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DETECCIÓN DE COMUNIDADES EN REDES DINÁMICAS CON ATRIBUTOS

El análisis de redes sociales puede ser útil para respaldar procesos de toma de decisiones.
Una de las herramientas clave para lograr esto es la detección de comunidades. Este enfoque
permite identi�car grupos, principalmente en redes estáticas donde las conexiones entre los
nodos están disponibles. Sin embargo, los problemas del mundo real suelen estar caracteriza-
dos por comportamientos que cambian con el tiempo. En estos casos, se necesitan algoritmos
de detección de comunidades dinámicas, ya que capturan mejor la dinámica subyacente. Un
paso adicional en esta dirección es incluir información sobre los atributos de los nodos y
detectar grupos en redes dinámicas que evolucionan, lo que permite obtener resultados más
precisos. Además, la capacidad de detectar comunidades overlapping representa una mejora,
ya que los nodos pueden pertenecer a varios grupos al mismo tiempo. También es relevante
que un enfoque pueda detectar automáticamente el número de grupos. Esta tesis presenta
dos modelos para la detección de comunidades en redes dinámicas con atributos.

El primer modelo, denominado COmmunity DEtection in Dynamic Attributed NETworks
(CoDeDANet), consta de dos fases. En la primera fase, basada en spectral clustering, se
optimiza la relevancia de los atributos en un enfoque que combina los atributos de los nodos
con la estructura topológica. En la segunda fase, se utilizan tensores para considerar tanto la
información actual como la de instantes de tiempo recientes. Este algoritmo detecta grupos
disjuntos, y el número de comunidades es un parámetro de�nido por el usuario.

El segundo modelo, Overlapping COmmunity DEtection in Dynamic Attributed NETworks
(OCoDeDANet), utiliza la factorización de matrices no negativas en un enfoque probabilístico
para detectar comunidades disjuntas y overlapping mediante un algoritmo iterativo que ma-
ximiza la probabilidad a posteriori dadas las observaciones. En este caso, el propio algoritmo
determina el número de grupos.

Ambos enfoques fueron probados en varias redes sintéticas y datos del mundo real. Los
resultados muestran que nuestros modelos superan a distintos algoritmos de la literatura. El
uso de la evolución de las redes y los atributos de los nodos en nuestros enfoques condujo a
la identi�cación de comunidades más precisas.
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COMMUNITY DETECTION IN DYNAMIC ATTRIBUTED NETWORKS

The analysis of social networks can be helpful to support policy and decision-making proces-
ses. One of the tools to achieve this task is community detection. This approach allows the
detection of groups, mostly on static networks where the links between nodes are available.
Real-world problems, however, are often characterized by behavior that changes over time.
We need dynamic community detection algorithms in such cases because they better capture
the underlying dynamics. A step further in this sense is to include attribute information
about the nodes and detect groups on dynamic networks that evolve to obtain more accu-
rate results. Also, being able to detect overlapping communities o�ers an improvement since
nodes can belong to di�erent groups at the same time. Furthermore, the capability of an
approach to automatically detect the number of groups is also relevant. This thesis presents
two models for community detection in dynamic attributed networks.

The �rst model, for COmmunity DEtection in Dynamic Attributed NETworks (CoDeDA-
Net), comprises two phases. In the �rst phase, based on spectral clustering, the attributes'
importance is optimized in a setting that joins the nodes' features with a topological struc-
ture. In the second phase, tensors are used to consider current and past information. This
algorithm detects disjoint groups, and the number of communities is a parameter of the
approach.

The second model, for Overlapping COmmunity DEtection in Dynamic Attributed NET-
works (OCoDeDANet), uses non-negative matrix factorization in a probabilistic approach to
detect disjoint and overlapping communities in an iterative algorithm that maximizes the mo-
del posterior given the observations. In this case, the algorithm itself determines the number
of groups with an automatic relevance determination process.

Both approaches were tested on several synthetic and real-world networks. Results show
that our models outperform state-of-the-art algorithms. The use of networks' evolution and
nodes' attributes in our approaches led to more accurate communities.

ii



To Mom and Dad, who have always been there for us with unwavering love and support.

Para Mamá y Papá, quienes siempre han estado presentes para nosotros con apoyo
incondicional y amor in�nito.

iii



Acknowledgment

As I reach the end of this long journey, I want to thank some special people who have
been with me through the highs and lows of my PhD path:

To Rafa and Lis, who have been more than friends; you became family many years ago.

To my beloved wife, who has walked this journey alongside me, enduring the challenges,
lifting my spirits, and bringing a smile when I needed it most.

To my academic peers and colleagues, who became brothers and sisters: Dana, Edu2,
Cristiam, Edu, Vero, Feres, Vale. It was a privilege to share this journey with you, to support
each other, to laugh together, and to build memories that will last a lifetime.

To every other PhD student who helped along the way: Andrea, Álvaro, Javier, Coni,
Lucho, Ricardo, Sebas. Your support was also part of this achievement.

To the professors I had throughout the PhD at DSI, each of you played a role in my
learning and growth, helping to shape my academic path.

To André at Universidade do São Paulo (funded by Universidad de Chile through Ayuda
para Estadías Cortas de Investigación) and Mark at McGill University (funded by the Ca-
nadian Bureau for International Education through the Emerging Leaders in the Americas
Program), thank you for welcoming me and providing internships that were both transfor-
mative and enlightening experiences.

To Richard, my advisor, because despite the ups and downs, we were able to get to the
�nish line.

To Mom, Dad, Richard, Liz, Robert, and Ronald, for all the love and support throughout
my academic journey.

And to everyone involved in this achievement whom I may have overlooked in these li-
nes�thank you. This accomplishment is a testament to the collective support and kindness
of all those who believed in me.

iv



Table of Content

Introduction 1

1. Dynamic community detection including node attributes 6

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1. Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2. Tensor and spectral clustering-based dynamic community detection . 8
1.2.3. Spectral clustering-based community detection using graph distance

and node attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3. Proposed framework: CoDeDANet . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1. General overview of CoDeDANet . . . . . . . . . . . . . . . . . . . . 11
1.3.2. Description of CoDeDANet . . . . . . . . . . . . . . . . . . . . . . . 12

1.4. Experimental results and evaluation . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.1. Metrics for evaluation of performance in community detection . . . . 18
1.4.2. Experiments on synthetic and real-world networks . . . . . . . . . . . 19
1.4.3. Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5. Concluding remarks and future work . . . . . . . . . . . . . . . . . . . . . . 35

2. Detecting disjoint and overlapping communities in temporal node-attributed

networks 37

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3. The proposed model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1. Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.2. Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.3. Iterative solution algorithm . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.4. Full algorithm of OCoDeDANet . . . . . . . . . . . . . . . . . . . . . 45

2.4. Experimental results and evaluation . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.1. Performance metrics in community detection . . . . . . . . . . . . . . 47
2.4.2. Experiments on disjoint synthetic networks . . . . . . . . . . . . . . . 48
2.4.3. Experiments on overlapping synthetic networks . . . . . . . . . . . . 59
2.4.4. Experiments on real-world networks . . . . . . . . . . . . . . . . . . . 68
2.4.5. Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.5. Concluding remarks and future work . . . . . . . . . . . . . . . . . . . . . . 72

Conclusion 72

v



Bibliography 81

Annexes 82

A. Detailed computations of the model for timestep 1 83

B. Detailed computations of the model for timestep t 86

Detailed computations of the model for timestep t . . . . . . . . . . . . . . . . . . 86

C. Partial derivatives of the loss function with respect to the latent factors at

time step 1 88

D. Partial derivatives of the loss function with respect to the latent factors at

time step t 90

E. Multiplicative coordinate descent algorithm equations 92

Multiplicative coordinate descent algorithm equations . . . . . . . . . . . . . . . . 92

vi



List of Tables

1.1. Classi�cation of community detection algorithms based on the use of node
attribute information and the dynamic aspects of the network. . . . . . . . . 8

1.2. Original link probabilities to create datasets for Synthetic network 2. . . . . 23
1.3. Parameter values used for benchmark DANCer. The description is shown as

de�ned by Largeron et al. (2017). . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4. Speci�c parameters for networks de�ned using the benchmark DANCer. . . . 28
1.5. Performance on synthetic networks according to NMI. The rows comprise the

built networks, which number refers to the corresponding �gure of results in
the paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.6. Performance on the COVID-19 network according to density and entropy. . . 34
1.7. Performance on the crime network according to density and entropy. . . . . . 35

2.1. Classi�cation of community detection algorithms according to network dy-
namics, availability of nodes' attributes, capability of identifying overlapping
nodes, and determination of number of communities . . . . . . . . . . . . . . 39

2.2. Parameter values that were used for benchmark DANCer. The description is
shown as de�ned by Largeron et al. (2017). . . . . . . . . . . . . . . . . . . . 50

2.3. Speci�c parameters for networks de�ned using the benchmark DANCer (Már-
quez & Weber, 2023). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4. Original link probabilities in datasets of Synthetic network 3 (Márquez & We-
ber, 2023) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5. Parameter values that were used for Greene's benchmark. The description is
shown as de�ned by Greene et al. (2010). . . . . . . . . . . . . . . . . . . . . 61

2.6. Speci�c parameters for networks de�ned using Greene's benchmark. . . . . . 61
2.7. Performance on dataset 1 from Greene's benchmark according to NMI. For

OCoDeDANet, Case 4 (s = 3, pintra = 1) to Case 1 (s = 1, pintra = 0,7) are
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.8. Performance on datasets 2 to 5 from Greene's benchmark according to NMI.
For OCoDeDANet, Case 4 (s = 3, pintra = 1) to Case 1 (s = 1, pintra = 0,7)
are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.9. Performance on datasets 6 to 8 from Greene's benchmark according to NMI.
For OCoDeDANet, Case 4 (s = 3, pintra = 1) to Case 1 (s = 1, pintra = 0,7)
are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.10. Performance on dataset 9 from Greene's benchmark according to NMI. For
OCoDeDANet, Case 4 (s = 3, pintra = 1) to Case 1 (s = 1, pintra = 0,7) are
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vii



2.11. Performance on dataset 10 from Greene's benchmark according to NMI. For
OCoDeDANet, Case 4 (s = 3, pintra = 1) to Case 1 (s = 1, pintra = 0,7) are
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.12. Performance on dataset 11 from Greene's benchmark according to NMI. For
OCoDeDANet, Case 4 (s = 3, pintra = 1) to Case 1 (s = 1, pintra = 0,7) are
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.13. Performance on disjoint synthetic networks according to NMI. For OCoDeDA-
Net and DALouvain, Case 4 (s = 3, pintra = 1) and Case 1 (s = 1, pintra = 0,7)
are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.14. Performance on Overlapping synthetic networks according to NMI. For OCo-
DeDANet, Case 4 (s = 3, pintra = 1) to Case 1 (s = 1, pintra = 0,7) are
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.15. Performance on the crime network according to modularity, density and entropy. 72

viii



List of Figures

1.1. Phase 1 of CoDeDANet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2. Dynamic update of assignment matrices on Phase 2 of CoDeDANet. . . . . . 15
1.3. Sketch of CoDeDANet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4. An instance of graphs and adjacency matrices, for Dataset 1, Case 1, of Synthe-

tic network 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5. Attribute 1 over time, for Dataset 1, of Synthetic network 1. . . . . . . . . . 21
1.6. Performance for Dataset 1 of Synthetic network 1 measured by NMI, where

40% of the nodes migrate to a new community. . . . . . . . . . . . . . . . . 22
1.7. Performance for Dataset 2 of Synthetic network 1 measured by NMI, where

80% of the nodes migrate to a new community. . . . . . . . . . . . . . . . . 23
1.8. An instance of the adjacency matrices for the 3 types of Synthetic network 2

at t = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.9. An instance of adjacency matrices and attribute 1 over time for the strongly

assortative network with p = 0,21. . . . . . . . . . . . . . . . . . . . . . . . . 24
1.10. Performance measured by NMI for Synthetic network 2. . . . . . . . . . . . . 25
1.11. Adjacency matrices over time for Synthetic network 3. . . . . . . . . . . . . 26
1.12. Performance measured by NMI for Synthetic network 3. . . . . . . . . . . . . 27
1.13. Performance measured by NMI for benchmark DANCer. . . . . . . . . . . . 29
1.14. Performance for COVID-19 network. . . . . . . . . . . . . . . . . . . . . . . 30
1.15. Communities obtained by CoDeDANet at t = 43 for the COVID-19 network. 31
1.16. Performance for the crime network. . . . . . . . . . . . . . . . . . . . . . . . 32
1.17. Communities obtained by CoDeDANet at t = 12 for the crime network. . . . 33

2.1. Dynamic attributed non-negative matrix factorization (left for t = 1, right for
t = 2, . . . , T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2. Performance measured by NMI for benchmark DANCer when s = 1, pintra =
0,7 and pinter = 0,05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3. Performance measured by NMI for benchmark DANCer when s = 3, pintra = 1
and pinter = 0,05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4. Performance for Dataset 4 of Synthetic network 1 measured by NMI, when
pintra is varied between 1 and 0.5. . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5. Performance for Dataset 8 of Synthetic network 1 measured by NMI, when
pintra is varied between 1 and 0.5. . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6. An instance of graphs and their corresponding adjacency matrices for Dataset
1, Case 1, of Synthetic network 2. . . . . . . . . . . . . . . . . . . . . . . . . 55

2.7. Evolution of attributes over time, for Dataset 1, Case 1, of Synthetic network 2. 56

ix



2.8. Performance for Dataset 1 of Synthetic network 2 (40% of the nodes migrate
to a new community) measured by NMI. . . . . . . . . . . . . . . . . . . . . 57

2.9. Performance for Dataset 2 of Synthetic network 2 (80% of the nodes migrate
to a new community) measured by NMI. . . . . . . . . . . . . . . . . . . . . 58

2.10. An instance of the adjacency matrices for the three types of Synthetic network
3 at t = 1 (Márquez & Weber, 2023). . . . . . . . . . . . . . . . . . . . . . . 58

2.11. An instance of evolution for adjacency matrices, when s = 3, pintra = 0,7,
pinter = 0,05, for the strongly assortative network with p = 0,21 (Márquez &
Weber, 2023). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.12. An instance of evolution for attributes 1, 2 and 3, when s = 3, pintra = 0,7,
pinter = 0,05, for the strongly assortative network with p = 0,21. . . . . . . . 59

2.13. Performance measured by NMI for Synthetic network 3, datasets 1, 2 and 3,
and s = 3, pintra = 0,7, pinter = 0,05. . . . . . . . . . . . . . . . . . . . . . . . 60

2.14. Performance for Dataset 1, Type 3 (muw = 0,3) of Overlapping synthetic
network measured by NMI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.15. Performance for Dataset 3, Type 3 (muw = 0,3) of Overlapping synthetic
network measured by NMI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.16. Performance for Dataset 4, Type 4 (muw = 0,4) of Overlapping synthetic
network measured by NMI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.17. Performance for Dataset 2, Type 4, Overlapping synthetic network, measured
by NMI, when pintra is varied between 1 and 0.5. . . . . . . . . . . . . . . . . 65

2.18. Performance for Dataset 6, Type 5 (muw = 0,5) of Overlapping synthetic
network measured by NMI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.19. Performance for Dataset 9, Type 1 (muw = 0,1) of Overlapping synthetic
network measured by NMI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.20. Performance for the crime network. . . . . . . . . . . . . . . . . . . . . . . . 69
2.21. Communities obtained by OCoDeDANet at t = 12 for the crime network. . . 69

x



Introduction

Clustering has become an essential technique in data analysis and machine learning, wi-
dely applied for exploratory data analysis across disciplines, including statistics, computer
science, biology, and social sciences or psychology (Von Luxburg, 2007). It groups similar
objects into clusters based on de�ned similarity measures, uncovering underlying patterns in
complex datasets. Clustering plays a signi�cant role in network analysis, where relationships
between objects (nodes) are captured through connections (links). Networks provide a ro-
bust framework for representing and understanding complex phenomena across diverse do-
mains (Newman, 2018).

These networks, often composed of social, biological, or information systems, enable us
to capture interactions among entities in a simpli�ed yet insightful manner. For example,
social networks reveal patterns in friendships, professional connections and other types of re-
lationships (e.g., Facebook, Twitter, contact tracing networks) (Ferrara, 2012; Ferrara et al.,
2014; Ozer et al., 2016), information networks map citations and collaborative e�orts (e.g.,
the World Wide Web, citation networks) (Girvan & Newman, 2002; Chakraborty & Chakra-
borty, 2013; Moradi-Jamei et al., 2021), and biological networks trace relationships within
ecosystems (e.g., food webs, protein�protein interactions) (Palla et al., 2005; Wu et al., 2014;
Mahmoud et al., 2014).

Many networks evolve dynamically as relationships change over time, such as the forma-
tion or dissolution of social ties (social networks) and shifts in citation relevance (citation
networks). While valuable, static representations often oversimplify these systems, limiting
insights into their temporal evolution. Analyzing networks dynamically allows us to more
accurately capture these transitions, providing a realistic representation of interactions and
improving our understanding of underlying processes.

In network analysis, clustering is applied as community detection, identifying communities
within networks. Here, clusters represent groups of nodes that are more densely connected
to each other than to the rest of the network. Communities provide insights into complex
systems' structure and behavior, which are critical for understanding aspects such as social
behavior, biological functions, technological systems, and information �ows.

Traditionally, community detection has focused on static networks. However, because real-
world networks evolve, there is a growing need for methods that capture communities' birth,
growth, merging, or dissolution over time.

In addition to evolving relationships, network nodes often have attributes, such as demo-
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graphic or behavioral information, which add complexity and relevance in identifying mea-
ningful communities. Attributes are particularly useful, as they can re�ect homophily (the
tendency for similar individuals to connect) and social in�uence (the impact individuals have
on each other). In social networks, for example, these attributes might represent demographic
information such as age, gender, or profession, as well as behavioral data.

When these node attributes are incorporated alongside network structure, community
detection becomes more e�ective (Bothorel et al., 2015; Chunaev, 2020). This aspect is en-
hanced in dynamic networks where both topology and attributes may vary over time. For
example, in a network of a bank's company clients, links may be de�ned by transactions
among companies, but features such as the area of the company, region of operations, and
time since creation are also important for the bank to classify its clients.

The communities are usually disjoint because each node belongs to only one of the groups
found. Nevertheless, nodes in di�erent kinds of networks tend to connect with more than one
group. For example, a person can have a relationship with his family, friends, and colleagues; a
researcher can be interested in topics from di�erent �elds (Xie et al., 2013; Fortunato & Hric,
2016). Therefore, a more thorough network analysis can include overlapping communities,
where each node can be a member of more than one group.

When nodes belong to multiple groups, the community assignment is referred to as a cover,
instead of a traditional partition where each node belongs to a single community. Overlapping
communities can be crisp (no membership degree) or fuzzy (varying degrees of membership),
capturing the more complex structures present in real-world networks (Fortunato & Hric,
2016).

As relevant as considering these factors is the methodology used to integrate them into
designing a better and more helpful community detection algorithm.

Methods for community detection

The methods used for designing the community detection approaches in this thesis are
described next.

Spectral clustering

Spectral clustering is a graph-based clustering technique that uses eigenvalues of a simi-
larity matrix to reduce dimensions before applying clustering methods. The main tools for
spectral clustering are graph Laplacian matrices, which representation can vary according to
the problem being solved (Von Luxburg, 2007).

This technique is especially e�ective in networks, as it captures community structure by
analyzing node connections. First, the similarity or adjacency matrix of the graph is com-
puted. Next, the Laplacian matrix is constructed and decomposed to obtain the eigenvalues
and eigenvectors. The key eigenvectors are then used to map nodes into a lower-dimensional
space, where traditional clustering methods, such as k-means, can be applied to group similar
nodes (Von Luxburg, 2007).

2



Spectral clustering's use of graph Laplacian matrices allows it to capture complex com-
munity structures, making it particularly suited for identifying meaningful communities in
dynamic networks.

Tensor representations

A tensor is a multidimensional array. An Nth-order tensor is an element of the tensor
product of N vector spaces, each of which has its coordinate system (Kolda & Bader, 2009).
This format makes it suitable to represent networks as a Nth-order tensor, where two dimen-
sions correspond to a similarity, adjacency, or Laplacian matrix at a time step, and the third
dimension is the number of snapshots that are being used in the representation. In this way,
tensors can encode network evolution, capturing changes in structure and attributes, which
makes it a valuable tool for community detection in dynamic networks.

To solve the problem, this can be written as a Tucker decomposition, which is a form
of higher-order principal component analysis (Kolda & Bader, 2009). Through an iterative
algorithm, the tensor decomposition can �nd matrices from which clustering methods, such
as k-means, can be applied to infer communities.

Tensor representations, through methods like Tucker decomposition, provide an e�cient
way to capture evolving network structure and attributes, identifying both stable and emer-
ging communities.

Probabilistic non-negative matrix factorization

Non-negative matrix factorization (NMF), formally proposed by Lee & Seung (1999), is a
classical low-rank matrix factorization model. It is especially applicable for analyzing matrices
whose elements are all non-negative (He et al., 2022).

The main idea is to �nd two non-negative matrices (W and H) that, when multiplied,
reconstruct the original matrix (V). An objective function, such as the square of the Frobenius
norm or Kullback�Leibler divergence, must be de�ned to quantify an approximation error
whose goal is to be minimized (He et al., 2022).

The generative capability of NMF can give a good interpretation of community structure
when applied to networks, where V is an adjacency matrix or another representation of
the graph. An element of the reconstructed matrix, vij, can be treated as the expected
interaction between nodes i and j. Suppose vij is Poisson distributed. In that case, the total
expected interactions can be de�ned as v̂ij,t =

∑K
k=1wik,thkj,t, which are obtained by the

mutual participation of nodes in community k. As nodes i and j share more communities, they
have more interactions, which will result in a higher probability that they will be connected;
therefore, nodes in the same community are densely connected (He et al., 2022).

In dynamic networks, the generative nature of probabilistic NMF provides a �exible fra-
mework for community membership, enabling nodes to belong to multiple communities as
the network evolves over time.

Based on these community detection methods, we now turn to this thesis's speci�c cha-
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llenges and contributions.

Thesis overview and contributions

Given the dynamic nature of many real-world networks and the importance of node attri-
butes, this thesis presents two distinct models for community detection in dynamic attributed
networks, addressing limitations in existing approaches, which usually analyze evolving net-
work structure and changing node attributes separately. Both models are designed to detect
communities by considering the network's temporal evolution alongside the nodes' attributes,
providing a more accurate representation of real-world systems.

Disjoint community detection in dynamic attributed networks

The �rst model, COmmunity DEtection in Dynamic Attributed NETworks (CoDeDANet),
introduces a novel approach for detecting disjoint communities in networks where both the
structure and node attributes evolve over time. This model combines spectral clustering
to optimize the importance of node attributes with tensor-based methods that incorporate
current and past network information. The number of communities is a parameter for this
algorithm. The model is tested on both synthetic and real-world networks, demonstrating its
ability to outperform state-of-the-art community detection algorithms. The results highlight
the bene�ts of considering both the temporal and attribute-based dynamics of the network,
leading to more accurate and insightful community detection.

Overlapping community detection in dynamic attributed networks

The second model, Overlapping COmmunity DEtection in Dynamic Attributed NETworks
(OCoDeDANet), extends the capabilities of CoDeDANet by allowing for the detection of both
disjoint and overlapping communities. This algorithm uses a probabilistic non-negative matrix
factorization approach, solved with an iterative solution algorithm that maximizes the model
posterior to detect disjoint and overlapping communities in dynamic attributed networks.
This model also incorporates automatic relevance determination to detect the number of
communities. The experimental results, tested on synthetic attributed networks and a real-
world attributed network, show that OCoDeDANet performs better than existing methods,
particularly in cases where the community structure becomes more ambiguous based solely
on the network topology. The inclusion of node attributes in these cases helps clarify the
community structure.

Submitted works

As a result of this thesis, the following works have been submitted:

1. Márquez, R., Weber, R., and De Carvalho, A. C. (2019). A non-negative matrix facto-
rization approach to update communities in temporal networks using node features. In
Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), pp. 728-732. https://doi.org/10.1145/
3341161.3343677 (Published).
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2. Márquez, R. (2020). Overlapping community detection in static and dynamic networks.
In Proceedings of the 13th International Conference on Web Search and Data Mining
(WSDM), pp. 925-926. https://doi.org/10.1145/3336191.3372185 (Published).

3. Márquez, R. and Weber, R. (2023). Dynamic community detection including node
attributes. Expert Systems with Applications, 223, 119791. https://doi.org/10.1016/
j.eswa.2023.119791. (Published).

4. Márquez, R., Weber, R., and Barrales, A. (2024). Detecting disjoint and overlapping
communities in temporal node-attributed networks. Knowledge-Based Systems. (Sub-
mitted).

Summary of contributions

The main contributions of this thesis can be summarized as follows:

� We propose two algorithms capable of detecting communities over time by integrating
topological structure and node attributes on dynamic attributed networks, addressing a
gap in community detection literature where few studies have combined these features.

� Both algorithms adapt to evolving community structure, dynamic topology, and chan-
ging node attributes over time, enabling accurate community detection in real-world
networks.

� To jointly leverage topological and attribute information in dynamic networks, CoDe-
DANet employs spectral clustering combined with tensor analysis, while OCoDeDANet
utilizes probabilistic non-negative matrix factorization.

� In cases without ground truth, we propose a percentage pairwise comparison method
to integrate topological and attribute-based metrics, providing a comprehensive assess-
ment by incorporating both sources of information.

� Results indicate that the advantage of incorporating attributes becomes more pro-
nounced as the community structure derived solely from network topology becomes
less distinct.

Through these contributions, this thesis proposes community detection methods that ac-
commodate real-world networks' complex and evolving nature, providing more accurate and
insightful community structures.

Thesis structure

In chapter 1, a model for disjoint community detection in dynamic attributed networks
with the number of communities as a parameter for the algorithm is described and tested.
Next, in chapter 2, an approach for overlapping community detection in dynamic attributed
networks with automatic detection of the number of communities is explained, and its per-
formance is compared with state-of-the-art algorithms. Lastly, �nal remarks about this work
are stated, and some recommendations for improvement are mentioned.
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Chapter 1

Dynamic community detection including

node attributes

1.1. Introduction

A network is a simpli�ed representation of phenomena that occur in the real world, where
interactions between objects (nodes) can be represented by connections (links). Examples
of such networks include social networks, such as Facebook, contact tracing networks and
friendship or business networks; technological networks, such as the internet, power grids and
telephone networks; information networks, such as the Worldwide Web, citation networks
and collaboration networks; and biological networks, such as food webs and protein�protein
interaction networks (Newman, 2018).

These aforementioned networks can be analyzed as static networks but most of them can
evolve through time. For example, new contacts will emerge in the contact tracing network,
and some people will no longer exist in the network after a period of time; new papers can be
cited in the citation networks, or older papers can obtain new citations. The importance of
these changes motivates the study of dynamic networks over static networks, since the latter
can be considered an oversimpli�cation of the corresponding real-world phenomena.

The representation of real-world systems as networks allows the discovery of useful infor-
mation in physical, biological and social systems, among others, which could not be found
otherwise. The identi�cation of groups in this context, which can be achieved through com-
munity detection, is an important task to provide insights for decision-making processes.

Communities (also referred to as modules) are de�ned as groups of nodes that are more
densely connected to each other than to the rest of the network and are also more likely to
be linked (Newman, 2006).

Community detection, originally designed in the context of static networks, has been
applied in areas such as social networks (Girvan & Newman, 2002; Ferrara et al., 2014; Ozer
et al., 2016; Atay et al., 2017), biological systems (Mahmoud et al., 2014; Wu et al., 2014;
Taya et al., 2016; Atay et al., 2017), and recommendation systems (Abdrabbah et al., 2014;
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Ríos & Videla-Cavieres, 2014; Lalwani et al., 2015), among others. Nevertheless, due to the
importance of considering dynamic networks, dynamic community detection emerged (Palla
et al., 2007), where time-based approaches are designed to �nd relevant groups in networks.

Since the structure of social networks may not be su�cient to identify its communi-
ties (Bothorel et al., 2015), another feature that can be incorporated into the network data,
which is valuable in the context of community detection due to homophily and social in-
�uence (Pfei�er III et al., 2014; Bothorel et al., 2015; Khanam et al., 2022), is the node
information. Therefore, the use of attributed networks can be bene�cial to accomplish the
community detection task.

Furthermore, similar to networks that consider only connections, these attributed networks
can also be dynamic, where the nodes and links can appear or disappear, and the attribute
values can change over time.

Based on the above discussions, and considering the lack of approaches that use both
topology and attribute information, we designed an algorithm for COmmunity DEtection
in Dynamic Attributed NETworks (CoDeDANet). The main contributions of this paper are
summarized as follows:

� We propose an algorithm that can deal with changes in communities, the structure
of the networks, and changes in the attributes of the nodes over time while using
information about both the topology and the node features.

� The proposed algorithm integrates the use of spectral clustering to capture the topolo-
gical information and attributes with the use of tensors, to include the past information.

� The experimental results on di�erent synthetic and real-world networks show that the
model outperforms other state-of-the-art community detection algorithms.

� In the absence of ground truth, a percentage pairwise comparison to fuse the topology-
and attribute-based metrics is proposed, since both sources of information are conside-
red.

To the best of our knowledge, this is the �rst approach that combines attributes and topo-
logy information in social networks in a dynamic setting, where the number of communities
can be introduced as an input.

The paper is organized as follows. Section 1.2 discusses previous works on community
detection in static and dynamic networks. Section 1.3 describes a novel approach to detect
communities in dynamic attributed networks in a two-phase algorithm. Section 1.4 examines
the performance of the proposed model for di�erent synthetic and real-world dynamic attri-
buted networks and compares it with previous works. Finally, in Section 1.5, we conclude our
work and provide some insights into possible future work.

1.2. Background

In this paper, we propose a novel method for the dynamic community detection of attri-
buted networks. Section 1.2.1 introduces general state-of-the-art community detection algo-
rithms with a particular emphasis on the novelty of our approach.
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Since our paper builds on tensors and spectral clustering for dynamic community detec-
tion, a tensor and spectral clustering-based model for community detection that uses only
information about the topology in a dynamic network is described in Section 1.2.2.

Finally, since our approach also includes node attributes, in Section 1.2.3, we present a
spectral clustering model on a network that includes the attributes (features) of its nodes.

1.2.1. Literature review

A vast number of approaches for community detection have been proposed in social net-
work analysis; see, e.g., Table 1.1, where we classify previous works into four types of algo-
rithms, static without node attributes, dynamic without node attributes, static with node
attributes, and dynamic with node attributes.

Table 1.1: Classi�cation of community detection algorithms based on the use of node attribute
information and the dynamic aspects of the network.

Without node attributes' With node attributes'

Static

Blondel et al. (2008)
Ma et al. (2014)

Cheng et al. (2018)
Said et al. (2018)
Lu et al. (2020)

Shang et al. (2022)

Combe et al. (2015)
Cao et al. (2018)

Huang et al. (2020)
Tang et al. (2020)
Ma et al. (2021)

Pourabbasi et al. (2021)

Dynamic

Mankad & Michailidis (2013)
Wang et al. (2016b)

Al-sharoa et al. (2019)
Nath et al. (2020)

Bahadori et al. (2021)
Li et al. (2021)
Li et al. (2022)

Bello et al. (2016)

To the extent of our knowledge, only Bello et al. (2016) has proposed an algorithm that
includes both dynamic networks, and attributes of the nodes, for community detection. This
work was an extension of Blondel et al. (2008) and Combe et al. (2015), and is based on
the optimization of a multiobjective function that maximizes modularity to improve the
structural quality of partitions, and an attribute similarity function, to include node attribute
information. To account for changes in dynamic graphs, Bello et al. (2016) propose a scoring
function to measure the degree of change of each vertex between two consecutive time steps.
The algorithm then chooses a random number of vertices, with the higher score, to update
their communities.

Our approach focuses on addressing the latter and less studied type of algorithm, where
community detection is applied on dynamic attributed networks. To accomplish this task,
the proposed model of this paper uses spectral clustering and tensors, so these methods are
explained thoroughly next.

1.2.2. Tensor and spectral clustering-based dynamic community de-

tection

Spectral clustering is a method that aims to �nd groups in a similarity graph. Usually,
data points are transformed into this by using an ε-neighborhood graph, KNN graph or a

8



fully connected graph. First, to project the data into a low-dimensional space, a graph Lapla-
cian matrix is obtained. Then, the spectral clustering algorithm solves the trace optimization
problem of Eq. (1.1), where LN is the normalized Laplacian matrix (Al-sharoa et al., 2019).
The solution of this problem is obtained by assigning U as a matrix containing the K eigen-
vectors that correspond to the smallest eigenvalues of LN . Each row of this matrix represents
a feature vector of the nodes with size K. Finally, by applying k-means clustering to matrix
U, a set of clusters is found (Von Luxburg, 2007).

mı́n
U∈Rn×r

tr
(
U⊤LNU

)
, s.t. U⊤U = I (1.1)

The main idea of spectral clustering is to �nd a partition such that the members of the
same cluster are similar to each other, and the members of di�erent groups are dissimilar to
each other. As shown in Von Luxburg (2007), this can be achieved by solving a minimum
cut problem, which aims to minimize the similarity of nodes that belong to di�erent groups.
Furthermore, the normalized spectral clustering formulation from Eq. (1.1) can be derived
as a relaxation of minimizing the normalized minimum cut problem.

Al-sharoa et al. (2019) also developed a model based on spectral clustering; it considered
only topological information but included tensors for handling dynamic networks. In this
context, the normalized Laplacian matrix is de�ned as LN = I−AN , whereAN = D− 1

2AD− 1
2

is the normalized adjacency matrix, A is the adjacency matrix, D is the degree matrix
(Dii =

∑
j aij) and I is the identity matrix. Therefore, Eq. (1.1) can be rewritten as shown

in Eq. (1.2) and Eq. (1.3) (Al-sharoa et al., 2019).

máx
U∈Rn×r

tr
(
U⊤ANU

)
, s.t. U⊤U = I (1.2)

máx
U∈Rn×r

||U⊤ANU||2F , s.t. U⊤U = I (1.3)

Di�erent than in Eq. (1.1), the solution to these formulations is to choose U as a matrix
containing the K eigenvectors that correspond to the largest eigenvalues of AN , instead of
the smallest eigenvalues of LN .

To include past information in the detection process, a weighted average of the normalized
adjacency matrices for current and previous time steps can be used (Al-sharoa et al., 2019).
This can be written as Eq. (1.4), where L matrices are being used (the current one and L−1
previous), and wl is the weight of the normalized adjacency matrix for time window l.

máx
U,w
||U⊤

L∑
l=1

wlA
(l)
N U||2F , s.t. U⊤U = I,w ≥ 0, ||w||2 = 1 (1.4)

This formulation can be rewritten as a Tucker decomposition problem, as shown in
Eq. (1.5), where the set of normalized adjacency matrices are represented by a third-order

tensor X (t) ∈ RN(t)×N(t)×L =
[
A

(t−L+1)
N ,A

(t−L+2)
N . . . ,A

(t)
N

]
, for each time step t = 1, . . . , T ,

whose l-th frontal slice is the normalized adjacency matrix A
(l)
N (Al-sharoa et al., 2019).

máx
U,w
||X (t) ×1 U

⊤ ×2 U
⊤ ×3 w

⊤||2F , s.t. U⊤U = I, ||w||2 = 1 (1.5)
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The optimization is performed by using higher-order orthogonal iteration (HOOI) (Kolda
& Bader, 2009), where the matrix U or the vector w is �xed while optimizing the other
one in an iterative procedure. One of the �rst two factor matrices U of the decomposition
gives the input to k-means clustering, and the third factor w, gives the weight of each time
step (Al-sharoa et al., 2019).

Since the model of Al-sharoa et al. (2019) does not include node attributes, we next review
a model that includes this aspect in a static setting.

1.2.3. Spectral clustering-based community detection using graph

distance and node attributes

Tang et al. (2020) proposed a spectral clustering-based method that includes the use of
attributes. A Gaussian kernel function is used to measure the structural similarity over the
graph distance (SG) and the attribute similarity over the Euclidean or Hamming distance
(SF ). For notation purposes, we denote attributes as F instead of X, and the resulting
matrices as V instead of U, which is a di�erence from the original paper.

The Gaussian kernel function to obtain the similarity matrix for the attributes is re-
presented by Eq. (1.6), where αm (m = 1, 2, . . . ,M) is the weight of the m-th attribute;
D

(m)
F ∈ RN×N is the m-th attribute distance matrix between the N nodes, which can be

computed by the Euclidean distance or Hamming distance, for numerical or categorical at-
tributes, respectively (Tang et al., 2020); and σ1 is the width of the local neighborhood re-
lationships, which can be computed as the length of the longest edge in a minimal spanning
tree of the graph (Von Luxburg, 2007).

sF (i, j) = exp

−
∑M

m=1 αm

(
d
(m)
F (i, j)

)2
σ2
1

 (1.6)

From each similarity matrix, a normalized matrix is obtained. TheK largest eigenvalues in
the absolute value of the normalized adjacency matrix LG = D−1/2SGD

−1/2 are chosen, whose
corresponding K eigenvectors (spectrum) are the columns of VG, i.e., the static structural
assignment matrix. The K largest eigenvalues of the normalized attribute matrix LF =
D−1/2SFD

−1/2 are chosen, whose corresponding K eigenvectors are the columns of VF , i.e.,
the static attribute assignment matrix. After normalizing both VG and VF , these are included
in a joint matrix V = [VG VF ] ∈ RN×2K , where k-means clustering is applied to estimate
the K clusters (Tang et al., 2020).

The objective of the model of Tang et al. (2020) is to minimize the normalized cut of both
the topological structure and the attributes, described by Eq. (1.7) and Eq. (1.8), respectively,
where Ck are the indices for the members of community k.

Ncut(G) =
K∑
k=1

∑
i∈Ck

∑
j /∈Ck sG(i, j)∑

i∈Ck

∑n
j=1 sG(i, j)

(1.7)
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Ncut(F ) =
K∑
k=1

∑
i∈Ck

∑
j /∈Ck sF (i, j)∑

i∈Ck

∑n
j=1 sF (i, j)

(1.8)

Tang et al. (2020) propose a procedure for updating the weight of the attributes by simul-
taneously minimizing the data distance within a group and maximizing the data separation
between groups. To achieve this, αm is updated by Eq. (1.9), using Eq. (1.10), where p
represents the iteration number.

αm,p+1 =
1

2
(αm,p +∆αm,p) (1.9)

∆αm,p =
fm,p/em,p∑M

m=1 fm,p/em,p

(1.10)

The overall within-cluster distance for the m-th attribute is represented by
em =

∑K
k=1

∑
n∈Ck dist(Fnm, ckm), where Fnm is the value of the m-th attribute for the n-th

node, ckm is the k-th center of the attribute m and dist(A,B) is the distance between A and
B. The sum of the distances between the clusters for the m-th attribute is represented by
fm =

∑K
k=1 Nkdist

(
ckm, F̄m

)
, where Nk is the number of nodes of the k-th community and

F̄m = 1
N

∑N
n=1 Fnm (Tang et al., 2020).

1.3. Proposed framework: CoDeDANet

Based on the developments presented in Section 1.2, we designed a new integrated ap-
proach to �nd communities in dynamic networks that incorporates topology and attribute
information in a tensor and spectral clustering-based model. The main contribution of the
new framework for COmmunity DEtection in Dynamic Attributed NETworks (CoDeDANet)
is the use of past and current information about the network links and node attributes to
detect communities. Section 1.3.1 presents the general features of the algorithm, followed by
a thorough description in Section 1.3.2.

1.3.1. General overview of CoDeDANet

CoDeDANet works for attributed networks where nodes can appear, disappear, or reap-
pear over time. Edges can also be added or removed over time. Moreover, the values of the
node attributes can also change over time. All of these changes can alter the structure of the
communities.

The proposed approach works with an unweighted and undirected attributed network with
T time steps, N (t) nodes and K(t) communities at time t = 1, 2, . . . , T . Adjacency matrices at
time t are represented by G(t) ∈ RN(t)×N(t)

, and attribute matrices at time t are represented
by F(t) ∈ RN(t)×M , where M is the number of attributes.

CoDeDANet is composed of two phases, which are integrated into one algorithm. In the
�rst phase, the matrices that represent the links and the matrices that represent the nodes'
attributes at each time step are obtained by using spectral clustering to optimize the attri-
butes' importance in a setting that joins the nodes' features with a topological structure. In
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a second phase, tensors are used to join matrices across time, which are averaged using an
optimized weight, whose eigenvalue decomposition allows us to obtain the assignment matri-
ces. Finally, k-means clustering is applied over a join version of the assignment matrices for
both sources of information to detect the communities for each time step.

1.3.2. Description of CoDeDANet

The �rst phase of CoDeDANet is described in Section 1.3.2.1, the second phase in Sec-
tion 1.3.2.2 and the full algorithm of CoDeDANet in Section 1.3.2.3.

1.3.2.1. Phase 1: computation of normalized matrices

This process can be described using the �owchart of Fig. 1.1, where the inputs are the in-
formation about links and attributes. The pseudocode of the process is shown in Algorithm 1,
which speci�es each step of the �rst phase of the model.

Algorithm 1: Computation of normalized matrices for CoDeDANet

Input: G(t), F(t), K(t), ε, MaxIter
Output: L

(t)
G , L(t)

F (For t = 1, V(1)
G and V

(1)
F are also outputs)

1 Compute L(t)
G , the normalized adjacency matrix of G(t).

2 Determine V(t)
G from the K(t) largest eigenvalues of L(t)

G in absolute values.

3 Normalize each row of V(t)
G to obtain the unit Euclidean norm.

4 Set p← 1; Ncut[p](F
(t))← 1

5 Set α(t)
m,[p] ←

1
M
∀ m = 1, . . . ,M

6 Compute DF using the Euclidean distance or Hamming distance.
7 repeat

8 Compute S(t)
F by Eq. (1.6).

9 Compute L(t)
F , the normalized attribute matrix of S(t)

F .

10 Determine V(t)
F from the K(t) largest eigenvalues chosen from L

(t)
F .

11 Normalize each row of V(t)
F to obtain the unit Euclidean norm.

12 Construct V(t)
GF ←

[
V

(t)
G V

(t)
F

]
∈ RN(t)×2K(t)

, normalize each row to have unit

Euclidean norm, and perform k-means clustering to obtain the static community
assignment Y(t).

13 Compute Ncut[p+1](F) based on Y(t) and S
(t)
F , as shown in Eq. (1.8).

14 Compute α(t)
m,[p+1] ∀ m = 1, . . . ,M using Eq. (1.9).

15 Update p as p← p+ 1

16 until p > MaxIter or |Ncut[p](F )−Ncut[p−1](F )| < ε

The top part of Fig. 1.1 shows that the normalized adjacency matrix L(t)
G = D−1/2G(t)D−1/2

is obtained from the topology matrix G(t), where D is a diagonal matrix of the nodes' de-
grees obtained from G(t). For this case, our approach uses the adjacency matrix G(t) directly
as the structural similarity matrix. The objective of the normalized adjacency matrix is to
obtain a representation of the graph where nodes with large degrees are more comparable to
nodes with small degrees. The next step in the process is to select the eigenvectors for the
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Figure 1.1: Phase 1 of CoDeDANet.

K(t) largest eigenvalues in absolute value from L
(t)
G to project the data into a low-dimensional

space representation, which is used to construct the static structural assignment matrix
V

(t)
G ∈ RN(t)×K(t)

. Each row of the resulting matrix is composed of a vector of size K(t), which
is the set of features of the corresponding node in the new representation. Since the absolute
value of the eigenvalues are considered, the model can be applied to disassortative networks.

The bottom part of Fig. 1.1 shows the processing of the attribute information. Firstly,
the attribute matrix F(t) is used to obtain a distance matrix D

(m)
F for each attribute, where

Euclidean distance is applied for numerical attributes, and Hamming distance is applied for
categorical attributes. Next, we transform the distance matrices into one attribute similarity
matrix, SF

(t), using a Gaussian kernel function, as described in Eq. (1.6), where each attribute
has a weight α(t)

m,[p]. Afterward, the process follows a similar approach as in the case of the

topology. The normalized attribute matrix is computed L
(t)
F = D−1/2SF

(t)D−1/2, where D is
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a diagonal matrix of the nodes' degrees obtained from SF
(t), and the eigenvectors for the K

largest eigenvalues are selected from L
(t)
F to construct the static attribute assignment matrix

V
(t)
F ∈ RN(t)×K(t)

. Each row is composed of a vector of size K(t), which is the set of features
of the corresponding node in the new representation.

The next step is to form the static joint assignment matrix V
(t)
GF =

[
V

(t)
G V

(t)
F

]
, using both

the static structural assignment matrix and the static attribute assignment matrix. Next, a
clustering algorithm must be used to �nd groups. Given the new representation of the data,
which enhances its cluster properties, the k-means clustering algorithm is a good �t at this
stage (Von Luxburg, 2007), so it is applied to a normalized version of V(t)

GF to obtain a static
community assignment Y(t). Afterward, using the stopping criteria speci�ed in Algorithm 1,
a similar iterative optimization procedure as the one described in Section 1.2.3 is performed,
where the attributes' weights αm are optimized according to the normalized cut measure,
with a posterior update of the static attribute similarity matrix SF .

As shown in Algorithm 1, the outputs used for the next phase are the normalized adjacency
matrix L

(t)
G and normalized attribute matrix L

(t)
F . For t = 1, there is a special case where V(1)

G

and V
(1)
F are also outputs that pass into the next phase.

1.3.2.2. Phase 2: dynamic community discovery

To include past information in the detection process, a weighted average of the normalized
matrices for the current and previous time steps can be used, similar to Section 1.2.2.

Fig. 1.2 depicts a �owchart of Phase 2, and Algorithm 2 describes the dynamic process,
where X

(t)
(3) is the mode-3 matricization of tensor X (t) (also called unfolding or �attening,

where the elements of the tensor are reordered into a matrix along the third dimension (Kolda
& Bader, 2009)), the symbol

⊗
represents the Kronecker product, and L is the size of the

time window.

For the graph information, an iterative procedure is performed to update the weight of
each time window. As seen in both Fig. 1.2 and Algorithm 2, in the �rst iteration, a set of
inputs are the L normalized adjacency matrices L(t−L+1)

G ,L
(t−L+2)
G , . . . ,L

(t)
G , which are used to

build the tensor X (t), to include past information in the clustering process. Another input is
the dynamic structural assignment matrix from the previous time step U

(t−1)
G , which is used

as a starting value for the same matrix at time t, U(t)
G,[0], where the subindex represented as

[p] is the iteration number.

With this information, a Tucker decomposition problem similar to the one shown in
Eq. (1.5) is formulated, whose solution can be obtained using HOOI (Kolda & Bader,
2009; Al-sharoa et al., 2019). First, the next set of weights for the time windows wG,[p+1]

are computed by a singular value decomposition, as the largest left singular vectors of

X
(t)
(3)

(
U

(t)
G,[p]

⊗
U

(t)
G,[p]

)
. Then, these values are used to calculate a weighted average of the

normalized adjacency matrices L̄G, whose eigenvalue decomposition allows us to determine
an updated dynamic structural assignment matrix U

(t)
G,[p+1]. This process is repeated to opti-

mize the weight of each time window l until the stopping criteria of Algorithm 2 are reached.
As a result, the low-rank approximations of tensor X (t) are obtained, where the dynamic
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structural assignment matrix for time t, U(t)
G , is an output to be used in the next stage of

the model.

Regarding the attribute information, based on a �xed set of weightswF , a weighted average
of the normalized attribute matrices L̄F is obtained, whose eigenvalue decomposition allows
us to determine the dynamic attribute assignment matrix U

(t)
F .

Figure 1.2: Dynamic update of assignment matrices on Phase 2 of CoDeDANet.
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Algorithm 2: Dynamic phase of CoDeDANet.

Input: L
(t−L+1)
G ,L

(t−L+2)
G . . . ,L

(t)
G , U(t−1)

G , L(t−L+1)
F ,L

(t−L+2)
F . . . ,L

(t)
F , wF , ε, MaxIter,

L
Output: U

(t)
G ,U(t)

F

1 Construct the tensor X (t) ←
[
L

(t−L+1)
G ,L

(t−L+2)
G . . . ,L

(t)
G

]
.

2 Set p← 0.

3 Initialize U(t)
G,[p] ← U

(t−1)
G .

4 repeat

5 Compute wG,[p+1] as the largest left singular vectors of X
(t)
(3)

(
U

(t)
G,[p]

⊗
U

(t)
G,[p]

)
.

6 Calculate L̄G ←
t∑

l=t−L+1

w
(l)
G,[p+1]L

(l)
G .

7 Find U
(t)
G,[p+1] by eigenvalue decomposition of L̄G.

8 Update p as p← p+ 1.

9 until p > MaxIter or |U(t)
G,[p] −U

(t)
G,[p−1]|2 < ε

10 Assign U
(t)
G ← U

(t)
G,[p].

11 Calculate L̄F ←
t∑

l=t−L+1

w
(l)
F L

(l)
F .

12 Find U
(t)
F by eigenvalue decomposition of L̄F .

1.3.2.3. Full algorithm of CoDeDANet

Using the two previous procedures, we de�ne CoDeDANet to detect communities for a
dynamic network using information about both the graph and nodes' attributes. A sketch of
the full process is depicted in Fig. 1.3, where L = 2 for simplicity. The pseudocode is shown
in Algorithm 3.

First, Phase 1 is used to obtain the normalized matrices and assignment matrices for the
�rst time step. Then, an iterative procedure for each time step is used, starting at t = 2, from
the creation of normalized matrices through Phase 1, then obtaining the dynamic structural
and attribute assignment matrix, U(t)

G and U
(t)
F , respectively, by Phase 2, and �nally applying

k-means clustering on the normalized version of the dynamic joint assignment matrix U
(t)
GF =[

U
(t)
G U

(t)
F

]
, to �nd the communities Z(t) at each time step.

In the next section, di�erent datasets are used to evaluate the performance of CoDeDANet
in comparison with other state-of-the-art community detection algorithms.

1.4. Experimental results and evaluation

To evaluate the model we measured its performance on synthetic attributed networks with
ground truth and two real-world attributed social networks without ground truth1.

1The datasets used in this paper are available at https://data.mendeley.com/datasets/fkz6mbpr2z
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Figure 1.3: Sketch of CoDeDANet.

Algorithm 3: Full algorithm of CoDeDANet.

Input: G(1), . . . ,G(T ), F(1), . . . ,F(T ), K(1), . . . , K(T ), ε, MaxIter, L
Output: Clustering labels of each node for each time step

Z(t) ∈ RN(t)×K(t) ∀ t = 1, . . . , T
1 Determine L(1)

G , L(1)
F , V(1)

G , V(1)
F ← Algorithm 1 (G(1), F(1), K(1), ε, MaxIter)

2 Assign U
(1)
G ← V

(1)
G , U(1)

F ← V
(1)
F

3 for t=2 to T do

4 Determine L(t)
G , L(t)

F ← Algorithm 1 (G(t), F(t), K(t), ε, MaxIter)

5 Determine U(t)
G , U(t)

F ← Algorithm 2 (L(t−L+1)
G ,L

(t−L+2)
G . . . ,L

(t)
G , U(t−1)

G ,

L
(t−L+1)
F ,L

(t−L+2)
F . . . ,L

(t)
F , wF , ε, MaxIter, L)

6 Select the �rst K(t) columns from U
(t)
G and U

(t)
F to construct[

U
(t)
G U

(t)
F

]
∈ RN(t)×2K(t)

, normalize each row to have unit Euclidean norm, and

apply k-means clustering to obtain Z(t).

CoDeDANet is compared with the approach of Bello et al. (2016) (DALouvain), which
makes use of both topology and attributes in a modularity-based approach2. Furthermore,
the model is compared to a static approach with attributes from Tang et al. (2020) (SwA)
and a dynamic approach without attributes from Al-sharoa et al. (2019) (DwoA).

The results are structured in the following way: �rstly, an overview of the metrics used to

2DALouvain implementation is available at https://bitbucket.org/harenbergsd/

dynamic-attributed-louvain/src/master/
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evaluate the performance of the algorithm is presented in Section 1.4.1. Next, in Section 1.4.2,
various disjoint and overlapping attributed networks are described and the performance in
the di�erent algorithm is addressed. Lastly, Section 1.4.3 provides a brief summary of the
results obtained.

1.4.1. Metrics for evaluation of performance in community detec-

tion

The performance of community detection algorithms can be measured by di�erent metrics
according to the features of the algorithm and the nature of the network. When ground-
truth information regarding the community structure is available, one of the most commonly
used metrics is normalized mutual information (NMI). In the absence of the ground-truth
information, modularity and density are some of the metrics used to capture the presence of
community structures for community detection (Chakraborty et al., 2017; Chunaev, 2020).
If the network has categorical attributed data describing the nodes, the cohesiveness of the
network according to this information can be measured using entropy (Chunaev, 2020). When
the attributed data are numerical, Calinski�Harabasz or Davies�Bouldin metrics (Arbelaitz
et al., 2013) can be used.

Normalized mutual information is a measure to determine the quality of a clustering. To
explain this metric, a confusion matrixN is de�ned, where the rows are the class labels obtai-
ned from the ground truth, and the columns are the communities obtained by a community
detection algorithm. An element Nij from this matrix represents the number of nodes with
class label i that appear in the found community j. The NMI is de�ned as Eq. (1.11), where
A is the ground-truth partition, C is the found partition, nA is the number of ground-truth
communities, nC is the number of found communities and Ni. is the sum over row i, which
de�nes the number of nodes of class label i, and N.j is the sum over column j, which de�nes
the number of nodes of the found community j (Danon et al., 2005).

NMI(A, C) =
−2
∑nA

i=1

∑nC
j=1 Nij log (NijN/ (Ni.N.j))∑nA

i=1Ni. log (Ni./N) +
∑nC

j=1N.j log (N.j/N)
(1.11)

The NMI equals 1 if the partitions are identical and 0 if the partitions are independent.

The density of partition C is de�ned as shown in Eq. (1.12), where mk is the number of
internal edges of community k, m is the number of edges of the graph and K is the number
of communities (Zhou et al., 2009; Dang & Viennet, 2012).

Density(C) =
K∑
k=1

mk

m
(1.12)

The density measures the proportion of community internal links according to the total
number of links in the graph. The higher the density is, the better the partition (Dang &
Viennet, 2012).

The entropy measures the similarity of the nodes within a community k, according to the
values of a categorical attribute m, as shown in Eq. (1.13), where Xm is a vector of values for
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attribute m, Ck represent the nodes that belong to community k, nm is the number of values
for attribute m, and pmkn is the percentage of nodes in community k with a value Xmn for
the attribute m (Zhou et al., 2009; Dang & Viennet, 2012).

entropy(Xm, Ck) = −
nm∑
n=1

pmkn log(pmkn) (1.13)

The entropy of partition C allows us to measure the performance of an algorithm according
to the similarity of the values of the categorical attributes within each community and is
de�ned as shown in Eq. (1.14), where Nk is the number of nodes that belong to community k.
The lower the entropy is, the more homogeneous the nodes inside each community according
to the values of its attributes (Zhou et al., 2009; Dang & Viennet, 2012).

Entropy(C) =
M∑

m=1

αm∑M
p=1 αm

K∑
k=1

Nk

N
· entropy(Xm, Ck) (1.14)

1.4.2. Experiments on synthetic and real-world networks

To evaluate the performance of CoDeDANet, four synthetic attributed networks with
ground-truth information were created. When using DALouvain as the community detection
algorithm, the attributes of these networks were discretized to be able to use the available
code.

For each parameter setting to generate data of every synthetic network, 10 di�erent ins-
tances were created, each one with a di�erent random seed. The number of communities for
the synthetic networks was set with the same value as the ground truth.

To show how our method performs if the ground truth is not available, we used two
real-world attributed social networks: a COVID-19 contact tracing and a crime network.

As parameters of our model, we �xed the size of the time window as L = 2, ε = 0,00001
and MaxIter = 20. The k-means algorithm was run with 20 di�erent random seed centers.

According to initial tests, the weight of the past information for the attributes was �xed
to 0, i.e., only attribute information for the current time step was used in the experiments.

1.4.2.1. Synthetic network 1

Networks

We use synthetic network 1 to show the creation of a community. For these tests, synthetic
dynamic networks similar to the ones from Sheikholeslami & Giannakis (2018) were used.
The graphs were built with 200 nodes and 20 snapshots. The network starts with the nodes
divided into two communities, each one with 100 nodes. Afterwards, a third community
appears. Two independent datasets were built, to show the results when more changes occur.
For Dataset 1, 40% of all nodes from the entire network migrate to a new community. For
Dataset 2, 80% of all nodes migrate to a new community. The time of the change for each
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node is selected according to a normal distribution N (10, 2). For each pair of nodes, a link
is created according to a stochastic block model, where nodes within the same community
are connected with probability 0.3, and nodes from di�erent communities are connected with
probability 0.1.

For the generation of the attributes, we propose four cases using a univariate or multiva-
riate normal distribution with a standard deviation of 0.1.

In Case 1, a three-variate normal distribution is used to generate three attributes, with
means µ1 = [1, 0, 0], µ2 = [0, 0, 0], µ3 = [−1, 0, 0], for the nodes belonging to Groups 1, 2,
and 3, respectively. Hence, only the �rst attribute contributes to identifying the groups.

In Case 2, we propose to use only one attribute, with means µ1 = 1, µ2 = 0 and µ3 = −1
for nodes belonging to Groups 1, 2 and 3, respectively.

In Case 3, there are three irrelevant random attributes.

In Case 4, there is one irrelevant random attribute.

The graphs, and an adjacency matrix representation of some selected timestamps, for an
instance of Dataset 1 and Case 1, are shown in Fig. 1.4. In the upper part of Fig. 1.4, the
communities found by CoDeDANet are distinguished by colors. In the lower part of Fig. 1.4,
a black dot indicates the existence of a link between the respective node on the horizontal
axis and the one on the vertical axis.

(a) Graph t = 4 (b) Graph t = 8 (c) Graph t = 10 (d) Graph t = 13

(e) Adj. t = 4 (f) Adj. t = 8 (g) Adj. t = 10 (h) Adj. t = 13

Figure 1.4: An instance of graphs and adjacency matrices, for Dataset 1, Case 1, of Synthetic
network 1.

The evolution of the network shows that some nodes start to change their connections
and attributes, initiating the birth of a new community. Attribute 1 over time supports the
same community evolution, as shown in Fig. 1.5, where the lower the value is, the darker the
color.
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As can be seen in Fig. 1.4, some nodes start to change their connections, initiating the
birth of a new community. Attribute 1 supports the same community evolution over time, as
shown in Fig. 1.5, where the lower the value is, the darker the color.

Figure 1.5: Attribute 1 over time, for Dataset 1, of Synthetic network 1.

Results

The performance of the models for Dataset 1 of Synthetic network 1 is shown in Fig. 1.6.
For all models, a performance decay begins around time step 5, starting to partially recover
around timestamp 8 in most cases.

For the Dataset 1 of Synthetic network 1, when there is one relevant attribute (Fig. 1.6a
and Fig. 1.6b), CoDeDANet and SwA perform best, followed by DwoA, since the attributes
help to recover the performance faster.

When attributes are random (Fig. 1.6c and Fig. 1.6d), despite learning the weights of the
attributes, the in�uence of the irrelevant attributes is strong enough to worsen the perfor-
mance. The results are similar among CoDeDANet, DwoA and SwA, with the same average
NMI when there are three irrelevant random attributes and less than a 1.1% di�erence on
average between them when there is just one irrelevant attribute.

Fig. 1.7 shows the models' performance for Dataset 2 of Synthetic network 1. Similar to
Dataset 1, on the cases that include relevant attributes (Fig. 1.7a and Fig. 1.7b), there is a
decay in performance starting around time step 3, �nally stabilizing at approximately 0.54
for CoDeDANet, 0.5 for SwA and 0.43 for DwoA. For Dataset 2 of Synthetic network 1,
CoDeDANet outperforms the other models. When the attributes are random (Fig. 1.7c and
Fig. 1.7d), DwoA performs best, followed by CoDeDANet and SwA.

For both datasets, DALouvain performs worst, producing only one community in most
cases.

1.4.2.2. Synthetic network 2

Networks
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(a) Three attributes with one relevant (b) One relevant attribute

(c) Three irrelevant attributes (d) One irrelevant attribute

Figure 1.6: Performance for Dataset 1 of Synthetic network 1 measured by NMI, where 40%
of the nodes migrate to a new community.

With these networks we show how communities grow and shrink. We created data similar
to those used by Tang et al. (2020) but generated 10 timestamps with communities that grow
and shrink. We built 3 datasets, each one with 3 groups of n1 = 80, n2 = 90 and n3 = 100
nodes. The network structure is generated by a degree-corrected stochastic block model. The
link probability is de�ned by z · (θi) · (θj), where z ∈ [0, 1] is the original link probability of
connecting the nodes i and j of a certain group, and θi, θj are the degree-corrected parameters.
We set θi = 1 for 95% of the nodes and θi = 3 for the remaining nodes.

Three types of attributed networks were proposed, with di�erent original link probabilities,
to assess strongly assortative structures, weakly assortative structures, and disassortative
structures, using the parameter values proposed in Tang et al. (2020), which are shown
in Table 1.2, where p1 ∈ [0,21, 0,25], p2 = p1 − 0,01, p3 = p1 − 0,02, q ∈ [0,1, 0,14], and
r ∈ [0,19, 0,23].

Similar to the previous networks, a three-variate normal distribution is used to generate the
3 attributes, with means µ1 = [1,5, 0, 0], µ2 = [0, 0, 0], µ3 = [−1,5, 0, 0], for nodes belonging
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(a) Three attributes with one relevant (b) One relevant attribute

(c) Three irrelevant attributes (d) One irrelevant attribute

Figure 1.7: Performance for Dataset 2 of Synthetic network 1 measured by NMI, where 80%
of the nodes migrate to a new community.

Table 1.2: Original link probabilities to create datasets for Synthetic network 2.

Within groups Between groups
link probabilities link probabilities
1 2 3 1-2 1-3 2-3

Strongly p1 p2 p3 0.08 0.08 0.08
assortative
Weakly 0.3 0.3 0.1 q 0.09 0.09
assortative
Disassortative 0.1 0.1 0.1 r r r

to Groups 1, 2 and 3, respectively.

For each type of network, an instance of the adjacency matrices for time step 1 is shown
in Fig. 1.8, with parameters p1 = 0,21, q = 0,1 and r = 0,19.
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(a) Strongly assortative (b) Weakly assortative (c) Disassortative

Figure 1.8: An instance of the adjacency matrices for the 3 types of Synthetic network 2 at
t = 1.

At each of the 10 time steps, changes in links and attributes force the �rst community
to grow, the second community to change its members but remain constant in size, and the
third community to shrink, as shown in Fig. 1.9, for an instance of the strongly assortative
network with p = 0,21.

(a) Adj. t = 1 (b) Adj. t = 5 (c) Adj. t = 10 (d) Attr. 1

Figure 1.9: An instance of adjacency matrices and attribute 1 over time for the strongly
assortative network with p = 0,21.

Results

The performance of the models for p1 = 0,21, q = 0,1 and r = 0,19 is shown in Fig. 1.10.
For the strongly and weakly assortative networks, CoDeDANet performs best on average,
followed by SwA. In the case of disassortative networks, SwA performs best, followed by Co-
DeDANet. Both algorithms experience a decay of performance at time step 7, which coincides
with the greater change of attribute values across all timestamps.

1.4.2.3. Synthetic network 3

Networks

With these networks we show various kinds of changes, such as creation and deletion
of communities, as well as increase and decrease of the link density among nodes inside
and outside the communities. We design synthetic dynamic networks similarly to Al-sharoa
et al. (2019), with the addition of attributes. Four di�erent datasets, each one consisting of
attributed networks of 100 nodes and 60 time points were generated. Intra- and inter-cluster
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(a) Strongly assortative (b) Weakly assortative

(c) Disassortative

Figure 1.10: Performance measured by NMI for Synthetic network 2.

edges are selected from a truncated Gaussian distribution in the range [0, 1]. Changes in
the structure of the networks are generated between time t = 20 to t = 21 and t = 40 to
t = 41. Further information about the structure of the datasets' parameters are provided
in Al-sharoa et al. (2019).

Figure 1.11 shows the topology of an instance of the synthetic networks. The evolution of
the networks shows the birth and death of communities over time. Additionally, the density
of the internal edges inside a community and the external edges between nodes of di�erent
communities can change.

Attributes were generated similarly to Synthetic network 1, but in this case, the number of
groups, and hence the number of means to generate the values of an attribute, varies between
three and eight to strengthen the communities when the attributes are relevant.

Results

The results on a network with three attributes where one is relevant are shown in Fig. 1.12.
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(a) Dataset 1, t = 1 (b) Dataset 1, t = 21 (c) Dataset 1, t = 41

(d) Dataset 2, t = 1 (e) Dataset 2, t = 21 (f) Dataset 2, t = 41

(g) Dataset 3, t = 1 (h) Dataset 3, t = 21 (i) Dataset 3, t = 41

(j) Dataset 4, t = 1 (k) Dataset 4, t = 21 (l) Dataset 4, t = 41

Figure 1.11: Adjacency matrices over time for Synthetic network 3.

A greater stability of performance across changes is exhibited by the models that include
attributes. Since the network for Dataset 1 has more intercommunity edges between t = 1
and t = 20 and t = 41 to t = 60, as shown by Fig. 1.11a and Fig. 1.11c (more black spots on
the nondiagonal at those time steps), respectively, the performance of DwoA decays at those
ranges of time steps, as shown in Fig. 1.12a. In contrast, the use of attributes on CoDeDANet
and SwA avoids a signi�cant loss of performance in those time periods. DALouvain has the
most unstable performance on this set of synthetic networks.
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(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

Figure 1.12: Performance measured by NMI for Synthetic network 3.

1.4.2.4. Synthetic network 4

We use the synthetic benchmark DANCer (Largeron et al., 2017) to create attributed
graphs with undirected edges that can change over time, where nodes are grouped into
densely connected sets, relatively homogeneous according to the attributes.

In this benchmark, each network is generated by building the �rst graph with properties
such as preferential attachment, small world, or homophily, which is then modi�ed with micro
and macro operations. The former adds or removes nodes and edges and updates the attribute
values, while the latter splits communities, merges communities, and migrates members to
another existing community or a new one (Largeron et al., 2017).

Networks

The general parameters for all the networks created with this benchmark are shown in
Table 1.3, including the description for each parameter. The number of nodes, the number
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of communities and the number of edges increase over time, ending with a maximum value
of 4814 nodes, 15 communities and 21908 edges among the built networks. Twelve di�erent
datasets were built using the speci�c parameters shown in Table 1.4.

Table 1.3: Parameter values used for benchmark DANCer. The description is shown as de�ned
by Largeron et al. (2017).

Parameter Values Description
Ninit 1000 Number of nodes at t = 0
Kinit 10 Number of communities at t = 0
NbRep 10 Maximum number of representatives of each community
Prc 0 A threshold to decide whether a new vertex joins a

randomly selected community or not
M 2 Number of numerical attributes
Devi 1 Standard deviations of the ith attributes generated using

centered normal distributions
Emax

wth 10 Maximum number of edges connecting a new vertex
to vertices in its community

Emax
btw 5 Maximum number of edges connecting a new vertex

to vertices in a di�erent community
MTE 5000 Minimum number of total edges
RupdateAttrs 0.3 Ratio de�ning the number of attributes updated
Pmicro 0.5 A threshold to select if the micro dynamic updates are

performed or not
Rawe 0.3 Ratio de�ning the number of within edges inserted
Rrbe 0.3 Ratio de�ning the number of between edges removed
Rabe 0.5, 0.9 Ratio de�ning the number of between edges inserted
Rrwe 0.5, 0.9 Ratio de�ning the number of within edges removed
Rav 0.2, 0.3, 0.8 Ratio de�ning the number of vertices inserted
Rrv 0.3, 0, 0.9 Ratio de�ning the number of vertices removed
Pmerge 0.3, 0.8 Probability to perform the merge operation
Psplit 0.3, 0.8 Probability to perform the split operation
Pmigrate 0.3, 0.8 Probability to perform the migrate vertices operation
T 10, 10, 5 Number of graphs generated

Table 1.4: Speci�c parameters for networks de�ned using the benchmark DANCer.

Dataset Rrwe, Rabe Rav Rrv Pmerge, Psplit, Pmigrate T
1 0.5 0.2 0.3 0.3 10
2 0.5 0.2 0.3 0.8 10
3 0.9 0.2 0.3 0.3 10
4 0.9 0.2 0.3 0.8 10
5 0.5 0.3 0 0.3 10
6 0.5 0.3 0 0.8 10
7 0.9 0.3 0 0.3 10
8 0.9 0.3 0 0.8 10
9 0.5 0.8 0.9 0.3 5
10 0.5 0.8 0.9 0.8 5
11 0.9 0.8 0.9 0.3 5
12 0.9 0.8 0.9 0.8 5

Results

The results for 6 of the 12 built networks are shown in Fig. 1.13. On the available code,
DALouvain cannot remove nodes because there is no tracking of the node ID, so the results
for DALouvain are obtained in a static manner when Rrv ̸= 0. Over the tested networks,
CoDeDANet performs best, followed by SwA and DwA. When the macro operations on
communities increase, there is no clear e�ect on the performance of the model, since Fig. 1.13b
displays a better performance than Fig. 1.13a; Fig. 1.13d shows a worse performance than
Fig. 1.13c; and Fig. 1.13f shows a similar performance compared to Fig. 1.13e.

28



(a) Results for network 3 (b) Results for network 4

(c) Results for network 7 (d) Results for network 8

(e) Results for network 11 (f) Results for network 12

Figure 1.13: Performance measured by NMI for benchmark DANCer.

1.4.2.5. COVID-19 contact tracing network

The data for the COVID-19 contact tracing network were collected from September 1st,
2020, to January 26, 2021, southeast of the Metropolitan Region of Santiago, Chile.
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Since the ground truth for this real-world social network was not available, we had to
determine the number of communities for each time step. For CoDeDANet, the number of
communities was determined based on the performance using a combination of one topological
measure (density) and one attribute measure (entropy).

For the case of the algorithms SwA and DwoA, this was de�ned using the number of
communities obtained by DALouvain.

Network

The attributed network consists of 49 time steps, each summarizing a 3-day period, with
a maximum of 305 nodes and 214 edges at time step 43 and a minimum of 42 nodes and
27 edges at time step 1. A node represents an individual, and an edge represents that there
was close contact between two individuals. Each individual has several attributes, such as
age, gender and risk of contact, among others, and most of them have missing data. After
preprocessing the data, the �nal network without missing data used in this paper had only
the attribute risk of contact selected for community detection. This attribute is set by a
professional and refers to the risk of developing dangerous symptoms, which can be low = 0,
medium = 1 or high = 2.

Results

The performance of CoDeDANet and the other models is shown in �gure 1.14. The best
results for density (the greater the better) are obtained by DALouvain and DwoA, followed
by SwA and CoDeDANet. The best results for entropy (the lesser the better) are shown by
CoDeDANet, followed by SwA, DALouvain and DwoA. This means that CoDeDANet gives
more importance to the attributes and DALouvain to the topology. Since there is no clear
advantage to an algorithm when including both metrics, no direct conclusions can be made.
Section 1.4.3 proposes an approach to address this drawback.

(a) Density (b) Entropy

Figure 1.14: Performance for COVID-19 network.

To take a closer look to the behavior of CoDeDANet, we choose the time step (t =
43) having the greatest number of nodes to display its communities (305 nodes). This is
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shown in Fig. 1.15 for communities with 5 nodes or more. The color indicates the community
membership.

We review some examples where the in�uence of both the topology and the attributes
can be checked. Nodes 221, 222, 224, 227, 230, 247 and 267 are connected, assigned to the
same community, and all of them have an attribute value of 2 with the exception of 221
and 227. Nodes 66, 69, 70, 131, 132, 137, 138, 184, 202, 203, 268, 269, 283, 285, 290, 291,
293 and 294, belong to the same community because each one has an attribute value of 2;
nevertheless, node 284, which is connected to one these nodes (283), is not a member of the
same community because it has an attribute value of 1.

Figure 1.15: Communities obtained by CoDeDANet at t = 43 for the COVID-19 network.

1.4.2.6. Crime network

The crime network relates individuals who committed property crimes from January 1st,
2019, to December 31st, 2021, in Chile. Examples of property crimes are robbery in an
uninhabited place, robbery with violence, and homicide in �ght.

The number of communities for all algorithms used in this network was de�ned using the
value obtained by DALouvain.

Network

The attributed network is composed of 12 time steps, which are determined based on the
date of the crime. Each time step adds crimes from a period of 3 months. The network starts
with 38 nodes and 39 edges, and ends with 419 nodes and 2087 edges. For this network there
is no deletion of vertices. Each node represents a person who committed a crime and an edge
indicates that two individuals were charged in the same crime. The network has a set of
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attributes F (t), where a value F (t)
nm of 1 indicates that the subject n has committed the type

of crime m up to time step t, where m speci�es one of the 26 types of crimes on this network.

Results

The performance of CoDeDANet and the other models is shown in �gure 1.16. The ranking
of the algorithms according to each metric is similar to the one obtained in the COVID-19
dataset. These results are summarized in Section 1.4.3.

(a) Density (b) Entropy

Figure 1.16: Performance for the crime network.

To have some insights on the results of CoDeDANet, Fig. 1.17 shows the three largest
communities of the crime network for time step 12.

The third largest community, composed of 21 nodes and shown on the left upper part of
Fig. 1.17, has a dense connection between most of its nodes, but it also has three nodes that
are not connected to the rest of this group, but are assigned to this community due to their
attribute values.

The second largest community, composed of 22 nodes and shown on the left lower part
of Fig. 1.17, has less connections between its nodes than the other two communities in the
�gure. Seven of the nodes are not connected to the rest of this group, but are assigned to
this community due to their attribute values.

The largest community, composed of 39 nodes and shown to the right of Fig. 1.17, has a
denser connection of its nodes, and all these nodes are connected.

1.4.3. Summary of results

1.4.3.1. Synthetic networks

Previous results showed the performance over time for each dataset of the synthetic at-
tributed networks. Table 1.5 presents a comparison of the di�erent algorithms according to
NMI, averaging the results of all time steps and all seeds for each model.

32



Figure 1.17: Communities obtained by CoDeDANet at t = 12 for the crime network.

According to the average NMI, CoDeDANet outperformed the other models that were
selected for comparison in most cases.

Averaging over all test networks, CoDeDANet has the highest NMI with 0.854, followed
by SwA with 0.834, DwoA with 0.783, and DALouvain with 0.609. Hence, our proposed
model outperformed DALouvain in NMI, which also considers both sources of information
(attribute values and topology) by 40%. Furthermore, it also surpasses both cases that only
consider the attributes or the dynamic aspect separately, with improvements of 2.4% and
9.1%, respectively.

1.4.3.2. Real-world social networks

For both networks, since there is no clear advantage of an algorithm when including both
metrics, an option to compare the algorithms is to normalize each metric and compute the
average. Nonetheless, the scales of the aforementioned metrics di�er vastly, so we decided
to compare the algorithms on a one vs. one approach. This pairwise comparison consists of
measuring the percentage di�erence in density and entropy and then computing the average.

Table 1.6 and Table 1.7 show the results for the COVID-19 network and the crime net-
work, respectively. In both cases, CoDeDANet is the best among the compared algorithms.
For the COVID-19 network, CoDeDANet outperforms SwA by 3.4%, DwoA by 11.9% and
DALouvain by 11.8%. For the crime network, CoDeDANet outperforms SwA by 7.3%, DwoA
by 4.8% and DALouvain by 4.4%. As expected, DwoA and DALouvain perform better on
the topology metric, followed by SwA and CoDeDANet. The best result according to the
attribute metric is CoDeDANet, followed by SwA, DALouvain and DwoA. This means that
CoDeDANet is building its communities mainly by their attributes in comparison with the
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Table 1.5: Performance on synthetic networks according to NMI. The rows comprise the built
networks, which number refers to the corresponding �gure of results in the paper.

Network CoDeDANet SwA DwoA DALouvain

Syn. net. 1, Dataset 1, Case 1, Fig. 1.6a 0.96 0.96 0.89 0.4
Syn. net. 1, Dataset 1, Case 2, Fig. 1.6b 0.96 0.96 0.89 0.44
Syn. net. 1, Dataset 1, Case 3, Fig. 1.6c 0.89 0.89 0.89 0.58
Syn. net. 1, Dataset 1, Case 4, Fig. 1.6d 0.88 0.88 0.89 0.58
Syn. net. 1, Dataset 2, Case 1, Fig. 1.7a 0.75 0.69 0.58 0.17
Syn. net. 1, Dataset 2, Case 2, Fig. 1.7b 0.74 0.69 0.58 0.16
Syn. net. 1, Dataset 2, Case 3, Fig. 1.7c 0.51 0.46 0.58 0.23
Syn. net. 1, Dataset 2, Case 4, Fig. 1.7d 0.48 0.39 0.58 0.23
Syn. net. 2, Dataset 1, Fig. 1.10a 0.88 0.87 0.75 0.75
Syn. net. 2, Dataset 2, Fig. 1.10b 0.88 0.87 0.6 0.79
Syn. net. 2, Dataset 3, Fig. 1.10c 0.73 0.78 0 0.29
Syn. net. 3, Dataset 1, Case 1, Fig. 1.12a 1 0.99 0.98 0.83
Syn. net. 3, Dataset 2, Case 1, Fig. 1.12b 1 0.99 0.99 0.8
Syn. net. 3, Dataset 3, Case 1, Fig. 1.12c 1 1 1 0.97
Syn. net. 3, Dataset 4, Case 1, Fig. 1.12d 1 0.99 0.99 0.85
Syn. net. 4, Dataset 1 0.88 0.86 0.84 0.73
Syn. net. 4, Dataset 2 0.88 0.86 0.84 0.71
Syn. net. 4, Dataset 3, Fig. 1.13a 0.82 0.79 0.76 0.6
Syn. net. 4, Dataset 4, Fig. 1.13b 0.86 0.83 0.81 0.64
Syn. net. 4, Dataset 5 0.86 0.84 0.81 0.76
Syn. net. 4, Dataset 6 0.87 0.86 0.84 0.78
Syn. net. 4, Dataset 7, Fig. 1.13c 0.85 0.8 0.79 0.71
Syn. net. 4, Dataset 8, Fig. 1.13d 0.81 0.77 0.77 0.68
Syn. net. 4, Dataset 9 0.9 0.87 0.86 0.71
Syn. net. 4, Dataset 10 0.89 0.86 0.86 0.72
Syn. net. 4, Dataset 11, Fig. 1.13e 0.88 0.84 0.83 0.64
Syn. net. 4, Dataset 12, Fig. 1.13f 0.89 0.84 0.83 0.65
Average 0.854 0.834 0.783 0.609

other algorithms.

Table 1.6: Performance on the COVID-19 network according to density and entropy.

Density Entropy Average

CoDeDANet 0.75 0.31 -

SwA 0.93 0.42 -
CoDeDANet vs SwA (%) -19.4 26.2 3.4

DwoA 1 0.60 -
CoDeDANet vs DwA (%) -25.1 49 11.9

DALouvain 1 0.60 -
CoDeDANet vs DALouvain (%) -25.2 48.9 11.8
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Table 1.7: Performance on the crime network according to density and entropy.

Density Entropy Average

CoDeDANet 0.77 0.09 -

SwA 0.87 0.13 -
CoDeDANet vs SwA (%) -11.3 26 7.3

DwoA 0.96 0.18 -
CoDeDANet vs DwA (%) -21.6 29.2 4.8

DALouvain 0.96 0.19 -
CoDeDANet vs DALouvain (%) -21.8 30.5 4.4

1.5. Concluding remarks and future work

Real-world processes demand the use of algorithms that are able to capture their evolving
nature and complexity. Nonetheless, dynamic attributed networks have been studied mostly
in a static context including the attributes, or in a dynamic setting that uses only information
about the links of the graphs. Considering these limitations, in this paper, we have proposed
CoDeDANet, an algorithm for community detection in dynamic attributed networks that is
able to process changes in the structure of the graph and the attributes of its nodes over time.
This method integrates the use of spectral clustering to capture the information of topology
and attributes with the use of tensors, to include past information.

The model was tested on di�erent synthetic networks and two real-world networks and
was compared with other state-of-the-art community detection algorithms. To compare the
di�erent models, normalized mutual information for networks with ground truths, and density
and entropy for networks without ground truths, were used. The experimental results showed
that the proposed model outperformed the algorithms chosen for comparison.

Our model was able to show the bene�ts of using topology alongside attributes on evolving
networks to improve the community detection process. Nevertheless, there are opportunities
for further improvement. For example, it would be useful to include a mechanism for auto-
matically determining the number of communities. Additionally, since in our approach the
weights of the attribute matrices at each time step are previously �xed, the model would
bene�t from a procedure to automatically update these weights.

Another aspect to improve the model, is �nding ways to deal with irrelevant attributes.
If all the attributes used for any reason are not truly relevant to the topology, for example,
random attributes, the model would consider the information anyway. In this sense, for the
model to only include attributes when they are relevant, an improvement that can be included
is to compare the Ncut measure, using the attributes instead of not using the attributes, on
the �rst phase and, according to that, decide if the second phase includes the attributes.

According to the tests we performed, using the Gaussian kernel function on the adjacency
matrix caused a decrease in performance on average; nonetheless, other transformations to
measure similarity can be used, such as using the modularity matrix of the original adjacency
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matrix. Finally, the size of the networks that can be processed by the proposed model is
another aspect that could be improved, which could be addressed by updating only the
eigenvalues that are a�ected by changes and not compute the full matrix on each time step;
a procedure of this type must be designed.
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Chapter 2

Detecting disjoint and overlapping

communities in temporal node-attributed

networks

2.1. Introduction

Social network analysis provides insights into people's behavior and their interactions.
One of the approaches to address this task is community detection. In its most common use,
community detection is applied on static networks, based on the links between nodes, to �nd
disjoint or non-overlapping groups, called partitions (Blondel et al., 2008; Lu et al., 2020).

Nevertheless, other aspects can be included in the process, such as node features (Qin
et al., 2018; Huang et al., 2020; Ma et al., 2021) and evolution of the network over time (Yu
et al., 2019; Nath et al., 2020; Gao et al., 2020). Furthermore, algorithms can be designed
to �nd overlapping groups, called covers (Nath et al., 2020; Gao et al., 2020; Shang et al.,
2022).

We propose a model to detect disjoint and overlapping communities on dynamic attributed
networks, using a probabilistic non-negative matrix factorization approach. Our model is
solved by using multiplicative update rules (Lee & Seung, 1999, 2001).

Considering that to the best of our knowledge, there are no approaches for overlapping
community detection that use both topology and attribute information on dynamic networks,
thoroughly tested on multiple networks, we designed an algorithm for Overlapping COmmu-
nity DEtection in Dynamic Attributed NETworks (OCoDeDANet). The main contributions
of this paper are summarized as follows:

� We propose an algorithm that infers disjoint and overlapping communities given the
links' and nodes' information of a dynamic attributed network.

� The proposed method uses automatic relevance determination to detect the number of
communities on the dynamic attributed networks.

� The experimental results on di�erent synthetic attributed networks and one real-world
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attributed network show that the model outperforms other state-of-the-art disjoint
community detection algorithms.

� The results indicate that the bene�ts of using attributes increase as the community
structure, according to the network's topology, becomes more confusing.

Section 2.2 categorizes and discusses previous work on community detection, according
to the nature of the networks and the capabilities of the algorithms, with emphasis on non-
negative matrix factorization. Section 2.3 introduces our novel approach to detect overlapping
communities on dynamic node-attributed networks, using non-negative matrix factorization
and Bayesian techniques to automatically detect the number of communities. Section 2.4
shows the results of the proposed algorithm and previous works for di�erent synthetic and
real-world dynamic node-attributed networks. Finally, in Section 2.5, we conclude our work
and propose further developments.

2.2. Background

In recent years, several community detection methods have been proposed (Jin et al.,
2023). Some reviews address the state-of-the-art algorithms for disjoint community detection
on static networks (Bedi & Sharma, 2016; Fortunato & Hric, 2016), overlapping community
detection (Xie et al., 2013; Amelio & Pizzuti, 2014), dynamic community detection (Rossetti
& Cazabet, 2018; Cazabet & Rossetti, 2023), and community detection on node-attributed
networks (Chunaev, 2020). Other surveys have focused on categorizing the algorithms accor-
ding to the methodology they used (Jin et al., 2023). Regarding the approach used in this
paper, a review of non-negative matrix factorization for community detection has also been
published (He et al., 2022).

We categorize several previous approaches for community detection in Table 2.1. They are
classi�ed as static or dynamic, with or without node features, with a disjoint or overlapping
classi�cation, and with a prede�ned number of communities or an automatic �nding of the
number of communities.

As shown in Table 1.1, to the best of our knowledge, a method that puts these charac-
teristics all together and thoroughly tested on multiple networks, has yet to be developed.
Preliminary results of a simpli�ed and di�erent version of our model were shown in Márquez
et al. (2019).

Next, we focus on selected overlapping community detection methods our model builds
on, with a special interest in generative models for dynamic networks with node information.

Psorakis et al. (2011) use a model based on Bayesian non-negative matrix factorization as
proposed by Tan & Févotte (2009), for overlapping community detection on static networks.
The observed variable is considered as a non-negative count of interactions in a weighted
undirected network with adjacency matrix V . The expected number of interactions between
node i and j, vij (Poisson distributed), is the result of mutual participation in the same
communities, calculated by multiplying matrices W and H (latent variables). The number
of communities K is obtained by hyperparameter β, that will be large if contributions of W
and H are small, i.e., do not contribute to interactions. The objective is to maximize the
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Table 2.1: Classi�cation of community detection algorithms according to network dynamics,
availability of nodes' attributes, capability of identifying overlapping nodes, and determina-
tion of number of communities

Approaches Dynamic Attributes Overlapping #Comms

Combe et al. (2015) ✓ ✓
Ma et al. (2021) ✓ ✓

Márquez & Weber (2023) ✓ ✓
Bello et al. (2016) ✓ ✓ ✓

Psorakis et al. (2011) ✓ ✓
Coscia et al. (2012) ✓ ✓
Shang et al. (2022) ✓ ✓
Niu et al. (2023) ✓ ✓
Yang et al. (2013) ✓ ✓
Qin et al. (2018) ✓ ✓

Huang et al. (2018) ✓ ✓ ✓
Reihanian et al. (2023) ✓ ✓ ✓
Ma & Dong (2017) ✓ ✓
Yu et al. (2019) ✓ ✓

Wang et al. (2016a) ✓ ✓ ✓
Rossetti et al. (2017) ✓ ✓ ✓
Nath et al. (2020) ✓ ✓ ✓
Gao et al. (2020) ✓ ✓ ✓

model posterior given the observations, which also can turn into a minimization of a loss
function. Each value Hik denotes the degree of participation of node i to community k, which
can be normalized to express soft membership distribution. The model is solved by using
multiplicative update rules (Lee & Seung, 1999, 2001).

Afsariardchi (2012) developed a method for overlapping community detection on temporal
networks, extending the work from Psorakis et al. (2011). They add the temporal dimension to
the model and include a linking term between previous and current communities assignment
matrices in the joint probability, modeled by a Gamma distribution.

Huang et al. (2018) designed an algorithm for overlapping community detection with node
information, based on Bayesian non-negative matrix factorization. Their work is based on
Psorakis et al. (2011), adding the node features matrix to the graphical model, using a Poisson
distribution to model the expectation of this matrix.

2.3. The proposed model

In this section, we propose our approach OCoDeNANet, to �nd overlapping communities
on dynamic attributed networks. After introducing the necessary notation, we develop the
mathematical model and show the iterative algorithm to solve it. At the end of this section,
we present the full algorithm of OCoDeNANet.
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2.3.1. Notations

The topology of a dynamic attributed network is de�ned as G = {V1,V2, . . . ,VT}, where
T is the number of snapshots, Vt is the adjacency matrix of the undirected and unweighted
graph at timestamp t, and vij,t = 1 if node i and node j are connected by a link at time step
t and equals 0, otherwise.

The node information of a dynamic attributed network is de�ned as F = {F1,F2, . . . ,FT},
Ft is a binary feature matrix at timestamp t, and fmj,t = 1 if node j has the attribute m at
time step t and equals 0, otherwise.

The number of nodes at time step t is Nt, the number of features at time step t isMt = M ,
which is constant over time, and the maximum possible number of communities at time step
t is Kt = K, which is also constant over time.

When processing matrices, X
Y
denotes element-wise division of X and Y. X ◦Y denotes

the Hadamard product (element-wise multiplication). The matrix 1A×B denotes a matrix of
dimension A×B where each element is 1.

A letter κ added to an equation represents all constants that are not relevant to the
optimization process.

2.3.2. Mathematical model

The model shown in Fig. 2.1 represents the generation structure, where a counting process
for Vt is represented by latent factors Wt and Ht (Psorakis et al., 2011), another counting
process for Ft is represented by latent factorsGt andHt (Huang et al., 2018), and scale hyper-
parameters βt and �xed hyperhyperparameters ak,t = a and bk,t = b are imposed over these
matrices. The latent factors are updated not only by considering the information of Vt and
Ft, but also knowledge of communities obtained from Wt−1, Ht−1, and Gt−1 (Afsariardchi,
2012).

vij,1 fmj,1

wik,1 hkj,1 gmk,1

βk,1

a b

vij,t fmj,t

wik,t hkj,t gmk,t

βk,t

a b

N1 M

K

Nt M

K

w
′′

ik,t−1

h
′′

kj,t−1

gmk,t−1

Figure 2.1: Dynamic attributed non-negative matrix factorization (left for t = 1, right for
t = 2, . . . , T )
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The model objective is to �nd matrices V̂t, ∀t = 1, 2, . . . , T , and F̂t, ∀t = 1, 2, . . . , T , that
represent the original adjacency matrices Vt ∈ {0, 1}Nt×Nt and Ft ∈ {0, 1}M×Nt , respectively.
The expectation adjacency network is represented by V̂t = WtHt, with non-negative matrices
Wt ∈ RNt×K

≥0 and Ht ∈ RK×Nt
≥0 . The expectation feature matrix is represented by F̂t = GtHt,

composed of two non-negative matrices Gt ∈ RM×K
≥0 and Ht ∈ RK×Nt

≥0 .

Interaction vij,t between node i and node j at time t is modeled by a Poisson distribution

P(vij,t = vij,t) = exp (−v̂ij,t)
v̂
vij,t
ij,t

vij,t!
with rate v̂ij,t =

∑K
k=1wik,thkj,t, hence E(vij,t) = v̂ij,t. Value

of feature m for node j at time t, fmj,t, is modeled by a Poisson distribution P(fmj,t = fmj,t) =

exp (−f̂mj,t)
f̂
fmj,t
mj,t

fmj,t!
with rate f̂mj,t =

∑K
k=1 gmk,thkj,t, hence E(fmj,t) = f̂mj,t.

Inspired by Afsariardchi (2012), we model the transition from Wt−1 to Wt as a Gamma
distribution; likewise for the transition from Ht−1 to Ht, and Gt−1 to Gt. In this case, a half-
normal prior distribution over the columns ofWt, rows ofHt, and columns ofGt is used, with
parameters βt. This automatic relevance determination process will allow to �nd the number
of communities at each time step. Finally, each βt is modeled as a Gamma distribution.

2.3.2.1. Model for time step 1

Since at the �rst timestep there is no information for W1, H1 and G1 on previous
snapshots, the joint distribution over all variables is expressed by Eq. (2.1) and the pos-
terior by Eq. (2.2).

P (V1,F1,W1,H1,G1,β1) = P (V1,F1|W1,H1,G1,β1)P (W1,H1,G1,β1)

= P (V1|W1,H1)P (F1|G1,H1)P (W1|β1)P (H1|β1)P (G1|β1)P (β1) (2.1)

P (W1,H1,G1,β1|V1,F1) =

P (V1|W1,H1)P (F1|G1,H1)P (W1|β1)P (H1|β1)P (G1|β1) p (β1)

P (V1,F1)
(2.2)

The objective is to maximize the model posterior of Eq.(2.2) given the observations, which
can be achieved by minimizing the negative log posterior, shaping the equation into a loss
function. Since P (V1,F1) is constant, it does not a�ect the results of the optimization, so
the loss function is de�ned by Eq. (2.3).

U1 = − logP (V1|W1,H1)− logP (F1|G1,H1)

− logP (W1|β1)− logP (H1|β1)− logP (G1|β1)− logP (β1) (2.3)

After replacing each term and performing all necessary computations, the loss function
from Eq. (2.3) transforms to Eq. (2.4), where ak,t and bk,t are �xed hyperparameters, as has
been proposed, e.g., in Psorakis et al. (Psorakis et al., 2011). Please refer to Annex A for
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further details.

U1 (W1,H1,G1,β1) =
N1∑
i=1

N1∑
j=1

(
K∑
k=1

wik,1hkj,1 − vij,1 log

(
K∑
k=1

wik,1hkj,1

))
+

M∑
m=1

N1∑
j=1

(
K∑
k=1

gmk,1hkj,1 − fmj,1 log

(
K∑
k=1

gmk,1hkj,1

))

+
1

2

K∑
k=1

(
N1∑
i=1

βk,1w
2
ik,1 +

N1∑
j=1

βk,1h
2
kj,1 +

M∑
m=1

g2mk,1βk,1

)

+
K∑
k=1

(
βk,1bk,1 − (ak,1 − 1) log βk,1 −

(
N1 +

M

2

)
log βk,1

)
+ κ (2.4)

2.3.2.2. Model for time step t

Now that the �rst snapshot has been de�ned, successive snapshots are characterized. Since
the number of nodes can change between consecutive snapshots due to the birth or death of
objects, an equivalence between community assignment matrices Wt−1 and Wt, and Ht−1

and Ht must be established. To achieve this, we delete the rows from Wt−1 that represent
the nodes that disappeared between snapshots t − 1 and t, resulting in W

′
t−1. Then, a row

is added for each new node that appears at snapshot t, obtaining W
′′
t−1. If a node reappears

in the network, the row is added in the appropriate place. A similar approach is used for the
columns of Ht−1.

Joint distribution over all variables for snapshot t can be expressed by Eq. (2.5) and the
posterior by Eq. (2.6), where µ is a parameter of the distribution used to model the transition
between successive snapshots.

P
(
Vt,Ft,Wt,W

′′

t−1,Ht,H
′′

t−1,Gt,Gt−1, µ,βt

)
= P (Vt,Ft|Wt,Ht,Gt,βt)P

(
Wt,W

′′

t−1,Ht,H
′′

t−1,Gt,Gt−1, µ,βt

)
= P (Vt|Wt,Ht)P (Ft|Gt,Ht)

P
(
Wt|W

′′

t−1, µ,βt

)
P
(
Ht|H

′′

t−1, µ,βt

)
P (Gt|Gt−1, µ,βt)P (βt) (2.5)

P
(
Wt,Ht,Gt,βt|Vt,Ft,W

′′

t−1,H
′′

t−1,Gt−1, µ
)

=
P
(
Vt,Ft,Wt,W

′′
t−1,Ht,H

′′
t−1,Gt,Gt−1, µ,βt

)
P
(
Vt,Ft,W

′′
t−1,H

′′
t−1,Gt−1, µ

) (2.6)

The objective is to maximize the model posterior de�ned by Eq. (2.6), which can be
achieved by minimizing the loss function de�ned by Eq. (2.7).

Ut = − logP (Vt|Wt,Ht)− logP (Ft|Gt,Ht)− logP
(
Wt|W

′′

t−1, µ,βt

)
− logP

(
Ht|H

′′

t−1, µ,βt

)
− logP (Gt|Gt−1, µ,βt)− logP (βt) (2.7)
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Terms one, two and six from Eq. (2.7) are de�ned in Annex A as Eqs. (A.4), (A.5) and (A.10),
respectively.

Following Afsariardchi (2012), the transition between W
′′
t−1 to Wt is modeled by a Gam-

ma distribution (the same for the transition between H
′′
t−1 to Ht and Gt−1 to Gt), where

p (wik,t) ∼ Gamma(γik,t, µ), with γik,t = µw
′′

ik,t−1+1 as the shape parameter and µ as the rate
parameter. Furthermore, half normal priors over the columns of Wt and Gt, and the rows
of Ht, with scale parameters βt ∈ RK , are used. Then, wik,t ∼ HN (0, σ2), where σ2 = β−1

k,t .
Finally, the third term of Eq. (2.7) is determined using Eqs. (B.1) and (B.2) from Annex B.
Analogously, the fourth term of Eq. (2.7) is obtained by equation (B.3) and the �fth term is
obtained by equation (B.4).

Aggregating all results, the loss function from Eq. (2.7) can be expressed as Eq. (2.8),
where t = 2, . . . , T .

Ut =
Nt∑
i=1

Nt∑
j=1

(
K∑
k=1

wik,thkj,t − vij,t log

(
K∑
k=1

wik,thkj,t

))

+
M∑

m=1

Nt∑
j=1

(
K∑
k=1

gmk,thkj,t − fmj,t log

(
K∑
k=1

gmk,thkj,t

))

+
Nt∑
i=1

K∑
k=1

µ
(
−w′′

ik,t−1 logwik,t + wik,t

)
+

Nt∑
i=1

K∑
k=1

w2
ik,tβk,t

2
− Nt

2

K∑
k=1

log βk,t

+
Nt∑
j=1

K∑
k=1

µ
(
−h′′

kj,t−1 log hkj,t + hkj,t

)
+

Nt∑
j=1

K∑
k=1

h2
kj,tβk,t

2
− Nt

2

K∑
k=1

log βk,t

+
M∑
i=1

K∑
k=1

µ (−gmk,t−1 log gmk,t + gmk,t) +
M∑
i=1

K∑
k=1

g2mk,tβk,t

2
− M

2

K∑
k=1

log βk,t

+
K∑
k=1

(βk,tbk,t − (ak,t − 1) log βk,t) + κ (2.8)

2.3.3. Iterative solution algorithm

The loss function at each time step has to be minimized. In Tan & Févotte (2009), an
iterative procedure for minimizing a loss function is proposed using the gradient of the loss
function with respect to the latent factors. This is based on a coordinate descent iterative
algorithm for NMF with multiplicative update rules designed by Lee & Seung (1999, 2001).
Inspired by this approach we obtain the values of Ht, Wt and Gt, and scale hyperparameters
βt.

2.3.3.1. Equations for time step 1

The scalar form of the partial derivative of the loss function from Eq. (2.4) with respect
to H1, W1, G1, and βk,1, is shown in Eqs. (C.1) to (C.4), respectively, from Annex C. The
gradient of the loss function with respect to the latent factors in a matrix form is shown in
Eqs. (C.5) to (C.7).
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The multiplicative coordinate descent algorithm update process for each matrix H1, W1

and G1 is based on multiplying its current value with the ratio of negative to positive part
of the gradient of (2.4) with respect to the corresponding matrix (Lee & Seung, 1999, 2001).
For βk,1, the value is chosen with traditional optimization approach, such that the partial
derivative with respect to βk,1 is zero.

Speci�cally, the update process consists on iterate through equations (2.9), (2.10), (2.11)
and (2.12), until a maximum number of iterations or a convergence measure obtained by
the frobenius norm of the di�erences between V1 and the product of W1 and H1, has been
reached.

H1K×N1
←

(
H1K×N1

(W1N1×K)
T 1N1×N1 + (G1M×K)

T 1M×N1 +B1K×KH1K×N1

)

◦
[
(W1N1×K)

T V1N1×N1

W1N1×KH1K×N1

+ (G1M×K)
T F1M×N1

G1M×KH1K×N1

]
(2.9)

W1N1×K ←

(
W1N1×K

1N1×N1 (H1K×N1
)T +W1N1×KBK×K

)
◦
[

V1N1×N1

W1N1×KH1K×N1

(H1K×N1
)T
]
(2.10)

G1M×K ←

(
G1M×K

1M×N1 (H1K×N1
)T +G1M×KB1K×K

)
◦
[

F1M×N1

G1M×KH1K×N1

(H1K×N1
)T
]
(2.11)

βk,1 ←
N1 +M/2 + ak,1 − 1

1
2

(∑N1

i=1 w
2
ik,1 +

∑N1

j=1 h
2
kj,1 +

∑M
m=1 g

2
mk,1

)
+ bk,1

(2.12)

2.3.3.2. Equations for time step t

Similarly as for time step 1, the scalar form of the partial derivative of the loss function
from Eq. (2.8) with respect to Ht, Wt, Gt, and βk,t, is shown in Eqs. (D.1) to (D.4), respec-
tively, from Annex D. The gradient of the loss function with respect to the latent factors in
a matrix form is shown in Eqs. (D.5) to (D.7).

The parameter µ in these equations controls the importance of past information about
communities. If µ = 0, no past information about communities is used. If µ → ∞, past
information has the utmost importance. For a better interpretation of the parameter µ, we
can replace µ = 1−α

α
, where α ∈ [0, 1]. Then, as α tends to 0, only past information about

communities is used, and if α = 1, only the current adjacency matrix is used to �nd the
communities (Afsariardchi, 2012).

Results from applying the multiplicative coordinate descent algorithm are shown in Eqs. (E.1)
to (E.3), from Annex E.

These equations can be rewritten, so the update process consists on iterate through
Eqs. (2.13) to (2.16), until a maximum number of iterations or a convergence measure obtai-
ned by the frobenius norm of the di�erences between Vt and the product of Wt and Ht, has
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been reached.

HtK×Nt
←

αHtK×Nt
◦
(
(WtNt×K)

T VtNt×Nt

WtNt×KHtK×Nt
+ (GtM×K)

T FtM×Nt

GtM×KHtK×Nt

)
α (WtNt×K)

T 1Nt×Nt + α (GtM×K)
T1M×Nt + (1− α)1K×Nt + αBtK×KHtK×Nt

+
(1− α)H

′′
t−1K×Nt

α (WtNt×K)
T 1Nt×Nt + α (GtM×K)

T1M×Nt + (1− α)1K×Nt + αBtK×KHtK×Nt

(2.13)

WtNt×K ←

αWtNt×K ◦
(

VtNt×Nt

WtNt×KHtK×Nt
(HtK×Nt

)T
)
+ (1− α)W

′′
t−1Nt×K

α1Nt×Nt (HtK×Nt
)T + (1− α)1Nt×K + αWtNt×KBtK×K

 (2.14)

GtM×K ←

αGtM×K ◦
(

FtM×Nt

GtM×KHtK×Nt
(HtK×Nt

)T
)
+ (1− α)Gt−1M×K

α1M×Nt (HtK×Nt
)T + (1− α)1M×K + αGtM×KBtK×K

 (2.15)

βk,t ←
Nt +M/2 + ak,t − 1

1
2

(∑Nt

i=1 w
2
ik,t +

∑M
m=1 g

2
mk,t +

∑Nt

j=1 h
2
kj,t

)
+ bk,t

(2.16)

2.3.4. Full algorithm of OCoDeDANet

Using the previous equations, we de�ne OCoDeDANet to detect overlapping and disjoint
communities for a dynamic network, using information about both the graph and nodes'
features. The pseudocode of OCoDeDANet is shown in Algorithm 4.

Following the process from lines 1-13 of Algorithm 4, we obtainHt for each timestep. Then,
communities are determined as described next. Firstly, the rows of Ht with zero values on all
entries are deleted. The number of rows remaining will represent the number of communities
at timestamp t. If the algorithm is being used to detect disjoint communities, node j will
belong to community k if hkj,t is the greater value of the vector h∗j,t. If the algorithm is being
used to detect overlapping communities, node j will belong to community k if hkj,t is greater
than the threshold δ.

In the next section, di�erent datasets are used to evaluate the performance of OCoDeDA-
Net in comparison with other state-of-the-art disjoint and overlapping community detection
algorithms.

2.4. Experimental results and evaluation

The e�ectiveness of OCoDeDANet was tested on disjoint and overlapping synthetic at-
tributed networks with ground truth and one real-world attributed social network without
ground truth1.

1The datasets used in this paper are available at https://data.mendeley.com/datasets/2s75kgnzd7
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Algorithm 4: Full algorithm of OCoDeDANet.
Input: V1, . . . ,VT , F1, . . . ,FT , K, a, b, α, δ, M inIter, MaxIter, tolerance
Output: Clustering labels of each node at each time step, number of communities K∗

1 , . . . ,K
∗
T

1 Initialize H1, W1, G1 randomly from a uniform distribution [0, 1].
2 Initialize B1 as an identity matrix.
3 for iter=1 to MaxIter do

4 Determine H1, W1 and G1, by Eqs. (2.9) to (2.11).
5 Determine βk,1 ∀k = 1, . . . ,K using Eq. (2.12).

6 for t=2 to T do

7 Delete the rows (columns) from Wt−1 (Ht−1) that represent the nodes that disappeared from snapshot

transition t− 1 to t, to obtain W
′
t−1 (H

′
t−1).

8 Add a row (column) in W
′
t−1 (H

′
t−1) for each new node that appears at snapshot t, to obtain W

′′
t−1 (H

′′
t−1).

9 Set iter = 1.
10 repeat

11 Determine Ht, Wt and Gt, by Eqs. (2.13)-(2.15).
12 Determine βk,t ∀k = 1, . . . ,K using Eq. (2.16).

13 until iter > MaxIter or (iter > MinIter and di�erence < tolerance)

14 for t=1 to T do

15 Delete rows of Ht with zero values on all entries.
16 Assign K∗

t as the number of rows of Ht.
17 for j = 1 to Nt do

18 For disjoint community detection, assign node j to community k if hkj,t is the greater value of the vector
h∗j,t.

19 For overlapping community detection, �rstly assign all nodes as in the disjoint case, and then assign node j
to community k if hkj,t is greater than the threshold δ.

Four arti�cial attributed types of networks were generated along with their respective
ground-truth information. Three of them disjoint, while one of them overlap. Disjoint net-
works are similar to the ones described in Márquez & Weber (2023). To demonstrate the
performance of our method in the absence of ground truth, we employed one real-world
attributed social network.

For the disjoint case, the OCoDeDANet algorithm is compared to the approach of Bello
et al. (2016) (named DALouvain in our work), which includes attributes for community
detection on dynamic networks, and it is based on modularity optimization2. We also compare
OCoDeDANet with a version of our model that does not include attributes, and for displaying
purposes we called it DBNMF, for Dynamic Bayesian Non-negative Matrix Factorization.

For the overlapping case, the OCoDeDANet algorithm is compared to the static algorithm
DEMON proposed by Coscia et al. (2012), and the dynamic algorithm Tiles from Rossetti
et al. (2017), both based on label propagation. These algorithms were used as they appear
in Rossetti et al. (2019). We also compare OCoDeDANet with DBNMF.

DALouvain's parameters α and β were set as 0.5 as described in Bello et al. (2016). The ε
parameter in DEMON's algorithm was set as 0.5. The implementation from Tiles in Rossetti
et al. (2019) did not require any parameters.

The structure of our �ndings is as follows. An overview of the evaluation metrics emplo-
yed is presented in Section 2.4.1. Subsequently, in Section 2.4.2, we describe various disjoint
attributed networks and analyze the performance of di�erent algorithms. Afterward, in Sec-

2DALouvain implementation is available at https://bitbucket.org/harenbergsd/

dynamic-attributed-louvain/src/master/
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tion 2.4.3, we describe various overlapping attributed networks and assess the performance
of di�erent algorithms. Next, in Section 2.4.4 we show the performance of our model on a
real-world network. Finally, Section 2.4.5 brie�y summarizes the obtained results.

2.4.1. Performance metrics in community detection

The performance evaluation of community detection algorithms involves various metrics,
which depend on the algorithm's characteristics and the network's nature. When ground-
truth information about the community structure is available, one commonly used metric
is normalized mutual information (NMI). In cases where ground-truth data is absent, other
metrics like modularity and density are employed to discover community structure (Chakra-
borty et al., 2017; Chunaev, 2020). Additionally, when the network has categorical attributed
data, entropy can be used to measure the cohesiveness of the network (Chunaev, 2020).

In the case of overlapping community detection with ground-truth information, an over-
lapping version of the normalized mutual information (ONMI) can be used (Lancichinetti
et al., 2009; Rossetti et al., 2019).

Normalized mutual information, is a metric that quanti�es the quality of clustering by
comparing the detected communities with the true partition. Let N be a confusion matrix,
where rows represent class labels from the ground truth, and columns correspond to com-
munities identi�ed by a community detection algorithm. Each element Nij in this matrix
indicates the number of nodes with class label i found in community j. The NMI is de�ned
as Eq. (2.17) (Danon et al., 2005). A NMI value of 1 indicates that partitions are identical
and a value of 0 indicates that partitions are independent.

NMI(A, C) =
−2
∑nA

i=1

∑nC
j=1 Nij log (NijN/ (Ni.N.j))∑nA

i=1Ni. log (Ni./N) +
∑nC

j=1N.j log (N.j/N)
(2.17)

Where:

� A represents the ground-truth partition.

� C represents the detected partition.

� nA is the number of ground-truth communities.

� nC is the number of found communities.

� Ni. is the sum over row i, indicating the number of nodes with class label i.

� N.j is the sum over column j, representing the number of nodes in community j.

Overlapping normalized mutual information is an extension that quanti�es the quality of
clustering by comparing the detected communities with the true cover, i.e., when overlapping
clusters exists. In this work we will use the implementation of Rossetti et al. (2019) which
uses the ONMI version of Lancichinetti et al. (2009).

The density of a partition C in a graph is de�ned as shown in Eq. (2.18) (Dang & Viennet,
2012). The density metric quanti�es the proportion of community internal links relative to
the total number of links in the graph. Higher density values indicate a better partitioning
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of the graph into communities.

Density(C) =
K∑
k=1

mk

m
(2.18)

Where:

� mk represents the number of internal edges within community k.

� m denotes the total number of edges in the entire graph.

� K is the total number of communities.

The entropy of a partition C measures the similarity of nodes within each community
based on the values of a categorical attribute m. The formula for entropy within community
k is given by Eq. (2.19) (Dang & Viennet, 2012).

entropy(Xm, Ck) = −
nm∑
n=1

pmkn log(pmkn) (2.19)

Where:

� Xm represents a vector of values for attribute m.

� Ck comprises the nodes belonging to community k.

� nm is the number of distinct values for attribute m.

� pmkn is the percentage of nodes in community k with a value Xmn for attribute m.

The overall entropy of the partition C is given by Eq. (2.20) (Dang & Viennet, 2012).
Lower entropy values indicate greater homogeneity of nodes within each community based
on attribute values.

Entropy(C) =
M∑

m=1

αm∑M
p=1 αm

K∑
k=1

Nk

N
· entropy(Xm, Ck) (2.20)

Where:

� Nk represents the number of nodes in community k.

� N is the total number of nodes in the graph.

� αm is a weight associated with attribute m (if applicable).

2.4.2. Experiments on disjoint synthetic networks

Ten instances were generated using di�erent random seeds for each synthetic network and
parameter setting.

OCoDeDANet's parameters for the disjoint version are α = 0,5 and K = 50. The other
parameters are set as a = 5, b = 3, M inIter = 200, MaxIter = 1000. The parameters set
for DBNMF's algorithm were the same. Both algorithms were executed with ten di�erent
random initializations of the non-negative matrices.
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Attributes were added as follows. For a network of c communities, each one was assumed
to have a strong correlation with s binary attributes and a weak correlation with s · (c− 1)
binary attributes. We use s = 1 and s = 3 for our tests. The probabilities of having a
strong correlation, pintra, were varied from 0.5 to 1, while the probabilities of having a weak
correlation, pinter, were set with 0.05 or 0.1 (Chang et al., 2019).

For all synthetic networks, considering pinter = 0,05, the following con�gurations will be
used: Case 1 is set as s = 1 and pintra = 0,7, Case 2 is set as s = 3 and pintra = 0,7, Case 3 is
set as s = 1 and pintra = 1, and Case 4 is set as s = 3 and pintra = 1.

Next, we describe the three disjoint synthetic networks created and assess the performance
of the di�erent algorithms.

2.4.2.1. Synthetic network 1

We utilize a synthetic benchmark named DANCer (Largeron et al., 2017) to produce
attributed graphs. To create each network, the �rst graph is built by incorporating properties
like preferential attachment, small world, or homophily. This graph is then altered using micro
and macro operations. The micro operations involve adding or removing nodes and edges.
The macro operations involve splitting communities, merging communities, and transferring
members to another existing community or a new one (Largeron et al., 2017).

Networks

Table 2.2 shows the parameters for the networks generated with this benchmark, along
with a brief description for each one. Over time networks evolve, reaching a maximum value
of 1868 nodes, 10 communities and 11905 edges among the built networks. In alignment
with the speci�cs parameters from Table 2.3, a set of twelve datasets were built (Márquez &
Weber, 2023).

Results

The results for 6 of the 12 built networks are shown in Fig. 2.2, where the attributes were
generated as Case 1. On the available code, DALouvain cannot remove nodes because there is
no tracking of the node ID, so the results for DALouvain are obtained in a static manner when
Rrv ̸= 0. For OCoDeDANet and DBNMF, the results for this synthetic network include the
standard deviation at each time step due to di�erent initialization of non-negative matrices.
However, for simplicity, the standard deviation will be omitted for the forthcoming networks.

Over the tested networks, OCoDeDANet performs best in all cases, followed by DBNMF
and DALouvain. The di�erence between OCoDeDANet and DBNMF is similar over time,
while DALouvain tends to be closer to DBNMF at the beginning but tends to have a greater
performance decay over time. When the probability of merging, splitting and migrate com-
munities increase from 0.3 to 0.8 (Fig. 2.2a to Fig. 2.2b, Fig. 2.2c to Fig. 2.2d, Fig. 2.2e to
Fig. 2.2f), the enhanced performance of OCoDeDANet suggests that its ability to capture dy-
namic behavior increases as changes in these operations increase. A similar behaviour, with
greater di�erence in performance by OCoDeDANet, is shown in Fig. 2.3, when attributes
were generated as Case 4.
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Table 2.2: Parameter values that were used for benchmark DANCer. The description is shown
as de�ned by Largeron et al. (2017).

Parameter Values Description

Ninit 256 Number of nodes at t = 0
Kinit 5 Number of communities at t = 0
NbRep 5 Maximum number of representatives of each community
Prc 0 A threshold to decide whether a new vertex joins a

randomly selected community or not
Emax

wth 10 Maximum number of edges connecting a new vertex
to vertices in its community

Emax
btw 5 Maximum number of edges connecting a new vertex

to vertices in a di�erent community
MTE 1000 Minimum number of total edges
Pmicro 0.5 A threshold to select if the micro dynamic updates are

performed or not
Rawe 0.3 Ratio de�ning the number of within edges inserted
Rrbe 0.3 Ratio de�ning the number of between edges removed
Rabe 0.5, 0.9 Ratio de�ning the number of between edges inserted
Rrwe 0.5, 0.9 Ratio de�ning the number of within edges removed
Rav 0.2, 0.3, 0.8 Ratio de�ning the number of vertices inserted
Rrv 0.3, 0, 0.9 Ratio de�ning the number of vertices removed
Pmerge 0.3, 0.8 Probability to perform the merge operation
Psplit 0.3, 0.8 Probability to perform the split operation
Pmigrate 0.3, 0.8 Probability to perform the migrate vertices operation
T 10, 10, 5 Number of graphs generated

Table 2.3: Speci�c parameters for networks de�ned using the benchmark DANCer (Márquez
& Weber, 2023).

Dataset Rrwe, Rabe Rav Rrv Pmerge, Psplit, Pmigrate T

1 0.5 0.2 0.3 0.3 10
2 0.5 0.2 0.3 0.8 10
3 0.9 0.2 0.3 0.3 10
4 0.9 0.2 0.3 0.8 10
5 0.5 0.3 0 0.3 10
6 0.5 0.3 0 0.8 10
7 0.9 0.3 0 0.3 10
8 0.9 0.3 0 0.8 10
9 0.5 0.8 0.9 0.3 5
10 0.5 0.8 0.9 0.8 5
11 0.9 0.8 0.9 0.3 5
12 0.9 0.8 0.9 0.8 5

For further analysis of performance, we changed the parameters s, pintra and pinter, and
compared the average of NMI for networks 4 and 8, which �ndings are displayed in Fig. 2.4
and Fig. 2.5, respectively. Results show that as the pinter decreases, i.e., the probability
of the attributes being relevant according to the communities is lower, the performance of
OCoDeDANet decreases, to the point that in some cases when pintra = 0,5 the outcome is
the same as in DBNMF. According to this tendency, one could argue that when pinter = 0,1
values of pintra less than 0.5 will make OCoDeDANet worse than DBNMF. Furthermore,
we can see that the slope of decrease on performance of OCoDeDANet is greater than in
DALouvain.
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(a) Results for Dataset 3 (b) Results for Dataset 4

(c) Results for Dataset 7 (d) Results for Dataset 8

(e) Results for Dataset 11 (f) Results for Dataset 12

Figure 2.2: Performance measured by NMI for benchmark DANCer when s = 1, pintra = 0,7
and pinter = 0,05.
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(a) Results for Dataset 3 (b) Results for Dataset 4

(c) Results for Dataset 7 (d) Results for Dataset 8

(e) Results for Dataset 11 (f) Results for Dataset 12

Figure 2.3: Performance measured by NMI for benchmark DANCer when s = 3, pintra = 1
and pinter = 0,05.
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(a) s = 3, pinter = 0,05 (b) s = 1, pinter = 0,05

(c) s = 3, pinter = 0,1 (d) s = 1, pinter = 0,1

Figure 2.4: Performance for Dataset 4 of Synthetic network 1 measured by NMI, when pintra
is varied between 1 and 0.5.
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(a) s = 3, pinter = 0,05 (b) s = 1, pinter = 0,05

(c) s = 3, pinter = 0,1 (d) s = 1, pinter = 0,1

Figure 2.5: Performance for Dataset 8 of Synthetic network 1 measured by NMI, when pintra
is varied between 1 and 0.5.
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2.4.2.2. Synthetic network 2

Networks

Synthetic network 2 features a network structure with 200 nodes and 20 snapshots. We use
this network to show the birth of a community. Synthetic dynamic networks based on Sheikho-
leslami & Giannakis (2018) and Márquez & Weber (2023) were used. The graphs are built
with two communities initially, each with 100 nodes, and a third community appears later.
Two independent datasets were built with 40% and 80% of nodes migrating to new commu-
nities, named Dataset 1 and Dataset 2, respectively. The change in the connections of each
node, to allow the new community membership, is made in a speci�c time selected according
to a normal distribution N (10, 2). A stochastic block model was used to create links between
nodes, where nodes within the same community were more likely to be connected (probability
of 0.3) than nodes from di�erent communities (probability of 0.1).

Fig. 2.6 shows the graphs and an adjacency matrix representation of selected timestamps
for an instance of Dataset 1 and Case 1. The communities found by OCoDeDANet using
seed 2 for generation of the data, and seed 1 for initialization of non-negative matrices, are
distinguished by colors in the upper part of the �gure. In the lower part of the �gure, a
black dot represents a link between nodes on the horizontal and vertical axes. The network's
evolution indicates that certain nodes begin to modify their connections, which support the
emergence of a new community.

(a) Graph t = 4 (b) Graph t = 8 (c) Graph t = 10 (d) Graph t = 13

(e) Adj. t = 4 (f) Adj. t = 8 (g) Adj. t = 10 (h) Adj. t = 13

Figure 2.6: An instance of graphs and their corresponding adjacency matrices for Dataset 1,
Case 1, of Synthetic network 2.

The attribute values over time are depicted in Fig. 2.7, where a value of 1 is represented
by a black color and a value of 0 is represented by white. Attributes 1 and 2 support the iden-
ti�cation of two communities at the beginning, but as they change and alongside Attribute
3, a third community can be identi�ed.

Results
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(a) Attribute 1 (b) Attribute 2 (c) Attribute 3

Figure 2.7: Evolution of attributes over time, for Dataset 1, Case 1, of Synthetic network 2.

The performance of the models for Dataset 1 of Synthetic network 2 is shown in Fig. 2.8.
This �gure shows that the performance of OCoDeDANet and DBNMF starts to decay around
timestamp 6, and only partially recovers around time step 11. For DALouvain, when pintra =
1, there is a considerable decay of performance at timestamp 3 with a maximum recovery
around time step 12, followed by another decay; when pintra = 0,7, the NMI is lower than in
other methods since the beginning.

OCoDeDANet shows the best result, closely followed by DBNMF. When there is only one
attribute that reinforce the topology, around timestamp 13 both OCoDeDANet and DBNMF
behave almost the same way, and from time step 18 DBNMF outperforms OCoDeDANet. At
timestamps 1, 2, 11 and 12, despite having the worst average performance, DALouvain out-
performs OCoDeDANet and DBNMF when s = 1 and pintra = 1, and outperforms DBNMF
when s = 3 and pintra = 1.

The graph in Fig. 2.9 displays the performance of the models for Dataset 2 of Synthetic
network 2. Similar as before, the results indicate that both OCoDeDANet and DBNMF show
a decline in performance starting at timestamp 6, but in this case with a higher decrease,
reaching NMI values as low as 0.37. Around time step 12 both algorithm start to improve
NMI values. DALouvain reaches an NMI average value as low as 0.25.

In this case, beside time steps 1 and 2 for pintra = 1, OCoDeDANet shows the best result,
followed by DBNMF, both of them showing similar tendencies, and �nally DALouvain which
exhibits the worst performance.

2.4.2.3. Synthetic network 3

Networks

In Synthetic network 3, we conducted a study on community growth and shrinkage, utili-
zing networks generated with a degree-corrected stochastic block model (Tang et al., 2020).
In our experiment, we produced three data sets with ten timestamps, each with three groups
of nodes (n1 = 80, n2 = 90, and n3 = 100). We de�ned the link probability as z · (θi) · (θj),
where z ∈ [0, 1] represents the original probability of linking nodes i and j in a speci�c group,
and θi and θj are the degree-corrected parameters. For 95% of the nodes, θi was set to 1,
while for the remaining nodes, it was set to 3 (Márquez & Weber, 2023).
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(a) Case 1, s = 1, pintra = 0,7 (b) Case 2, s = 3, pintra = 0,7

(c) Case 3, s = 1, pintra = 1 (d) Case 4, s = 3, pintra = 1

Figure 2.8: Performance for Dataset 1 of Synthetic network 2 (40% of the nodes migrate to
a new community) measured by NMI.

To evaluate strongly assortative structures, weakly assortative structures, and disassor-
tative structures, three types of attributed networks were proposed, each with di�erent ori-
ginal link probabilities. These networks were assessed using the parameter values proposed
in Tang et al. (2020) and Márquez & Weber (2023), which are shown in Table 2.4, where
p1 ∈ [0,21, 0,25], p2 = p1 − 0,01, p3 = p1 − 0,02, q ∈ [0,1, 0,14], and r ∈ [0,19, 0,23].

Table 2.4: Original link probabilities in datasets of Synthetic network 3 (Márquez & Weber,
2023)

Within groups Between groups
link probabilities link probabilities
1 2 3 1-2 1-3 2-3

Strongly p1 p2 p3 0.08 0.08 0.08
assortative
Weakly 0.3 0.3 0.1 q 0.09 0.09
assortative
Disassortative 0.1 0.1 0.1 r r r
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(a) Case 1, s = 1, pintra = 0,7 (b) Case 2, s = 3, pintra = 0,7

(c) Case 3, s = 1, pintra = 1 (d) Case 4, s = 3, pintra = 1

Figure 2.9: Performance for Dataset 2 of Synthetic network 2 (80% of the nodes migrate to
a new community) measured by NMI.

An instance of the adjacency matrices at time step 1 on each type of network, is shown
in Fig. 2.10, with parameters p1 = 0,21, q = 0,1 and r = 0,19 (Márquez & Weber, 2023).

(a) Strongly assortative (b) Weakly assortative (c) Disassortative

Figure 2.10: An instance of the adjacency matrices for the three types of Synthetic network
3 at t = 1 (Márquez & Weber, 2023).

Over the course of 10 time steps, the �rst community on a strongly assortative network
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with p = 0,21 shows growth, while the second community underwent member changes but
maintained its size. Meanwhile, the third community shrank due to changes in both links
and attributes. This is illustrated in Fig. 2.11 and Fig. 2.12.

(a) Adj. t = 1 (b) Adj. t = 5 (c) Adj. t = 10

Figure 2.11: An instance of evolution for adjacency matrices, when s = 3, pintra = 0,7,
pinter = 0,05, for the strongly assortative network with p = 0,21 (Márquez & Weber, 2023).

(a) Attribute 1 (b) Attribute 2 (c) Attribute 3

Figure 2.12: An instance of evolution for attributes 1, 2 and 3, when s = 3, pintra = 0,7,
pinter = 0,05, for the strongly assortative network with p = 0,21.

Results

The results of the models for p1 = 0,21 (Dataset 1), q = 0,1 (Dataset 2), and r = 0,19
(Dataset 3), s = 1 and pintra = 0,7, are displayed in Fig. 2.13. OCoDeDANet outper-
forms DBNMF, and DBNMF outperforms DALouvain. From timestamp 7, OCoDeDANet
and DBNMF are almost the same for the weakly assortative network and the disassortative
network. At timestamps from 1 to 6, the presence of attributes is more relevant when the net-
work is disassortative. The results of the models for p1 = 0,25 (Dataset 4), q = 0,1 (Dataset
5), and r = 0,19 (Dataset 6), are omitted here for space purposes.

2.4.3. Experiments on overlapping synthetic networks

The performance of OCoDeDANet is tested on overlapping networks using Greene's bench-
mark (Greene et al., 2010). This benchmark addresses speci�c changes in communities of a
dynamic network, such as birth and death, merge and split, expansion and contraction, and
node switching between communities.
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(a) Strongly assortative (b) Weakly assortative

(c) Disassortative

Figure 2.13: Performance measured by NMI for Synthetic network 3, datasets 1, 2 and 3, and
s = 3, pintra = 0,7, pinter = 0,05.

As in the case of disjoint networks, ten instances were generated using di�erent random
seeds for each synthetic network and parameter setting.

OCoDeDANet's parameters for the overlapping version are α = 0,8, K equals the initial
number of nodes of the processed network, and threshold δ = 0,3. The other parameters are
set as a = 5, b = 3,M inIter = 200,MaxIter = 1000. The parameters set for DBNMF's algo-
rithm were the same. Both algorithms were executed with ten di�erent random initializations
of the non-negative matrices.

Attributes were added as described in Section 2.4.2. For the overlapping synthetic net-
works, considering pinter = 0,05, the same con�gurations as in the case of disjoint synthetic
networks are used: Case 1 is set as s = 1 and pintra = 0,7, Case 2 is set as s = 3 and
pintra = 0,7, Case 3 is set as s = 1 and pintra = 1, and Case 4 is set as s = 3 and pintra = 1.
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Next, we describe eleven overlapping synthetic networks and analyze the performance of
the di�erent algorithms in these networks.

Networks

Table 2.5 shows the parameters for the networks generated with this benchmark, along
with a brief description for each one. In accordance with the speci�c parameters from Ta-
ble 2.6, eleven datasets were created. For every dataset, �ve types were analyzed by altering
the muw parameter, which can take on the values 0.1, 0.2, 0.3, 0.4, and 0.5. This parameter
determines the level of clarity of the community structure within the generated network. A
lower value suggests a strong community structure based on topology, while a higher value
indicates a weak community structure.

Table 2.5: Parameter values that were used for Greene's benchmark. The description is shown
as de�ned by Greene et al. (2010).

Parameter Values Description

N 250 Number of nodes
s 10 Number of time steps to generate
k 10 Average degree
maxk 20 Maximum degree
muw 0.1, 0.2, 0.3, 0.4, 0.5 Mixing parameter. Controls the overlap between

communities
on 0, 5, 10, 25, 50 Number of overlapping nodes
om 2, 5, 10, 25 Number of memberships of the overlapping nodes
birth 2 Number of community birth events per time step
death 2 Number of community death events per time step
merge 2 Number of merge events per time step
split 2 Number of split events per time step
expand 5 Number of expansion events per time step
contract 5 Number of contraction events per time step
r 0.1 Rate of expansion/contraction
p 0.2 Probability of a node switching community membership

between time steps

Table 2.6: Speci�c parameters for networks de�ned using Greene's benchmark.

Dataset Type on om

1 birth/death 0 -
2 birth/death 5 2
3 birth/death 10 2
4 birth/death 25 2
5 birth/death 50 2
6 birth/death 5 5
7 birth/death 5 10
8 birth/death 5 25
9 merge/split 5 2
10 expand/contract 5 2
11 switch 5 2

Results

Dataset 1

In Dataset 1, Type 3, there are no overlapping nodes, making it a disjoint network. The re-
sults of NMI for this network are shown in Fig. 2.14, where OCoDeDANet remain consistently
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between 0.9 and 1 for all cases. For algorithms that do not take attributes into considera-
tion for community detection, DBNMF displays a similar pattern to OCoDeDANet, while
DEMON and Tiles have values between 0.8 and 0.9.

(a) Case 1, s = 1, pintra = 0,7 (b) Case 4, s = 3, pintra = 1

Figure 2.14: Performance for Dataset 1, Type 3 (muw = 0,3) of Overlapping synthetic
network measured by NMI.

In Case 1, OCoDeDANet outperforms DBNMF by 1.1%, DEMON by 11.9% and Tiles
by 12.9%. In Case 4, DBNMF outperforms OCoDeDANet by 0.3%, while OCoDeDANet
outperforms DEMON by 10.3% and Tiles by 11.3%. These results indicate the importance
of using relevant attributes to achieve better performance.

The results of NMI for Dataset 1, for the di�erent values of muw tested, are presented in
Table 2.7. When the network's topology is such that communities are more clear (Type 1,
muw = 0,1), OCoDeDANet, DBNMF, and DEMON have the same NMI. However, as the
community structure becomes less clear, using attributes results in a performance gain. In
Case 4, OCoDeDANet outperforms DBNMF by 10.7%, DEMON by 42.5%, and Tiles by
45.3%. In Case 1, OCoDeDANet still outperforms DBNMF by 1.9%, DEMON by 31.1%,
and Tiles by 33.7%.

Table 2.7: Performance on dataset 1 from Greene's benchmark according to NMI. For OCo-
DeDANet, Case 4 (s = 3, pintra = 1) to Case 1 (s = 1, pintra = 0,7) are shown.

Network OCoDeDANet DBNMF DEMON Tiles

Case 4 Case 3 Case 2 Case 1

Dataset 1, Type 1 0.97 0.98 0.96 0.97 0.97 0.97 0.94
Dataset 1, Type 2 0.97 0.96 0.95 0.96 0.96 0.92 0.91
Dataset 1, Type 3 0.95 0.95 0.93 0.94 0.94 0.85 0.84
Dataset 1, Type 4 0.92 0.92 0.89 0.90 0.89 0.75 0.76
Dataset 1, Type 5 0.90 0.87 0.83 0.82 0.81 0.63 0.62

Datasets 2-5

Datasets 2 to 5 explore the algorithms' performance when the number of overlapping
nodes is increased from 5 to 50 nodes.
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Fig. 2.15 shows the performance for Dataset 3, Type 3 according to NMI. OCoDeDANet
outperforms DEMON and Tiles at every time step, with an approximate average of 10%.
Although OCoDeDANet outperforms DBNMF on average by 1.1% for Case 1 and Case 4,
OCoDeDANet is surpassed at time step 7.

(a) Case 1, s = 1, pintra = 0,7 (b) Case 4, s = 3, pintra = 1

Figure 2.15: Performance for Dataset 3, Type 3 (muw = 0,3) of Overlapping synthetic
network measured by NMI.

Fig. 2.16 shows the performance according to NMI for Dataset 4, Type 4. OCoDeDANet
outperforms DEMON and Tiles at every time step in this dataset by an approximate average
of 19%. Also, OCoDeDANet outperforms DBNMF on average by 2% for Case 1 and Case 4.

(a) Case 1, s = 1, pintra = 0,7 (b) Case 4, s = 3, pintra = 1

Figure 2.16: Performance for Dataset 4, Type 4 (muw = 0,4) of Overlapping synthetic
network measured by NMI.

The results of NMI for Dataset 2 to 5, for all �ve variations of muw are shown in Ta-
ble 2.8. DEMON performs best when muw = 0,1, i.e., the community structure according
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to topology is more prominent. When muw = 0,2, OCoDeDANet performs better than the
other algorithms, but the di�erence with DBNMF is less than 1%. As muw increases, all
algorithms have a performance decrease, but in the case of OCoDeDANet the decrease is
less, so the percentage gain of OCoDeDANet increases, reaching 15% over DBNMF for Case
4.

Table 2.8: Performance on datasets 2 to 5 from Greene's benchmark according to NMI. For
OCoDeDANet, Case 4 (s = 3, pintra = 1) to Case 1 (s = 1, pintra = 0,7) are shown.

Network OCoDeDANet DBNMF DEMON Tiles

Case 4 Case 3 Case 2 Case 1

Dataset 2, Type 1 0.98 0.97 0.97 0.97 0.97 0.97 0.93
Dataset 2, Type 2 0.96 0.96 0.94 0.95 0.95 0.91 0.9
Dataset 2, Type 3 0.95 0.94 0.92 0.93 0.93 0.85 0.84
Dataset 2, Type 4 0.92 0.91 0.88 0.89 0.89 0.75 0.75
Dataset 2, Type 5 0.87 0.83 0.8 0.78 0.76 0.62 0.62
Dataset 3, Type 1 0.95 0.96 0.95 0.95 0.96 0.96 0.93
Dataset 3, Type 2 0.95 0.95 0.94 0.95 0.94 0.91 0.9
Dataset 3, Type 3 0.92 0.92 0.9 0.91 0.91 0.83 0.83
Dataset 3, Type 4 0.9 0.91 0.87 0.88 0.88 0.74 0.74
Dataset 3, Type 5 0.87 0.82 0.8 0.78 0.76 0.61 0.61
Dataset 4, Type 1 0.93 0.93 0.91 0.92 0.93 0.95 0.9
Dataset 4, Type 2 0.91 0.92 0.9 0.91 0.91 0.9 0.87
Dataset 4, Type 3 0.89 0.89 0.86 0.88 0.89 0.82 0.81
Dataset 4, Type 4 0.88 0.87 0.84 0.85 0.85 0.73 0.73
Dataset 4, Type 5 0.82 0.78 0.73 0.73 0.71 0.6 0.6
Dataset 5, Type 1 0.88 0.9 0.87 0.89 0.89 0.92 0.88
Dataset 5, Type 2 0.86 0.88 0.84 0.87 0.88 0.87 0.84
Dataset 5, Type 3 0.84 0.85 0.81 0.83 0.84 0.8 0.79
Dataset 5, Type 4 0.8 0.81 0.75 0.78 0.78 0.71 0.7
Dataset 5, Type 5 0.75 0.71 0.67 0.66 0.64 0.58 0.57

To conclude the analysis of these datasets, we study the results when pintra and pinter
change over a broader range of values. These results are shown in Fig. 2.17. Comparing the
results with the ones obtained in Fig. 2.5, they suggest that the overlapping problem is more
challenging to solve than the disjoint one, at least for OCoDeDANet, with the attributes
contributing less in the improvement of the results, and even causing worst results as compa-
red with the case of not having any attributes. Furthermore, since the methodology for the
generation of the attributes is the same, this will not work so thoroughly on the overlapping
networks, and when pinter = 0,1, having more attributes results in a worse performance than
having fewer attributes, since they tend to confuse the algorithm instead of helping it.

Datasets 6-8

The datasets 6 to 8 analyze how algorithms perform as the membership of overlapping
nodes increases from 5 to 25 communities.

Figure 2.18 illustrates the performance for Dataset 6, Type 5 based on NMI. OCoDeDANet
consistently outperforms DEMON and Tiles at every time step, with an average improvement
of approximately 28%. However, although OCoDeDANet's average performance is 7% better
than DBNMF for Case 1 and Case 4, it is surpassed by DBNMF at timestamps 5 to 8.

The NMI results for Dataset 6 to 8, across all �ve variations of muw, are presented in
Table 2.9. DEMON performs the best whenmuw = 0,1 andmuw = 0,2, where the community
structure according to topology is more prominent. When muw = 0,3 and muw = 0,4,
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(a) s = 3, pinter = 0,05 (b) s = 1, pinter = 0,05

(c) s = 3, pinter = 0,1 (d) s = 1, pinter = 0,1

Figure 2.17: Performance for Dataset 2, Type 4, Overlapping synthetic network, measured
by NMI, when pintra is varied between 1 and 0.5.

OCoDeDANet outperforms DEMON and Tiles, and performs equally to DBNMF in Case 3.
At muw = 0,5, OCoDeDANet outperforms all algorithms in Case 4 and Case 3, with a 5%
advantage over DBNMF, which is the closest algorithm in terms of NMI.

Dataset 9

Figure 2.19 shows the performance of Dataset 9, Type 1, based on NMI, when the com-
munities of the network merge and split. DEMON outperforms the other three algorithms in
all timestamps except time step 1. Furthermore, Tiles also outperforms OCoDeDANet and
DBNMF. The lost on performance suggest that our algorithm is less e�ective in detecting
communities than the other algorithms when muw = 1.

The NMI results for Dataset 9, across all �ve variations of muw, can be found in Ta-
ble 2.10. As mentioned earlier, DEMON performs the best when muw = 0,1, which also
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(a) Case 1, s = 1, pintra = 0,7 (b) Case 4, s = 3, pintra = 1

Figure 2.18: Performance for Dataset 6, Type 5 (muw = 0,5) of Overlapping synthetic
network measured by NMI.

Table 2.9: Performance on datasets 6 to 8 from Greene's benchmark according to NMI. For
OCoDeDANet, Case 4 (s = 3, pintra = 1) to Case 1 (s = 1, pintra = 0,7) are shown.

Network OCoDeDANet DBNMF DEMON Tiles

Case 4 Case 3 Case 2 Case 1

Dataset 6, Type 1 0.91 0.91 0.9 0.91 0.91 0.95 0.91
Dataset 6, Type 2 0.89 0.9 0.88 0.89 0.89 0.89 0.87
Dataset 6, Type 3 0.89 0.89 0.87 0.88 0.88 0.81 0.81
Dataset 6, Type 4 0.85 0.85 0.82 0.83 0.83 0.71 0.72
Dataset 6, Type 5 0.81 0.79 0.75 0.74 0.73 0.61 0.61
Dataset 7, Type 1 0.82 0.83 0.82 0.83 0.83 0.89 0.87
Dataset 7, Type 2 0.82 0.83 0.81 0.83 0.82 0.83 0.82
Dataset 7, Type 3 0.79 0.79 0.77 0.78 0.79 0.74 0.74
Dataset 7, Type 4 0.77 0.78 0.75 0.76 0.76 0.66 0.67
Dataset 7, Type 5 0.71 0.72 0.65 0.68 0.68 0.56 0.57
Dataset 8, Type 1 0.59 0.62 0.59 0.61 0.61 0.67 0.67
Dataset 8, Type 2 0.57 0.61 0.56 0.6 0.61 0.64 0.64
Dataset 8, Type 3 0.55 0.58 0.53 0.58 0.59 0.58 0.6
Dataset 8, Type 4 0.52 0.56 0.49 0.54 0.58 0.52 0.54
Dataset 8, Type 5 0.47 0.49 0.41 0.46 0.48 0.45 0.46

applies to muw = 0,2. When muw = 0,3, muw = 0,4, and muw = 0,5, OCoDeDANet on
Case 4 outperforms all algorithms, with margins of 2.5%, 6.6%, and 22.6% over its closest
competitor, DBNMF, respectively.

Table 2.10: Performance on dataset 9 from Greene's benchmark according to NMI. For OCo-
DeDANet, Case 4 (s = 3, pintra = 1) to Case 1 (s = 1, pintra = 0,7) are shown.

Network OCoDeDANet DBNMF DEMON Tiles

Case 4 Case 3 Case 2 Case 1

Dataset 9, Type 1 0.85 0.85 0.84 0.84 0.83 0.92 0.85
Dataset 9, Type 2 0.85 0.85 0.84 0.84 0.84 0.87 0.82
Dataset 9, Type 3 0.84 0.84 0.82 0.83 0.82 0.79 0.75
Dataset 9, Type 4 0.81 0.8 0.78 0.77 0.76 0.68 0.66
Dataset 9, Type 5 0.76 0.73 0.69 0.67 0.62 0.55 0.53
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(a) Case 1, s = 1, pintra = 0,7 (b) Case 4, s = 3, pintra = 1

Figure 2.19: Performance for Dataset 9, Type 1 (muw = 0,1) of Overlapping synthetic
network measured by NMI.

Dataset 10

Dataset 10 explores the results when the network communities expand and contract.

Table 2.11 shows the NMI results for Dataset 10 across all �ve variations ofmuw. DBNMF
performs best on muw = 0,1, OCoDeDANet performs the same as DBNMF when muw =
0,2, and for all the other parameters, OCoDeDANet on Case 4 outperforms all the other
algorithms by 1%, 2%, and 10% at least, when muw = 0,3, muw = 0,4 and muw = 0,5,
respectively.

Table 2.11: Performance on dataset 10 from Greene's benchmark according to NMI. For
OCoDeDANet, Case 4 (s = 3, pintra = 1) to Case 1 (s = 1, pintra = 0,7) are shown.

Network OCoDeDANet DBNMF DEMON Tiles

Case 4 Case 3 Case 2 Case 1

Dataset 10, Type 1 0.97 0.97 0.96 0.97 0.98 0.97 0.9
Dataset 10, Type 2 0.95 0.96 0.94 0.96 0.96 0.92 0.87
Dataset 10, Type 3 0.95 0.95 0.93 0.94 0.94 0.85 0.81
Dataset 10, Type 4 0.92 0.91 0.9 0.9 0.9 0.75 0.72
Dataset 10, Type 5 0.88 0.86 0.82 0.82 0.8 0.59 0.56

Dataset 11

Dataset 11 explores the results when the membership of nodes are switched.

Table 2.12 shows the NMI results for Dataset 11, across all �ve variations ofmuw. DEMON
performs best onmuw = 0,1, OCoDeDANet performs the same as DBNMF whenmuw = 0,2,
OCoDeDANet on Case 4 outperforms all the other algorithms, by 1%, 2% and 8.8% at
least, when muw = 0,3, muw = 0,4 and muw = 0,5, respectively. OCoDeDANet on Case 3
surpassed Case 4 when muw = 0,1 and muw = 0,4.
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Table 2.12: Performance on dataset 11 from Greene's benchmark according to NMI. For
OCoDeDANet, Case 4 (s = 3, pintra = 1) to Case 1 (s = 1, pintra = 0,7) are shown.

Network OCoDeDANet DBNMF DEMON Tiles

Case 4 Case 3 Case 2 Case 1

Dataset 11, Type 1 0.95 0.96 0.95 0.96 0.96 0.98 0.9
Dataset 11, Type 2 0.96 0.96 0.94 0.95 0.96 0.93 0.87
Dataset 11, Type 3 0.95 0.95 0.93 0.94 0.94 0.86 0.81
Dataset 11, Type 4 0.91 0.92 0.88 0.9 0.89 0.75 0.7
Dataset 11, Type 5 0.87 0.86 0.82 0.82 0.8 0.59 0.54

2.4.4. Experiments on real-world networks

A crime network was designed to identify the relationships between those who have com-
mitted various property crimes in Chile between January 1st, 2019 and December 31st, 2021.
Property crimes such as robbery in an uninhabited place, robbery with violence, and homicide
in a �ght fall under the scope of this network (Márquez & Weber, 2023).

Network

The crime network under consideration is comprised of 12 time steps, each of which co-
rresponds to a 3-month period based on the date of the crime. It starts with 38 nodes and
39 edges, and concludes with 419 nodes and 2087 edges. The network contains no vertex
deletions. Each node in the network represents an individual who has been charged with a
crime, while an edge between two nodes indicates that those individuals have been charged
with the same crime. The network possesses a set of attributes F (t), where a value of 1 for
F

(t)
nm signi�es that individual n has committed crime type m up to time step t, where m

corresponds to one of the 26 crime types included in the network (Márquez & Weber, 2023).

Results

The performance of OCoDeDANet and other models is displayed in Fig. 2.20. DALouvain
produced the best density and modularity results, followed by OCoDeDANet and DBNMF.
On the other hand, when it comes to entropy, OCoDeDANet showed the best results, follo-
wed closely by DBNMF and then DALouvain. This suggests that OCoDeDANet prioritizes
attribute importance while DALouvain places more emphasis on topology.

However, since neither metric provides a clear advantage to any algorithm, no direct
conclusions can be drawn. In Section 2.4.5.3, we follow the proposed approach from Márquez
& Weber (2023) to address this limitation.

To gain a better understanding of the results of OCoDeDANet, Fig. 2.21 displays the three
communities with a higher number of members at time step 12.

The third largest community, which consists of 30 nodes and is displayed on the left part
of Fig. 2.21, has three connected components of 21, 6 and 3 nodes, respectively. Within this
community, there are 47 edges connecting the nodes. The attribute values enable the nodes
to be assigned to this community.

The second largest community, comprised of 45 nodes, is located in the center of Fig. 2.21.
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(a) Density (b) Modularity

(c) Entropy

Figure 2.20: Performance for the crime network.

Figure 2.21: Communities obtained by OCoDeDANet at t = 12 for the crime network.

This community displays a denser connection between its nodes than the other two commu-
nities in the �gure, having 981 edges connecting these nodes.

The largest community, composed of 66 nodes and shown on the right side of Fig. 2.21,
has only 57 edges joining these nodes, and several unconnected nodes within the community.
However, the attributes values enforce this nodes to be part of the community.
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The community shown on the right side of Fig. 2.21 is the largest one, consisting of 66
nodes. Despite having only 57 edges and several unconnected nodes within the community,
the attribute values of these nodes enforce them to be considered as part of the community.

2.4.5. Summary of results

2.4.5.1. Disjoint synthetic networks

In previous results, we compare the performance of di�erent disjoint algorithms on the
synthetic attributed networks over time, for every dataset. We will now present a comparison
of these algorithms based on NMI, by averaging the results of all time steps and all seeds for
each model. This comparison is illustrated in Table 2.13.

Table 2.13: Performance on disjoint synthetic networks according to NMI. For OCoDeDANet
and DALouvain, Case 4 (s = 3, pintra = 1) and Case 1 (s = 1, pintra = 0,7) are shown.

Network OCoDeDANet DALouvain DBNMF

Case 4 Case 1 Case 4 Case 1

Syn. net. 1, Dataset 1 0.8 0.62 0.57 0.51 0.55
Syn. net. 1, Dataset 2 0.86 0.67 0.58 0.56 0.59
Syn. net. 1, Dataset 3, Fig. 2.2a 0.81 0.62 0.53 0.51 0.54
Syn. net. 1, Dataset 4, Fig. 2.2b 0.81 0.6 0.48 0.47 0.52
Syn. net. 1, Dataset 5 0.77 0.58 0.46 0.44 0.52
Syn. net. 1, Dataset 6 0.86 0.66 0.54 0.52 0.58
Syn. net. 1, Dataset 7, Fig. 2.2c 0.8 0.6 0.49 0.48 0.53
Syn. net. 1, Dataset 8, Fig. 2.2d 0.84 0.64 0.5 0.48 0.56
Syn. net. 1, Dataset 9 0.84 0.65 0.56 0.54 0.58
Syn. net. 1, Dataset 10 0.9 0.69 0.55 0.54 0.61
Syn. net. 1, Dataset 11, Fig. 2.2e 0.84 0.64 0.51 0.49 0.56
Syn. net. 1, Dataset 12, Fig. 2.2f 0.85 0.66 0.55 0.52 0.59
Syn. net. 2, Dataset 1, Fig. 2.8a 0.85 0.79 0.57 0.39 0.79
Syn. net. 2, Dataset 2, Fig. 2.9a 0.86 0.77 0.31 0.25 0.73
Syn. net. 3, Dataset 1, Fig. 2.13a 0.98 0.88 0.74 0.36 0.83
Syn. net. 3, Dataset 2, Fig. 2.13b 0.97 0.79 0.78 0.39 0.74
Syn. net. 3, Dataset 3, Fig. 2.13c 0.86 0.54 0.29 0.29 0.42
Syn. net. 3, Dataset 4 0.98 0.95 0.74 0.45 0.93
Syn. net. 3, Dataset 5 0.96 0.78 0.59 0.31 0.72
Syn. net. 3, Dataset 6 0.93 0.78 0.29 0.29 0.64

Based on the average Normalized Mutual Information (NMI), OCoDeDANet performed
better than the other models that were compared. Among all the test networks, OCoDeDANet
in Case 4 had the highest NMI of 0.869, followed by OCoDeDANet in Case 1 with 0.696,
DBNMF with 0.627, DALouvain in Case 4 with 0.532 and DALouvain in Case 1 with 0.44.

Therefore, our proposed model outperformed DALouvain in terms of NMI, which also
takes into account both attribute values and topology, by more than 58% considering both
Case 4 and Case 1. Additionally, it also performed better than DBNMF which considers only
the dynamic aspect without attributes, by 38.6% in Case 4 and by 11% in Case 1.

2.4.5.2. Overlapping synthetic networks

In this summary, we compare the overlapping algorithms based on NMI by averaging the
results of all time steps, all seeds, and all muw values for each model. This comparison is
shown in Table 2.14.
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Table 2.14: Performance on Overlapping synthetic networks according to NMI. For OCoDe-
DANet, Case 4 (s = 3, pintra = 1) to Case 1 (s = 1, pintra = 0,7) are shown.

Network OCoDeDANet DBNMF DEMON Tiles

Case 4 Case 3 Case 2 Case 1

Dataset 1, Fig. 2.14 0.94 0.94 0.91 0.92 0.91 0.82 0.81
Dataset 2 0.94 0.92 0.90 0.90 0.90 0.82 0.81
Dataset 3, Fig. 2.15 0.92 0.91 0.89 0.89 0.89 0.81 0.80
Dataset 4, Fig. 2.16 0.89 0.88 0.85 0.86 0.86 0.80 0.78
Dataset 5 0.83 0.83 0.79 0.81 0.81 0.78 0.76
Dataset 6, Fig. 2.18 0.87 0.87 0.84 0.85 0.85 0.79 0.78
Dataset 7 0.78 0.79 0.76 0.78 0.78 0.74 0.73
Dataset 8 0.54 0.57 0.52 0.56 0.57 0.57 0.58
Dataset 9, Fig. 2.19 0.82 0.81 0.79 0.79 0.77 0.76 0.72
Dataset 10 0.93 0.93 0.91 0.92 0.92 0.82 0.77
Dataset 11 0.93 0.93 0.9 0.91 0.91 0.82 0.76

Based on the average NMI, OCoDeDANet outperformed the other compared models.
Among all the test networks, OCoDeDANet in Case 4 had the highest NMI of 0.854, follo-
wed by OCoDeDANet in Case 3 with 0.853, OCoDeDANet in Case 1 with 0.835, DBNMF
with 0.834, OCoDeDANet in Case 2 with 0.824, DEMON with 0.775 and Tiles with 0.755.
Therefore, our proposed model outperformed DBNMF by 2.4%, DEMON by 10.1% and Ti-
les by 13.1% when attributes clearly contributed to identifying communities. For cases with
pintra = 0,7 the results suggest that adding more attributes caused a decrease in performance.

2.4.5.3. Real-world networks

We can compare algorithms by normalizing each metric and computing the average if there
is no clear advantage of an algorithm when including both metrics. However, since the scales
of these metrics vary signi�cantly, we decided to compare the algorithms on a one-on-one
basis. This pairwise comparison involves measuring the percentage di�erence in density and
entropy and then averaging them (Márquez & Weber, 2023). We also determine the average
percentage di�erence using modularity and entropy.

Table 2.15 displays the results for the crime network, and it reveals that OCoDeDANet
performed the best among the compared algorithms. When including density and entropy,
it outperformed DBNMF by 3.6%, and when including modularity and entropy, it outper-
formed DBNMF by 4%. Furthermore, it outperformed DALouvain by 2.7% when including
density and entropy, and by 2.3% when including modularity and entropy. In terms of to-
pology metric, DALouvain performed the best, followed by OCoDeDANet and DBNMF.
According to the attribute metric, OCoDeDANet performed the best, followed by DBNMF
and DALouvain. This suggests that OCoDeDANet is mainly building its communities based
on their attributes.
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Table 2.15: Performance on the crime network according to modularity, density and entropy.

Density Modularity Entropy

OCoDeDANet 0.957 0.708 0.124

DBNMF 0.921 0.675 0.128
OCoDeDANet vs DBNMF (%) 3.90 4.80 3.26

DALouvain 0.982 0.734 0.135
OCoDeDANet vs DALouvain (%) -2.62 -3.54 8.04

2.5. Concluding remarks and future work

Real-world networks require methods that capture their evolving essence and complexity.
However, the study of dynamic attributed networks has primarily focused on static infor-
mation including attributes, or dynamic information focusing solely on the graph's links.
In response to these limitations, we have introduced the OCoDeDANet algorithm. This no-
vel approach for overlapping community detection in dynamic attributed networks processes
changes in the graph's structure and the attributes of its nodes over time. The method's use
of probabilistic non-negative matrix factorization widens its scope by capturing information
on both topology and attributes, including past information. Additionally, the automatic
determination of the number of communities broadens its applications.

We tested our algorithm on di�erent disjoint and overlapping synthetic networks, as well
as a real-world network. Normalized mutual information, in its disjoint and overlapping form,
was employed to address the models' performance on networks with ground truth. Density
and entropy were used in the absence of ground truth. The results showed that our approach
outperforms other state-of-the-art methods.

The performance of our algorithm indicates that considering attributes improves com-
munity detection. Nevertheless, there are opportunities for further improvement. The algo-
rithm would bene�t from automatically calibrating parameters such as the dynamic matrices'
weights and the threshold for overlapping community detection.

Another aspect that can be improved is handling irrelevant attributes within the model. If,
for any reason, some of the attributes used are not genuinely relevant to detecting communi-
ties, the model would still consider the respective information, potentially leading to skewed
results. Therefore, the model's accuracy and reliability can bene�t from adding weights to
leverage the impact of topology and attributes.

Finally, the algorithm's applicability can be enhanced by testing the approach for over-
lapping community detection, including membership degrees for each group. In this case, the
result would allow us to determine the degree of participation of each node in cases where it
belongs to multiple communities.
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Conclusion

This thesis addresses some limitations of community detection approaches in dynamic
attributed networks, which often fail to incorporate evolving network structure and changing
node attributes comprehensively. To overcome this gap, we propose two novel algorithms,
CoDeDANet and OCoDeDANet, designed to adapt to real-world network dynamics by jointly
capturing structural and attribute changes over time. Both models demonstrate superior
performance compared to state-of-the-art methods across various synthetic and real-world
dynamic networks by integrating topological and attribute information.

CoDeDANet focuses on detecting disjoint communities, utilizing spectral clustering com-
bined with tensor methods to incorporate current and historical network data in an algorithm
that needs the number of communities as input. OCoDeDANet improves this approach by
detecting overlapping communities through probabilistic non-negative matrix factorization,
using automatic relevance determination to infer the number of communities. Both algorithms
consider the bene�ts of including node attributes in improving the accuracy of community
detection, particularly as network structures in evolving contexts become more complex.

We evaluated both algorithms using synthetic and real-world datasets, applying standard
metrics such as normalized mutual information to networks with known ground truths and
measures such as density and entropy for networks without ground truth. For OCoDeDA-
Net, overlapping normalized mutual information was also used when overlapping structures
were present on the networks. The results showed that CoDeDANet and OCoDeDANet con-
sistently outperform competing state-of-the-art methods, especially in scenarios where node
attributes are relevant to detect communities. Additionally, we observed that OCoDeDANet
performed better in cases where the topological structure of the network alone is insu�cient
to capture the community dynamics, further highlighting the importance of including node
attributes in the analysis.

Despite its advantages, CoDeDANet and OCoDeDANet present some opportunities for
improvement. Both algorithms assume that all attributes provided are relevant to the com-
munity detection task, needing a mechanism for discerning which attributes are relevant and
which may distort the results, which could lead to suboptimal results if irrelevant attributes
are included. Future work could focus on incorporating a procedure that automatically �l-
ters out irrelevant attributes, assigning weights to attributes based on their relevance to the
community structure, thus improving the algorithm's robustness.

Both models could bene�t from computational optimizations to improve scalability since
the size of the networks that can be processed is limited. For CoDeDANet, only the eigenva-
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lues a�ected by changes could be updated, avoiding computing the whole matrix on each time
step. For OCoDeDANet, alternatives such as using dimension reduction techniques applied
to the obtained matrices or block-wise updates can allow processing of larger networks.

Another aspect to improve for CoDeDANet is that it currently requires the number of
communities to be input manually, which could limit its practical applicability in cases where
this information is unknown. Developing an automated mechanism to determine the number
of communities is crucial for future research. For the case of OCoDeDANet, the handling of
overlapping communities could be extended by introducing membership degrees for nodes,
allowing for a more granular understanding of a node's participation in multiple communities.

In conclusion, this thesis contributes two new models that improve the detection of commu-
nities in dynamic attributed networks, addressing both disjoint and overlapping communities.
These models o�er new insights into the structure of dynamic networks and provide tools for
analyzing the complex interactions and evolving behaviors that characterize real-world sys-
tems. By integrating topological and attribute-based information, the presented algorithms
enhance the ability to detect communities more comprehensively and realistically, making
them valuable for applications in social network analysis, biological systems, technological
networks, and beyond.

74



Bibliography

Abdrabbah, S. B., Ayachi, R., & Amor, N. B. (2014). Collaborative �ltering based on dynamic
community detection. Proceedings of the 2nd International Conference on Dynamic
Networks and Knowledge Discovery, 1229, 85�106. doi:10.5555/3053802.3053813.

Afsariardchi, N. (2012). Community Detection in Dynamic Networks. M.S. thesis, Depart-
ment of Electrical and Computer Engineering, McGill University, Montreal, Canada.
url:https://escholarship.mcgill.ca.

Al-sharoa, E., Al-khassaweneh, M., & Aviyente, S. (2019). Tensor Based Temporal
and Multilayer Community Detection for Studying Brain Dynamics During Res-
ting State fMRI. IEEE Transactions on Biomedical Engineering, 66(3), 695�709.
doi:10.1109/TBME.2018.2854676.

Amelio, A. & Pizzuti, C. (2014). Overlapping Community Discovery Methods: A Survey. In A.
Gunduz-Oguducu & A. Etaner-Uyar (Eds.), Social Networks: Analysis and Case Studies.
Lecture Notes in Social Networks (pp. 105�125). Vienna: Springer. doi:10.1007/978-3-
7091-1797-2_6.

Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J., & Perona, I. (2013). An extensi-
ve comparative study of cluster validity indices. Pattern Recognition, 46(1), 243�256.
doi:10.1016/j.patcog.2012.07.021.

Atay, Y., Koc, I., Babaoglu, I., & Kodaz, H. (2017). Community detection from biological
and social networks: A comparative analysis of metaheuristic algorithms. Applied Soft
Computing, 50, 194�211. doi:10.1016/j.asoc.2016.11.025.

Bahadori, S., Zare, H., & Moradi, P. (2021). PODCD: Probabilistic overlapping dyna-
mic community detection. Expert Systems with Applications, 174, Article 114650.
doi:10.1016/j.eswa.2021.114650.

Bedi, P. & Sharma, C. (2016). Community detection in social networks. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 6(3), 115�135.
doi:10.1002/widm.1178.

Bello, G. A., Harenberg, S., Agrawal, A., & Samatova, N. F. (2016). Community detection
in dynamic attributed graphs. In International Conference on Advanced Data Mining
and Applications (pp. 329�344). doi:10.1007/978-3-319-49586-6_22.

75

https://dl.acm.org/doi/10.5555/3053802.3053813
https://escholarship.mcgill.ca/concern/theses/ht24wn922
https://doi.org/10.1109/TBME.2018.2854676
https://doi.org/10.1007/978-3-7091-1797-2_6
https://doi.org/10.1007/978-3-7091-1797-2_6
https://doi.org/10.1016/j.patcog.2012.07.021
https://doi.org/10.1016/j.asoc.2016.11.025
https://doi.org/10.1016/j.eswa.2021.114650
https://doi.org/10.1002/widm.1178
https://doi.org/10.1007/978-3-319-49586-6_22


Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of
communities in large networks. Journal of statistical mechanics: theory and experiment,
2008(10), Article P10008. doi:10.1088/1742-5468/2008/10/p10008.

Bothorel, C., Cruz, J. D., Magnani, M., & Micenkova, B. (2015). Clustering attributed graphs:
models, measures and methods. Network Science, 3(3), 408�444. doi:10.1017/nws.2015.9.

Cao, J., Jin, D., Yang, L., & Dang, J. (2018). Incorporating network structure with node con-
tents for community detection on large networks using deep learning. Neurocomputing,
297, 71�81. doi:10.1016/j.neucom.2018.01.065.

Cazabet, R. & Rossetti, G. (2023). Challenges in community discovery on temporal networks.
In P. Holme & J. Saramäki (Eds.), Temporal Network Theory (pp. 185�202). Cham:
Springer International Publishing. doi:10.1007/978-3-031-30399-9_10.

Chakraborty, T. & Chakraborty, A. (2013). OverCite: Finding overlapping communi-
ties in citation network. In 2013 IEEE/ACM International Conference on Ad-
vances in Social Networks Analysis and Mining (ASONAM 2013) (pp. 1124�1131).
doi:10.1145/2492517.2500255.

Chakraborty, T., Dalmia, A., Mukherjee, A., & Ganguly, N. (2017). Metrics for community
analysis: A survey. ACM Computing Surveys (CSUR), 50(4), 1�37. doi:10.1145/3091106.

Chang, Z., Jia, C., Yin, X., & Zheng, Y. (2019). A generative model for exploring
structure regularities in attributed networks. Information Sciences, 505, 252�264.
doi:10.1016/j.ins.2019.07.084.

Cheng, F., Cui, T., Su, Y., Niu, Y., & Zhang, X. (2018). A local information based multi-
objective evolutionary algorithm for community detection in complex networks. Applied
Soft Computing, 69, 357�367. doi:10.1016/j.asoc.2018.04.037.

Chunaev, P. (2020). Community detection in node-attributed social networks: a survey.
Computer Science Review, 37, 100286. doi:10.1016/j.cosrev.2020.100286.

Combe, D., Largeron, C., Géry, M., & Egyed-Zsigmond, E. (2015). I-louvain: An attributed
graph clustering method. In E. Fromont, T. De Bie, & M. van Leeuwen (Eds.), Advances
in Intelligent Data Analysis XIV. IDA 2015. Lecture Notes in Computer Science (pp.
181�192). doi:10.1007/978-3-319-24465-5_16.

Coscia, M., Rossetti, G., Giannotti, F., & Pedreschi, D. (2012). DEMON: a local-�rst
discovery method for overlapping communities. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data mining (pp. 615�
623). doi:10.1145/2339530.2339630.

Dang, T. A. & Viennet, E. (2012). Community detection based on structural and attribute
similarities. The Sixth International conference on digital society (ICDS 2012), 659,
7�12. url:marami-2011.imag.fr.

Danon, L., Diaz-Guilera, A., Duch, J., & Arenas, A. (2005). Comparing community structure

76

https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1017/nws.2015.9
https://doi.org/10.1016/j.neucom.2018.01.065/
https://doi.org/10.1007/978-3-031-30399-9_10
https://doi.org/10.1145/2492517.2500255
https://doi.org/10.1145/3091106
https://doi.org/10.1016/j.ins.2019.07.084
https://doi.org/10.1016/j.asoc.2018.04.037
https://doi.org/10.1016/j.cosrev.2020.100286
https://doi.org/10.1007/978-3-319-24465-5_16
https://doi.org/10.1145/2339530.2339630
http://marami-2011.imag.fr/documents/jfgg11_Dang.pdf


identi�cation. Journal of statistical mechanics: Theory and experiment, 2005(09), Article
P09008. doi:10.1088/1742-5468/2005/09/P09008.

Ferrara, E. (2012). Community structure discovery in facebook. International Journal of
Social Network Mining, 1(1), 67�90. doi:10.1504/IJSNM.2012.045106.

Ferrara, E., De Meo, P., Catanese, S., & Fiumara, G. (2014). Detecting criminal organiza-
tions in mobile phone networks. Expert Systems with Applications, 41(13), 5733�5750.
doi:10.1016/j.eswa.2014.03.024.

Fortunato, S. & Hric, D. (2016). Community detection in networks: A user guide. Physics
Reports, 659, 1�44. doi:10.1016/j.physrep.2016.09.002.

Gao, Y., Yu, X., & Zhang, H. (2020). Uncovering overlapping community struc-
ture in static and dynamic networks. Knowledge-Based Systems, 201, 106060.
doi:10.1016/j.knosys.2020.106060.

Girvan, M. & Newman, M. E. J. (2002). Community structure in social and biological
networks. Proceedings of the National Academy of Sciences of the United States of
America, 99(12), 7821�7826. doi:10.1073/pnas.122653799.

Greene, D., Doyle, D., & Cunningham, P. (2010). Tracking the evolution of communities
in dynamic social networks. In 2010 International Conference on Advances in Social
Networks Analysis and Mining (pp. 176�183). doi:10.1109/ASONAM.2010.17.

He, C., Fei, X., Cheng, Q., Li, H., Hu, Z., & Tang, Y. (2022). A survey of community detection
in complex networks using nonnegative matrix factorization. IEEE Transactions on
Computational Social Systems, 9(2), 440�457. doi:10.1109/TCSS.2021.3114419.

Huang, H., Wang, X., & Yu, G. (2018). Community detection based on uni�ed ba-
yesian nonnegative matrix factorization. In 2018 IEEE 3rd International Con-
ference on Cloud Computing and Big Data Analysis (ICCCBDA) (pp. 395�403).
doi:10.1109/ICCCBDA.2018.8386549.

Huang, Z., Zhong, X., Wang, Q., Gong, M., & Ma, X. (2020). Detecting community in
attributed networks by dynamically exploring node attributes and topological structure.
Knowledge-Based Systems, 196, Article 105760. doi:10.1016/j.knosys.2020.105760.

Jin, D., Yu, Z., Jiao, P., Pan, S., He, D., Wu, J., Yu, P. S., & Zhang, W. (2023). A
survey of community detection approaches: From statistical modeling to deep lear-
ning. IEEE Transactions on Knowledge and Data Engineering, 35(2), 1149�1170.
doi:10.1109/TKDE.2021.3104155.

Khanam, K. Z., Srivastava, G., & Mago, V. (2022). The homophily principle in social network
analysis: A survey. Multimedia Tools and Applications, (pp. 1�44). doi:10.1007/s11042-
021-11857-1.

Kolda, T. G. & Bader, B. W. (2009). Tensor Decompositions and Applications. SIAM Review,
51(3), 455�500. doi:10.1137/07070111X.

77

https://doi.org/10.1088/1742-5468/2005/09/P09008
https://doi.org/10.1504/IJSNM.2012.045106
https://doi.org/10.1016/j.eswa.2014.03.024
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1016/j.knosys.2020.106060
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1109/ASONAM.2010.17
https://doi.org/10.1109/TCSS.2021.3114419
https://doi.org/10.1109/ICCCBDA.2018.8386549
https://doi.org/10.1016/j.knosys.2020.105760
https://doi.org/10.1109/TKDE.2021.3104155
https://doi.org/10.1007/s11042-021-11857-1
https://doi.org/10.1007/s11042-021-11857-1
https://doi.org/10.1137/07070111X


Lalwani, D., Somayajulu, D. V., & Krishna, P. R. (2015). A community driven social re-
commendation system. 2015 IEEE International conference on big data (big data), (pp.
821�826). doi:10.1109/BigData.2015.7363828.

Lancichinetti, A., Fortunato, S., & Kertész, J. (2009). Detecting the overlapping and hierar-
chical community structure in complex networks. New Journal of Physics, 11(3), 033015.
doi:10.1088/1367-2630/11/3/033015.

Largeron, C., Mougel, P.-N., Benyahia, O., & Zaïane, O. R. (2017). DANCer: dynamic
attributed networks with community structure generation. Knowledge and Information
Systems, 53(1), 109�151. doi:10.1007/s10115-017-1028-2.

Lee, D. & Seung, H. (1999). Learning the parts of objects by non-negative matrix factoriza-
tion. Nature, 401, 788�791. doi:10.1038/44565.

Lee, D. & Seung, H. (2001). Algorithms for non-negative matrix factorization. Ad-
vances in Neural Information Processing Systems 13 (NIPS 2000), 13(1), 556�562.
url:proceedings.neurips.cc.

Li, W., Zhou, X., Yang, C., Fan, Y., Wang, Z., & Liu, Y. (2022). Multi-objective optimization
algorithm based on characteristics fusion of dynamic social networks for community
discovery. Information Fusion, 79, 110�123. doi:10.1016/j.in�us.2021.10.002.

Li, W., Zhu, H., Li, S., Wang, H., Dai, H., Wang, C., & Jin, Q. (2021). Evolutionary
community discovery in dynamic social networks via resistance distance. Expert Systems
with Applications, 171, Article 114536. doi:10.1016/j.eswa.2020.114536.

Lu, H., Sang, X., Zhao, Q., & Lu, J. (2020). Community detection algorithm based on non-
negative matrix factorization and pairwise constraints. Physica A: Statistical Mechanics
and its Applications, 545, Article 123491. doi:10.1016/j.physa.2019.123491.

Ma, H., Liu, Z., Zhang, X., Zhang, L., & Jiang, H. (2021). Balancing topo-
logy structure and node attribute in evolutionary multi-objective community de-
tection for attributed networks. Knowledge-Based Systems, 227, Article 107169.
doi:10.1016/j.knosys.2021.107169.

Ma, L., Gong, M., Liu, J., Cai, Q., & Jiao, L. (2014). Multi-level learning based me-
metic algorithm for community detection. Applied Soft Computing, 19, 121�133.
doi:10.1016/j.asoc.2014.02.003.

Ma, X. & Dong, D. (2017). Evolutionary Nonnegative Matrix Factorization Algorithms for
Community Detection in Dynamic Networks. IEEE Transactions on Knowledge and
Data Engineering, 29(5), 1045�1058. doi:10.1109/TKDE.2017.2657752.

Mahmoud, H., Masulli, F., Rovetta, S., & Russo, G. (2014). Community detection in protein-
protein interaction networks using spectral and graph approaches. In Formenti E.,
Tagliaferri R., Wit E. (eds) Computational Intelligence Methods for Bioinformatics and
Biostatistics. CIBB 2013. Lecture Notes in Computer Science, volume 8452 (pp. 62�75).
doi:10.1007/978-3-319-09042-9_5.

78

https://doi.org/10.1109/BigData.2015.7363828
https://doi.org/10.1088/1367-2630/11/3/033015
https://doi.org/10.1007/s10115-017-1028-2
https://doi.org/10.1038/44565
https://proceedings.neurips.cc/paper_files/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf
https://doi.org/10.1016/j.inffus.2021.10.002
https://doi.org/10.1016/j.eswa.2020.114536
https://doi.org/10.1016/j.physa.2019.123491
https://doi.org/10.1016/j.knosys.2021.107169
https://doi.org/10.1016/j.asoc.2014.02.003
https://doi.org/10.1109/TKDE.2017.2657752
https://doi.org/10.1007/978-3-319-09042-9_5


Mankad, S. & Michailidis, G. (2013). Structural and functional discovery in dynamic
networks with non-negative matrix factorization. Physical Review E, 88(4), 042812.
doi:10.1103/PhysRevE.88.042812.

Márquez, R., Weber, R., & De Carvalho, A. C. (2019). A non-negative matrix factoriza-
tion approach to update communities in temporal networks using node features. In
2019 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM) (pp. 728�732). doi:10.1145/3341161.3343677.

Moradi-Jamei, B., Kramer, B. L., Calderón, J. B. S., & Korkmaz, G. (2021). Community
formation and detection on github collaboration networks. In Proceedings of the 2021
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mi-
ning (pp. 244�251). doi:10.1145/3487351.3488278.

Márquez, R. & Weber, R. (2023). Dynamic community detection including node attributes.
Expert Systems with Applications, 223, 119791. doi:10.1016/j.eswa.2023.119791.

Nath, K., Roy, S., & Nandi, S. (2020). InOvIn: A fuzzy-rough approach for detecting overlap-
ping communities with intrinsic structures in evolving networks. Applied Soft Computing,
89, Article 106096. doi:10.1016/j.asoc.2020.106096.

Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of
the National Academy of Sciences of the United States of America, 103(23), 8577�8582.
doi:10.1073/pnas.0601602103.

Newman, M. E. J. (2018). Networks: An introduction. New York: Oxford University Press,
2nd edition. doi:10.1093/oso/9780198805090.001.0001.

Niu, Y., Kong, D., Liu, L., Wen, R., & Xiao, J. (2023). Overlapping community detection
with adaptive density peaks clustering and iterative partition strategy. Expert Systems
with Applications, 213, 119213. doi:10.1016/j.eswa.2022.119213.

Ozer, M., Kim, N., & Davulcu, H. (2016). Community detection in political twitter networks
using nonnegative matrix factorization methods. In 2016 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 81�
88). doi:10.1109/ASONAM.2016.7752217.

Palla, G., Barabási, A.-L., & Vicsek, T. (2007). Quantifying social group evolution. Nature,
446(7136), 664�667. doi:10.1038/nature05670.

Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping com-
munity structure of complex networks in nature and society. nature, 435, 814�818.
doi:10.1038/nature03607.

Pfei�er III, J. J., Moreno, S., La Fond, T., Neville, J., & Gallagher, B. (2014). At-
tributed graph models: Modeling network structure with correlated attributes. In
Proceedings of the 23rd international conference on World wide web (pp. 831�842).
doi:10.1145/2566486.2567993.

79

https://doi.org/10.1103/PhysRevE.88.042812
https://doi.org/10.1145/3341161.3343677
https://doi.org/10.1145/3487351.3488278
https://doi.org/10.1016/j.eswa.2023.119791
https://doi.org/10.1016/j.asoc.2020.106096
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1093/oso/9780198805090.001.0001
https://doi.org/10.1016/j.eswa.2022.119213
https://doi.org/10.1109/ASONAM.2016.7752217
https://doi.org/10.1038/nature05670
https://doi.org/10.1038/nature03607
https://doi.org/10.1145/2566486.2567993


Pourabbasi, E., Majidnezhad, V., Taghavi Afshord, S., & Jafari, Y. (2021). A new single-
chromosome evolutionary algorithm for community detection in complex networks by
combining content and structural information. Expert Systems with Applications, 186,
Article 115854. doi:10.1016/j.eswa.2021.115854.

Psorakis, I., Roberts, S., Ebden, M., & Sheldon, B. (2011). Overlapping community detec-
tion using Bayesian non-negative matrix factorization. Physical Review E - Statistical,
Nonlinear, and Soft Matter Physics, 83(6), 1�9. doi:10.1103/PhysRevE.83.066114.

Qin, M., Jin, D., Lei, K., Gabrys, B., & Musial-Gabrys, K. (2018). Adaptive community
detection incorporating topology and content in social networks. Knowledge-Based Sys-
tems, 161, 342�356. doi:10.1016/j.knosys.2018.07.037.

Reihanian, A., Feizi-Derakhshi, M.-R., & Aghdasi, H. S. (2023). An enhanced multi-objective
biogeography-based optimization for overlapping community detection in social networks
with node attributes. Information Sciences, 622, 903�929. doi:10.1016/j.ins.2022.11.125.

Ríos, S. A. & Videla-Cavieres, I. F. (2014). Generating groups of products using graph mining
techniques. Procedia Computer Science, 35, 730�738. doi:10.1016/j.procs.2014.08.155.

Rossetti, G. & Cazabet, R. (2018). Community Discovery in Dynamic Networks: a Survey.
ACM Computing Surveys, 51(2), 1�37. doi:10.1145/3172867.

Rossetti, G., Milli, L., & Cazabet, R. (2019). CDLIB: a python library to extract, compare
and evaluate communities from complex networks. Applied Network Science, 4(1), 1�26.
doi:10.1007/s41109-019-0165-9.

Rossetti, G., Pappalardo, L., Pedreschi, D., & Giannotti, F. (2017). Tiles: an online algorithm
for community discovery in dynamic social networks. Machine Learning, 106(8), 1213�
1241. doi:10.1007/s10994-016-5582-8.

Said, A., Abbasi, R. A., Maqbool, O., Daud, A., & Aljohani, N. R. (2018). CC-GA: A clus-
tering coe�cient based genetic algorithm for detecting communities in social networks.
Applied Soft Computing, 63, 59�70. doi:10.1016/j.asoc.2017.11.014.

Shang, R., Zhao, K., Zhang, W., Feng, J., Li, Y., & Jiao, L. (2022). Evolutionary multiobjec-
tive overlapping community detection based on similarity matrix and node correction.
Applied Soft Computing, 127, Article 109397. doi:10.1016/j.asoc.2022.109397.

Sheikholeslami, F. & Giannakis, G. B. (2018). Identi�cation of Overlapping Communities via
Constrained Egonet Tensor Decomposition. IEEE Transactions on Signal Processing,
66(21), 5730�5745. doi:10.1109/TSP.2018.2871383.

Tan, V. & Févotte, C. (2009). Automatic Relevance Determination in Nonnegative Ma-
trix Factorization. In SPARS'09 - Signal Processing with Adaptive Sparse Structured
Representations Saint Malo, United Kingdom: HAL. url:inria-00369376.

Tang, F., Wang, C., Su, J., & Wang, Y. (2020). Spectral clustering-based community detec-
tion using graph distance and node attributes. Computational Statistics, 35(1), 69�94.

80

https://doi.org/10.1016/j.eswa.2021.115854
https://doi.org/10.1103/PhysRevE.83.066114
https://doi.org/10.1016/j.knosys.2018.07.037
https://doi.org/10.1016/j.ins.2022.11.125
https://doi.org/10.1016/j.procs.2014.08.155
https://doi.org/10.1145/3172867
https://doi.org/10.1007/s41109-019-0165-9
https://doi.org/10.1007/s10994-016-5582-8
https://doi.org/10.1016/j.asoc.2017.11.014
https://doi.org/10.1016/j.asoc.2022.109397
https://doi.org/10.1109/TSP.2018.2871383
https://inria.hal.science/inria-00369376


doi:10.1007/s00180-019-00909-8.

Taya, F., de Souza, J., Thakor, N. V., & Bezerianos, A. (2016). Comparison method for com-
munity detection on brain networks from neuroimaging data. Applied network science,
1(1), 1�20. doi:10.1007/s41109-016-0007-y.

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing, 17(4),
395�416. doi:10.1007/s11222-007-9033-z.

Wang, W., Jiao, P., He, D., Jin, D., Pan, L., & Gabrys, B. (2016a). Autonomous
overlapping community detection in temporal networks: A dynamic Bayesian non-
negative matrix factorization approach. Knowledge-Based Systems, 110, 121�134.
doi:10.1016/j.knosys.2016.07.021.

Wang, X., Cao, X., Jin, D., Cao, Y., & He, D. (2016b). The (un)supervised NMF methods for
discovering overlapping communities as well as hubs and outliers in networks. Physica A:
Statistical Mechanics and its Applications, 446, 22�34. doi:10.1016/j.physa.2015.11.016.

Wu, H., Gao, L., Dong, J., & Yang, X. (2014). Detecting overlapping protein complexes by
rough-fuzzy clustering in protein-protein interaction networks. PloS one, 9(3), e91856.
doi:10.1371/journal.pone.0091856.

Xie, J., Kelley, S., & Szymanski, B. K. (2013). Overlapping Community Detection in Net-
works: The State-of-the-art and Comparative Study. ACM Comput. Surv., 45(4), 43:1�
43:35. doi:10.1145/2501654.2501657.

Yang, J., McAuley, J., & Leskovec, J. (2013). Community detection in networks with node
attributes. In 2013 IEEE 13th International Conference on Data Mining (ICDM) (pp.
1151�1156). doi:10.1109/ICDM.2013.167.

Yu, W., Wang, W., Jiao, P., & Li, X. (2019). Evolutionary clustering via graph regularized
nonnegative matrix factorization for exploring temporal networks. Knowledge-Based
Systems, 167, 1�10. doi:10.1016/j.knosys.2019.01.024.

Zhou, Y., Cheng, H., & Yu, J. X. (2009). Graph clustering based on structu-
ral/attribute similarities. Proceedings of the VLDB Endowment, 2(1), 718�729.
doi:10.14778/1687627.1687709.

81

https://doi.org/10.1007/s00180-019-00909-8
https://doi.org/10.1007/s41109-016-0007-y
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1016/j.knosys.2016.07.021
https://doi.org/10.1016/j.physa.2015.11.016
https://doi.org/10.1371/journal.pone.0091856
https://doi.org/10.1145/2501654.2501657
https://doi.org/10.1109/ICDM.2013.167
https://doi.org/10.1016/j.knosys.2019.01.024
https://doi.org/10.14778/1687627.1687709


Annexes

82



Annex A

Detailed computations of the model for

timestep 1

We will generalize each parameter computation at timestamp t, since they will appear at
all time steps. The �rst term is the negative log likelihood of the dataVt. Since its expectation

is based on Wt and Ht, this can be rewritten has P (Vt|Wt,Ht) = P
(
Vt|V̂t

)
, representing

the probability of observing every interaction vij,t given a Poisson rate v̂ij,t Psorakis et al.
(2011). Accordingly, the negative log likelihood of observation vij,t is represented as stated in
Eq. (A.1).

− logP (vij,t|v̂ij,t) = − log

(
exp (−v̂ij,t)v̂

vij,t
ij,t

vij,t!

)
= v̂ij,t − vij,t log v̂ij,t + log vij,t! (A.1)

Last term of Eq. (A.1) can be approximated by using the Stirling approximation to second
order, as stated in Eq. (A.2).

log vij,t! ≈ log
(√

2πvij,t

(vij,t
e

)vij,t)
=

1

2
log (2πvij,t) + vij,t log vij,t − vij,t (A.2)

Replacing Eq. (A.2) in Eq. (A.1), we obtain a new expression for negative log likelihood
of observation vij,t, that can be rewritten as Eq. (A.3).

− logP (vij,t|v̂ij,t) ≈ vij,t log

(
vij,t
v̂ij,t

)
+ v̂ij,t − vij,t +

1

2
log (2πvij,t) (A.3)

Since the loss function includes all observations, a full negative log likelihood for the entire
adjacency matrix is formulated in Eq. (A.4), considering independence between each link.
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− logP
(
Vt|V̂t

)
= − log

∏
i,j

P (vij,t|v̂ij,t) = −
Nt∑
i=1

Nt∑
j=1

logP (vij,t|v̂ij,t) ≃

Nt∑
i=1

Nt∑
j=1

(
vij,t log

(
vij,t
v̂ij,t

)
+ v̂ij,t − vij,t +

1

2
log (2πvij,t)

)
(A.4)

Analogously, second term of can be written as Eq. (A.5), considering independence between
the generation of each link, and between the generation of each attribute.

− logP
(
Ft|F̂t

)
= − log

∏
m,j

P
(
fmj,t|f̂mj,t

)
=−

M∑
m=1

Nt∑
j=1

logP
(
fmj,t|f̂mj,t

)
≃

M∑
m=1

Nt∑
j=1

(
fmj,t log

(
fmj,t

f̂mj,t

)
+ f̂mj,t − fmj,t +

1

2
log (2πfmj,t)

)
(A.5)

Since Wt, Ht and Ht are non-negative matrices, probability distributions to model them
need to ful�ll this property, such as a Half Normal, Exponential or Gamma distribution.
In this case, the third, fourth and �fth terms of Eq. (2.3) are determined considering half
normal priors over the columns of Wt, rows of Ht, and columns of Gt, with scale parameters
βt ∈ RK .

Half normal distribution and its application into each wik,t term with scale parameter βk,t

(HN (0, β−1
k,t )) are shown in Eq. (A.6), considering β−1

k,t = σ2.

P (x|σ) =
√
2

σ
√
π
exp

(
−x2

2σ2

)
, x > 0⇒

P (wij,t| βk,t) =

√
2

β
−1/2
k,t

√
π
exp

(
−w2

ik,t

2β−1
k,t

)
, βk,t > 0 (A.6)

Now, considering all observations, independence between each node assignment into a
community k and taking the logarithm, the third term of Eq. (2.3) is de�ned as Eq. (A.7).
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P (Wt|βt) =
∏
i,k

√
2√
π

√
βk,t exp

(
−
w2

ik,tβk,t

2

)
⇒

− logP (Wt|βt) = −
Nt∑
i=1

K∑
k=1

log

(√
2√
π

√
βk,t exp

(
−
w2

ik,tβk,t

2

))

=
Nt∑
i=1

K∑
k=1

(
w2

ik,tβk,t

2
− log

(
β
1/2
k,t

)
− log

21/2

π1/2

)
=

Nt∑
i=1

K∑
k=1

w2
ik,tβk,t

2
− Nt

2

K∑
k=1

log βk,t −NtK log

√
2√
π

(A.7)

Similarly, third and fourth term of Eq. (2.3) are de�ned as Eqs. (A.8) and (A.9).

− logP (Ht|βt) =
K∑
k=1

Nt∑
j=1

h2
kj,tβk,t

2
− Nt

2

K∑
k=1

log βk,t −NtK log

√
2√
π

(A.8)

− logP (Gt|βt) =
M∑

m=1

K∑
k=1

g2mk,tβk,t

2
− M

2

K∑
k=1

log βk,t −MK log

√
2√
π

(A.9)

Finally, each βk,t also has to be de�ned with a non-negative distribution, in this case, a
Gamma distribution was de�ned with �xed hyperparameters ak,t, bk,t Psorakis et al. (2011).
Both parameters are considered constant for each community and each timestamp. Eq. (A.10)
shows the calculation of the last term in Eq. (2.3), considering independence between each
βk,t.

P (βk,t|ak,t, bk,t) =
β
ak,t−1

k,t exp (−βk,tbk,t)b
ak,t
k,t

Γ (ak,t)
⇒

P (βt|at,bt) =
K∏
k=1

β
ak,t−1

k,t exp (−βk,tbk,t)b
ak,t
k,t

Γ (ak)
⇒ − logP (βt|at,bt) =

K∑
k=1

(βkbk,t − (ak,t − 1) log βk,t) +K (log Γ (ak,t)− ak,t log bk,t) (A.10)
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Annex B

Detailed computations of the model for

timestep t

Eqs. (B.1) and (B.2) show the calculations of the third term of Eq. (2.7). The fourth term
of Eq. (2.7) is obtained by equation (B.3) and the �fth term is obtained by equation (B.4).
In all cases t = 2, . . . , T .

P (wik,t|γik,t, µ, βk,t) =
w

γik,t−1

ik,t exp (−wik,tµ)µ
γik,t

Γ (γik,t)

√
2

β
−1/2
k,t

√
π
exp

(
−w2

ik,t

2β−1
k,t

)
⇒

P (Wt|γt, µ,βt) =
Nt∏
i=1

K∏
k=1

w
γik,t−1

ik,t exp (−wik,tµ)µ
γik,t

Γ (γik,t)

√
2

β
−1/2
k,t

√
π
exp

(
−w2

ik,t

2β−1
k,t

)
⇒

− logP (Wt|γt, µ,βt) =
Nt∑
i=1

K∑
k=1

[
− (γik,t − 1) logwik,t + wik,tµ

−γik,t log µ+ log Γ (γik,t) +
w2

ik,tβk,t

2
− log

(
β
1/2
k,t

)
− log

21/2

π1/2

]
(B.1)
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Since we de�ned γik,t = µw
′′

ik,t−1 + 1, equation (B.1) transforms into equation (B.2).

− logP
(
Wt|W

′′

t−1, µ,βt

)
=

Nt∑
i=1

K∑
k=1

[
−
(
µw

′′

ik,t−1 + 1− 1
)
logwik,t + wik,tµ

−
(
µw

′′

ik,t−1 + 1
)
log µ+ log Γ

(
µw

′′

ik,t−1 + 1
)
+

w2
ik,tβk,t

2
− log

(
β
1/2
k,t

)
− log

21/2

π1/2

]
=

Nt∑
i=1

K∑
k=1

[
µ
(
−w′′

ik,t−1 logwik,t + wik,t

)
+

w2
ik,tβk,t

2
− 1

2
log βk,t +

κ

]
=

Nt∑
i=1

K∑
k=1

µ
(
−w′′

ik,t−1 logwik,t + wik,t

)
+

Nt∑
i=1

K∑
k=1

w2
ik,tβk,t

2

−Nt

2

K∑
k=1

log βk,t + κ (B.2)

− logP
(
Ht|H

′′

t−1, µ,βt

)
=

Nt∑
j=1

K∑
k=1

µ
(
−h′′

kj,t−1 log hkj,t + hkj,t

)
+

Nt∑
j=1

K∑
k=1

h2
kj,tβk,t

2
− Nt

2

K∑
k=1

log βk,t + κ (B.3)

− logP
(
Gt|G

′′

t−1, µ,βt

)
=

M∑
i=1

K∑
k=1

µ (−gmk,t−1 log gmk,t + gmk,t) +
M∑
i=1

K∑
k=1

g2mk,tβk,t

2
− M

2

K∑
k=1

log βk,t + κ (B.4)
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Annex C

Partial derivatives of the loss function

with respect to the latent factors at time

step 1

Eqs. (C.1)-(C.4), show the scalar form of the partial derivatives of the loss function
from (2.4), with respect to H1, W1, G1, and βk,1, respectively.

∂U1
∂hk′j′,1

=
∂

∂hk′j′,1

N1∑
i=1

N1∑
j=1

K∑
k=1

wik,1hkj,1 −
∂

∂hk′j′,1

N1∑
i=1

N1∑
j=1

vij,1 log
K∑
k=1

wik,1hkj,1

+
∂

∂hk′j′,1

M∑
m=1

N1∑
j=1

K∑
k=1

gmk,1hkj,1 −
∂

∂hk′j′,1

M∑
m=1

N1∑
j=1

fmj,1 log
K∑
k=1

gmk,1hkj,1

+
1

2

∂

∂hk′j′,1

K∑
k=1

N1∑
j=1

βk,1h
2
kj,1 =

N1∑
i=1

wik′,1 −
N1∑
i=1

vij′,1wik′,1∑K
k=1wik,1hkj′,1

+
M∑

m=1

gmk′,1 −
M∑

m=1

fmj′,1gmk′,1∑K
k=1 gmk,1hkj′,1

+ βk′,1hk′j′,1 (C.1)

∂U1
∂wi′k′,1

=
∂

∂wi′k′,1

N1∑
i=1

N1∑
j=1

K∑
k=1

wik,1hkj,1 −
∂

∂wi′k′,1

N1∑
i=1

N1∑
j=1

vij,1 log
K∑
k=1

wik,1hkj,1

+
1

2

∂

∂wi′k′,1

K∑
k=1

N1∑
i=1

βk,1

(
w2

ik,1

)
=

N1∑
j=1

hk′j,1 −
N1∑
j=1

vi′j,1hk′j,1∑K
k=1wi′k,1hkj,1

+ βk′,1wi′k′,1 (C.2)

∂U1
∂gm′k′,1

=
∂

∂gm′k′,1

M∑
m=1

N1∑
j=1

K∑
k=1

gmk,1hkj,1 −
∂

∂gm′k′,1

M∑
m=1

N1∑
j=1

fmj,1 log
K∑
k=1

gmk,1hkj,1

+
1

2

∂

∂gm′k′,1

K∑
k=1

M∑
m=1

βk,1

(
g2mk,1

)
=

N1∑
j=1

hk′j,1 −
N1∑
j=1

fm′j,1hk′j,1∑K
k=1 gm′k,1hkj,1

+ βk′,1gm′k′,1 (C.3)
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∂U1
∂βk,1

=
1

2

N1∑
i=1

w2
ik,1 +

1

2

N1∑
j=1

h2
kj,1 +

1

2

M∑
m=1

g2mk,1 −
N1 +M/2

βk,1

+ bk,1 −
ak,1 − 1

βk,1

(C.4)

Eqs. (C.5)-(C.7) show the matrix form of the partial derivatives of the loss function
from (2.4), with respect to the latent factors, where B1 ∈ RK×K is a matrix with elements
βk,1 in the diagonal and zero elsewhere.

∇H1U1 = (W1N1×K)
T

(
W1N1×KH1K×N1

−V1N1×N1

W1N1×KH1K×N1

)
+(G1M×K)

T

(
G1M×KH1K×N1

− F1M×N1

G1M×KH1K×N1

)
+B1K×KH1K×N1

(C.5)

∇W1U1 =
(
W1N1×KH1K×N1

−V1N1×N1

W1N1×KH1K×N1

)
(H1K×N1

)T +W1N1×KB1K×K (C.6)

∇G1U1 =
(
G1M×KH1K×N1

− F1M×N1

G1M×KH1K×N1

)
(H1K×N1

)T +G1M×KB1K×K (C.7)
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Annex D

Partial derivatives of the loss function

with respect to the latent factors at time

step t

Eqs. (D.1)-(D.4), show the scalar form of the partial derivatives of the loss function
from (2.8), with respect to Ht, Wt, Gt, and βk,1, respectively.

∂Ut
∂hk′j′,t

=
∂

∂hk′j′,t

N1∑
i=1

Nt∑
j=1

K∑
k=1

wik,thkj,t −
∂

∂hk′j′,t

Nt∑
i=1

Nt∑
j=1

vij,t log
K∑
k=1

wik,thkj,t

+
∂

∂hk′j′,t

M∑
m=1

Nt∑
j=1

K∑
k=1

gmk,thkj,t −
∂

∂hk′j′,t

M∑
m=1

Nt∑
j=1

fmj,t log
K∑
k=1

gmk,thkj,t

− ∂

∂hk′j′,t

Nt∑
j=1

K∑
k=1

µh
′′

kj,t−1 log hkj,t +
∂

∂hk′j′,t

Nt∑
j=1

K∑
k=1

µhkj,t

+
1

2

∂

∂hk′j′,t

K∑
k=1

Nt∑
j=1

βk,th
2
kj,t =

Nt∑
i=1

wik′,t −
Nt∑
i=1

vij′,twik′,t∑K
k=1wik,thkj′,t

+
M∑

m=1

gmk′,t

−
M∑

m=1

fmj′,tgmk′,t∑K
k=1 gmk,thkj′,t

− µ
h

′′

k′j′,t−1

hk′j′,t
+ µ+ βk′,thk′j′,t (D.1)

∂Ut
∂wi′k′,t

=
∂

∂wi′k′,t

Nt∑
i=1

Nt∑
j=1

K∑
k=1

wik,thkj,t −
∂

∂wi′k′,t

Nt∑
i=1

Nt∑
j=1

vij,t log

K∑
k=1

wik,thkj,t

− ∂

∂wi′k′,t

Nt∑
i=1

K∑
k=1

µw
′′
ik,t−1 logwik,t +

∂

∂wi′k′,t

Nt∑
i=1

K∑
k=1

µwik,t +
1

2

∂

∂wi′k′,t

K∑
k=1

Nt∑
i=1

βk,tw
2
ik,t =

Nt∑
j=1

hk′j,t −
Nt∑
j=1

vi′j,thk′j,t∑K
k=1wi′k,thkj,t

− µ
w

′′
i′k′,t−1

wi′k′,t
+ µ+ βk′,twi′k′,t (D.2)
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m=1

Nt∑
j=1

K∑
k=1
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∂

∂gm′k′,t

M∑
m=1

Nt∑
j=1

fmj,t log
K∑
k=1

gmk,thkj,t

− ∂

∂gm′k′,t

M∑
m=1

K∑
k=1

µgmk,t−1 log gmk,t +
∂

∂gm′k′,t

M∑
m=1

K∑
k=1

µgmk,t +
1

2

∂

∂gm′k′,t

K∑
k=1

M∑
m=1

βk,tg
2
mk,t

=

Nt∑
j=1

hk′j,t −
Nt∑
j=1

fm′j,thk′j,t∑K
k=1 gm′k,thkj,t

− µ
gm′k′,t−1

gm′k′,t
+ µ+ βk′,tgm′k′,t (D.3)

∂Ut
∂βk,t

=
1

2

Nt∑
i=1

w2
ik,t +

1

2

Nt∑
j=1

h2
kj,t +

1

2

M∑
m=1

g2mk,t −
Nt +M/2

βk,t

+ bk,t −
ak,t − 1

βk,t

(D.4)

Eqs. (D.5)-(D.7) show the matrix form of the partial derivatives of the loss function
from (2.8), with respect to the latent factors, where Bt ∈ RK×K is a matrix with elements
βk,t in the diagonal and zero elsewhere.

∇HtUt = (WtNt×K)
T

(
WtNt×KHtK×Nt

−VtNt×Nt

WtNt×KHtK×Nt

)
+(GtM×K)

T

(
GtM×KHtK×Nt

− FtM×Nt

GtM×KHtK×Nt

)
−µ

(
H

′′
t−1K×Nt

HtK×Nt

− 1K×Nt

)
+BtK×KHtK×Nt

(D.5)

∇WtUt =
(
WtNt×KHtK×Nt

−VtNt×Nt

WtNt×KHtK×Nt

)
(HtK×Nt

)T

−µ

(
W

′′
t−1Nt×K

WtNt×K

− 1Nt×K

)
+WtNt×KBtK×K (D.6)

∇GtUt =
(
GtM×KHtK×Nt

− FtM×Nt

GtM×KHtK×Nt

)
(HtK×Nt

)T

−µ
(
Gt−1M×K

GtM×K

− 1M×K

)
+GtM×KBtK×K (D.7)
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Annex E

Multiplicative coordinate descent

algorithm equations

Eqs. (E.1)-(E.3), show the results from applying the multiplicative coordinate descent
algorithm to Eqs. (D.5)-(D.7), respectively.

HtK×Nt
←

(
HtK×Nt

(WtNt×K)T 1Nt×Nt + (GtM×K)T 1M×Nt +
1−α
α 1K×Nt +BtK×KHtK×Nt

)
◦[

(WtNt×K)T
VtNt×Nt

WtNt×KHtK×Nt

+ (GtM×K)T
FtM×Nt

GtM×KHtK×Nt

+
1− α

α

H
′′
t−1K×Nt

HtK×Nt

]
(E.1)

WtNt×K ←

(
WtNt×K

1Nt×Nt (HtK×Nt
)T + 1−α

α
1Nt×K +WtNt×KBtK×K

)

◦

[(
VtNt×Nt

WtNt×KHtK×Nt

(HtK×Nt
)T
)
+

1− α

α

W
′′
t−1Nt×K

WtNt×K

]
(E.2)

GtM×K ←

(
GtM×K

1M×Nt (HtK×Nt
)T + 1−α

α
1M×K +GtM×KBtK×K

)
◦[(

FtM×Nt

GtM×KHtK×Nt

(HtK×Nt
)T
)
+

1− α

α

Gt−1M×K

GtM×K

]
(E.3)
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