Show simple item record

Authordc.contributor.authorMäkinen, Veli 
Authordc.contributor.authorNavarro, Gonzalo es_CL
Authordc.contributor.authorUkkonen, Esko es_CL
Admission datedc.date.accessioned2007-05-22T15:13:16Z
Available datedc.date.available2007-05-22T15:13:16Z
Publication datedc.date.issued2005-08
Cita de ítemdc.identifier.citationJOURNAL OF ALGORITHMS 56 (2): 124-153 AUG 2005en
Identifierdc.identifier.issn0196-6774
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/124624
Abstractdc.description.abstractGiven strings A = a(1)a(2)...a(m) and B=b(1)b(2)...b(n) over an alphabet Sigma subset of U, where U is some numerical universe closed under addition and subtraction, and a distance function d(A, B) that gives the score of the best (partial) matching of A and B, the transposition invariant distance is min(t is an element of U){d(A + t, B)}, where A + t = (a(1) + t)(a(2) + t)...(a(m) + t). We study the problem of computing the transposition invariant distance for various distance (and similarity) functions d, including Hamming distance, longest common subsequence (LCS), Levenshtein distance, and their versions where the exact matching condition is replaced by an approximate one. For all these problems we give algorithms whose time complexities are close to the known upper bounds without transposition invariance, and for some we achieve these upper bounds. In particular, we show how sparse dynamic programming can be used to solve transposition invariant problems, and its connection with multidimensional range-minimum search. As a byproduct, we give improved sparse dynamic programming algorithms to compute LCS and Levenshtein distance.en
Lenguagedc.language.isoenen
Publisherdc.publisherACADEMIC PRESS INC ELSEVIER SCIENCEen
Keywordsdc.subjectMUSIC RETRIEVALen
Títulodc.titleTransposition invariant string matchingen
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record