Show simple item record

Authordc.contributor.authorNavarro, Gonzalo 
Authordc.contributor.authorFredriksson, Kimmo es_CL
Admission datedc.date.accessioned2007-04-18T21:47:40Z
Available datedc.date.available2007-04-18T21:47:40Z
Publication datedc.date.issued2004-08-16
Cita de ítemdc.identifier.citationTHEORETICAL COMPUTER SCIENCE 321 (2-3): 283-290 AUG 16 2004en
Identifierdc.identifier.issn0304-3975
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/124528
Abstractdc.description.abstractWe show that the average number of characters examined to search for r random patterns of length m in a text of length n over a uniformly distributed alphabet of size a cannot be less than Omega(n log(sigma)(rm)/m). When we permit up to k insertions, deletions, and/or substitutions of characters in the occurrences of the patterns, the lower bound becomes Omega(n(k + log(sigma)(rm))/m). This generalizes previous single-pattern lower bounds of Yao (for exact matching) and of Chang and Marr (for approximate matching), and proves the optimality of several existing multipattern search algorithms.en
Lenguagedc.language.isoenen
Publisherdc.publisherELSEVIERen
Keywordsdc.subjectlower boundsen
Títulodc.titleAverage complexity of exact and approximate multiple string matchingen
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record