Show simple item record

Authordc.contributor.authorEmery, Xavier es_CL
Admission datedc.date.accessioned2008-05-14T13:58:13Z
Available datedc.date.available2008-05-14T13:58:13Z
Publication datedc.date.issued2007es_CL
Cita de ítemdc.identifier.citationCOMPUTERS & GEOSCIENCES Vol. 33 MAY 2007 4 522-537es_CL
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/124672
General notedc.descriptionPublicación ISIes_CL
Abstractdc.description.abstractThis article presents models of random fields with continuous univariate distributions that are defined by simple operations on stationary or intrinsic Gaussian fields. Realizations of these models can be conditioned to a set of data by using iterative algorithms based on the Gibbs sampler, while parameter inference relies on the fitting of the sample univariate and bivariate distributions. The proposed models are suited to the description of regionalized variables with a spatial clustering of high or low values, patterns of connectivity and curvilinearity, or an asymmetry in the spatial correlation of indicator variables with respect to the median threshold. The simulation procedure is illustrated by a case study in environmental science dealing with nickel concentrations in the topsoil of a polluted site. (c) 2006 Elsevier Ltd. All rights reserved.es_CL
Lenguagedc.language.isoenes_CL
Keywordsdc.subjectgeostatisticses_CL
Area Temáticadc.subject.otherComputer Science, Interdisciplinary Applications; Geosciences, Multidisciplinaryes_CL
Títulodc.titleUsing the Gibbs sampler for conditional simulation of Gaussian-based random fieldses_CL
Document typedc.typeArtículo de revista


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record