Standing waves for supercritical nonlinear Schrodinger equations
Author | dc.contributor.author | Dávila, Juan | es_CL |
Author | dc.contributor.author | Pino Manresa, Manuel del | es_CL |
Author | dc.contributor.author | Musso, Mónica | es_CL |
Author | dc.contributor.author | Wei, Juncheng | es_CL |
Admission date | dc.date.accessioned | 2008-05-08T11:43:36Z | |
Available date | dc.date.available | 2008-05-08T11:43:36Z | |
Publication date | dc.date.issued | 2007 | es_CL |
Cita de ítem | dc.identifier.citation | JOURNAL OF DIFFERENTIAL EQUATIONS Vol. 236 01/05/2001 2007 1 164-198 | es_CL |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/124657 | |
General note | dc.description | Publicación ISI | es_CL |
Abstract | dc.description.abstract | Let V (x) be a non-negative, bounded potential in R-N, N >= 3 and p supercritical, p > N+2/N-2. We look for positive solutions of the standing-wave nonlinear Schrodinger equation Delta u - V(x)u + u(P) = 0 in R-N, with u(x) -> 0 as vertical bar x vertical bar -> +infinity. We prove that if V(x) = 0(vertical bar x vertical bar(-2)) as vertical bar x vertical bar -> +infinity, then for N >= 4 and p > N+1/N-3 this problem admits a continuum of solutions. If in addition we have, for instance, V (x) = 0 (vertical bar x vertical bar-mu) with mu > N, then this result still holds provided that N >= 3 and p > N+2/N-2. Other conditions for solvability, involving behavior of V at infinity, are also provided. (C) 2007 Elsevier Inc. All rights reserved. | es_CL |
Lenguage | dc.language.iso | en | es_CL |
Keywords | dc.subject | BOUND-STATES | es_CL |
Area Temática | dc.subject.other | Mathematics | es_CL |
Título | dc.title | Standing waves for supercritical nonlinear Schrodinger equations | es_CL |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas