Show simple item record

Authordc.contributor.authorDávila, Juan 
Authordc.contributor.authorMontenegro, Marcelo es_CL
Admission datedc.date.accessioned2007-05-18T15:18:10Z
Available datedc.date.available2007-05-18T15:18:10Z
Publication datedc.date.issued2005
Cita de ítemdc.identifier.citationTRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY 357 (5): 1801-1828 2005en
Identifierdc.identifier.issn0002-9947
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/124601
Abstractdc.description.abstractWe prove global existence of nonnegative solutions to the singular parabolic equation ut - Deltau+chi ({u> 0})(- u(-beta) +lambdaf(u)) = 0 in a smooth bounded domain Omega subset of R-N with zero Dirichlet boundary condition and initial condition u(0) is an element of C(Omega), u(0) greater than or equal to 0. In some cases we are also able to treat u(0) is an element of L-infinity(Omega). Then we show that if the stationary problem admits no solution which is positive a. e., then the solutions of the parabolic problem must vanish in finite time, a phenomenon called "quenching". We also establish a converse of this fact and study the solutions with a positive initial condition that leads to uniqueness on an appropriate class of functions.en
Lenguagedc.language.isoenen
Publisherdc.publisherAMER MATHEMATICAL SOCen
Keywordsdc.subjectQUENCHING PROBLEMSen
Títulodc.titleExistence and asymptotic behavior for a singular parabolic equationen
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record