Show simple item record

Authordc.contributor.authorEstévez Valencia, Pablo 
Authordc.contributor.authorFigueroa, Cristián es_CL
Authordc.contributor.authorSaito, Kazumi es_CL
Admission datedc.date.accessioned2007-05-18T17:25:00Z
Available datedc.date.available2007-05-18T17:25:00Z
Publication datedc.date.issued2005-06
Cita de ítemdc.identifier.citationNEURAL NETWORKS 18 (5-6): 727-737 JUN-JUL 2005en
Identifierdc.identifier.issn0893-6080
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/124617
Abstractdc.description.abstractA cross-entropy approach to mapping high-dimensional data into a low-dimensional space embedding is presented. The method allows to project simultaneously the input data and the codebook vectors, obtained with the Neural Gas (NG) quantizer algorithm, into a low-dimensional output space. The aim of this approach is to preserve the relationship defined by the NG neighborhood function for each pair of input and codebook vectors. A cost function based on the cross-entropy between input and output probabilities is minimized by using a Newton-Raphson method. The new approach is compared with Sammon's non-linear mapping (NLM) and the hierarchical approach of combining a vector quantizer such as the self-organizing feature map (SOM) or NG with the NLM recall algorithm. In comparison with these techniques, our method delivers a clear visualization of both data points and codebooks, and it achieves a better mapping quality in terms of the topology preservation measure q(m).en
Lenguagedc.language.isoenen
Publisherdc.publisherPERGAMON-ELSEVIER SCIENCE LTDen
Keywordsdc.subjectCLASSIFICATIONen
Títulodc.titleCross-entropy embedding of high-dimensional data using the neural gas modelen
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record