Show simple item record

Professor Advisordc.contributor.advisorPalma Behnke, Rodrigo 
Authordc.contributor.authorLeañez Grau, Frank José Demetrio 
Staff editordc.contributor.editorFacultad de Ciencias Físicas y Matemáticas
Staff editordc.contributor.editorDepartamento de Ingeniería Eléctrica
Associate professordc.contributor.otherRudnick Van de Wyngard ,Hugh
Associate professordc.contributor.otherVargas Díaz, Luis
Admission datedc.date.accessioned2014-03-07T16:01:10Z
Available datedc.date.available2014-03-07T16:01:10Z
Publication datedc.date.issued2013
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/115353
General notedc.descriptionMagíster en Ciencias de la Ingeniería, Mención Ingeniería Eléctrica
Abstractdc.description.abstractEl trabajo de tesis compara en forma sistemática las diferencias de rendimiento entre las principales metodologías de solución del problema de Predespacho (UC) y muestra la aplicación de la relajación lagrangeana a casos reales del Sistema Interconectado del Norte Grande (SING). Se propone una metodología para la creación de casos sintéticos de UC que permitan obtener diversidad a distintas escalas sin que resulten alejados de la realidad, siendo ésta la principal contribución del presente trabajo junto con los resultados estadísticos que favorecen MIP por sobre LR para sistemas de medianas dimensiones. La relajación lagrangeana (LR) y la programación entero mixta (MIP) son los métodos de solución que han encontrado el mayor número de aplicaciones prácticas al UC. Sin embargo, las comparaciones de rendimiento y calidad entre ambas, aunque propuestas conceptualmente y cuyas nociones intuitivas se encuentran dispersas en la bibliografía especializada, adolecen de falta de generalidad, escasa representación de la realidad, ausencia de especificaciones computacionales o, inclusive, éstas pueden haber quedado obsoletas. Ante la escasez de librerías de modelos de UC o, al menos, de métodos de creación de casos de aplicación, en el presente trabajo se propone y aplica un generador de casos sintéticos de prueba de UC. Este método formula casos basados en la combinación de datos estandarizados con la generación aleatoria de parámetros. De esta forma, los problemas de UC creados adquieren diversidad (universalidad) sin que las instancias se alejen demasiado de la realidad. La diversidad de las instancias generadas es controlada mediante los parámetros de las funciones de distribución de probabilidades, tanto para la selección de unidades candidatas como para la variedad en los parámetros técnicos característicos. Estas instancias son resueltas por los métodos para resolver el UC en una misma plataforma computacional. El método de LR encuentra soluciones factibles para 429 instancias de las 480 (89,4%), cumpliendo con el gap objetivo de 0,01% en tan sólo 90 casos (18,8%), mientras que el MIP encuentra la solución óptima para el 98,3% de los casos. Los resultados obtenidos verifican que para el rango de 10 a 100 unidades, la mejor solución entera factible alcanzada por LR tiene una menor calidad (valor mayor de la función objetivo en problemas de minimización) que la encontrada por el optimizador MIP. Los resultados permiten determinar que el sobrecosto (respecto al MIP) esperado de las soluciones mediante LR fue de 6,03%. El aumento de la dispersión en los parámetros técnicos beneficia ambos métodos al obtener la mejor solución factible en menores tiempos de ejecución. De esta forma se muestra que no sólo la calidad de la solución por LR se ve afectada por unidades similares, sino que también afecta al método MIP. Se comprueba que a medida que los problemas son más difíciles (juzgando por la adaptabilidad y por el número de unidades), la cota inferior de LR resulta en promedio mayor (mejor) a la cota inferior promedio por MIP. Respecto al caso práctico inspirado en el SING, la calidad de la solución por LR se ve especialmente deteriorada cuando las restricciones de mínimos técnicos de las unidades obligan que la solución óptima entera se aleje de la relajación lineal. Si bien para este caso la resolución mediante MIP también se dificulta requiriendo de hasta un 60% más tiempo de ejecución, este efecto es comparativamente menor al deterioro de la calidad de la solución observada mediante LR (que resulta hasta 4.5% mayor que MIP). Conceptualmente, este hallazgo se explica por los valores de actualización de los multiplicadores en LR, lo que se traduce en imposibilidad para explorar zonas del espacio de soluciones. Como conclusión general, el estudio entrega evidencia práctica a favor de la tendencia observada en la revisión bibliográfica en relación a privilegiar desarrollos de tipo MIP, la cual es aplicable a sistemas medianos como el caso real en estudio basado en el SING chileno. Esta conclusión no se extiende para otros sistemas reales de grandes dimensiones (eg. CAISO, MISO, UCTE). Como futuros desarrollos se sugiere explorar esquemas integrados LR-MIP explotando las mejoras de la cota inferior que proporciona LR en comparación con la relajación lineal del MIP y la creación de soluciones factibles por el método LR para inicializar el MIP.en_US
Lenguagedc.language.isoesen_US
Publisherdc.publisherUniversidad de Chileen_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectSistema Interconectado del Norte Grandeen_US
Keywordsdc.subjectModelos matemáticosen_US
Keywordsdc.subjectProgramación enteraen_US
Keywordsdc.subjectTransmisión de energía eléctricaen_US
Keywordsdc.subjectRelajación Lagrangeanaen_US
Títulodc.titleEstudio comparativo de la relajación lagrangeana y la programación entera-mixta en el problema del pre-despacho de sistemas medianosen_US
Document typedc.typeTesis


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile