Show simple item record

Professor Advisordc.contributor.advisorRíos Pérez, Sebastián
Authordc.contributor.authorMartínez Álvarez, Clemente Antonio 
Staff editordc.contributor.editorFacultad de Ciencias Físicas y Matemáticas
Staff editordc.contributor.editorDepartamento de Ingeniería Industrial
Associate professordc.contributor.otherAguilera Valenzuela, Felipe
Associate professordc.contributor.otherChacon Sandoval, Andrés
Associate professordc.contributor.otherDurán Nardecchia, Eduardo
Admission datedc.date.accessioned2013-01-07T15:38:02Z
Available datedc.date.available2013-01-07T15:38:02Z
Publication datedc.date.issued2012
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/112065
General notedc.descriptionMagíster en Gestión de Operaciones
General notedc.descriptionIngeniero Civil Industrial
Abstractdc.description.abstractEl presente estudio se enfoca en el análisis de ingresos no percibidos en la empresa de telecomunicaciones ENTEL, dentro del proceso de provisión de servicios privados de telefonía, internet y comunicaciones a los clientes de mercados no residenciales. Dicho proceso es controlado mediante indicadores de gestión, obtenidos a partir de la transformación de datos de clientes y servicios. La generación de estos indicadores demanda tiempo y esfuerzo por parte de los analistas de la empresa, debido a que es un trabajo realizado en forma manual. El objetivo principal de esta tesis consiste en reducir el tiempo de cálculo de los indicadores de servicios privados de ENTEL, para lo cual se aplicó modelamiento multidimensional, técnicas de minería de datos y automatización de procesos, y de este modo poder entregar información más oportunamente. La metodología de este trabajo se basa principalmente en las etapas del proceso conocido como Knowledge Discovery in Databases (KDD), implementadas de acuerdo a la metodología CRISP-DM, la cual es usada para el desarrollo de proyectos de minería de datos. Para comenzar, se hizo un levantamiento de las métricas existentes para la gestión de la provisión de servicios. Luego, se seleccionaron y procesaron las fuentes de datos para el estudio de forma automática, almacenando las variables más relevantes en un repositorio multidimensional (Data Mart), reduciendo drásticamente el tiempo de cálculo de indicadores y liberando recursos humanos altamente calificados. A partir de lo anterior, se aplicaron técnicas de clustering para obtener grupos de elementos con datos de clientes y servicios cuyas características fueran similares, asociándoles un valor de precio según información histórica de consumo. Por último, se generó un modelo de clasificación que asignara, de acuerdo a una medida de similitud, elementos que no habían sido facturados a los grupos previamente definidos, y de esta manera estimar los ingresos no percibidos. Con ayuda de minería de datos se logró diseñar nuevas métricas para el proceso e identificar a los clientes y servicios más críticos, lo que permite llegar a valores más exactos de los ingresos perdidos en cada segmento, y aplicar estrategias diferenciadas para hacer el cobro a sus clientes. El trabajo realizado permitió una reducción del tiempo de obtención de los indicadores en un 78%, pasando de un total de 14 horas inicialmente a tan sólo 3 horas, logrando además estimar los ingresos perdidos mensualmente por servicios no facturados en un monto de MM $ 210, con un error de la estimación menor al 5%. Se espera que, con ayuda de este estudio, la empresa pueda tomar decisiones informadas y mejorar su capacidad de control del proceso de provisión de servicios privados, con el fin de regularizar su flujo de ingreso mensual.es_CL
Lenguagedc.language.isoeses_CL
Publisherdc.publisherUniversidad de Chilees_CL
Keywordsdc.subjectEntel (Chile)es_CL
Keywordsdc.subjectMinería de datoses_CL
Keywordsdc.subjectData warehousinges_CL
Keywordsdc.subjectGestión de negocioses_CL
Keywordsdc.subjectData Martes_CL
Títulodc.titleAplicación de técnicas de minería de datos para mejorar el proceso de control de gestión de ENTELes_CL
Document typedc.typeTesis


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record