Expected length of the longest common subsequence for large alphabets
Author | dc.contributor.author | Kiwi Krauskopf, Marcos | |
Author | dc.contributor.author | Loebl, Martin | es_CL |
Author | dc.contributor.author | Matoušek, Jiří | es_CL |
Admission date | dc.date.accessioned | 2007-05-23T14:30:02Z | |
Available date | dc.date.available | 2007-05-23T14:30:02Z | |
Publication date | dc.date.issued | 2005-11-10 | |
Cita de ítem | dc.identifier.citation | ADVANCES IN MATHEMATICS 197 (2): 480-498 NOV 10 2005 | en |
Identifier | dc.identifier.issn | 0001-8708 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/124632 | |
Abstract | dc.description.abstract | We consider the length L of the longest common subsequence of two randomly uniformly and independently chosen n character words over a k-ary alphabet. Subadditivity arguments yield that E[L]/n converges to a constant gamma(k). We prove a conjecture of Sankoff and Mainville from the early 1980s claiming that gamma(k)root k -> 2 as k -> infinity. | en |
Lenguage | dc.language.iso | en | en |
Publisher | dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | en |
Keywords | dc.subject | RANDOM PERMUTATIONS | en |
Título | dc.title | Expected length of the longest common subsequence for large alphabets | en |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas