Show simple item record

Authordc.contributor.authorPlaza, A. 
Authordc.contributor.authorRivara Zúñiga, María Cecilia es_CL
Admission datedc.date.accessioned2007-06-05T16:07:23Z
Available datedc.date.available2007-06-05T16:07:23Z
Publication datedc.date.issued2005-05-01
Cita de ítemdc.identifier.citationJOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICSen
Identifierdc.identifier.issn0377-0427
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/124652
Abstractdc.description.abstractFor any conforming mesh, the application of a skeleton-regular partition over each element in the mesh, produces a conforming mesh such that all the topological elements of the same dimension are subdivided into the same number of child-elements. Every skeleton-regular partition has associated special constitutive (recurrence) equations. In this paper the average adjacencies associated with the skeleton-regular partitions in 3D are studied. In three-dimensions different values for the asymptotic number of average adjacencies are obtained depending on the considered partition, in contrast with the two-dimensional case [J. Comput. Appl. Math. 140 (2002) 673]. In addition, a priori formulae for the average asymptotic adjacency relations for any skeleton-regular partition in 3D are provided.en
Lenguagedc.language.isoenen
Publisherdc.publisherELSEVIER SCIENCE BVen
Keywordsdc.subjectLOCAL REFINEMENTen
Títulodc.titleAverage adjacencies for tetrahedral skeleton-regular partitionsen
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record