Show simple item record

Authordc.contributor.authorCastro, Rodrigo 
Authordc.contributor.authorFelmer Aichele, Patricio es_CL
Admission datedc.date.accessioned2007-04-18T17:03:28Z
Available datedc.date.available2007-04-18T17:03:28Z
Publication datedc.date.issued2005-06
Cita de ítemdc.identifier.citationCOMMUNICATIONS IN MATHEMATICAL PHYSICS 256 (2): 411-435 JUN 2005en
Identifierdc.identifier.issn0010-3616
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/124511
Abstractdc.description.abstractWe consider the nonlinear Schrodinger equation epsilon(2)Delta u - V (x) u + | u|(p-1) u = 0, x is an element of R-N, with superlinear and subcritical nonlinearity. Assuming that the potential is radially symmetric we find radial sign-changing solutions of the equation that concentrate in a ball, as the parameter e goes to zero. We study the asymptotic profile of these highly oscillatory solutions, completely characterizing their behavior by means of an envelope function.en
Lenguagedc.language.isoenen
Publisherdc.publisherSPRINGERen
Keywordsdc.subjectPERTURBED ELLIPTIC-EQUATIONSen
Títulodc.titleSemi-classical limit for radial non-linear Schrodinger equationen
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record