Average complexity of exact and approximate multiple string matching
Author | dc.contributor.author | Navarro, Gonzalo | |
Author | dc.contributor.author | Fredriksson, Kimmo | es_CL |
Admission date | dc.date.accessioned | 2007-04-18T21:47:40Z | |
Available date | dc.date.available | 2007-04-18T21:47:40Z | |
Publication date | dc.date.issued | 2004-08-16 | |
Cita de ítem | dc.identifier.citation | THEORETICAL COMPUTER SCIENCE 321 (2-3): 283-290 AUG 16 2004 | en |
Identifier | dc.identifier.issn | 0304-3975 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/124528 | |
Abstract | dc.description.abstract | We show that the average number of characters examined to search for r random patterns of length m in a text of length n over a uniformly distributed alphabet of size a cannot be less than Omega(n log(sigma)(rm)/m). When we permit up to k insertions, deletions, and/or substitutions of characters in the occurrences of the patterns, the lower bound becomes Omega(n(k + log(sigma)(rm))/m). This generalizes previous single-pattern lower bounds of Yao (for exact matching) and of Chang and Marr (for approximate matching), and proves the optimality of several existing multipattern search algorithms. | en |
Lenguage | dc.language.iso | en | en |
Publisher | dc.publisher | ELSEVIER | en |
Keywords | dc.subject | lower bounds | en |
Título | dc.title | Average complexity of exact and approximate multiple string matching | en |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas