
values, making it difficult for an external variable to explain seeing better than its past values.

61

Now, speaking of the SHAP values calculations, we will use a sample of 100 000 data points
from the test set which is sufficient to explain the entire dataset. This ensures that the model
interpretation focuses on predictions for the final periods p110 and p111. It’s important to
note that these calculations are computationally expensive, which is why we do not use the
entire dataset for this purpose. Next, with everything calculated, Figure 6.19 presents the
general contribution of the 20 most important variables. On the X-axis, we have the SHAP
values, which translate into the impact on model predictions. On the Y-axis, we have the
input features sorted by importance. The colors represent the value of each specific feature,
with blue indicating low values and red indicating high values. The violin shapes show the
distribution of the data points used to calculate the SHAP values. This plot indicates that
higher values of seeing-related features, such as EMA Seeing and EMA Wind Speed V, are
more important to the model.

0.2 0.0 0.2 0.4 0.6
SHAP value (impact on model output)

Day cos component

EMA Abs Humidity 30m

Actual seeing minus 15min seeing

Wind Speed at 30m (m/s)

EMA Air Temperature 30m

Wind Direction at 30m cos component

Hour cos component

EMA Wind speed max 10 m

Wind Speed max at 30m (m/s)

Wind Direction at 10m sin component

EMA Wind speed V

Wind Speed max at 10m (m/s)

Seeing 5min average

Air Temperature at 2m (C)

Wind Speed V at 20m (m/s)

Seeing 5min minimum

Seeing 10min minimum

Seeing 15min minimum

DIMM Seeing (arcsec)

EMA Seeing

Summary plot SHAP values

Low

High

Fe
at

ur
e

va
lu

e

Figure 6.19: Summary plot of the 20 most important variables by SHAP
values.

62

To see the exact relationship of the most important features with the model output, we can
see Figure 6.20. This plot shows the dependence of the selected features on the corresponding
SHAP values (impact on model output). The feature used to color the dependence plot is
chosen by the algorithm itself, based on the calculation of the strongest SHAP interaction
values.

1 2 3 4 5
EMA Seeing

0.2

0.0

0.2

0.4

0.6

SH
AP

 v
al

ue
 fo

r
EM

A
Se

ei
ng

0 1 2 3 4 5
DIMM Seeing (arcsec)

0.1

0.0

0.1

0.2

0.3

SH
AP

 v
al

ue
 fo

r
DI

M
M

 S
ee

in
g

(a
rc

se
c)

5 0 5 10 15
EMA Wind speed V

0.04

0.02

0.00

0.02

0.04

0.06

0.08

SH
AP

 v
al

ue
 fo

r
EM

A
W

in
d

sp
ee

d
V

0.5 0.0 0.5 1.0
Hour cos component

0.02

0.01

0.00

0.01

0.02
SH

AP
 v

al
ue

 fo
r

Ho
ur

 c
os

 c
om

po
ne

nt

2

4

6

8

10

12

W
in

d
Sp

ee
d

m
ax

 a
t 1

0m
 (m

/s
)

2

4

6

8

10

12

W
in

d
Sp

ee
d

m
ax

 a
t 1

0m
 (m

/s
)

0.6

0.8

1.0

1.2

1.4

EM
A

Se
ei

ng

2

0

2

4

6

8

W
in

d
Sp

ee
d

V
at

 2
0m

 (m
/s

)

Dependence plot

Figure 6.20: Dependence plot for EMA Seeing, DIMM Seeing (arcsec), EMA
Wind speed V and Hour cos component features.

In Figure 6.20, we observe how the most important variables have varying impacts on the
model output depending on their values. Additionally, related variables are represented in
different colors. For example, we notice that the SHAP values of EMA Seeing and DIMM
Seeing (arcsec) are very similar. This similarity makes sense because one variable is directly
calculated using the other, and the color representation in the plot follows this relationship.
From this, we can conclude that the seeing values exhibit a linear relationship with respect
to their impact on model outputs, with slightly greater impacts observed for higher wind
speed values.
On the other hand, the EMA Wind speed V variable exhibits a nonlinear shape where higher
values indicate greater impact and higher values of EMA Seeing are spread uniformly across
the plot, while lower values cluster near zero on the Y-axis. Additionally, variables like the
Hour cos component show a less distinct impact shape, with colors failing to clearly group
the data and provide informative insights.

63

6.7. Simulations at the European Southern Observa-
tory

Given all the results obtained in the previous sections, we can now compare the LightGBM
model with the stationary model in terms of practical use. To explain everything in detail, we
first need to clarify that this comparison is about short-term scheduling, that is, scheduling
an execution for one or two hours into the future.
First, the Paranal Science Operations (PSO) filter, rank, and select the optimal Observation
Block (OB) at any time t for execution at each telescope. This process is known as Short
Term Scheduling (STS) of OBs. The ranks can be one of three types: A, B, or C. Typically,
A and B ranks are grouped together because they represent important OBs. The only differ-
ence is that an A-ranked OB, if not observed, will carry forward into the following semesters
until it is observed, whereas a B-ranked OB does not have this benefit. After filtering, rank-
ing, and selection, the observation is executed and then graded. The grade refers to various
criteria and is also expressed with the letters A, B, and C. If all of these criteria are met, the
OB is graded as A. If one or more of these conditions are not met by 10% or less, the OB is
ranked as B. Otherwise, the OB is ranked as C, which is considered a loss of telescope time,
meaning a failed execution. If an OB is ranked C, it will return to the queue to be observed
again.

The ranking and grading of OBs serve not only to maximize the number of A/B grade
OBs but also to minimize the number of C grade OBs, thereby reducing the loss of telescope
time. The rank of each OB is important because ESO prioritizes observing A/B ranked OBs
and places less emphasis on C ranked OBs, even if a C ranked OB could potentially be an
A/B grade observation. For example, if two different prediction models, X and Y, complete
20 hours and 18 hours of observations respectively, but 10 of those 20 hours from model X
are from A/B ranked OBs and 16 of the 18 hours from model Y are from A/B ranked OBs,
model Y is preferred. Therefore, the rank of each OB is as important as the grade.

Based on the information provided, we proceed to simulate the LightGBM model to make
predictions for periods p99 to p111. The model was trained using all available past data. For
instance, for period p100, the training data included periods p97, p98, and p99, and so on.
Note that period p97 and p98 are not in the simulations due to data problems and p105 is
excluded from this comparison due to the pandemic. The configuration of this model differs
slightly from the best combination found in the previous section. The hyperparameters for
this optimal model are as follows: 853 estimators, 0.017 learning rate, 26 num leaves, 12 max
depth, 55 min data in leaf, 0.622 feature fraction, 0.945 bagging fraction, 9 bagging frequency,
12.837 reg alpha, 3.206 reg lambda, and no extra trees. For the objective, we chose quantile
with alpha = 0.65.
The four Unit Telescopes (UTs) at Paranal were used to compare the actual model (PM)
with the LightGBM regressor. Additionally, each semester, there are OBs in each queue for
each UT. It’s important to note that these simulations involve a significant amount of time
(2016 to 2023), so changes in weather conditions and their evolution are also major factors
affecting the performance of each model.

The details of the LightGBM performance by period are provided in Annex C. These
tables show the hours gained or lost by this ML model in comparison to the current stationary

64

model. For A/B graded OBs, a higher value is better, whereas for C graded OBs, a lower
value is better. Table 6.9 shows the average performance of all periods by UT:

Table 6.9: Hours gained and lost on average of each UT for all A/B/C
graded and ranked OBs compared to the stationary model.
Rank: Scientific importance.
Grade: Whether the observation was successful or not, depending on astro-
nomical turbulence.

A/B graded OBs [hours] C graded OBs [hours]
A/B rank C rank A/B rank C rank

UT1 16.04 -7.21 -59.83 3.81
UT2 43.12 52.01 -106.36 10.60
UT3 56.54 27.52 -138.48 -0.87
UT4 85.84 41.53 -143.33 -5.20
Sum 201.54 113.85 -448.00 8.34

Per Semester 18.32 10.35 -40.73 0.76

This analysis highlights four important aspects. Firstly, for C graded OBs, the only case
where the current model (PM) performs better is with the C ranked OBs (the least impor-
tant), with an average difference of just 0.76 hours per semester, which is a tiny and negligible
value. On the other hand, the optimal LightGBM model gains an average of 40.73 hours per
semester where the stationary model had a loss of telescope time due to C graded OBs. For
the A/B graded OBs, the ML prediction performs significantly better, gaining an average of
10.35 hours per semester for C ranked OBs and 18.32 hours per semester for A/B ranked
OBs, which are the most important.

On average, these gains of 28.67 hours translate to more efficient predictions of seeing
conditions. Additionally, we gained 40 hours by not observing C graded OBs. This all
translates to a model more capable of emptying the queue than the stationary prediction,
allowing for new executions of different OBs to be added to the queue, thus achieving even
better practical results than those shown in Table 6.9 for observing OBs.

65

Chapter 7

Conclusion

In this thesis, we have conducted a comprehensive review of the seeing prediction problem for
the Very Large Telescope at Paranal in the European Southern Observatory. The problem
was approached from a data science perspective, employing mathematical tools to optimize
model predictions as much as possible. The previous chapter demonstrates that the optimal
model for this task is the LightGBM regressor.

This thesis fulfilled all the specific and general objectives. We gained a deep understanding
of the data used and performed extensive feature engineering, which significantly improved
the model’s performance. Additionally, we tested numerous models to robustly compare
their performance and then optimized the better ones to adapt them as effectively as possi-
ble to this problem. Finally, we made general interpretations of the best model predictions
to achieve a more comprehensive result. In summary, we succeeded in predicting the seeing
values, providing better predictions in each period compared to the stationary model.

The LightGBM regressor is the optimal model, following our progression from basic models
to advanced applications like transformers. Additionally, we spent considerable time creating
and testing new features to improve the model’s performance.
From an academic perspective, the best metrics obtained by this model are 0.151 RMSE,
0.023 MSE, 0.106 MAE, 0.502 Diagonal Average and 0.753 Success Rate. Compared to the
current PM model used at the ESO, this translates to a −0.99% decrease in Diagonal Average
but improvements of 14.2%, 25.81%, 12.4% and 4.15% in RMSE, MSE, MAE and Success
Rate respectively.
Then, conducting an interpretability section allowed us to evaluate how the model makes
predictions and identify the most important features. This information is relevant and valu-
able for this work and even for future projects.

From a practical use perspective, a slight modification to this model resulted in an av-
erage gain of 18.32 hours of A/B rank and 10.35 hours of C rank OBs meeting the seeing
requirements per semester compared to the stationary model. Additionally, we gained ap-
proximately 40 hours of telescope time by not observing C graded OBs compared to the
stationary model. This improvement enhances our capability to clear the observation queue
and add new OBs for execution.

66

7.1. Limitations
The model’s limitations are very clear. On the one hand, we face a natural (and irreparable)
issue: seeing values are highly chaotic and can change drastically within seconds or minutes,
making accurate predictions for one hour ahead quite difficult even if its the average. Also,
since seeing is usually measured at night, we lack data during the day, resulting in discontin-
uous and irregular time series. This issue could potentially be resolved with an instrument
capable of measuring these variables throughout the day, a solution that the ESO is report-
edly working on.

On the other hand, we face data limitations. The available data only starts from 2016,
even though the ESO has been collecting data for many more years. This gap is due to the
implementation of new and more accurate instruments.

Finally, there are specific limitations of the LightGBM regressor model. Some of these
limitations are inherent to its architecture, which doesn’t allow for much flexibility to experi-
ment with new approaches. Other limitations involve hyperparameters that can significantly
impact performance, although they are fewer in number compared to other models. This is
where deep learning models have an advantage over classic machine learning models; with
more resources, data, and architectural changes, it is likely that a DL model will eventually
outperform the LightGBM regressor or other classic algorithms. However, this work demon-
strates that for a simple regression problem, a classic ML model still performs best and is a
quick method to implement.

7.2. Impact and Contribution
This work originated from the idea that seeing could be predicted more accurately than just
a ten-minute average. However, it also had another purpose: using VLT data and predictions
to develop a new model that could potentially be applied to the ELT in the future. That being
said, our efforts have been directed towards exploring every possible solution comprehensively
and extensively within the given time frame. With the final model, we conclude that there
is a significant improvement compared to the current model. Implementing this model could
result in gaining more telescope time due to better seeing predictions. Additionally, it would
reduce the time the telescope is operational but not meeting the seeing requirements, thus
minimizing the loss of telescope time.

7.3. Future Work
There are several potential ways to improve the seeing predictions. These include:

• Using data from nearby locations: Seeing and wind values from nearby areas could
significantly enhance the accuracy of predictions.

• Exploring new features: This could involve both, variables measured by instruments
and those generated through creative feature engineering.

• Including daytime data: Adding data collected during the day could help address the
issue of discontinuous and irregular time series.

67

• Retraining the model every period (semester): This approach could ensure more accurate
and up-to-date predictions.

• Implementing state-of-the-art models for time series or regression problems: Although
challenging due to the rapid development of advanced techniques like transformers, this
approach holds potential for significant improvements.

Moreover, there could be other approaches to this problem. In this thesis, a classification
task was examined; however, it wasn’t explored to its full potential due to the manner in
which the ESO operates. Another approach, which could be more detailed but more complex
and computationally expensive, is to apply a forecasting model that could predict N (≥ 60)
points into the future. This would allow for the calculation of any desired values, including
the 60-minute average, which is the principal target variable in this thesis.

Finally, large-scale meteorological events could significantly impact this work and similar
projects. The transition from La Niña to El Niño has led to an increase in extreme weather
events, including higher temperatures and changes in precipitation patterns. This and other
big events suggests that prediction projects should be updated periodically.

68

Bibliography

[1] Sarazin, M. y Roddier, F., “The ESO differential image motion monitor”, Astronomy
and Astrophysics, vol. 227, pp. 294–300, 1990.

[2] Oguiza, I., “tsai - a state-of-the-art deep learning library for time series and sequential
data”. Github, 2023, https://github.com/timeseriesAI/tsai.

[3] Lafore, J.-P., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V., Duron, J., Fischer,
C., Héreil, P., Mascart, P., Masson, V., Pinty, J.-P., Redelsperger, J.-L., Richard,
E., y Arellano, J., “The Meso-NH Atmospheric Simulation System. Part I: Adia-
batic formulation and control simulations”, Annales Geophysicae, vol. 16, 1997,
doi:10.1007/s005850050582.

[4] Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Wang, W., y Powers, J., “A
Description of the Advanced Research WRF Version 3”, vol. 27, pp. 3–27, 2008.

[5] Tatarskii, V. I., The effects of the turbulent atmosphere on wave propagation. 1971.
[6] Dempster, A., Schmidt, D. F., y Webb, G. I., “MINIROCKET: A Very Fast

(Almost) Deterministic Transform for Time Series Classification”, arXiv e-prints,
p. arXiv:2012.08791, 2020, doi:10.48550/arXiv.2012.08791.

[7] Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., y Eickhoff, C., “A Transformer-
based Framework for Multivariate Time Series Representation Learning”, arXiv e-prints,
p. arXiv:2010.02803, 2020, doi:10.48550/arXiv.2010.02803.

[8] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L. u., y Polosukhin, I., “Attention is all you need”, in Advances in Neural Information
Processing Systems (Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., y Garnett, R., eds.), vol. 30, Curran Associates, Inc., 2017, https:
//proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a8
45aa-Paper.pdf.

[9] Cherubini, T., Lyman, R., y Businger, S., “Forecasting seeing for the Maunakea obser-
vatories with machine learning”, Monthly Notices of the Royal Astronomical Society,
vol. 509, pp. 232–245, 2021, doi:10.1093/mnras/stab2916.

[10] Hou, X., Hu, Y., Du, F., Ashley, M., Pei, C., Shang, Z., Ma, B., Wang, E., y Huang, K.,
“Machine learning-based seeing estimation and prediction using multi-layer meteorolog-
ical data at dome a, antarctica”, Astronomy and Computing, vol. 43, p. 100710, 2023,
doi:https://doi.org/10.1016/j.ascom.2023.100710.

[11] Milli, J., Rojas, T., Courtney-Barrer, B., Bian, F., Navarrete, J., Kerber, F., y Otarola,
A., “Turbulence nowcast for the Cerro Paranal and Cerro Armazones observatory sites”,
in Adaptive Optics Systems VII (Schreiber, L., Schmidt, D., y Vernet, E., eds.),

69

https://github.com/timeseriesAI/tsai
https://dx.doi.org/10.1007/s005850050582
https://dx.doi.org/10.48550/arXiv.2012.08791
https://dx.doi.org/10.48550/arXiv.2010.02803
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://dx.doi.org/10.1093/mnras/stab2916
https://dx.doi.org/https://doi.org/10.1016/j.ascom.2023.100710

vol. 11448 de Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, p. 114481J, 2020, doi:10.1117/12.2561364.

[12] Milli, J., Gonzalez, R., Fluxa, P. R., Chacon, A., Navarette, J., Sarazin, M., Pena,
E., Carrasco-Davis, R., Solarz, A., Smoker, J., Martayan, C., Melo, C., Sedaghati, E.,
Mieske, S., Hainaut, O., y Tacconi-Garman, L., “Nowcasting the turbulence at the
Paranal Observatory”, arXiv e-prints, p. arXiv:1910.13767, 2019, doi:10.48550/arXiv.1
910.13767.

[13] Masciadri, E., Turchi, A., y Fini, L., “Optical turbulence forecasts at short time-scales
using an autoregressive method at the Very Large Telescope”, Monthly Notices of the
Royal Astronomical Society, vol. 523, pp. 3487–3502, 2023, doi:10.1093/mnras/stad1552.

[14] Breiman, L., “Random Forests”, Machine Learning, vol. 45, pp. 5–32, 2001, doi:https:
//doi.org/10.1023/A:1010933404324.

[15] Chen, T. y Guestrin, C., “XGBoost: A Scalable Tree Boosting System”, arXiv e-prints,
p. arXiv:1603.02754, 2016, doi:10.48550/arXiv.1603.02754.

[16] Ke, Guolin and Meng, Qi and Finley, Thomas and Wang, Taifeng and Chen, Wei and
Ma, Weidong and Ye, Qiwei and Liu, Tie-Yan, “Lightgbm: A Highly Efficient Gradient
Boosting Decision Tree”, vol. 30, pp. 3146–3154, 2017.

[17] Veronika Dorogush, A., Ershov, V., y Gulin, A., “CatBoost: gradient boosting with
categorical features support”, arXiv e-prints, p. arXiv:1810.11363, 2018, doi:10.48550
/arXiv.1810.11363.

[18] Olah, C., “Understanding LSTM Networks”, 2015, https://colah.github.io/posts/2015
-08-Understanding-LSTMs/ (Accessed 2024-05-30).

[19] Hochreiter, S. y Schmidhuber, J., “Long Short-Term Memory”, Neural Computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[20] Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., y
Bengio, Y., “Learning Phrase Representations using RNN Encoder-Decoder for Statisti-
cal Machine Translation”, in Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Doha, Qatar, pp. 1724–1734, Association
for Computational Linguistics, 2014, doi:10.3115/v1/D14-1179.

[21] LeCun, Yann and Bengio, Y. and Hinton, Geoffrey, “Deep Learning”, Nature, vol. 521,
pp. 436–44, 2015, doi:10.1038/nature14539.

[22] Olah, C., “Conv Nets: A Modular Perspective”, 2014, https://colah.github.io/posts/20
14-07-Conv-Nets-Modular/ (Accessed 2024-05-30).

[23] Kingma, D. P. y Ba, J., “Adam: A Method for Stochastic Optimization”, arXiv e-prints,
p. arXiv:1412.6980, 2014, doi:10.48550/arXiv.1412.6980.

[24] Lemaître, G., Nogueira, F., y Aridas, C. K., “Imbalanced-learn: A Python Toolbox to
Tackle the Curse of Imbalanced Datasets in Machine Learning”, Journal of Machine
Learning Research, vol. 18, no. 17, pp. 1–5, 2017, http://jmlr.org/papers/v18/16-365.h
tml.

[25] Bai, S., Zico Kolter, J., y Koltun, V., “An Empirical Evaluation of Generic Convolutional
and Recurrent Networks for Sequence Modeling”, arXiv e-prints, p. arXiv:1803.01271,
2018, doi:10.48550/arXiv.1803.01271.

70

https://dx.doi.org/10.1117/12.2561364
https://dx.doi.org/10.48550/arXiv.1910.13767
https://dx.doi.org/10.48550/arXiv.1910.13767
https://dx.doi.org/10.1093/mnras/stad1552
https://dx.doi.org/https://doi.org/10.1023/A:1010933404324
https://dx.doi.org/https://doi.org/10.1023/A:1010933404324
https://dx.doi.org/10.48550/arXiv.1603.02754
https://dx.doi.org/10.48550/arXiv.1810.11363
https://dx.doi.org/10.48550/arXiv.1810.11363
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://dx.doi.org/10.3115/v1/D14-1179
https://dx.doi.org/10.1038/nature14539
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://dx.doi.org/10.48550/arXiv.1412.6980
http://jmlr.org/papers/v18/16-365.html
http://jmlr.org/papers/v18/16-365.html
https://dx.doi.org/10.48550/arXiv.1803.01271

ANNEXES

Annex A. Database features
A.1. Initial features

1. Date

2. Target RA [deg]

3. Target DEC [deg]

4. DIMM Seeing [arcsec]

5. Relative Flux RMS

6. Relative Flux RMS base time [s]

7. n_night

8. LHATPRO ID

9. Absolute Humidity [g/m3] at 0[m]

10. Absolute Humidity [g/m3] at 10[m]

11. Absolute Humidity [g/m3] at 30[m]

12. Absolute Humidity [g/m3] at 50[m]

13. Absolute Humidity [g/m3] at 75[m]

14. Absolute Humidity [g/m3] at 100[m]

15. Absolute Humidity [g/m3] at 125[m]

16. Absolute Humidity [g/m3] at 150[m]

17. Absolute Humidity [g/m3] at 200[m]

18. Absolute Humidity [g/m3] at 250[m]

19. Absolute Humidity [g/m3] at 325[m]

20. Absolute Humidity [g/m3] at 400[m]

21. Absolute Humidity [g/m3] at 475[m]

22. Absolute Humidity [g/m3] at 550[m]

23. Absolute Humidity [g/m3] at 625[m]

24. Absolute Humidity [g/m3] at 700[m]

25. Absolute Humidity [g/m3] at 800[m]

26. Absolute Humidity [g/m3] at 900[m]

27. Absolute Humidity [g/m3] at 1000[m]

28. Absolute Humidity [g/m3] at 1150[m]

29. Absolute Humidity [g/m3] at 1300[m]

30. Absolute Humidity [g/m3] at 1450[m]

31. Absolute Humidity [g/m3] at 1600[m]

32. Absolute Humidity [g/m3] at 1800[m]

33. Absolute Humidity [g/m3] at 2000[m]

34. Absolute Humidity [g/m3] at 2200[m]

35. Absolute Humidity [g/m3] at 2500[m]

36. Absolute Humidity [g/m3] at 2800[m]

37. Absolute Humidity [g/m3] at 3100[m]

38. Absolute Humidity [g/m3] at 3500[m]

39. Absolute Humidity [g/m3] at 3900[m]

40. Absolute Humidity [g/m3] at 4400[m]

41. Absolute Humidity [g/m3] at 5000[m]

42. Absolute Humidity [g/m3] at 5600[m]

71

43. Absolute Humidity [g/m3] at 6200[m]

44. Absolute Humidity [g/m3] at 7000[m]

45. Absolute Humidity [g/m3] at 8000[m]

46. Absolute Humidity [g/m3] at 9000[m]

47. Absolute Humidity [g/m3] at 10000[m]

48. Relative Humidity [%] at 0[m]

49. Relative Humidity [%] at 10[m]

50. Relative Humidity [%] at 30[m]

51. Relative Humidity [%] at 50[m]

52. Relative Humidity [%] at 75[m]

53. Relative Humidity [%] at 100[m]

54. Relative Humidity [%] at 125[m]

55. Relative Humidity [%] at 150[m]

56. Relative Humidity [%] at 200[m]

57. Relative Humidity [%] at 250[m]

58. Relative Humidity [%] at 325[m]

59. Relative Humidity [%] at 400[m]

60. Relative Humidity [%] at 475[m]

61. Relative Humidity [%] at 550[m]

62. Relative Humidity [%] at 625[m]

63. Relative Humidity [%] at 700[m]

64. Relative Humidity [%] at 800[m]

65. Relative Humidity [%] at 900[m]

66. Relative Humidity [%] at 1000[m]

67. Relative Humidity [%] at 1150[m]

68. Relative Humidity [%] at 1300[m]

69. Relative Humidity [%] at 1450[m]

70. Relative Humidity [%] at 1600[m]

71. Relative Humidity [%] at 1800[m]

72. Relative Humidity [%] at 2000[m]

73. Relative Humidity [%] at 2200[m]

74. Relative Humidity [%] at 2500[m]

75. Relative Humidity [%] at 2800[m]

76. Relative Humidity [%] at 3100[m]

77. Relative Humidity [%] at 3500[m]

78. Relative Humidity [%] at 3900[m]

79. Relative Humidity [%] at 4400[m]

80. Relative Humidity [%] at 5000[m]

81. Relative Humidity [%] at 5600[m]

82. Relative Humidity [%] at 6200[m]

83. Relative Humidity [%] at 7000[m]

84. Relative Humidity [%] at 8000[m]

85. Relative Humidity [%] at 9000[m]

86. Relative Humidity [%] at 10000[m]

87. Temperature [K] at 0[m]

88. Temperature [K] at 10[m]

89. Temperature [K] at 30[m]

90. Temperature [K] at 50[m]

91. Temperature [K] at 75[m]

92. Temperature [K] at 100[m]

93. Temperature [K] at 125[m]

94. Temperature [K] at 150[m]

95. Temperature [K] at 200[m]

96. Temperature [K] at 250[m]

97. Temperature [K] at 325[m]

98. Temperature [K] at 400[m]

99. Temperature [K] at 475[m]

100. Temperature [K] at 550[m]

101. Temperature [K] at 625[m]

72

102. Temperature [K] at 700[m]

103. Temperature [K] at 800[m]

104. Temperature [K] at 900[m]

105. Temperature [K] at 1000[m]

106. Temperature [K] at 1150[m]

107. Temperature [K] at 1300[m]

108. Temperature [K] at 1450[m]

109. Temperature [K] at 1600[m]

110. Temperature [K] at 1800[m]

111. Temperature [K] at 2000[m]

112. Temperature [K] at 2200[m]

113. Temperature [K] at 2500[m]

114. Temperature [K] at 2800[m]

115. Temperature [K] at 3100[m]

116. Temperature [K] at 3500[m]

117. Temperature [K] at 3900[m]

118. Temperature [K] at 4400[m]

119. Temperature [K] at 5000[m]

120. Temperature [K] at 5600[m]

121. Temperature [K] at 6200[m]

122. Temperature [K] at 7000[m]

123. Temperature [K] at 8000[m]

124. Temperature [K] at 9000[m]

125. Temperature [K] at 10000[m]

126. Free Atmosphere Seeing [arcsec]

127. Free Atmosphere Seeing RMS

128. MASS Tau0 [s]

129. MASS Tau0 RMS

130. MASS Theta0 [arcsec]

131. MASS Theta0 RMS

132. MASS Turb Altitude [m]

133. MASS Turb Altitude RMS

134. MASS-DIMM Cn2 fraction at ground

135. MASS-DIMM Seeing [arcsec]

136. MASS-DIMM Tau0 [s]

137. MASS-DIMM Theta0 [arcsec]

138. MASS-DIMM Turb Altitude [m]

139. MASS-DIMM Turb Velocity [m/s]

140. Air Pressure at ground [hPa]

141. Air Pressure Normalised [hPa]

142. Air Temperature at 30m [C]

143. Air Temperature at 2m [C]

144. Air Temperature at ground [C]

145. Air Temperature below VLT [C]

146. Dew Temperature at 30m [C]

147. Dew Temperature at 2m [C]

148. Dew Temperature below VLT [C]

149. Rain intensity below VLT [%]

150. Relative Humidity at 30m [%]

151. Relative Humidity at 2m [%]

152. Relative Humidity below VLT [%]

153. Wind Direction at 30m (0/360) [deg]

154. Wind Direction at 10m (0/360) [deg]

155. Wind Speed at 30m [m/s]

156. Wind Speed at 10m [m/s]

157. Wind Speed U at 20m [m/s]

158. Wind Speed V at 20m [m/s]

159. Wind Speed W at 20m [m/s]

160. Wind Speed max at 30m [m/s]

161. Wind Speed max at 10m [m/s]

162. PM

163. targetSeeing1hr

164. targetMax1hr

165. targetMin1hr

73

A.2. Final features

1. DIMM Seeing (arcsec)

2. Free Atmosphere Seeing (arcsec)

3. MASS-DIMM Tau0 (s)

4. Air Temperature at 2m (C)

5. Air Temperature at ground (C)

6. Wind Speed at 30m (m/s)

7. Wind Speed at 10m (m/s)

8. Wind Speed V at 20m (m/s)

9. Wind Speed max at 30m (m/s)

10. Wind Speed max at 10m (m/s)

11. Day sin component

12. Hour sin component

13. Day cos component

14. Hour cos component

15. Wind Direction at 30m sin component

16. Wind Direction at 30m cos component

17. Wind Direction at 10m sin component

18. Wind Direction at 10m cos component

19. Seeing 5min average

20. Seeing 5min minimum

21. Seeing 5min maximum

22. Seeing 10min average

23. Seeing 10min minimum

24. Seeing 10min maximum

25. Seeing 15min average

26. Seeing 15min minimum

27. Seeing 15min maximum

28. Actual seeing minus 5min seeing

29. Air temperature at 30m (actual minus
5min)

30. Wind speed at 30m (actual minus
5min)

31. Actual seeing minus 10min seeing

32. Air temperature at 30m (actual minus
10min)

33. Wind speed at 30m (actual minus
10min)

34. Actual seeing minus 15min seeing

35. Air temperature at 30m (actual minus
15min)

36. Wind speed at 30m (actual minus
15min)

37. Temperature diff 30-2 m

38. Wind speed max diff 30-10 m

39. Wind direction sin diff 30-10 m

40. Wind direction cos diff 30-10 m

41. EMA Seeing

42. EMA Air Temperature 30m

43. EMA Abs Humidity 30m

44. EMA Rel Humidity 30m

45. EMA Wind speed V

46. EMA Wind speed max 10 m

47. EMA MASS-DIMM Tau0

48. PM

49. targetSeeing1hr

50. targetMax1hr

51. targetMin1hr

74

Annex B. Classification models matrices

0.85
 ±0.02

0.06
 ±0.02

0.04
 ±0.02

0.02
 ±0.02

0.02
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.4
 ±0.04

0.21
 ±0.08

0.18
 ±0.09

0.08
 ±0.07

0.1
 ±0.01

0.03
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.13
 ±0.02

0.23
 ±0.11

0.25
 ±0.1

0.13
 ±0.1

0.18
 ±0.03

0.07
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.04
 ±0.01

0.19
 ±0.09

0.25
 ±0.08

0.15
 ±0.08

0.24
 ±0.06

0.12
 ±0.03

0.01
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.11
 ±0.05

0.21
 ±0.04

0.13
 ±0.04

0.26
 ±0.1

0.19
 ±0.06

0.08
 ±0.02

0.0
 ±0.0

0.0
 ±0.0

0.03
 ±0.02

0.1
 ±0.02

0.07
 ±0.04

0.21
 ±0.11

0.16
 ±0.06

0.42
 ±0.08

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.02
 ±0.01

0.01
 ±0.01

0.07
 ±0.06

0.03
 ±0.01

0.83
 ±0.06

0.04
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.33
 ±0.08

0.66
 ±0.08

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: SGD

Predicted

Tr
ue

Figure B.1: Display of confusion matrix of SGD classification model. The
matrix is normalized by the rows (true values).

0.71
 ±0.01

0.24
 ±0.01

0.04
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.22
 ±0.02

0.48
 ±0.02

0.26
 ±0.01

0.02
 ±0.0

0.03
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.05
 ±0.0

0.29
 ±0.01

0.46
 ±0.01

0.06
 ±0.01

0.13
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.12
 ±0.01

0.38
 ±0.02

0.11
 ±0.01

0.36
 ±0.02

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.04
 ±0.01

0.16
 ±0.0

0.08
 ±0.01

0.56
 ±0.01

0.16
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.03
 ±0.01

0.02
 ±0.0

0.31
 ±0.02

0.49
 ±0.03

0.15
 ±0.02

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.04
 ±0.01

0.21
 ±0.04

0.73
 ±0.04

0.02
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.42
 ±0.1

0.58
 ±0.1

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: Logistic Regression

Predicted

Tr
ue

Figure B.2: Display of confusion matrix of Logistic Regression model. The
matrix is normalized by the rows (true values).

75

0.63
 ±0.04

0.3
 ±0.04

0.07
 ±0.02

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.17
 ±0.02

0.45
 ±0.04

0.31
 ±0.03

0.03
 ±0.01

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.04
 ±0.0

0.25
 ±0.02

0.48
 ±0.04

0.12
 ±0.03

0.1
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.1
 ±0.01

0.37
 ±0.05

0.2
 ±0.04

0.29
 ±0.02

0.03
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.03
 ±0.01

0.16
 ±0.02

0.14
 ±0.03

0.51
 ±0.01

0.14
 ±0.03

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.03
 ±0.01

0.04
 ±0.01

0.33
 ±0.05

0.45
 ±0.06

0.15
 ±0.02

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.05
 ±0.01

0.21
 ±0.02

0.71
 ±0.03

0.03
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.01

0.46
 ±0.18

0.53
 ±0.19

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: Decision Tree

Predicted

Tr
ue

Figure B.3: Display of confusion matrix of Decision Tree classification
model. The matrix is normalized by the rows (true values).

0.67
 ±0.01

0.27
 ±0.01

0.05
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.18
 ±0.01

0.47
 ±0.02

0.3
 ±0.01

0.03
 ±0.0

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.04
 ±0.0

0.25
 ±0.01

0.48
 ±0.02

0.11
 ±0.01

0.11
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.1
 ±0.01

0.37
 ±0.01

0.18
 ±0.01

0.32
 ±0.01

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.03
 ±0.0

0.15
 ±0.0

0.11
 ±0.01

0.55
 ±0.01

0.15
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.03
 ±0.01

0.03
 ±0.0

0.31
 ±0.02

0.48
 ±0.02

0.14
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.04
 ±0.01

0.2
 ±0.03

0.73
 ±0.03

0.02
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.39
 ±0.05

0.61
 ±0.05

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: Random Forest

Predicted

Tr
ue

Figure B.4: Display of confusion matrix of Random Forest classification
model. The matrix is normalized by the rows (true values).

76

0.72
 ±0.01

0.22
 ±0.01

0.05
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.23
 ±0.01

0.43
 ±0.01

0.25
 ±0.01

0.08
 ±0.0

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.06
 ±0.0

0.25
 ±0.0

0.38
 ±0.01

0.24
 ±0.01

0.07
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.1
 ±0.01

0.25
 ±0.01

0.36
 ±0.01

0.23
 ±0.02

0.05
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.03
 ±0.0

0.09
 ±0.0

0.23
 ±0.01

0.4
 ±0.01

0.22
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.02
 ±0.0

0.05
 ±0.01

0.21
 ±0.01

0.55
 ±0.02

0.16
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.19
 ±0.03

0.67
 ±0.03

0.1
 ±0.03

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.17
 ±0.04

0.82
 ±0.04

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: BalancedRF

Predicted

Tr
ue

Figure B.5: Display of confusion matrix of Balanced Random Forest classi-
fication model. The matrix is normalized by the rows (true values).

0.62
 ±0.03

0.3
 ±0.02

0.06
 ±0.01

0.01
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.2
 ±0.02

0.44
 ±0.02

0.27
 ±0.02

0.06
 ±0.01

0.03
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.05
 ±0.01

0.27
 ±0.01

0.41
 ±0.02

0.14
 ±0.01

0.11
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.13
 ±0.02

0.32
 ±0.03

0.21
 ±0.01

0.28
 ±0.02

0.04
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.04
 ±0.01

0.14
 ±0.01

0.16
 ±0.01

0.47
 ±0.03

0.16
 ±0.01

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.03
 ±0.01

0.05
 ±0.02

0.32
 ±0.03

0.43
 ±0.04

0.16
 ±0.03

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.05
 ±0.02

0.24
 ±0.06

0.68
 ±0.08

0.03
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.02

0.01
 ±0.01

0.56
 ±0.11

0.43
 ±0.13

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: XGBoost

Predicted

Tr
ue

Figure B.6: Display of confusion matrix of XGBoost classification model.
The matrix is normalized by the rows (true values).

77

0.65
 ±0.02

0.27
 ±0.01

0.05
 ±0.01

0.01
 ±0.0

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.2
 ±0.02

0.46
 ±0.02

0.27
 ±0.01

0.04
 ±0.01

0.03
 ±0.0

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.05
 ±0.01

0.27
 ±0.01

0.42
 ±0.01

0.13
 ±0.01

0.11
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.11
 ±0.01

0.33
 ±0.02

0.19
 ±0.02

0.3
 ±0.02

0.03
 ±0.0

0.01
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.04
 ±0.01

0.14
 ±0.0

0.13
 ±0.02

0.5
 ±0.02

0.17
 ±0.0

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.03
 ±0.01

0.04
 ±0.01

0.3
 ±0.03

0.46
 ±0.03

0.16
 ±0.02

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.04
 ±0.01

0.23
 ±0.05

0.69
 ±0.07

0.03
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.02

0.47
 ±0.13

0.52
 ±0.15

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: LightGBM

Predicted

Tr
ue

Figure B.7: Display of confusion matrix of LightGBM classification model.
The matrix is normalized by the rows (true values).

0.63
 ±0.03

0.29
 ±0.02

0.07
 ±0.02

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.2
 ±0.02

0.43
 ±0.02

0.3
 ±0.01

0.05
 ±0.01

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.05
 ±0.01

0.27
 ±0.02

0.42
 ±0.02

0.14
 ±0.01

0.11
 ±0.02

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.13
 ±0.01

0.32
 ±0.02

0.22
 ±0.01

0.28
 ±0.03

0.03
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.04
 ±0.01

0.14
 ±0.01

0.17
 ±0.02

0.48
 ±0.04

0.16
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.03
 ±0.01

0.05
 ±0.01

0.32
 ±0.03

0.45
 ±0.03

0.14
 ±0.03

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.05
 ±0.02

0.26
 ±0.06

0.67
 ±0.07

0.02
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.01

0.01
 ±0.01

0.58
 ±0.12

0.4
 ±0.14

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: CatBoost

Predicted

Tr
ue

Figure B.8: Display of confusion matrix of CatBoost classification model.
The matrix is normalized by the rows (true values).

78

0.74
 ±0.01

0.21
 ±0.02

0.04
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.24
 ±0.02

0.45
 ±0.02

0.27
 ±0.01

0.02
 ±0.0

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.06
 ±0.0

0.28
 ±0.02

0.47
 ±0.01

0.08
 ±0.01

0.11
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.11
 ±0.01

0.38
 ±0.02

0.14
 ±0.02

0.33
 ±0.02

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.03
 ±0.01

0.15
 ±0.01

0.09
 ±0.02

0.55
 ±0.02

0.16
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.03
 ±0.01

0.02
 ±0.0

0.31
 ±0.02

0.51
 ±0.02

0.13
 ±0.02

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.04
 ±0.01

0.23
 ±0.02

0.71
 ±0.04

0.02
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.45
 ±0.12

0.55
 ±0.12

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: MLP

Predicted

Tr
ue

Figure B.9: Display of confusion matrix of MLP classification model. The
matrix is normalized by the rows (true values).

0.69
 ±0.01

0.26
 ±0.02

0.05
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.2
 ±0.03

0.47
 ±0.03

0.28
 ±0.01

0.02
 ±0.0

0.03
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.05
 ±0.01

0.27
 ±0.01

0.46
 ±0.02

0.1
 ±0.01

0.12
 ±0.02

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.11
 ±0.0

0.36
 ±0.02

0.17
 ±0.02

0.33
 ±0.03

0.03
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.03
 ±0.0

0.15
 ±0.01

0.11
 ±0.01

0.53
 ±0.02

0.16
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.03
 ±0.01

0.02
 ±0.01

0.31
 ±0.03

0.49
 ±0.03

0.14
 ±0.02

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.04
 ±0.01

0.22
 ±0.05

0.72
 ±0.05

0.03
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.39
 ±0.07

0.61
 ±0.07

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: LSTM

Predicted

Tr
ue

Figure B.10: Display of confusion matrix of LSTM classification model. The
matrix is normalized by the rows (true values).

79

0.69
 ±0.01

0.26
 ±0.01

0.04
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.2
 ±0.02

0.49
 ±0.03

0.27
 ±0.02

0.02
 ±0.0

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.05
 ±0.01

0.28
 ±0.02

0.46
 ±0.02

0.1
 ±0.01

0.11
 ±0.02

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.11
 ±0.01

0.36
 ±0.01

0.18
 ±0.02

0.31
 ±0.03

0.03
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.03
 ±0.0

0.14
 ±0.01

0.13
 ±0.01

0.52
 ±0.03

0.16
 ±0.02

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.02
 ±0.01

0.03
 ±0.01

0.29
 ±0.04

0.5
 ±0.04

0.15
 ±0.02

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.03
 ±0.01

0.21
 ±0.04

0.72
 ±0.04

0.03
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.41
 ±0.08

0.58
 ±0.08

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: GRU

Predicted

Tr
ue

Figure B.11: Display of confusion matrix of GRU classification model. The
matrix is normalized by the rows (true values).

0.71
 ±0.02

0.25
 ±0.02

0.04
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.22
 ±0.03

0.47
 ±0.03

0.26
 ±0.01

0.02
 ±0.0

0.02
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.05
 ±0.01

0.28
 ±0.01

0.46
 ±0.01

0.09
 ±0.0

0.11
 ±0.02

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.01

0.11
 ±0.01

0.37
 ±0.02

0.16
 ±0.02

0.32
 ±0.03

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.03
 ±0.01

0.14
 ±0.01

0.11
 ±0.01

0.54
 ±0.02

0.15
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.03
 ±0.01

0.02
 ±0.0

0.31
 ±0.02

0.49
 ±0.03

0.14
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.04
 ±0.01

0.22
 ±0.03

0.71
 ±0.04

0.03
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.42
 ±0.09

0.57
 ±0.09

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: Conv1D

Predicted

Tr
ue

Figure B.12: Display of confusion matrix of Conv1D classification model.
The matrix is normalized by the rows (true values).

80

0.62
 ±0.03

0.28
 ±0.02

0.08
 ±0.02

0.01
 ±0.0

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.22
 ±0.01

0.4
 ±0.02

0.29
 ±0.01

0.06
 ±0.01

0.03
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.07
 ±0.0

0.26
 ±0.01

0.37
 ±0.01

0.15
 ±0.01

0.13
 ±0.02

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.03
 ±0.0

0.13
 ±0.01

0.3
 ±0.02

0.21
 ±0.01

0.29
 ±0.02

0.04
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.04
 ±0.01

0.14
 ±0.01

0.16
 ±0.02

0.46
 ±0.02

0.18
 ±0.0

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.03
 ±0.01

0.05
 ±0.01

0.3
 ±0.01

0.46
 ±0.02

0.15
 ±0.03

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.05
 ±0.01

0.24
 ±0.05

0.67
 ±0.06

0.02
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.01

0.01
 ±0.01

0.5
 ±0.07

0.49
 ±0.08

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: MINIROCKET clf

Predicted

Tr
ue

Figure B.13: Display of confusion matrix of MINIROCKET classification
model. The matrix is normalized by the rows (true values).

0.7
 ±0.02

0.25
 ±0.02

0.05
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.23
 ±0.02

0.44
 ±0.02

0.27
 ±0.01

0.04
 ±0.0

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.07
 ±0.0

0.27
 ±0.02

0.42
 ±0.01

0.12
 ±0.01

0.11
 ±0.01

0.01
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.02
 ±0.0

0.12
 ±0.0

0.34
 ±0.02

0.19
 ±0.02

0.29
 ±0.02

0.03
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.04
 ±0.01

0.14
 ±0.0

0.13
 ±0.02

0.49
 ±0.02

0.18
 ±0.01

0.02
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.01
 ±0.0

0.03
 ±0.01

0.03
 ±0.01

0.28
 ±0.01

0.48
 ±0.02

0.17
 ±0.02

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.03
 ±0.01

0.21
 ±0.04

0.72
 ±0.04

0.04
 ±0.01

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.0
 ±0.0

0.4
 ±0.1

0.6
 ±0.1

0.15-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-1.0

1.0-1.3
1.3-2.2

2.2+

2.2+

1.3-2.2

1.0-1.3

0.8-1.0

0.7-0.8

0.6-0.7

0.5-0.6

0.15-0.5

0

0.2

0.4

0.6

0.8

1

Contingency Matrix: TST clf

Predicted

Tr
ue

Figure B.14: Display of confusion matrix of TST classification model. The
matrix is normalized by the rows (true values).

81

Annex C. Simulations per period

Table C.1: Hours gained/lost of LightGBM versus PM for UT1.

UT1 A/B graded OBs [hours] UT1 C graded OBs [hours]
A/B rank C rank A/B rank C rank

P99 7.96 -12.39 1.80 5.90
P100 0.67 -4.06 -0.15 1.75
P101 5.42 -3.69 -1.34 3.53
P102 -0.07 -0.95 3.77 -4.09
P103 -4.25 0.97 -2.59 8.51
P104 3.07 0.00 -4.99 0.00
P105 - - - -
P106 -6.93 2.20 -10.33 -0.94
P107 -1.07 0.00 -7.12 -4.58
P108 12.17 -0.70 -16.83 -1.00
P109 -0.40 -0.28 -9.79 -6.74
P110 0.96 2.09 -5.30 1.11
P111 -1.49 9.60 -6.96 0.36

Table C.2: Hours gained/lost of LightGBM versus PM for UT2.

UT2 A/B graded OBs [hours] UT2 C graded OBs [hours]
A/B rank C rank A/B rank C rank

P99 7.10 21.90 -26.21 6.41
P100 0.78 -3.50 2.86 -0.56
P101 -0.31 -0.73 0.06 -5.46
P102 -1.93 0.35 0.22 2.09
P103 16.10 2.61 -20.32 7.09
P104 -3.10 6.77 -3.73 2.77
P105 - - -2.97 0.00
P106 1.00 9.20 -12.65 -0.72
P107 13.51 10.41 -23.85 -0.42
P108 7.83 2.80 -9.49 0.00
P109 -9.42 9.65 -4.75 0.43
P110 3.35 -3.49 -0.88 -0.26
P111 8.21 -3.96 -4.65 -0.77

82

Table C.3: Hours gained/lost of LightGBM versus PM for UT3.

UT3 A/B graded OBs [hours] UT3 C graded OBs [hours]
A/B rank C rank A/B rank C rank

P99 4.84 3.71 -13.42 -0.07
P100 -6.06 3.42 -2.11 0.03
P101 -2.06 0.21 -2.75 -0.86
P102 1.31 -3.37 -2.77 -0.21
P103 -2.88 0.36 -23.44 1.07
P104 -7.82 0.19 8.21 -0.44
P105 - - - -
P106 0.00 0.00 -7.26 0.00
P107 20.83 7.97 -38.96 1.40
P108 21.02 5.97 -21.13 -1.52
P109 9.69 12.56 -19.16 -4.19
P110 5.71 -2.97 -1.48 0.69
P111 11.96 -0.53 -14.21 3.23

Table C.4: Hours gained/lost of LightGBM versus PM for UT4.

UT4 A/B graded OBs [hours] UT4 C graded OBs [hours]
A/B rank C rank A/B rank C rank

P99 11.73 -0.44 -8.17 0.56
P100 7.11 -2.40 -1.47 -0.53
P101 -1.88 3.57 0.87 2.17
P102 10.54 1.58 -7.21 -1.24
P103 9.06 8.61 -18.13 -4.17
P104 16.21 4.00 -18.83 1.28
P105 - - - -
P106 -22.60 -1.30 -25.89 -3.02
P107 -1.68 1.29 -17.07 -2.75
P108 11.89 11.70 -22.70 0.45
P109 -7.64 17.13 -12.17 1.02
P110 55.85 -5.10 -7.75 -0.95
P111 -2.75 2.89 -4.81 1.98

83

	Resumen
	Abstract
	Agradecimientos
	Table of Content
	List of Tables
	List of Figures

	1 Introduction
	1.1 European Southern Observatory
	1.2 Astronomical Turbulence
	1.3 General Objective
	1.4 Specific Objectives

	2 Literature Review
	2.1 Prediction based on meteorological models
	2.2 Prediction based on machine learning
	2.3 Prediction based on hybrid models

	3 Theoretical Framework
	3.1 Classic Machine Learning Models
	3.1.1 Isotonic Regression
	3.1.2 Stochastic Gradient Descent
	3.1.3 Decision Tree
	3.1.4 Ensemble models

	3.2 Deep Learning Models
	3.2.1 Multilayer Perceptron
	3.2.2 Recurrent Neural Networks
	3.2.3 Convolutional Neural Networks

	3.3 Metrics
	3.3.1 Mean Absolute Error
	3.3.2 Mean Squared Error and Root Mean Squared Error
	3.3.3 Precision
	3.3.4 Recall
	3.3.5 Accuracy
	3.3.6 f1-score
	3.3.7 Diagonal Average
	3.3.8 Success Rate

	4 Database
	4.1 Features Explanation
	4.1.1 Target Variables
	4.1.2 Input Variables

	5 Methodology
	5.1 Exploratory Data Analysis
	5.2 Feature Engineering
	5.3 Regression Problem
	5.4 Classification Problem

	6 Results
	6.1 Regression Models
	6.1.1 PM: Actual model at the European Southern Observatory
	6.1.2 Isotonic
	6.1.3 SGD
	6.1.4 DT
	6.1.5 RF
	6.1.6 XGBoost
	6.1.7 LightGBM
	6.1.8 CatBoost
	6.1.9 MLP
	Sliding Window Dataframe
	6.1.10 LSTM
	6.1.11 GRU
	6.1.12 CONV1D
	6.1.13 MINIROCKET
	6.1.14 TST
	6.1.15 Summary

	6.2 Classification Models
	6.3 Hyperparameters Optimization
	6.4 Multi-Output Problem
	6.5 Failed Approaches
	6.6 Feature Importance and Interpretability
	6.7 Simulations at the European Southern Observatory

	7 Conclusion
	7.1 Limitations
	7.2 Impact and Contribution
	7.3 Future Work

	Bibliography
	ANNEXES
	A Database features
	A.1 Initial features
	A.2 Final features

	B Classification models matrices
	C Simulations per period

