Browsing by Author "Arenas Carmona, Luis"
Now showing items 1-11 of 11
-
Arenas Carmona, Luis (2009)
-
Quiroz Herrera, Patricio (Universidad de Chile, 2013)
-
Arenas Carmona, Luis (2013)The spinor class field for a genus of orders of maximal rank in a quaternion algebra a over a number field K is an abelian extension Σ/K provided with a distance function associating elements of the corresponding Galois ...
-
Arenas Carmona, Luis (2008)We give a cohomological characterization of the set of conjugacy classes of finite subgroups of the projective multiplicative group of a finite dimensional algebra that become conjugate to a given group over some finite ...
-
Contreras de Rosa, Jaime (Universidad de Chile, 2015)
-
Arenas, Manuel; Arenas Carmona, Luis; Contreras, Jaime (Academic Press Inc., 2018)© 2018 Elsevier Inc. We apply the theory of Bruhat–Tits trees to the study of optimal embeddings from orders of rank two and three to quaternion algebras. Specifically, we determine how many conjugacy classes of global ...
-
Arenas Carmona, Luis (2011)We give some conditions under which no two non-conjugate projective representations, in an algebra, of a given group can become conjugate over a separable extension of the base field. In particular, we show this is always ...
-
Arenas Carmona, Luis (2012)
-
Arenas Carmona, Luis (Universidad Catolica del Norte, 2017)A representation field for a non-maximal order in a central simple algebra is a subfield of the spinor class field of maximal orders which determines the set of spinor genera of maximal orders representing H. In our previous ...
-
Arenas, Manuel; Arenas Carmona, Luis (2013)In this article the universal Poisson enveloping algebra for a binary-Lie algebra is constructed. Taking a basis B{double-struck} of a binary-Lie algebra B, we consider the symmetric algebra S(B) of polynomials in the ...
-
Bravo Castillo, Claudio Abraham (Universidad de Chile, 2018)Sea K un cuerpo local no arquimediano y sea A un algebra de matrices de dimensión 4 sobre K. En trabajos previos, como en [A2] Luis Arenas desarrollo una teoría que permite calcular el conjunto de ordenes maximales de A ...