Existence and asymptotic behavior for a singular parabolic equation
Author | dc.contributor.author | Dávila, Juan | |
Author | dc.contributor.author | Montenegro, Marcelo | es_CL |
Admission date | dc.date.accessioned | 2007-05-18T15:18:10Z | |
Available date | dc.date.available | 2007-05-18T15:18:10Z | |
Publication date | dc.date.issued | 2005 | |
Cita de ítem | dc.identifier.citation | TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY 357 (5): 1801-1828 2005 | en |
Identifier | dc.identifier.issn | 0002-9947 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/124601 | |
Abstract | dc.description.abstract | We prove global existence of nonnegative solutions to the singular parabolic equation ut - Deltau+chi ({u> 0})(- u(-beta) +lambdaf(u)) = 0 in a smooth bounded domain Omega subset of R-N with zero Dirichlet boundary condition and initial condition u(0) is an element of C(Omega), u(0) greater than or equal to 0. In some cases we are also able to treat u(0) is an element of L-infinity(Omega). Then we show that if the stationary problem admits no solution which is positive a. e., then the solutions of the parabolic problem must vanish in finite time, a phenomenon called "quenching". We also establish a converse of this fact and study the solutions with a positive initial condition that leads to uniqueness on an appropriate class of functions. | en |
Lenguage | dc.language.iso | en | en |
Publisher | dc.publisher | AMER MATHEMATICAL SOC | en |
Keywords | dc.subject | QUENCHING PROBLEMS | en |
Título | dc.title | Existence and asymptotic behavior for a singular parabolic equation | en |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas