Show simple item record

Professor Advisordc.contributor.advisorMahmoudi, Fethi
Authordc.contributor.authorSubiabre Sánchez, Felipe Ignacio 
Staff editordc.contributor.editorFacultad de Ciencias Físicas y Matemáticas
Staff editordc.contributor.editorDepartamento de Ingeniería Matemática
Associate professordc.contributor.otherPino Manresa, Manuel del 
Associate professordc.contributor.otherDávila Bonczos, Juan 
Admission datedc.date.accessioned2014-09-15T15:12:06Z
Available datedc.date.available2014-09-15T15:12:06Z
Publication datedc.date.issued2014
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/116846
General notedc.descriptionIngeniero Civil Matemático
Abstractdc.description.abstractEl trabajo presentado en esta memoria se sitúa en la interfaz entre el análisis y la geometría. El interés recae en el estudio de fenómenos de concentración para dos problemas "geométricos" no lineales: la existencia de hipersuperficies con r-curvatura constante en variedades Riemannianas, y una ecuación de Schrödinger no lineal. Esta memoria se puede dividir en dos partes principales. La primera está dedicada a explorar algunos resultados sobre concentración de familias de hipersuperficies de curvatura media constante (o en general curvatura r-media constante) con topología no trivial en variedades Riemannianas compactas. Se recuerda que la curvatura r-media de una hipersuperficie se define como la r-ésima función simétrica elemental de las curvaturas principales de la hipersuperficie. Se prueba que las técnicas desarrolladas en el trabajo de Mahmoudi, Mazzeo y Pacard se pueden extender para manejar el caso de curvatura r-media con r>=1. Este fenómeno de concentración se relaciona en general con un fenómeno de resonancia, que hace el análisis particularmente delicado y que también se encuentra en el estudio de una clase de ecuaciones elípticas no lineales que presentan concentración sobre conjuntos de dimensión mayor. En la segunda parte, correspondiente al paper presentado, se prueba un nuevo resultado sobre concentración en subvariedades para una ecuación de Schrödinger no lineal con potencial definido en una variedad Riemanniana suave y compacta M o el espacio Euclídeo R^n, resolviendo en completa generalidad una conjetura planteada por Ambrosetti, Malchiodi y Ni. Precisamente, se estudian soluciones positivas de la siguiente ecuación semilineal: $$\e^2\Delta_{\bar g} u - V(z)u + u^{p} =0 en M,$$ donde (M,g) es una variedad Riemanniana n-dimensional suave, compacta y sin borde o el espacio Euclídeo R^n, e es un parámetro positivo pequeño, p>1 y V es un potencial uniformemente positivo. Se prueba que dado k=1,...,n-1 y 1<p<(n+2-k)/(n-2-k), y suponiendo que K es una subvariedad k-dimensional suave y encajada de M, que es estacionaria y no degenerada con respecto al funcional $\int_K V^{\frac{p+1}{p-1}-\frac{n-k}{2}}dvol$, entonces existe una secuencia $e=\e_j \to 0$ y soluciones positivas asociadas $u=u_\e$ que concentran sobre K en el sentido de que decaen exponencialmente a cualquier distancia positiva a K. En particular este enfoque explora una conexión entre soluciones de esta ecuación de Schrödinger no lineal y subvariedades f-minimales en variedades con densidad.en_US
Lenguagedc.language.isoesen_US
Publisherdc.publisherUniversidad de Chileen_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectGeometría de Riemannen_US
Keywordsdc.subjectGeometría algebraicaen_US
Títulodc.titleFenómenos de concentración en geometría y análisis no linealen_US
Document typedc.typeTesis


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile