Show simple item record

Professor Advisordc.contributor.advisorSepúlveda Osses, Aquiles es_CL
Authordc.contributor.authorMuga Ibarra, Francisco Javier es_CL
Staff editordc.contributor.editorFacultad de Ciencias Físicas y Matemáticases_CL
Staff editordc.contributor.editorDepartamento de Ingeniería Mecánicaes_CL
Associate professordc.contributor.otherZúñiga Páez, Alejandro
Associate professordc.contributor.otherPalma Hillerns, Rodrigo 
Admission datedc.date.accessioned2012-09-12T18:17:20Z
Available datedc.date.available2012-09-12T18:17:20Z
Publication datedc.date.issued2008es_CL
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/103146
Abstractdc.description.abstractLa aleación Cu-11,8%p.Al-0,5%p.Be presenta un comportamiento de Memoria de Forma (MF) del tipo Superelástico. Este último consiste en que al aplicar carga, dentro de ciertas condiciones, se tienen deformaciones relativamente importantes (2-8%) que se recuperan al retirar la carga. El fenómeno de MF se asocia a una transformación martensítica, la que involucra una fase madre austenita (β), de alta simetría, y a una fase metaestable martensita (β’), de baja simetría. En un ciclo de carga y descarga, las aleaciones superelásticas disipan energía. Este comportamiento de disipación y la capacidad de aceptar grandes deformaciones recuperables, da la potencialidad de que estos materiales puedan actuar como disipadores de energía, por ejemplo, en estructuras civiles. Según nuestro conocimiento, no existen estudios publicados de la aleación CuAlBe en el rango post-superelástico, donde ya hay deformaciones remanentes. De modo que para ese rango se desconoce la microestructura del material y de qué forma se comporta la disipación de energía. En este trabajo se analizaron cuatro casos de distinta deformación en la aleación CuAlBe, a temperatura ambiente y para un tamaño de grano de 100 um. En el primer caso se deformó una probeta en el rango superelástico (0,23% de deformación) mediante un ensayo monotónico. En el segundo caso se impuso una deformación del 6% en ensayos monotónico y cíclico (a dos distintas probetas), en el tercero se impuso una deformación del 9% en ensayos monotónico y cíclico (a dos distintas probetas); y en el cuarto se llevó una probeta hasta la fractura. En ensayos de tracción monotónicos, se determinó que el módulo de Young del material es de 88GPa, que la resistencia a la fractura es de 802MPa, y que la fractura corresponde a una deformación de 10.2%, con carga. También se determinó, mediante un método de derivadas, validado por información y datos de otros estudios, que el límite superelástico de esta aleación, a temperatura ambiente, corresponde a una deformación de 2.5%. Los resultados anteriores son concordantes con estudios anteriores. En ensayos de tracción cíclicos (0,5 y 1 Hz) se encontró que en el rango post-superelástico existe elasticidad no lineal y amortiguamiento, siendo este último mayor que en el rango superelástico. Se obtuvo metalografías de los distintos casos de deformación ya definidos. En el primer caso, dentro del rango superelástico, no se observó martensita remanente, solo austenita, como era de esperar. Por otra parte, en los casos 2, 3 y 4, en el rango post-superelástico, se observó austenita con martensita remanente y que la fracción de esta última crecía con la deformación impuesta. En la fractografías del caso 4, se observó preferentemente fractura transgranular, con zonas de clivaje y otras de hoyuelos, lo cual es un resultado conocido. En microscopia electrónica de transmisión, se observó muestras vírgenes y con deformación. En ambos tipos de muestra se estableció que la austenita presenta finas franjas, las que corresponderían a defectos cristalinos que podrían estar relacionados con manchas de difracción alargadas adicionales al patrón de difracción BCC de esa fase. En muestras con deformación, en la austenita se observó dislocaciones apareadas, denominadas dislocaciones de superred; además se observaron franjas gruesas en la austenita que es posible que sean vestigios de placas revertidas de martensita inducidas por deformación. Se concluye que la elasticidad no lineal observada en el rango post-superelástico se asocia a la austenita aún presente en ese rango, la que podría transformarse por esfuerzo en martensita. Además, el mayor amortiguamiento observado en el rango post-superelástico, en relación con aquel en el rango elástico, estaría relacionado con los defectos cristalinos observados en la austenita, al requerir ellos una mayor energía para que ocurra la transformación martensítica.
Lenguagedc.language.isoeses_CL
Publisherdc.publisherUniversidad de Chilees_CL
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Keywordsdc.subjectMecánicaes_CL
Keywordsdc.subjectCuAlBees_CL
Keywordsdc.subjectPost-superelásticoes_CL
Keywordsdc.subjectHRTEMes_CL
Keywordsdc.subjectLímite superelásticoes_CL
Títulodc.titleComportamiento Mecánico y Microestructural de una Aleación Cu-1,8%p.Al-0,5%p.Be en el Rango Post-Superelásticoes_CL
Document typedc.typeTesis


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/3.0/cl/