Average adjacencies for tetrahedral skeleton-regular partitions
Author | dc.contributor.author | Plaza, A. | |
Author | dc.contributor.author | Rivara Zúñiga, María Cecilia | es_CL |
Admission date | dc.date.accessioned | 2007-06-05T16:07:23Z | |
Available date | dc.date.available | 2007-06-05T16:07:23Z | |
Publication date | dc.date.issued | 2005-05-01 | |
Cita de ítem | dc.identifier.citation | JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | en |
Identifier | dc.identifier.issn | 0377-0427 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/124652 | |
Abstract | dc.description.abstract | For any conforming mesh, the application of a skeleton-regular partition over each element in the mesh, produces a conforming mesh such that all the topological elements of the same dimension are subdivided into the same number of child-elements. Every skeleton-regular partition has associated special constitutive (recurrence) equations. In this paper the average adjacencies associated with the skeleton-regular partitions in 3D are studied. In three-dimensions different values for the asymptotic number of average adjacencies are obtained depending on the considered partition, in contrast with the two-dimensional case [J. Comput. Appl. Math. 140 (2002) 673]. In addition, a priori formulae for the average asymptotic adjacency relations for any skeleton-regular partition in 3D are provided. | en |
Lenguage | dc.language.iso | en | en |
Publisher | dc.publisher | ELSEVIER SCIENCE BV | en |
Keywords | dc.subject | LOCAL REFINEMENT | en |
Título | dc.title | Average adjacencies for tetrahedral skeleton-regular partitions | en |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas