Condensation of classical nonlinear waves
Author | dc.contributor.author | Connaughton, Colm | |
Author | dc.contributor.author | Josserand, Christophe | es_CL |
Author | dc.contributor.author | Picozzi, Antonio | es_CL |
Author | dc.contributor.author | Pomeau, Yves | es_CL |
Author | dc.contributor.author | Rica, Sergio | es_CL |
Admission date | dc.date.accessioned | 2007-04-18T17:08:41Z | |
Available date | dc.date.available | 2007-04-18T17:08:41Z | |
Publication date | dc.date.issued | 2005-12-31 | |
Cita de ítem | dc.identifier.citation | PHYSICAL REVIEW LETTERS 95 (26): Art. No. 263901 DEC 31 2005 | en |
Identifier | dc.identifier.issn | 0031-9007 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/124512 | |
Abstract | dc.description.abstract | We study the formation of a large-scale coherent structure (a condensate) in classical wave equations by considering the defocusing nonlinear Schrodinger equation as a representative model. We formulate a thermodynamic description of the classical condensation process by using a wave turbulence theory with ultraviolet cutoff. In three dimensions the equilibrium state undergoes a phase transition for sufficiently low energy density, while no transition occurs in two dimensions, in complete analogy with standard Bose-Einstein condensation in quantum systems. On the basis of a modified wave turbulence theory, we show that the nonlinear interaction makes the transition to condensation subcritical. The theory is in quantitative agreement with the numerical integration of the nonlinear Schrodinger equation. | en |
Lenguage | dc.language.iso | en | en |
Publisher | dc.publisher | AMERICAN PHYSICAL SOC | en |
Keywords | dc.subject | BOSE-EINSTEIN CONDENSATION | en |
Título | dc.title | Condensation of classical nonlinear waves | en |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas