Show simple item record

Professor Advisordc.contributor.advisorRíos Pérez, Sebastián A.es_CL
Professor Advisordc.contributor.advisorGutiérrez Gallardo, Claudioes_CL
Professor Advisordc.contributor.advisorL'Huillier Chaparro, Gastónes_CL
Professor Advisordc.contributor.advisorPiquer Gardner, Josées_CL
Authordc.contributor.authorSilva Álvarez, Roberto Andrés es_CL
Staff editordc.contributor.editorFacultad de Ciencias Físicas y Matemáticases_CL
Staff editordc.contributor.editorDepartamento de Ciencias de la Computaciónes_CL
Admission datedc.date.accessioned2012-09-12T18:18:25Z
Available datedc.date.available2012-09-12T18:18:25Z
Publication datedc.date.issued2011es_CL
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/104248
Abstractdc.description.abstractInternet ha permitido la creación de distintas formas de comunicación entre los individuos, permitiéndoles intercambiar información y, en conjunto, crear conocimiento. Existe una gran diversidad de entidades sociales en la Web, tales como las redes sociales, comunidades virtuales, entre otras, donde cada una posee un objetivo y una razón de ser. El objetivo del presente trabajo de título es diseñar e implementar una aplicación de análisis que permita proveer de información y apoyar la moderación y administración de comunidades virtuales de práctica, utilizando técnicas de minería de datos, reduciendo la carga de trabajo en esta tarea. En este tipo de entidades, existe un integrante que posee características particulares, el administrador de la comunidad. Este individuo, debe realizar la labor de mantener el control sobre los distintos eventos que acontecen diariamente, arreglar los posibles problemas, facilitar herramientas e información, todo lo necesario para que la comunidad se mantenga acorde con el objetivo principal: crear y mantener el conocimiento. El problema de la administración, existe principalmente ya que las actividades moderadoras pueden tomar mucho tiempo, al ser una actividad básicamente manual. La solución propuesta consta del uso de minería de datos originados en la Web, con la intención de analizar los comportamientos de usuario de los integrantes de la comunidad. Mediante el proceso de descubrimiento de conocimiento en bases de datos (KDD), se intenta encontrar un modelo de clusters o grupos de los comportamientos de manera de analizar sus características y así poder indagar en la revisión de los mensajes generados por ellos. Se utilizan dos algoritmos de clustering particional, SelfOrganizing Maps (SOM) y la variante del K-means, K-Medoids. El uso de SOM tiene el propósito de encontrar la cantidad de clusters inherentes dentro del modelo. Se proponen dos modelos sobre medidas de similitud (modelo 1) y disimilitud (modelo 2) de las sesiones de usuario, utilizando dos representaciones del contenido. Los modelos se basan en el uso de medidas que capturan los aspectos más importantes de la navegación en la Web y en características exclusivas de los foros de comunidades virtuales. La metodología se aplica sobre el foro de la comunidad de Plexilandia.cl. Los resultados varían principalmente en la distribución de cantidad de clusters. El análisis final se basa en dos características principales, el análisis de secuencia y contenido, y en las características de los mensajes ingresados por el usuario durante su navegación. Al evaluar los modelos propuestos, se encuentra que revisando un 85% de todos los mensajes permite encontrar el 88% de los mensajes que requieren moderación para el modelo 1, y al revisar un 65% de todos los mensajes, se encuentra un 61% en el modelo 2. Además, se destaca que un alto porcentaje de los mensajes que requieren más moderación son bien clasificados en este trabajo. En conclusión, es posible encontrar y pronosticar mensajes que requieren mayor atención estudiando los comportamientos que poseen los usuarios respecto al sistema. Analizando las características de los resultados de manera exhaustiva produce una mejor comprensión del porqué ciertos comportamientos identificados generan o no mensajes relevantes al momento de moderar. Estudiando los comportamientos es posible generar estrategias preventivas y así minimizar la necesidad de moderación en la comunidad. Se recomienda en trabajos futuros utilizar otros algoritmos de minería de datos, tales como reglas de asociación, buscando causalidad entre el comportamiento de usuario y la moderación o en el caso del clustering, utilizar medidas de similitud o disimilitud que incluyan características personales de usuario que tengan incidencia en la generación de mensajes problemáticos.
Lenguagedc.language.isoeses_CL
Publisherdc.publisherUniversidad de Chilees_CL
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Keywordsdc.subjectComputaciónes_CL
Keywordsdc.subjectMinería de datoses_CL
Keywordsdc.subjectRedes sociales, Chilees_CL
Keywordsdc.subjectComunidades virtualeses_CL
Títulodc.titleAplicación de Técnicas de Minería de Datos para el Apoyo a la Administración de Comunidades Virtuales de Prácticaes_CL
Document typedc.typeTesis


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile