Modelamiento matemático de la homeostasis de cobre en bacterias
Professor Advisor
dc.contributor.advisor
Salgado Herrera, José Cristian
Author
dc.contributor.author
Aracena Pérez, Waldo Sebastián
Staff editor
dc.contributor.editor
Facultad de Ciencias Físicas y Matemáticas
Staff editor
dc.contributor.editor
Departamento de Ingeniería Química y Biotecnología
Associate professor
dc.contributor.other
Gerdtzen Hakim, Ziomara
Associate professor
dc.contributor.other
Jerez Guevara, Carlos
Admission date
dc.date.accessioned
2014-03-25T16:14:31Z
Available date
dc.date.available
2014-03-25T16:14:31Z
Publication date
dc.date.issued
2013
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/115462
General note
dc.description
Ingeniero Civil en Biotecnología
Abstract
dc.description.abstract
A lo largo del tiempo, los organismos vivos han desarrollado la capacidad de utilizar y acumular metales de transición. Esta capacidad resulta de suma importancia al considerar que estos elementos, entre los cuales se encuentra el cobre, están asociados a distintos procesos y rutas metabólicas. A pesar de esto, pueden llegar a ser tóxicos para la célula sobrepasando ciertas concentraciones.
En el presente trabajo se proponen mecanismos cinéticos de los componentes de la homeostasis del cobre en Escherichia coli para estudiar la resistencia de éste elemento en bacterias. Estos mecanismos se relacionan mediante un modelo cuantitativo de flujos a partir de EDOs, donde se identificó y caracterizó cada componente del sistema. La cinética de tres proteínas (CopA, CueO y CusCBA) es estudiada en base a sus actividades reportadas para la obtención de los parámetros cinéticos, los cuales son ajustados por los mecanismos propuestos mediante la técnica de análisis numérico de mínimos cuadrados.
Para desarrollar el modelo se realizaron algunos supuestos, como considerar las concentraciones de ATP, H+ y O2 en exceso para las reacciones, y mantener la cantidad de proteínas constante. Como resultado principal, se obtiene que la cantidad de cobre en el citoplasma y periplasma varía entre 2 a 12 átomos (0.003 a 0.02 [uM]) y 55 a 570 átomos (0.09 a 0.95 [uM]) respectivamente; otorgando a este segundo compartimiento 48 veces más capacidad de almacenamiento de cobre libre. Además, las escalas de tiempo de respuesta de las simulaciones, están en el orden de los 30 minutos, acercándose al tiempo de respuesta que se espera para mantener el supuesto de proteínas constante. Por otra parte, el resultado del modelo es más sensible a perturbaciones de los parámetros cinéticos de CueO y del volumen extracelular; mientras que se observan variaciones menores del 1% al perturbar los parámetros del sistema transportador CusCBA-CusF.
El modelo se validó mediante ensayos de comparación entre distintos casos de mutaciones de tipo knockdown y los valores de las MICs asociadas a ellos, pudiendo recuperar los valores vinculando las MICs reportadas con las MICs obtenidas mediante una relación. En los casos de silenciamiento genético de CopA, se observa la importancia de insertar un transportador putativo que transporte cobre desde el periplasma hacia el citoplasma.
A través del modelo, es posible estudiar el comportamiento de los elementos principales de la homeostasis de cobre en bacteria, validando la metodología utilizada. A partir de esto, se puede tener aproximaciones de la dinámica del sistema de homeostasis de cobre y dada la flexibilidad del modelo, extrapolarlo a otros organismos para evaluar concentraciones críticas de este elemento en distintos casos como polímeros biocidas o enfermedades relacionadas con la absorción del cobre.