Show simple item record

Authordc.contributor.authorKiwi Krauskopf, Marcos 
Authordc.contributor.authorLoebl, Martin es_CL
Authordc.contributor.authorMatoušek, Jiří es_CL
Admission datedc.date.accessioned2007-05-23T14:30:02Z
Available datedc.date.available2007-05-23T14:30:02Z
Publication datedc.date.issued2005-11-10
Cita de ítemdc.identifier.citationADVANCES IN MATHEMATICS 197 (2): 480-498 NOV 10 2005en
Identifierdc.identifier.issn0001-8708
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/124632
Abstractdc.description.abstractWe consider the length L of the longest common subsequence of two randomly uniformly and independently chosen n character words over a k-ary alphabet. Subadditivity arguments yield that E[L]/n converges to a constant gamma(k). We prove a conjecture of Sankoff and Mainville from the early 1980s claiming that gamma(k)root k -> 2 as k -> infinity.en
Lenguagedc.language.isoenen
Publisherdc.publisherACADEMIC PRESS INC ELSEVIER SCIENCEen
Keywordsdc.subjectRANDOM PERMUTATIONSen
Títulodc.titleExpected length of the longest common subsequence for large alphabetsen
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record